
VU Research Portal

A certificate revocation scheme for a large-scale highly replicated distributed system

Popescu, Bogdan C.; Crispo, Bruno; Tanenbaum, Andrew S.

published in
Proc. 8th IEEE International Symposium on Computers and Communications
2003

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Popescu, B. C., Crispo, B., & Tanenbaum, A. S. (2003). A certificate revocation scheme for a large-scale highly
replicated distributed system. In Proc. 8th IEEE International Symposium on Computers and Communications
(pp. 225-232)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 27. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303689485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/d12d9e56-d95a-425e-bbdd-a9849fd9562b


A Certificate Revocation Scheme for a Large-Scale Highly Replicated
Distributed System

Bogdan C. Popescu
Vrije Universiteit

Amsterdam, The Netherlands
bpopescu@cs.vu.nl

Bruno Crispo
Vrije Universiteit

Amsterdam, The Netherlands
crispo@cs.vu.nl

Andrew S. Tanenbaum
Vrije Universiteit

Amsterdam, The Netherlands
ast@cs.vu.nl

Abstract

A common way to protect objects in distributed systems
is to issue authorization certificates to users, which they
present to gain access. In some situations a way is needed to
revoke existing certificates. Current methods, such as hav-
ing a master revocation list, have been designed to work
efficiently with identity certificates, and do not take into ac-
count the delegation of certificate-issuing rights required
when implementing complex administrative hierarchies for
large distributed applications. In this paper we present
a novel mechanism for revoking authorization certificates
based on clustering users and servers, and present argu-
ments showing that it is more efficient than other meth-
ods. We also discuss a way for probabilistically auditing
the use of the revocation mechanism proposed to reduce the
chances of any component behaving maliciously.

1 Introduction

A worldwide distributed system may contain various
protected objects to which users may acquire access. These
may include bank accounts, music files, and databases. In a
small system, it may suffice to have a central database that
keeps track of which users have access to which objects and
in what way. However, in a large distributed system, cen-
tralized access control is impractical. An alternative scheme
is to issue each user a cryptographically sealed authoriza-
tion certificate storing the user’s permissions with respect
to a given object. To access that object, the user authen-
ticates first and then presents the certificate, which is in-
spected for the necessary permissions before executing the
request. Normally, such certificates include an expiration
date after which they are invalid.

However, situations arise when the object owner needs
to revoke access quickly and without warning, for example,
if the certificate is stolen, or the user is busy obtaining in-

formation from an object and using it in violation of the law
(e.g., posting copyrighted information on the Internet). Re-
voking authorization certificates is much more difficult than
simply deleting the user from a central access control list,
and this is made even more difficult when considering the
possibility of delegation of access rights. In such a situa-
tion, it is not enough to only verify that a given certificate
has not been revoked, we also need to ensure that the dele-
gation chain that connects the owner of the object to the is-
suer of the certificate is still valid. In this paper we describe
a scheme for revoking authorization certificates efficiently
in a very large distributed system when taking into account
the possible delegation of certificate-issuing rights.

To make this design concrete, we have applied it to the
Globe distributed system [20], which we are developing.
Globe has been designed to support a billion users and a
trillion objects, many of which are expected to be highly
replicated for performance and fault tolerance reasons.

The rest of the paper is organized as follows: section 2
gives a quick overview of the Globe system with an empha-
sis on the security architecture. In section 3 we introduce
the framework model for describing our revocation mech-
anism. In section 4 we present our scheme, the trade-offs
we make in order to guarantee performance, and the mech-
anisms we use to ensure that such trade-offs will not lead
to less security. In section 5 we look at existing revocation
mechanisms and compare them to our scheme, and in sec-
tion 6 we conclude.

2 The Globe System

Globe is a distributed system based on replicated shared
objects. While the idea of encapsulating functionality into
objects is not new (systems like Corba [1], Legion [9]
or DCOM [7] rely on this paradigm), what makes Globe
unique is that objects not only can be used by a large num-
bers of users on different machines through remote proce-
dure calls, but also can be physically replicated on many

1



hosts at the same time to improve performance.
The central construct in the Globe architecture is the dis-

tributed shared object (DSO). As shown in Figure 1 a DSO
is built from a number of replicas that reside in a single ad-
dress space and communicate with replicas in other address
spaces. All the replicas that are part of a DSO work together
to implement the functionality of that DSO. A replica con-
sists of the code for the application (the code that imple-
ments the functionality of the DSO that replica is part of),
the part of the DSO state the replica stores, and the replica-
tion mechanism.

Local
Object

A3
A5

Network
Distributed object

Address space

A1 A2

A4

Figure 1. A Globe DSO replicated across four
address spaces

In order to use a Globe DSO, a client has to find a replica
part of that DSO, connect to it and then invoke one of the
methods in the DSO’s public interface. If the method invo-
cation modifies the internal state of the replica, the replica
will propagate the changes to other replicas according to the
DSO’s replication algorithm.

The Globe security architecture [17] is based on public
key cryptography. Each secure Globe object is required to
have a public/private key pair; the owner of a DSO is the
entity that has access to the object’s private key and is in
charge with setting the security policy for that DSO.

Globe users are also required to have public/private key
pairs used for authentication and access control which is
implemented through user authorization certificates. The
structure of such a certificate is shown in Figure 2: it con-
tains the user public key, some authorization information
(for example which of the DSO’s methods that user is al-
lowed to invoke), the exact time when the certificate was
created, the maximum validity time interval, and a valida-
tion frequency time interval which specifies the maximum
time a validated certificate can be used before it has to be
re-validated. As one can see, authorization certificates in
Globe are very similar to SPKI/SDSI certificates [8]. The
authorization information in the certificate can be expressed

in different policy languages [4, 5]; however the exact syn-
tax to be used is outside the scope of this paper.

Issuer’s Signature

Validation Frequency

Maximum Validity Time

Time of Issuing

Authorization Information

User Authorization Certificate
User’s Public Key

Figure 2. An authorization certificate in Globe

In the simplest case, user authorization certificates are
digitally signed by the DSO’s owner with the object’s pri-
vate key. However, in order to support more flexible se-
curity policies we allow the delegation of administrative
rights, which is done through administrative certificates.
The structure of a administrative certificate is similar to the
one of the user authorization certificate, except that the au-
thorization information also contains delegation rules. For
example, a administrative certificate may specify that an
administrative entity is allowed to issue user authorization
certificates that only permit the invocation of certain meth-
ods of the DSO and also allowed further delegate this right
to other administrative entities. Thus, in the general case,
a user has a user authorization certificate chain which
starts with an administrative certificate signed by the DSO’s
owner, and ends with the user authorization certificate con-
taining the user’s public key.

As we can see, each Globe DSO de-facto implements its
own PKI (public key infrastructure) with the DSO public
key as the global trust root. As opposed to existing PKIs
which are mainly used for authentication, our per-DSO
PKIs are used for authorization: before sending a method
invocation request to a DSO replica, a Globe user is required
to present its user authorization certificate chain and authen-
ticate to the replica. The replica first ensures the certificate
chain is a valid one and then consults the authorization in-
formation in the last certificate in the chain and determines
whether the user is allowed to invoke the method.

The access control mechanism just outlined is well
suited for a wide-area network environment because it al-
lows users to carry tamper-proof copies of their access
rights, and thus does not require a central access control list
(ACL). However, there is a price to be paid for this, namely
access rights revocation is now more difficult to carry out
than in the ACL case; each administrative entity will have
to participate in this revocation process, by periodically dis-
seminating revocation status information regarding each of
the user or administrative certificates it has issued. This re-



vocation information is then used by DSO replicas when
verifying the validity of the certificate chains presented by
users when invoking methods: the replica has to check each
certificate in the chain against the revocation information
published by the administrative entity that has issued the
certificate.

It is clear that a DSO with a complex administrative hi-
erarchy puts a significant extra workload on its replicas,
which have to frequently validate long authorization chains.
To alleviate this problem, we have designed a revocation in-
frastructure and mechanisms that makes use of the natural
clustering of users and replicas for distributed Globe objects
and significantly decreases the amount of validation work a
replica has to perform.

So far, we have presented the motivation for our work.
The next section will introduce a more formal model of our
operational infrastructure which will then be used when pre-
senting the proposed revocation mechanisms.

3 Operational Model

In this paper we consider an environment where digital
certificates are used to implement access control policies for
applications employing highly replicated servers connected
by a wide area network. This environment fits the needs of
Globe, but is also applicable to other types of applications,
such as distributed databases or content delivery systems,
which make use of replication to improve performance. As
we have seen in the previous section, certificate revocation
in such a setting introduces problems not present when re-
voking identity certificates. To handle these problems we
propose a new revocation infrastructure where novel revo-
cation mechanisms can be employed. This infrastructure is
formalized in Figure (3) which shows the various entities in
our model and the relationships among them:

• A number of certificate producers (CPs), each of them
identified through a public/private key pair, which are
organized in a hierarchical PKI. This PKI corresponds
to the administrative hierarchy for a distributed appli-
cation. The CPs are responsible with issuing autho-
rization certificates for users and administrative cer-
tificates for their subordinate administrative entities.
Each CP is also responsible with timely publishing re-
vocation information regarding the certificates it has
issued.

• The Users - non-trusted entities which use certificates
to gain access to some distributed application through
the service points provided by that application. In our
model, users retrieve the certificates themselves and
present them to the service points.

• The Directories - these are much less trusted entities
which serve as repositories for the revocation informa-
tion. In our model we also require each directory to
have a public key (certified by each CP that makes use
of the directory) and to be able to digitally sign some
of the information it sends to interested parties.

• The Servers - the ’interested parties’. They provide
services to users under the access control policy set
by the CPs. They check service requests against the
access control policies stored in user certificates, and
verify the validity of these certificates by getting revo-
cation information from the directories. Each server is
assigned to a directory; the way this is done is appli-
cation specific and will depend on the replication strat-
egy used; however, this is outside the scope of the pa-
per. More important though is that a given server will
only request revocation information from its assigned
directory. All the servers assigned to a directory form
the dependent server set for that directory.

CPs

     User

Server

Directory

User Set for S1

Information
Revocation

Set for D3
Dependent Server

    Request
    Service

Certificates

S13

S12

S11

S10 S9

S8
S7

S6
S5

S4

S3

S2

D3D2

U
U

U

U

U

U

U

D1

S1

U

U

U

U
U

Figure 3. The Framework Model

As we can see, the model just introduced attempts to for-
malize what we described in Section 2 - how certificates are
issued, used and revoked, the trust we place in each entity
in the system, and how each of these entities acts in order to
ensure timely revocation. Crucial in our revocation infras-
tructure are the on-line directories which, as we will see in
the next section, play an active role in the revocation mech-
anism by taking away some of the verification burden from
the servers. This comes in contrast to the vast majority of
current revocation schemes which employ such directories



in a much more passive role - as simple (un-trusted) reposi-
tories for revocation information.

4 Proposed Revocation Mechanism

The standard mechanism for publishing revocation in-
formation is the certificate revocation list (CRL) [19]. A
CRL is simply a list of certificates that have been revoked,
time-stamped and signed by the revocation authority (in our
case these are the CPs). The problem with this mecha-
nism (we call it plain CRLs) is that verifying a certificate
has not been revoked requires downloading the entire re-
vocation list, which increases validation latency. Recently,
a new class of “reduced-data structures” revocation mech-
anisms have been designed [16, 14, 11], and these mecha-
nisms have the advantage that validating a single certificate
requires retrieving only a small fraction of the revocation
data.

The revocation mechanisms we propose in this paper
combines some of this existing schemes and employs a new
technique - probabilistic auditing - which allows us to take
away some of verification burden from the servers and place
it on the on-line directories, while at the same time limiting
the amount of trust we need to put in these directories.

4.1 The General Idea

We first make the observation that for a highly replicated
distributed application, the servers will cluster around areas
with high density of users. After all, this is the very rea-
son for replicating servers - to improve the performance on
handling user requests. Where do we need many servers?
In areas where we have lots of users - hence clustering. We
claim that users sending requests to servers in one cluster
are unlikely to also send requests to servers in a different
cluster. After all, most users do not move great distances
frequently, and taking your laptop from home to work is not
likely to change the server you use.

Now, let us see the problem from the servers’ point of
view: most of the requests will come from users within a
short network distance from them (a server located in Cal-
ifornia will get most of its requests from users on the West
Coast, and very few requests from Holland, for example).
We call this group of users that are in close network dis-
tance from the server and are very likely to use it, the user
set for that server. Therefore, if we could validate the users
in the user set fast, this would improve overall performance,
even if validating users outside the set will be less efficient.

Let us now take the directories into account. The user
set for a directory is the union of the user sets for all the
servers that depend on it for revocation information. For
the reasons we explained earlier, we expect the user set for
a directory to be fairly stable over time.

CPs can then periodically push their CRLs to directories.
For now, we require these CRLs to support on-line valida-
tion using a reduced data structure (proving that a certificate
is valid or revoked does not require the entire list). This can
be done using schemes like the ones described in [16], [14]
or [11]. However, in section 4.3 we will describe a variant
of our scheme that only uses plain CRLs.

Each directory then issues local certificates for the users
in its user set. A local certificate has the same structure as
a user authorization certificate, and will contain the exact
same authorization information, the only difference being
that it is signed by the directory instead of a CP. Once it
issues a local certificate, the directory is required to con-
stantly monitor the validity of the corresponding user au-
thorization certificate, and promptly inform its dependent
servers when it is revoked. In order to do this, the direc-
tory stores the entire authorization certificate chain for the
certificates it monitors, and constantly retrieves the global
CRLs corresponding to the administrative certificates in this
chain. If any of the certificates in this chain is revoked, the
directory will revoke the local certificate by adding it to a lo-
cal CRL. In order to handle timing constraints properly, the
directory is required to issue local CRLs with a frequency
equal to the smallest validation frequency of any of the cer-
tificates in the certificate chains it monitors.

Whenever a user not in the user set for the directory
invokes a method on one of the servers in the directory’s
server set, that server forwards the global user authorization
certificate chain to the directory. The directory retrieves (if
necessary) and checks all the global CRLs corresponding to
the certificates in the chain, and if they are all valid issues
a local certificate for that user. The local certificate is then
returned to the server, which returns it to the user together
with the result of the method invocation. As we can see,
this step (registering a new user to a directory) is rather ex-
pensive because a number of CRLs need to be retrieved and
verified, but this is something the server would have to do
anyway if it wouldn’t be done by the directory.

This rather high initial overhead is well amortized if the
user stays in the user set of that directory for a longer pe-
riod of time. For a user who already has a local certificate,
validation is much faster: the user only has to show its local
certificate to a server, which only needs to check one CRL -
the local one issued by the directory - in order to ensure the
certificate is valid.

However, the price we have to pay for reducing the vali-
dation workload on the servers is the need to put some trust
in the on-line directories. In the scheme so far described,
servers in a given directory domain do not deal with the
certificates and CRLs issued by the CPs, but with the lo-
cal certificates issued by their directory. Things work fine
as long as the authorization information in the local certifi-
cate exactly matches the one in the global user certificate,



and directories promptly report when global certificates are
revoked, but there is always the threat of local directories
abusing their authority. In the following section we will
describe a technique - probabilistic auditing - which can be
used to effectively counter the threat of local directories act-
ing maliciously.

4.2 Probabilistic Auditing

In any revocation scheme it is assumed the directories are
much less trusted than the CPs publishing the CRLs. In the
scheme we described in the previous section, directories are
allowed to sign local certificates and local CRLs, and this
gives them the potential power to decide which users are al-
lowed to access the servers in their domain. By abusing this
power, they can perform the following types of malicious
acts:

• Allow unauthorized users to use the directory’s servers
- this can be done by giving those users a local certifi-
cate even when they do not have a global one, or giving
them more permissions in the local certificate than in
the global one.

• Allow revoked users to use the directory’s servers - by
not adding these users to the local CRL.

• Deny legitimate users the access to the directory’s
servers - by putting these users on the local CRL, even
if they are not on the global one, or by simply refusing
to issue them a local certificate.

In order to prevent a directory from performing such ma-
licious acts, its dependent servers perform probabilistic au-
diting of the directory’s actions. Whatever the directory
does (signing a local certificate, publishing a local CRL) is
subject to verification by some of its servers. Such verifica-
tion occurs only with a certain probability - small enough,
so it is not a major performance hit, but large enough so that
it is a powerful deterrent against directory misbehavior. The
probability of an audit can be fine-tuned on a per-directory
basis. There are several types of audit actions that can be
performed by a depending server on its directory:

First, a server can compare the local certificate against
the global authorization certificate chain one to make sure
they match. This is the simplest form of verification, it
only involves extra public key signature verification oper-
ations, so the probability of such auditing can be set quite
high (most likely to 1 - always verify) without negatively
affecting performance. This type of audit protects against
the most serious threat in our scheme - the local directory
injecting unauthorized users in the local environment.

Second, a server can ask its directory for a proof that a
local certificate (that has been verified to be identical to the

global one) is indeed still valid. This is a more expensive
operation since it involves one directory-to-server network
round-trip time to send the audit request and get the proofs,
plus the time needed by the server to validate each certifi-
cate in the global authorization chain. This type of audit
prevents the directory from keeping revoked users in the lo-
cal environment.

Finally, a server can request proof that a user that has
been revoked in the local environment (either by putting her
on the local CRL, or by the directory refusing to issue a lo-
cal certificate for that user) has indeed been revoked by the
CPs. This operation is again rather expensive, involving the
same steps as the previous type of audit. This type of au-
dit prevents the directory from denying access to legitimate
users to the local servers.

From a performance point of view it is important to note
that some of these audit actions do not need to be done dur-
ing the time the server is handling user requests. For ex-
ample, a server can have a background task that verifies the
local CRL, by randomly selecting entries in that CRL and
asking the directory to prove these entries have indeed been
revoked. Another possibility is for servers to keep a log of
users that have been served but only their local credentials
have been verified. Whenever a server is idle, it can ran-
domly select users from the log and request the directory to
prove these users have indeed not been revoked.

By using such background checking techniques, we can
set the audit probability to be quite high without degrading
the server’s response time to user requests. It is important to
notice that background auditing does not prevent individual
security violations (since the check will most likely happen
after the violation has occurred). Instead, auditing works
as a deterrent, and we claim that in the environment we
described this can be efficient in making directory misbe-
havior very unlikely.

Another interesting fact is that our scheme allows servers
to choose the amount of trust they want to put in the local
directory: for less important transactions, they can immedi-
ately trust the local certificate, and rely on the probabilistic
audit mechanism to catch any eventual misbehavior on the
directory’s part. For important transactions, the servers can
do an on-line complete verification. Such a verification is
always possible in our revocation scheme, and involves the
following steps:

• request the user’s global certificate chain and verify it

• ask the directory to prove the user has not been revoked

Finally, it is important to understand that in a wide-area
environment, it is always possible to experience link failures
that would prevent directories from receiving fresh revoca-
tion information. When a directory gets to the point where it
is impossible to get a fresh CRL from the CP, it has two op-
tions: it can either stop answering validation requests, or it



can go into a “degraded” operational mode, when it explic-
itly warns its users that the responses provided are based
on non-fresh data. Which one of these two options is more
appropriate is dependent on the application scenario.

4.3 Discussion

When describing our revocation mechanism, we re-
quired the global CRLs generated by the CPs to support on-
line verification using reduced data structures (as described
in [16], [14] or [11]). However, these algorithms are rather
complex, not that widely used and rely on heavy crypto-
graphic computations which may put too much workload
on the CPs and servers. The good news is that our revoca-
tion mechanism can be adapted to work even if CPs produce
just plain simple CRLs.

This works as follows: local directories keep issuing lo-
cal certificate and local CRLs as in the original scheme. The
first type of audit (local certificates compared to the global
ones) also works in the same way as in the original scheme.
However, the last two types of audit need to be modified,
since now verifying that a local certificate has indeed not
been revoked requires a server retrieving the global CRLs
corresponding to all the certificates in the global certificate
chain, and if most of the servers end up retrieving global
CRLs we give away all the performance benefits gained by
only distributing local CRLs. We need to ensure the global
CRLs will only be sent to a small number of servers. This
can be done by setting a small probability that a server re-
quests the global CRL after it receives a fresh local CRL.
For example, if this probability is 0.05 and we have 100
servers depending on a directory, then, on average, only five
of them will ask for the global CRLs. Thus, the majority of
servers will only use the local CRL, while a few servers
will have both the local and global CRLs. What happens
then is that servers holding both local and global CRLs will
check local user certificates against the local CRL, and their
corresponding global chains against the global CRLs. A di-
rectory is caught misbehaving if a local certificate is not
revoked in the local CRL, while its corresponding global
chain is no longer valid, or if a local certificate is revoked
while its global chain is still valid. The local certificate and
local CRL are signed and time-stamped by the directory, so
the vigilant server can simply forward them to the root CP
as an undeniable proof that the directory has been corrupted.
The CP can then take coercive action.

One thing we have not explained so far is what hap-
pens when a directory is caught ‘red handed’. This is very
much dependent on the relation between the directory and
the CPs/servers for which it facilitates the distribution of re-
vocation information. One option would be that the root CP,
servers and directories are all part of the same administra-
tive realm. In this case, directories are inherently trusted,

except that because they are on line all the time they are
more exposed to attacks. In this case, the probabilistic au-
diting can be used to determine when a directory starts act-
ing malicious because it has been hacked, and once such
a directory has been identified, administrative action can be
take to fix the problem (for example, rebooting the machine,
re-installing software on it, changing account passwords).

Yet another possibility is that the servers and directo-
ries are independent entities, all collaborating as parts of
a peer-to-peer system. In this case, a reputation scheme can
be employed, with the entities with a high reputation being
elected to serve as directories. When directories are caught
red-handed, their reputation will drop, and eventually they
will be removed from the directory role.

5 Related Work

The simplest revocation mechanism is no revocation at
all, simply use arbitrary short lived certificates. In this
scheme users would have to contact the certificate produc-
ers very often to obtain new certificates. Each new certifi-
cate requires the issuing CP to generate a digital signature
- an expensive public key operation. Also, since users ask
for new certificates frequently, this means CPs need to be
on-line all the time, which is a security hazard.

Besides this simplistic solution, revocation has been
widely studied but almost all the previous work has been
focussed on the efficient implementation of the revocation
data structure, in order to reduce bandwidth and storage re-
quirements at the client side [18, 13, 10, 6, 14, 11, 16]. All
these mechanisms assume that the revocation information
(in most cases a revocation list) is signed by the CP (or some
other authorized party) and is stored on some un-secure on-
line server. A different approach is taken by the designers of
the On-Line Certificate Status Protocol (OCSP) [15] and the
Data Certification Server Protocol [2]. These mechanisms
require that before accepting any certificate, an application
server engages in some on-line protocol with a trusted entity
and verifies the certificate has not been revoked. The obvi-
ous drawback of this approach is that it needs a trusted on-
line entity that does certificate validation. The other prob-
lem with on-line verification protocols is that they do not
make use of the natural geographical clustering of valida-
tion requests.

One mechanism that makes use of this natural geograph-
ical clustering is Segmented CRL/CRL Distribution Points
([10, 6]). However, this is mostly dealing with identity cer-
tificates, and does not consider the problems posed by by
long delegation chains that are specific to authorization cer-
tificates.

The only work we are aware of that explicitly considers
the revocation of authorization certificates is [12]. However,
that paper focuses mostly on a high-level discussion on dif-



ferent scenarios where authorization certificate revocation
may be needed, and what are the operational requirements
in each of these situations. In our paper, we focus more on
system design, and we describe a revocation infrastructure
that makes use of semi-trusted on-line entities.

6 Conclusion

In this paper we tackle the problem of authorization cer-
tificate revocation, in a wide-area network distributed en-
vironment. We explicitly take into account the possibility
of authorization delegation; this leads to (potentially long)
authorization certificate chains which, when validated, put
an unacceptably high workload on servers. We are able to
alleviate this problem by shifting some of this validation
burden to a number of semi-trusted revocation directories.
A novel technique - probabilistic auditing - is then used to
ensure these directories cannot go malicious without being
detected.

As for future work, we plan to implement the revoca-
tion mechanism presented in this paper in conjunction with
a large, highly replicated, Globe application (the Globe Dis-
tribution Network [3], for example). This would allow us to
verify the user clustering assumption, and identify refine-
ments that could make our scheme more efficient.

References

[1] The Common Object Request Broker: Architecture
and Specification. www.omg.org, Oct 2000. OMG
Document formal/01-12-01.

[2] C. Adams and R. Zuccherato. Data Certification
Server Protocols. Internet Draft (expired), June 1998.

[3] A. Bakker, E. Amade, G. Ballintijn, I. Kuz, P. Verkaik,
I. van der Wijk, M. van Steen, and A. Tanenbaum. The
Globe Distribution Network. In Proc. 2000 USENIX
Ann. Conf. (FREENIX Track), June 2000.

[4] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D.
Keromytis. The KeyNote Trust-Management System,
Version 2. RFC 2704, September 1999.

[5] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
Trust Management. In Proc. of IEEE Conference on
Privacy and Security, 1996.

[6] D. Cooper. A Model of Certificate Revocation. In 15th
Annual Computer Security Applications Conf., 1999.

[7] G. Eddon and H. Eddon. Inside Distibuted COM. Mi-
crosoft Press, Redmond, WA, 1998.

[8] C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, and T. Ylonen. SPKI Certificate Theory.
RFC 2693, September 1999.

[9] A. Grimsaw and W. Wulf. Legion - a view from 50000
feet. In Fifth IEEE Int’l Symp. on High Performance
Distr. Computing. IEEE Computer Society Press, Aug
1996.

[10] R. Housley, W. Ford, W. Polk, and D. Solo.
Internet X.509 Public Key Infrastructure:
Certificate and CRL Profile. RFC 2459,
http://www.ietf.org/rfc/rfc2459.txt, January 1999.

[11] P. Kocher. A Quick Introduction to
Certificate Revocation Trees (CRTs).
http://www.valicert.com/company/crt.html.

[12] Y. Kortesniemi. Validity Management in SPKI. In
Proc. of 1st Annual PKI Research Workshop, 2002.

[13] P. McDaniel and A. Rubin. A response to ”Can we
eliminate certificate revocation lists?”. In Financial
Cryptography, 2000.

[14] S. Micali. Efficient Certificate Revocation. Technical
report, MIT/LCS, 1996.

[15] M. Myers, R. Ankney, A. Malpani, S. Galperin, and
C. Adams. X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol - OCSP. IETF RFC
2560, June 1999.

[16] M. Naor and K. Nissim. Certificate Revocation and
Certificate Update. In 7th USENIX Security Symp.,
pages 217–228, January 1998.

[17] B. Popescu, M. van Steen, and A. Tanenbaum. A Se-
curity Architecture for Object-Based Distributed Sys-
tems. In Proc. 18th Annual Computer Security Appli-
cations Conference, Dec 2002.

[18] R. Rivest. Can we eliminate certificate revocation
lists? In Financial Cryptography, LNCS1465, pages
178–183, 1998.

[19] U.S. National Institute of Standards and Technology.
A Public Key Infrastructure for U.S. Government Un-
classified but Sensitive Applications. Federal Infor-
mation Processing Standards Publication 180, 1993.

[20] M. van Steen, P. Homburg, and A. Tanenbaum. Globe:
A Wide-Area Distributed System. IEEE Concurrency,
pages 70–78, January-March 1999.


