
VU Research Portal

Tool Support for Traceable Product Evolution

Bagert, D.J.; Barbacci, M.; Budgen, D.; Lethbridge, T.C.; Suryn, W.; van Vliet, H.

published in
Proceedings Tenth International Workshop Software Technology and Engineering Practice (STEP 2002)
2003

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Bagert, D. J., Barbacci, M., Budgen, D., Lethbridge, T. C., Suryn, W., & van Vliet, H. (2003). Tool Support for
Traceable Product Evolution. In Proceedings Tenth International Workshop Software Technology and
Engineering Practice (STEP 2002) (pp. 24-35). IEEE.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 27. May. 2021

https://research.vu.nl/en/publications/5dd6a400-a317-42f3-96a8-6a24711e446b

Thoughts on Software Engineering Knowledge, and how to

Organize it

Donald J. Bagert Mario Barbacci David Budgen
Rose-Hulman Inst. of Techn. Software Engineering Institute Keele University

Terre Haute, Indiana Pittsburgh Staffordshire
USA USA UK

Timothy C. Lethbridge Witold Suryn Hans van Vliet

University of Ottawa École de Techn. Supérieure Vrije Universiteit
Ottawa Montreal Amsterdam
Canada Canada The Netherlands

Abstract

SWEBOK describes what knowledge a soft-
ware engineer who has a Bachelor’s degree and
four years of experience should have. SEEK
describes the knowledge to be taught in an un-
dergraduate program in software engineering.
Although different in scope and purpose, there
are many similarities between the two, and af-
ter all, even experienced developers need an ed-
ucation, don’t they? A full-day workshop on
the alignment between SWEBOK and SEEK,
held at STEP 2002, revealed a number of is-
sues that received either a scant or a scat-
tered treatment in either or both documents.
These issues include: software architecture,
software measurement, and software quality.
In addition, topics of debate were whether or
not user interface design should be considered
part of software design, or rather deserves its
own, separate treatment; and whether mainte-
nance/evolution merits a separate discussion,
or should rather be seen as the default mode of
operation in software development. This paper
elaborates the discussions of this workshop.

1 Introduction

Software engineering is a young discipline.
According to [Wang and Patel, 2000], it is in a
transition from the art age to the engineering

age. The main characteristics of a discipline in
the engineering age are:

• adoption of work processes

• established processes

• reinforced standards

• stable professional practices

• defined best practices

• well developed theories and foundations

• proven methods and technologies

The current efforts of SWEBOK and SEEK
perfectly fit this transitional stage of software
engineering. The Guide to the Software Engi-
neering Body of Knowledge (SWEBOK) is a
result of the Software Engineering Coordinat-
ing Committee, a Joint IEEE Computer So-
ciety - ACM committee1. It reflects a widely
agreed-upon view on what a software engineer
who has a Bachelor’s degree and four years
of experience should know. The Software En-
gineering Education Knowledge (SEEK) can
be seen as the education counterpart of SWE-
BOK, aimed at providing guidance for under-
graduate curricula.

A full-day workshop on the alignment be-
tween SWEBOK (the trial version published

1ACM withdrew after being involved in the original
development of SWEBOK

1

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

in [Abran et al., 2001]) and SEEK (the first
draft, [Sobel, 2002]) was held at STEP 2002.
As a result of this workshop, a number of
smaller issues were discussed that merit the
attention of the bodies responsible for SWE-
BOK and SEEK. In addition to these, a num-
ber of issues were identified that received ei-
ther a scant or a scattered treatment in either
or both of SWEBOK and SEEK:

• Software Architecture. Software architec-
ture has become one of the central topics
in software engineering. In early publica-
tions, such as [Shaw, 1988], software ar-
chitecture was by and large synonymous
with global design. This is also the view
reflected in SWEBOK and SEEK, with
their emphasis on (design and architec-
tural) patterns. In a broader view, archi-
tecture involves making tradeoffs between
quality concerns of different stakeholders.
As such, it becomes a balancing act recon-
ciling the collective set of functional and
quality requirements of all stakeholders
with a (global) design that meets those re-
quirements. This broader view is quickly
becoming the received view.

• Software Measurement. One aspect of
a maturing engineering field is that we
can start measuring its products and pro-
cesses. Both SWEBOK and SEEK pay
attention to measurement at a number
of places. However, proper measurement
within software engineering merits a dis-
cussion of its own, i.e. a separate knowl-
edge area: from basic notions of what a
valid measure is to how to set up a proper
measurement program.

• Software Quality. Quality more and more
often becomes a critical attribute of a soft-
ware product since its absence results in
dissatisfied users, loss of money, and may
even cost lives. An increasing business-
related recognition of the importance of
software quality makes the software engi-
neering “center of gravity” shift from cre-
ating an engineering solution toward sat-
isfying the stakeholder. Development or-
ganizations confronted with such an ap-
proach are, in general, not prepared to
deal with it since their engineers too of-
ten are not adequately educated. This re-
ality makes the role of the SEEK initiative

critical.

• User Interface Design. SWEBOK lists
human-computer interaction (HCI) as a
“related discipline” of software engineer-
ing. It furthermore states that user in-
terface design deals with specifying the
external view of the system. SEEK inte-
grates HCI topics as part of software en-
gineering within various knowledge areas.
These two views are at opposite extremes
and both have ardent supporters. Keep-
ing HCI as a separate discipline recognizes
that HCI has grown up as a distinct field
and has its own experts that software en-
gineers can call on; however, this does not
sufficiently reflect the fact that for many
software systems, human use is a decisive
factor for product quality, and that, for
many an end-user, the user interface is
the system. From this perspective, fully
incorporating HCI into SEEK seems justi-
fied. Unfortunately it is necessary to pick
a subset of HCI to consider ‘essential’ in
an SE curriculum, and SEEK can be crit-
icised for not picking the ‘right’ subset, in
any given person’s eyes.

• Maintenance or Evolution. Both SWE-
BOK and SEEK discuss development and
maintenance as separate topics. Like in
all text books on software engineering,
maintenance gets scant attention. That
is, ‘evolution’ is only allocated 10 hours
out of more than 500 in SEEK, and the
discussion of maintenance in SWEBOK is
limited to a separate section on the sub-
ject. But greenfield software development
is an exception, as we all know. Almost all
software development is really evolution.
Rather than seeing maintenance as an un-
fortunate phase following development, it
is interesting to consider development as
a special, quite rare instance of mainte-
nance.

Each of these issues is further elaborated upon
below.

The reader should note that although SWE-
BOK is in a trial phase where it is being de-
liberately kept stable for a few years, SEEK
is, during Spring 2003, undergoing rapid evo-
lution. The details of SEEK mentioned in
this paper should therefore be considered only
in their historical context, and may have

2

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

changed. In fact, some of the criticisms dis-
cussed in this paper might cause changes. To
minimize confusion to the reader, we have
given references to SEEK using the second
draft, dated December 6, 2002.

1.1 The Mapmaker Metaphor

Mapmakers distort reality when project-
ing the spherical earth on a flat piece of pa-
per. They usually choose a point of projec-
tion above their own country, which is then
depicted a bit larger than it really is. Con-
versely, countries further removed from their
home country get depicted a bit smaller than
they really are.

If software engineering is the earth, and
software engineering topics are the countries,
then we, the authors of this paper, are map-
makers. We tend to see our own specialty
somewhat bigger and more important than
many of the other specialties within software
engineering. And of course we are right. All
of us are right.

2 Software Architecture

Software Architecture is taking a central
role in software development and this is re-
flected in the strong links between SWEBOK
and SEEK architectural design topics listed
under the Software Design knowledge areas.

For example the SEEK architectural design
topics include:

DES.ar.1 Architectural styles (e.g. pipe-
and-filter, layered, transaction-centered,
peer-to-peer, publish-subscribe, event-
based, client-server, etc.)

DES.ar.2 Architectural tradeoffs between
various attributes

DES.ar.3 Hardware issues in software ar-
chitecture

DES.ar.4 Requirements traceability in ar-
chitecture

DES.ar.5 Domain-specific architectures
and product-lines

Note that architecture is also found in the fol-
lowing areas:

REQ.fd.6 Interaction of requirements and
architecture

REQ.ma.4 Structure modeling (e.g. ar-
chitectural, ...)

DES.con.8 Architectural styles, patterns,
reuse

DES.nst.1 Architectural structure view-
points and representations

DES.nst.5 Design support tools (e.g. ar-
chitectural, ...)

EVO.pro.2 Relationship between evolving
entities (e.g.architecture, ...)

The SWEBOK software structure and archi-
tecture topics include:

Architectural Structures and Viewpoints

Architectural Styles (macro-architectural
patterns)

Design Patterns (micro-architectural pat-
terns)

Families of Programs and Frameworks

These links focus on architectural representa-
tions and design notations and methods. In
reality, software architecture decisions involve
functional and quality attribute requirements.
Although this is becoming accepted by the
software engineering community, the SWE-
BOK and SEEK lag behind.

The SWEBOK knowledge area on Software
Design describes the software design process
in two steps, “architectural design describes
how the system is decomposed and organized
into components (the software architecture)
whereas detailed design describes the specific
behavior of these components.” The SWE-
BOK recognizes that one of the key issues
when designing software systems are “really
quality concerns that must be addressed by
all systems, for example performance.” The
SWEBOK has a separate knowledge area ded-
icated to Software Quality, definitions, mea-
sures, and analysis and evaluation tools2.

2The Software Engineering Tools and Methods KA
includes Software Quality Tools, consisting of Inspec-
tion and Static analysis. This is a narrow use of the
term ‘software quality tools’. Many of the other areas
in the Tools and Methods KA mention tools that are
(also) used to improve or evaluate quality attributes.

3

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

The SWEBOK knowledge area on Software
Quality focuses on planning and executing
Software Quality Assurance (SQA) and Ver-
ification and Validation (V&V) processes. Al-
though it recognizes the need for evaluating
the attributes and the sensitivity of their val-
ues when the product changes, it does not pro-
vide more guidance than “There is no defini-
tive rule for how the decisions are made, but
the software engineer should be able to present
quality alternatives and their costs.”

In large software systems, the achieve-
ment of quality attributes is dependent not
only upon code-level practices (e.g., language
choice, algorithms, data structures), but also
upon the software architecture. Quality at-
tributes can interact or conflict – improving
one attribute might worsen one or more of the
others – it is necessary to tradeoff among mul-
tiple software quality attributes. It is better to
do this when the software architecture is spec-
ified, before the system is developed.

Unfortunately, there are no metrics or
methods for evaluation applicable to all at-
tributes. Different communities use different
models and parameters for evaluation of at-
tributes where the models are not necessarily
mathematical formulas and can be based on
expert opinions on how to evaluate a quality
attribute. Some design choices might affect
multiple quality attributes. For example, se-
lection of a communication protocol between
servers on a network might have an impact on
performance (e.g., a simple protocol could im-
prove performance) and security (e.g., a sim-
ple protocol could allow an intruder to moni-
tor traffic and obtain valuable information). A
design decision that affects multiple attributes
provides an opportunity to tradeoff between
the attributes (e.g., decreasing performance to
improve security in the above example). Mak-
ing tradeoffs might be necessary to satisfy mul-
tiple system requirements.

When the software architecture is speci-
fied, designers need to determine the extent
to which features of the software architecture
influence quality attributes, whether multiple
quality attribute requirements can be satisfied
simultaneously, and whether techniques used
for one attribute support or conflict with those
of another attribute.

The SWEBOK and the SEEK need to em-
phasize the importance of quality attributes
and their impact on software architectures.

The field is growing and there are recent
books that might be used as starting points
[Bass et al., 1998, Clements et al., 2002].

3 Software Measurement

As observed earlier, if Software Engineering
is to be regarded as a field that is approaching
maturity, then an important demonstration of
this maturity is through the sound use of mea-
surement to provide the evidence that is nec-
essary to give confidence in both its processes
and its products. So this section examines the
topic of software measurement in terms of the
following three aspects:

• the wider context of measurement in Soft-
ware Engineering;

• its role in the SEEK and the SWEBOK;

• how either the SEEK or the SWEBOK
might address it in future versions.

3.1 Measurement in the wider context

Measurement itself is an activity that gener-
ally comes down to a process of counting, per-
formed according to a particular set of count-
ing rules. For engineering in general, the
context is the physical world, and hence the
reasons for making measurements are largely
those laid down by Lord Kelvin (1824–1907),
as follows:

“When you can measure what you
are speaking about and express it in
numbers, you know something about
it, but when you cannot measure it,
when you cannot express it in num-
bers, your knowledge is of a meagre
and unsatisfactory kind.”

Indeed, perhaps because ideas about measure-
ment, and about the formalisation of the as-
sociated measurement processes tended to be
pioneered by physicists, early work in Soft-
ware Engineering, such as that of Halstead
[Halstead, 1977] also tended to be based upon
the ‘classical’ model as summarised by Lord
Kelvin. However, ideas about the roles and
forms of measurement that might be most ap-
propriate for use in Software Engineering have
subsequently evolved further, and a more in-
terdisciplinary approach is now much more

4

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

widespread, while still seeking sound defini-
tions of the rules for measurement, as exem-
plified in [Fenton and Pfleeger, 1997]. An ex-
ample of this wider view is the widespread use
of ordinal scales, based upon the recognition
that direct measurement of relevant properties
is often impractical. This is in marked contrast
to physics, which almost always makes use of
ratio scales for its measurements.

It is difficult (and probably unrealistic) to
separate the idea of software measurement
from the ways that is it used and from the
reasons for making use of it. In particular,
as already observed, the motivation for
much of our use of measurement is that of
producing evidence. This evidence may be
needed to justify resource allocation, confirm
hypotheses, or for any other like purpose.
However, any interpretation of that evidence
does in turn require an understanding of
both the measurement processes that may
be been employed, and also of the way that
empirical practices can be employed in the
software domain, even if use of the latter
is not yet ‘standard’ [Tichy et al., 1995].
Indeed, most empirical practices have like-
wise gravitated into Software Engineering
from a variety of other domains, and so
carry with them various assumptions about
measurement [Zelkowitz and Wallace, 1998,
Kitchenham et al., 2002].

So, while there is a growing recognition of
the need for the development of evidence-based
Software Engineering practices, the framework
necessary for widespread use, including mea-
surement theory and measurement practices,
are still relatively immature, and still too
rarely taught to our students. In examining
how the SWEBOK and the SEEK address
these issues, we therefore need to recognise
that Software Engineering is still gravitating
(slowly) from being a discipline that is based
largely upon the practices of assertion and ad-
vocacy, to one that is more soundly based upon
experimental evidence. That said, this process
is one that the SEEK and the SWEBOK are
particularly well placed to accelerate!

3.2 Measurement in the SEEK and the
SWEBOK

Both the SEEK and the SWEBOK do give
significant attention to software measurement.
However, both are much more centred upon its

use than upon the actual measurement forms
themselves.

If we begin with the SEEK, then this does
have one topic that considers measurement in
its proper context of underpinning practices
(FND.ef.1 — “Empirical methods and exper-
imental techniques”, in the unit “Engineering
foundations for software”). In addition, there
are references to the use of measurement prac-
tices in many other chapters (DES, VAV, PRO,
QUA and MGT).

However, given that “Engineering Founda-
tions for Software” as a whole is allocated 25
hours (from a total of 250 hours for “Funda-
mentals”), and that the topic is only rated as
a ‘Bloom category’ of comprehension, we may
conclude that the SEEK does not give mea-
surement itself a particularly high priority. In
view of its use in later chapters, this may be
considered as inadequate.

Going on to the SWEBOK, this takes a
slightly curious approach to this topic. Here
the topic of measurement is largely addressed
in the chapter on “Software Engineering Man-
agement”. While the coverage there is good,
and we would agree that both management
and measurement do indeed have a “close rela-
tionship”, it does seem a rather compartmen-
talised view of its role. Once again too, since
as a topic there are many references to its use
in other chapters, including it in this particular
chapter would seem to be a matter of organisa-
tional convenience rather than one based upon
a recognition of the more general role of mea-
surement.

3.3 Addressing measurement in future
versions of the SEEK and SWEBOK

As explained above, measurement is not
easily separated from its use, and hence it
is quite appropriate that issues relating to
measurement should appear widely through-
out both the SEEK and the SWEBOK.

In the case of the SEEK, as the ideas of
measurement are already implicitly included
in several of the sections within the “Funda-
mentals” chapter, as well as included in many
others, there are arguments in favour of consol-
idating this under a separate sub-heading and
giving it a ‘Bloom level’ of application. With-
out this latter modification, it is unlikely that
students will gain the understanding needed to
appreciate its roles elsewhere in the curriculum

5

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

(and also its limitations), as well as being less
likely to be able to make effective use of mea-
surement.

For the SWEBOK the arguments are more
finely balanced. On the one hand, a good
case could now be made for developing a chap-
ter on “Evidence-Based Practices”, that would
encompass measurement, empirical practices,
and their employment in a Software Engineer-
ing context. On the other hand, as indicated
at the beginning of this section, this is also
an area where the practices and techniques
are only now beginning to be codified within
a Software Engineering framework. However,
to offset this, its recognition and inclusion in
the SWEBOK would also be likely to encour-
age and assist this process. Overall therefore,
we would suggest that serious consideration
should be given to including such a chapter
in subsequent revisions of the SWEBOK.

4 Software Quality (Engineer-
ing)

Quality more and more often tends to be-
come a critical attribute of a software prod-
uct as its absence results in dissatisfied users,
loss of money, and may even cost lives. At
the same time the definition, or scope, of
the domain of software quality has gradually
evolved from a somewhat technical perspec-
tive to a perspective that also embraces hu-
man aspects such as usability and satisfaction
[Suryn et al., 2002, Abran et al., 2003].

An increasing business-related recognition
of the importance of software quality has
also made the software engineering “center
of gravity” shift from creating an engineer-
ing solution toward satisfying the stakehold-
ers [Bevan and Bogomolni, 2000]. Such a shift
very clearly reflects the trend within the com-
munity of stakeholders who more and more of-
ten say: “I do not want to know about bits
and bytes. I want a solution that satisfies my
needs”. The critical word here is “satisfac-
tion” for it covers both the functional and the
quality perception of the software solution be-
ing used.

Development organizations confronted with
such an approach are, in general, not prepared
to deal with it, even if their engineers are
adequately educated [Fox and Rakes, 1997].
Moreover, if the education is there, it is too

often acquired through experience instead of
a regular educational process. A response to
the question “why?” is rather easy to give:
with few exceptions3, the software engineering
curricula being offered do not emphasize the
importance of teaching software quality engi-
neering.

In the light of the above considerations the
role of SEEK turns from very important to
critical. With its mission, very well-defined
outcomes, and its ambition to become an in-
ternational referential source for modern soft-
ware engineering curricula, this initiative has
a unique opportunity to change the landscape
of the software engineering domain. Despite
being relatively young, SEEK presents a sur-
prisingly mature vision of what the real soft-
ware engineering professional should know and
how he should be prepared to follow the evolu-
tion of the domain. The Knowledge Areas are
well analyzed, sometimes down to tiny details,
in order to give the reader (user) first-hand
guidance on what knowledge is core, what is
desirable and what is optional. And Software
Quality is there, but it is not Software Quality
Engineering. Not yet.

Treating Software Quality as a separate
Knowledge Area (KA) considerably differen-
tiates SEEK from some contemporary curric-
ula, where quality may be “glued” to another
knowledge area not always well related, or is
even entirely forgotten. This distinction makes
SEEK take the first important step toward en-
gineering of quality, however this step is not
long enough.

When compared to the Software Engineer-
ing Fundamentals KA with its 250 core contact
units (simply speaking, hours of lecturing) or
even to the Software Design KA with its 78
units, the Software Quality KA with its 21
units does appear to be a “Cinderella” rather
than a full member of the software engineering
family. Even though software quality is ad-
dressed in many other KA’s of the SEEK, a
plea can certainly be made for a more promi-
nent presence of this topic.

When analyzing the content of the Software
Quality KA proposed by SEEK, one can easily
notice how modern its profile is. Introducing
Software Quality Concepts and Culture is def-

3École de Technologie Supérieure in Montréal,
Canada, is in the process of enhancing its undergrad-
uate software engineering program to cover software
quality in a more exhaustive way.

6

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

initely innovative but requires further refine-
ment, especially in the area of definitions and
quality models and techniques.

The presence of Software Quality Stan-
dards indicates that standards have finally
become part of modern software engineer-
ing education, however the documents pro-
posed as seminal do not always represent
the state-of-the-art. From a software engi-
neering standpoint ISO 9000 should be re-
placed by ISO 9001 [ISO 9001, 2000], ISO/IEC
12207 [ISO 12207, 1995] (Software Life Cycle
Process) should be discussed together with
ISO/IEC 15288 [ISO 15288, 2002] (Life Cy-
cle Management – System Life Cycle Pro-
cesses), ISO/IEC 15504 [ISO 15504, 1998]
(Software Process Assessment) should be
enriched with two suites of other stan-
dards: ISO/IEC 9126 [ISO 9126, 2000 2003]
(Software Product Quality) and ISO/IEC
14598 [ISO 14598, 1998 2000] (Software Prod-
uct Evaluation) and the very basic standard
for software measurement – ISO/IEC 15939
[ISO 15939, 2002] should find its place in the
discussion.

Finally, there are subjects that did not yet
find their place in SEEK’s Software Qual-
ity KA, subjects that will have to be taken
into consideration for SEEK to become the
worldwide-accepted reference for state-of-the-
art software engineering education. These sub-
jects, when present, may also result in a change
of the name of this KA to Software Quality
Engineering KA, for they would discuss engi-
neering areas of software quality:

• Software Quality Management and Eval-
uation would allow the future engineers
to apply proper management, measure-
ment and evaluation processes in software
development. See also the discussion on
measurement in section 3.

• Software Quality Implementation would
teach the students that quality might eas-
ily become the art of tradeoffs (such trade-
offs also drive the architectural stage of
development), that the implementation is
the project per se, demanding its specific
techniques and methodologies and, last
but not least, that software quality im-
plementation will shortly become the de-
velopment process’s watchdog.

To summarize, on behalf of the average soft-

ware user tired by blue screens and your-
computer-will-have-to-restart-nows, the au-
thors would like to ask the following, full of
hope question: “Software quality is the hot
subject of the past and present century, but still
more in words than in facts. Why don’t we use
SEEK to change this proportion?”

The practical response to this question
would strongly recommend that SWEBOK
and SEEK remain in a constant synchroniza-
tion loop allowing “mutual upgrading”. SWE-
BOK, as the domain’s body of knowledge is be-
ing continuously used, verified and monitored
by the industry, and this process reflects de-
sired changes in the evolution of software engi-
neering, including software quality. SEEK, on
the one hand, seeks to provide the knowledge
that will allow universities to produce profes-
sionals able to stay abreast with the fast mov-
ing industry, but on the other hand it also adds
a scientific and innovative flavor to so called
“best practices”. These elements have to find
their way to SWEBOK in the same manner
as SWEBOK’s evolution should be reflected in
SEEK’s education programs. The “mutual up-
grading” would then take place for the benefit
of both, so important for software engineering
initiatives.

In the light of such a statement the
STEP2002 workshop on SEEK-SWEBOK
makes an excellent beginning, but only a be-
ginning for something that should become
an institutional cooperation platform grouping
more frequently than once a year industry ex-
perts, teachers and scientists.

5 Human Computer Interaction

The area widely known as ‘Human-
Computer Interaction’ (HCI) historically grew
up as a distinct discipline on the boundary of
computer science, cognitive science and several
other areas. Over the years, however, there has
been a gradual recognition among an enlight-
ened subgroup of software engineers that many
aspects of HCI should be practised and taught
in an engineering way, and that software en-
gineers should know as much about user in-
terface development as they know about the
development of algorithms, architectures and
other aspects of an engineered software prod-
uct.

In order to incorporate HCI into soft-

7

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

ware engineering, the terms ‘user interface de-
sign/development’, ‘usability engineering’ and
‘user-centered design’ have also appeared. In
this paper we will, however, not play the
nomenclature game and stick with the term
HCI for simplicity.

HCI is reflected both in SWEBOK and
SEEK, but in quite different ways. In SWE-
BOK, it is considered a ‘related discipline’,
whereas in SEEK it is embedded in a variety of
units and knowledge areas that we will detail
below. A third approach is possible: it could
have been treated as an entire knowledge area
. . . neither BOK was prepared to make such a
bold move though.

The following are the HCI units and topics
found within SEEK:

REQ.ma.5 Analyzing quality (non-
functional) requirements (e.g.
. . . usability . . .)

DES.con.6 Design goals (e.g. . . . usability
. . .)

DES.hci Human computer interface de-
sign

VAV.tst.9 Testing across quality at-
tributes (e.g. . . . usability . . .))

VAV.hct User Human computer interface
testing and evaluation

Two of the above are not just topics, but entire
units, breaking down as follows, and giving 15
HCI topics in total.

DES.hci.1 General HCI design principles

DES.hci.2 Use of modes, navigation

DES.hci.3 Coding techniques and visual
design

DES.hci.4 Response time and feedback

DES.hci.5 Design modalities (e.g. menu-
driven, forms, question-answering,), etc.)

DES.hci.6 Localization and international-
ization

VAV.hct.1 The variety of aspects of use-
fulness and usability

VAV.hct.2 Heuristic evaluation

VAV.hct.3 Cognitive walkthroughs

VAV.hct.4 User testing approaches (ob-
servation sessions etc.)

VAV.hct.5 Web usability; testing tech-
niques for web sites

VAV.hct.6 Formal experiments to test hy-
potheses about specific HCI controls

In the next couple of sections we will dis-
cuss some of the criticisms that can be lev-
elled against both the SWEBOK and SEEK
approaches.

SWEBOK was criticized quite heavily by
some reviewers for leaving HCI as a related
area. Some arguments in favour of their de-
cision are: a) Software engineers are typically
not knowledgeable about HCI and would not
be able to review the knowledge to the same
level of competence as other areas, b) software
engineers have enough to know without hav-
ing to learn HCI . . . they can leave that to HCI
experts, and c) including HCI in SWEBOK or
SEEK would be akin to usurping another dis-
cipline and calling it our own.

Counter-arguments that oppose the SWE-
BOK approach (and to some extent favour the
SEEK approach) are as follows:

1. Many other areas of software engineering
also have very specialized knowledge, and
employ experts who know that field better
than average software engineers, but know
much less about other areas of SE: For ex-
ample, there are software process experts
who do not feel expert in design, and soft-
ware designers who do not feel expert in
process. We respect the convention that
all software engineers should know some-
thing about both design and something
about process, and furthermore that some
people can be experts in one or the other.
It therefore seems reasonable that all soft-
ware engineers should have to know some-
thing about HCI with some people being
the experts.

2. Including HCI knowledge in a software en-
gineering BOK says that:

• all software engineers should know
the basics of this subset of HCI
knowledge,

• it is being catalogued here from
a software engineering perspective,
and

8

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

• some software engineers could call
themselves HCI experts.

However, this does not preclude the par-
allel existence of a separate HCI field
with HCI professionals who don’t consider
themselves software engineers. We see an
analogy with psychology and psychiatry:
Both disciplines treat the mind, with one
doing it from a medical perspective, and
having experts that must know the basics
of the rest of medicine.

If we conclude from the above that a software
engineering perspective on HCI should be in-
cluded in some SE body of knowledge, three
questions arise: 1) Should SEEK and SWE-
BOK both take this approach? 2) How should
the knowledge be organized – as a separate
area, or distributed throughout the BOK? And
3) at what level of detail should HCI topics be
presented?

We believe the answer to question 1 is
clearly yes. We have argued above that all soft-
ware engineers should know HCI from a soft-
ware engineering perspective; SEEK needs an
even broader perspective since it is intended
to have a wider, albeit shallower, scope than
SWEBOK, answering the question: “what
should be taught to an undergraduate SE stu-
dent”, not just “what SE knowledge should be
taught”).

The answer to question 2 is controversial.
SEEK has chosen to distribute the HCI knowl-
edge as listed earlier, in a similar way that
knowledge of measurement is distributed. This
makes sense because human issues can be seen
to cut across many other areas of software en-
ginering. Alternatively, SEEK could have cre-
ated an HCI knowledge area and taken the
‘mixed’ approach for HCI that it takes with
most other knowledge areas (e.g. it has a small
Process knowledge area to draw attention to
the main concepts, but also lists many Pro-
cess matters elsewhere as topics under KAs
such as Design and Requirements). Both the
distributed and mixed approaches have drawn
fire from critics who argue either: “the area
isn’t given enough attention because it is too
distributed”, or “the main KA is too minimal”
(and because this is all they see, they don’t no-
tice the additional distributed topics.) In our
opinion, the answer to all this is to add a very
clear section in SEEK that guides the reader

to all the places where cross-cutting topics like
HCI are found.

Question 3 is the most difficult: No mat-
ter whether the decision is to have a separate
KA, or to distribute HCI knowledge entirely
in other areas, it will be hard to satisfactorily
choose an appropriate subset of HCI to call,
“essential for all undergraduates” (in the case
of SEEK) or “essential for all professionals”
(in the case of SWEBOK). Any subset chosen
will draw fire from people who feel that some
other subset is better. The SEEK DES.hci
area has drawn fire from people looking at its
choices and saying: “SEEK has not gone far
enough towards embracing HCI”, merely be-
cause SEEK was forced to limit the topics so
as to not overburden the “essential” curricu-
lum with more than can possibly be taught.
We believe that there is one solution to this:
Rather than listing 15 topics that can be crit-
icised as arbitrary, developers of SEEK could
instead have created two sets, one being a su-
perset of the other. The superset would con-
tain many more than 15 topics, with a pre-
viso that at least some number (say 15) be
taught. The subset would be many fewer
than 15, and would provide a central core that
must always be taught. Implementing this ap-
proach would complicate SEEK considerably
as it would have to be applied to areas other
than HCI as well for consistency. We recom-
mend not trying such an approach at the cur-
rent time, so that SEEK can stabilize and be
reasonably simple; however, maybe it should
be considered in a few years when SEEK next
comes up for modification.

6 Maintenance or Evolution

There are two body-of-knowledge issues re-
lated to software maintenance and software
evolution: whether maintenance or evolution
should be treated separately, and whether or
not maintenance/evolution should be treated
as a separate knowledge area. Both SWE-
BOK and the SEEK draft treat mainte-
nance/evolution as the same area, although in-
terestingly enough, one of them (SWEBOK)
labels the area maintenance while SEEK calls
it evolution. (Both artifacts (SWEBOK in
particular) appear to be saying that one of
these topics is a subset of the other.) One so-
lution for this problem would be to call the

9

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

knowledge area “maintenance and evolution”,
which would provide a broader description of
the topic.

The more far-reaching aspect of this discus-
sion is whether maintenance/evolution should
be treated as a special case or not. SWE-
BOK and SEEK have taken the more tra-
ditional route of discussing these issues sep-
arately as, for example, ISO/IEC 14764
[ISO 14764, 2000]. However, there is a com-
pelling argument that the engineering of soft-
ware has for many years been more about
maintenance and evolution than it has about
development. It is also true that there has
been a disproportionate amount of knowledge
disseminated about maintenance and evolu-
tion i.e. there has been insufficient emphasis
on these topics in the literature.

The question, then, is how SWEBOK and
SEEK should address these concerns; poten-
tial remedies for the two artifacts will be con-
sidered separately here. In traditional engi-
neering disciplines, maintenance has generally
been covered as a separate subject. This makes
sense, since in these disciplines defects in de-
livered products are usually an abnormality
rather than the norm. Although this has not
been true for software products, much of this
is because of the fact that software engineering
is not yet a mature enough discipline for this
to be the case. Since one of the stated goals
of software engineering is to produce a highly
reliable product, perhaps it is best that main-
tenance remain classified as a separate area in
SWEBOK.

Evolution is a different issue, however. Due
to its non-physical nature, the continuous evo-
lution of existing software products is some-
thing that will pervade all areas of software
engineering for the foreseeable future. So, it
would make sense to have the discussion of
most (if not all) knowledge areas from both de-
velopment and evolution points-of-view. Cer-
tainly, evolution issues are currently not cov-
ered in much detail in the SWEBOK chap-
ter on maintenance, so this would provide a
method for remedying that situation in the
most effective manner possible. (However,
question of where to put an introduction of
items such as Lehman’s Laws of Software Evo-
lution – a more general evolution topic –
would still need to be addressed; in the case
of Lehman’s Laws, the software process area
might be the best fit.)

The issues involving SEEK are somewhat
different. The SEEK Evolution knowledge
area is disproportionally small – only 10 con-
tact hours, or about one-quarter of a stan-
dard course devoted to maintenance/evolution
issues would be required of an undergradu-
ate software engineering curriculum. Further-
more, all ten of these hours are recommended
at only the knowledge level of Bloom’s taxon-
omy – in other words, SEEK is recommend-
ing that a small amount of general knowledge
about maintenance and evolution is sufficient
for undergraduate studies before entering the
workforce, with any capability and application
of those areas being at best optional. This is
a matter of great concern which needs imme-
diate addressing. (SWEBOK has an appendix
on Bloom’s taxonomy, but unfortunately does
not include the Maintenance knowledge area
in that section.)

However, a solution like the one proposed
for SWEBOK (evolution covered throughout
the knowledge areas, with maintenance as a
separate topic) would not be easily imple-
mentable in actual curricula. First of all, stu-
dents are initially introduced to software from
a development point-of-view in a computer sci-
ence introductory programming sequence, and
this is not likely to change in the near fu-
ture. Next, in the software engineering courses
and projects, it would be difficult to find suffi-
cient artifacts to do maintenance and evolution
throughout the curriculum. However, some
schools have successfully used ongoing main-
tenance/evolution projects in the capstone se-
quence, although such projects by their nature
are usually in-house rather long-term projects
for industrial clients. With this in mind, it
might be best to discuss both maintenance
and evolution separately within a software en-
gineering curriculum, although the number of
contact hours should be closer to 40 than the
10 that are currently proposed, and some of
those hours should be definitely be devoted to
mastery at the capability and application lev-
els of Bloom’s taxonomy.

7 Conclusion

In an environment which changes, processes
have to be reflexive to stay successful. Top-
ics such as software process improvement and
the capability maturity model have a natural

10

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

place within software engineering because of
its changing nature. In a similar vein, SWE-
BOK and SEEK need reflexion. The full-day
workshop on this topic held at STEP 2002 pro-
vided an excellent forum to discuss the align-
ment between the two initiatives. In particu-
lar, this workshop identified a number of issues
that warrant further thought and discussion:

• Software architecture has become one of
the central topics in software engineering,
linking quality and design.

• As software engineering approaches matu-
rity, it should demonstrate so, for example
through the sound use of measurements.

• Software quality issues gradually shift
from creating and engineering solution to
satisfying the stakeholders, necessitating
an engineering approach to quality.

• User Interface Design can be seen as a
related discipline, or as part of software
engineering, and both perspectives have
their advantages and disadvantages.

• Should maintenance/evolution be treated
as a separate topic, given the fact that,
in daily practice, greenfield development
is the exception and maintenance is the
default mode of development?

This paper summarizes our thoughts on these
issues. We suggest that a regular reflexion on
the status of both SWEBOK and SEEK, for
example in the form of a workshop as held at
STEP 2002, be institutionalized.

References

[Abran et al., 2001] A. Abran and J.W.
Moore, Ex. editors, P. Bourque, and
R. Dupuis, editors. SWEBOK: Guide to the
Software Engineering Body of Knowledge:
Trial Version 1.00. IEEE, 2001.

[Abran et al., 2003] A. Abran, A. Khelifi,
W. Suryn, J. Rilling, and A. Seffah. Consoli-
dating the ISO Usability Models. In submit-
ted to the 11th International Software Qual-
ity Management Conference and the 8th An-
nual INSPIRE Conference, 2003.

[Bass et al., 1998] L. Bass, P. Clements, and
R. Kazman. Software Architecture in Prac-
tice. Addison-Wesley, 1998.

[Bevan and Bogomolni, 2000] N. Bevan and
I. Bogomolni. Incorporating user quality re-
quirements in the software development pro-
cess. In Proceedings 4th International Soft-
ware Quality Week Europe, Brussels, pages
1192–1204, 2000.

[Clements et al., 2002] P. Clements, R. Kaz-
man, and M. Klein. Evaluating Software
Architectures: Methods and Case Studies.
Addison-Wesley, 2002.

[Fenton and Pfleeger, 1997] N.E. Fenton and
S.L. Pfleeger. Software Metrics: A Rigorous
and Practical Approach. PWS Publishing,
Boston, second edition edition, 1997.

[Fox and Rakes, 1997] C. Fox and W. Rakes.
The Quality Approach: Is It Delivering?
Communications of the ACM, 40(6):25–29,
1997.

[Halstead, 1977] M.H. Halstead. Elements of
Software Science. North-Holland Publishing
Company, 1977.

[ISO 12207, 1995] ISO/IEC 12207 – Software
Life Cycle Process. ISO, 1995.

[ISO 14598, 1998 2000] ISO/IEC 14598 –
Software Product Evaluation, Parts 1-6.
ISO, 1998-2000.

[ISO 14764, 2000] ISO/IEC 14674: Software
Engineering – Software Maintenance. ISO,
2000.

[ISO 15288, 2002] ISO/IEC 15288 – Life Cy-
cle Management – System Life Cycle Pro-
cesses. ISO, 2002.

[ISO 15504, 1998] ISO/IEC 15504 – Software
Process Assessment, Parts 1-6. ISO, 1998.

[ISO 15939, 2002] ISO/IEC 15939 – Software
Measurement Process Framework. ISO,
2002.

[ISO 9001, 2000] ISO 9001: Quality manage-
ment systems – Requirements. ISO, 2000.

[ISO 9126, 2000 2003] ISO/IEC 9126 – Soft-
ware Product Quality, Parts 1-4. ISO, 2000-
2003.

[Kitchenham et al., 2002] B.A. Kitchenham,
S.L. Pfleeger, L.M. Pickard, P.W. Jones,

11

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

D.C. Hoaglin, K. El Emam, and J. Rosen-
berg. Preliminary Guidelines for Em-
pirical Research in Software Engineering.
IEEE Transactions on Software Engineer-
ing, 28(8):721–734, 2002.

[Shaw, 1988] M. Shaw. Toward Higher Level
Abstractions for Software Systems. In Pro-
ceedings Tercer Simposio Internacional del
Conocimiento y su Ingerieria, 1988.

[Sobel, 2002] A.E.K. Sobel, editor. Computing
Curricula Software Engineering Volume,
First Draft. CCSE Steering Committee,
http://sites.computer.org/ccse/ (De-
cember 6, 2002), 2002.

[Suryn et al., 2002] W. Suryn, A. Abran,
P. Bourque, and C. Laporte. Software Prod-
uct Quality Practices, Quality Measurement
and Evaluation using TL9000 and ISO/IEC
9126. Technical report, STEP 2002 position
paper, 2002.

[Tichy et al., 1995] W.F. Tichy, P. Lukowitz,
L. Prechelt, and E.A. Heinz. Experimental
Evaluation in Computer Science: A Quan-
titative Study. Journal of Systems & Soft-
ware, 28(1):9–18, 1995.

[Wang and Patel, 2000] Y. Wang and D. Pa-
tel. Comparative software engineering: Re-
view and perspectives. Annals of Software
Engineering, 10:1–10, 2000.

[Zelkowitz and Wallace, 1998] M.V. Zelkowitz
and D.R. Wallace. Experimental Models
for Validating Technology. IEEE Computer,
31(5):23–31, 1998.

12

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

