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15 Analysis of complex
networks: an overview of
methodologies and a neural
network application to
intermodal transport in Italy

Peter Nijkamp, Aura Reggiani and
l'ommaso Tritapepe

15.1 Modelling complex networks: an introduction

Spatial systems are manmade multi-component systems with a high degree of
variability and unpredictability. Seemingly simple issues like the assessment of
infrastructure impacts on regional development or the estimation of information
provision on the behaviour of road users are already difficult to handle. Lack of
precision 1s an inherent feature of spatial research and a source of frustration for
planners.

It should be noted however, that the analysis of complex spatial systems - with a
variety of interactions among diverse components and layers - is in principle not
different from the research task in other disciplines, such as physics or biology.
Clearly, spatial systems have an additional degree of complexity compared to
natural science systems, viz. human intervention at both an individual and a
collective level. But this - basic and farreaching — characteristic should not prevent
us from searching for universal analytical principles which may be helpful in better
understanding the degree of variation and stochasticity in spatial systems.

An 1mportant methodological step forward in this context has been offered by
synergetic theory (see amongst others Haken 1983a, 1983b). Synergetics aims to
study the complex relationships between interactive components and their
consequences for the evolving macro structures by looking for simple universal
principles that govern the dynamics of flows and morphology in the organization
of a system. Such dynamic forces may generate qualitatively new structures in
space and time, while also new functions of the systems may be generated.

Clearly, this idea provokes many new research issues, e.g. regarding resilience,
robustness, equilibrium or sustainability of such systems. Synergetics aims at
mapping out such changes and their implications by focusing on the qualitative
changes in a complex system. The main feature is that the complex nature of a
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macro system can be characterized by only a few parameters that govern the
movement or behaviour of the micro-components that make up particular
subsystems. This also explains the search for simple, dynamic and nonlinear
equations of motion that can adequately describe (and forecast) the behaviour of a
multi-component multiactor system (see also Domanski 1994 and Weidlich and
Haag 1983).

Clearly, such research endeavours are not entirely new in regional science.
Typical examples of earlier attempts can be found in gravity theory, entropy theory
or spatial equilibrium theory. The main feature of modern synergetic methods is
their emphasis on qualitative, nonlinear dynamic macro structures. described by a
limited set of basic equations. As a result, there is much focus on dissipative
structures, phase transitions, slow and fast dynamics, catastrophic behaviour,
chaotic dynamics, self-organizing dynamics, and ecologically-oriented evolution
(see also Allen and Sanglier 1981; Domanski 1992: Nicolis and Prigogine 1977;
and Nyjkamp and Reggiani 1992, 1993, 1995).

Therefore, the analysis of complex systems has in recent years become an
important research issue in many disciplines. It has intensified the search for
universal principles governing nonlinear dynamics systems with a particular
interest in methodological approaches. This also explains the current popularity of
niche theory, Volterra-Lotka dynamics and predator-prey models in biological and
socioeconomic sciences. In a similar vein, we also observe much emphasis on
network evolution, as networks are prominent examples of interacting dynamic
multi-component systems, in which flow dynamics and morphological evolution
play a crucial role. In spatial sciences these systems also have a strong human
behavioural aspect (flow behaviour, regulatory regime).

Networks are not only specific, organized spatial structures (i.e. based on node
edge interconnectivity), but offer user functions which aim at improving the
efficiency of spatial interactions. Thus, morphological structure and spatial
interaction are dual phenomena. This is also echoed in the recent conceptual
Interest in networks as complex sociotemporal systems (see e.g. Batten et al.
1994, and Reggiani and Nijkamp 1996). In this literature, networks are interpreted
as spatial economic or socioeconomic systems characterized by evolutionary
processes governed by a multilayer, multi-component organization of
interdependent subsystems. Clearly, a hierarchical system is only a special case of
a more general network ramification.

It should be noted that real world network systems — emerging from the complex
interaction between slow and fast dynamics of the various system’s components —
do not only reflect the complex nature of dynamic systems, but may also mirror
auto-organizing powers of the system at hand, which may be depicted by various
typologies of evolutionary non-regular behaviour (Reggiani and Nijkamp 1995). A
well-known popular concept in this context has become the term ‘sustainability’,
which describes the continuity potential of a dynamic system under changing

external conditions and countervailing powers and behaviour inside the system (see
Nijkamp 1991). In a recent study, Beckenbach and Pasche (1994) have defined
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sustainability as a stable domain/corridor in a dynamic spatial economic system.
Also related concepts like dynamic fragility and resilience may be mentioned in
this context. Resilience may be conceived of as the potential of the system to
resist internal/external perturbations. It is thus clear that — once the complex
relationship of fragile or resilient system has been identified and formalized for
some relevant domains or corridors — it is necessary to investigate for a relevant
time horizon (including sometimes multiple generations) the degree of
sustainability of such a system in the light of various internal and external shocks
to the system at hand. Only in this way is it possible to get a better grasp of the
structural tendencies of the system concerned and its dynamic functioning. An
illustrative example 1n this context i1s offered by transport systems, whose
nonlinear evolution may induce a (more or less stabilizing) perturbation within the
entire spatial network of regions and cities (including interregional connections).

Clearly, there is a multitude of methodological approaches and analytical tools for
the above issues which aim to measure or quantify — or at least formalize or typify
— the above mentioned concepts in synergetics. Complex decision problems are
increasingly analyzed from the viewpoint of a similarity with the functions and
actions of our brains. This 1s also revealed in concepts like biocomputing and
artificial intelligence. In the past decade, much scientific literature has been devoted
to neural networks (NNs) as alternative models of information processing (see for a
review, Reggiani et al. 1997). Therefore, the theoretical aspects of this new
methodology will briefly be described in Section 15.2.

An application to interaction patterns of 67 Italian areas will then be analyzed by
using the NN model and the logit model in Section 15.3. This last part refers to
previous experiments (see Nijjkamp et al. 1996) camed out for modelling the modal
split problem between rail and road transport modes in Italy in relation to the
introduction of a recent technological breakdown, the High Speed Train. In
particular the performance of the models, by varying the attributes, will be
compared by testing the models in terms of spatial forecasts. Finally, Section 15.4
contains some concluding remarks.

15.2 Neural networks for the analysis of complex systems
15.2.1 Introduction

Neural network approaches are able to generalize from experience, without fixing —
a priori — any behavioural rule/model among variables. Applications of neural
networks (NNs) are nowadays abundant in many disciplines. In regional science
this approach has also gained popularity, e.g. in transport and spatial economic
interactions (see, for a review, Reggiani et al. 1995). In this approach 1t 1s
necessary — like in the case of complex networks — to adopt tools that are able to
represent connectivity, communication, adaptivity, control and prediction patterns.
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The principal inspiration of NNs is the human brain whose structure is made up
of a large number of connected neurons. Every neuron is a cell body which receives
electrochemical input signals through the dendrites! and transmits the resulting
electrochemical output signal through the axon,2 information transmission
(electrochemical signals) is then spread by means of spatial connections, the
'synapses’, between axons and dendrites of different neurons. In particular, when
the combined signals are strong enough, the neuron is ‘activated’ and will produce
an output signal.

The structure of NNs is generally represented by logical units (‘neurons’)
connected by channels of communication (‘synapses’) which intercompute
independently, since each unit cooperates in the transmission of information by
means of a different ‘weight’.3 This differentiation in the weights thus corresponds
to different values in the synapses. The above phenomenon takes place in particular
during the phase of learning in order to allow adaptation to new conditions. In fact.
Just like cerebral behaviour, NNs are also able to recognize patterns which they
have never observed before. This characteristic of ‘generalizing’4 identifies the
behaviour of the system as ‘intelligent’. In other words, since ‘real’ events never
repeat themselves in the same manner, intelligent systems are able to observe. by
means of past experience, continuity and similarity of such events, by offering the
possibility of correctly predicting future events.

Within the context of Artificial Intelligence, NNs are distinguished by their
ability to elaborate and create information by means of Parallel Distributed
Processing systems. This is an important aspect of NNs, since massive parallelism
provides, on the one hand, the possibility of significantly increasing computer
speed (see Kosko 1992) and, on the other hand, provides a great ‘fault tolerance’
(since interconnection between units is essentially local).

It is difficult to define NNs in formal terms: in principle they can be considered as
non-linear dynamic systems with many freedom degrees as well as ‘free’ models of
estimation (see Kosko 1992). Consequently, the common element in the above
definitions is the concept of ‘freedom’; in other words, there is ‘free biological
behaviour’ within NN which cannot be subjected to any mathematical model
(usually creating logical bounds between output and input). Thus, in contrast to
the necessity to program computers (which requires knowledge of the mathematical
model which represents the reality concerned), NNs are trained; that is, they learn
from a set of ‘examples’ with input and output. In other words, NNs can be defined
as connected systems by means of which a wide range of complex problems, ‘not
formalizable’ by logical mathematical models, can be solved.

Consequently it is interesting to note that NN are suitable in a forecasting
context, given their ability to generalize, i.e., to elaborate new situations for
different scenarios. In this framework, it should be noted that this peculiarity
strictly depends on both the chosen training set and on the architectural
configuration of the network (number of hidden levels, number of units on these
levels, etc.) (see e.g. Fischer and Gopal 1994). The first point presupposes the
choice of a representative sample in order to get an ‘unbiased’ distribution of
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observations, while the second point implies a ‘careful’ mapping of NN
architecture, since the optimal configuration is reached only by means of
experimental methodologies (see also Malliaris and Salchenberger, 1992).

Starting from the above considerations we will briefly describe, in the next

subsection, the typology of a ‘Two-layer-Feedforward’ network, which will be
adopted for our NN experiments in transport (see Section 15.3).

15.2.2 The two-layer feedforward neural network

The above-mentioned NN methodology has been widely applied in different fields
of regional economics and particularly in transportation science (see, for a review,
Reggiani et al. 1997), with reference to the construction of origin-destination
matrices, the forecasting of vehicle-flows, the simulation of users' behaviour, etc.
The main elements of a feedforward NN can then be illustrated by analyzing the
following characteristics:

e NN structure;

e activity of the hidden unit;

* NN learning.

Neural network structure The NN structure can be considered as a weighted and
oriented graph, constituted by modes (units) and weighted links (see Figure 15.1).

[t 1s subdivided into layers and each layer contains a different number of units.
Essentially, units are linked in three ways: a) ‘forward’, when the direction of the
unit's connection 1s from the lower layer to the upper layer; b) ‘backward’, when
the direction 1s inverse with respect to the forward direction; and c¢) ‘lateral’, when
the units of a layer are connected.

1\ output data
. ) output units (second layer)

\. "¢ bias unit

. ’ hidden units (first layer)

""""‘"“ SR U . ‘\ -
@3 bias unit

IIIIIIII
-------
---------

......
lllllll
-------
nnnnnnn
-------
------
5 W

input data

Figure 15.1 Feedforward neural network architecture
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A two-layer feedforward network as subsequently adopted, is characterized by a
layer of input units (Ist layer), connected to a second layer of units (2nd (hidden)
layer), which is then connected to the layer of output units (3rd layer). The
properties of this type of network are the following: total connection among units:
there are no self. lateral or back connections, only unidirectional connections from
input to output layers; a certain convergence (o a solution. For these reasons, this
NN typology is regarded as being very simple from a computational viewpoint. Its
ability depends on the learning algorithm (see Subsection 15.2.2.3).

Activity of the hidden/output unit Each hidden/output unit has its own activation
state determined by the activity of the units linked to it (Figure 15.2 shows a
generic hidden unit), based on the following relationship:

A=Y (w. A)+d]
: Z‘ SR (15.1)

number of units of the layer above the j-th unit);
o Wij (=105 =1, 5 m) jare the weights of connections between the j-th unit

and the units linked to it (m is the number of units of layer of the j-th unit);

o the expression ‘f[]’ denotes the ‘activation’ function (known as the transfer
function) which allows the transmission of the signals only when the
activation of a unit exceeds a particular threshold value;

the symbol d in f denote the ‘bias’, which determines the threshold value of
the j-th unit activation. Such a value is different for each unit and can be
considered as the weight of a ‘fictitious’ connection, between an imaginary
unit and the j-th unit. It provides a means of adding a constant value to the
summed input, which can be useful to scale the average input into a useful
range.

The transfer function can assume different configurations (see e.g. Kosko 1992;
Maren et al. 1990). The most well-known function — which is also adopted in the
feedforward NN — is the logistic/sigmoid function, which 1s continuous, smoothly
defined over the interval, monotonically increasing and differentiable. In this case
formulation (15.1) reads as follows:

e I

: -i W, Ai+ E}j
| +e *=! (15.2)
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Figure 15.2 Generic hidden unit

Neural network learning The behaviour of an NN depends mainly on the learning
algorithm, since this phase provides the basic information on the environment at
hand, by preparing the neural network to recognize and classify the patterns.

In particular, during the learning phase, an NN system may adapt or organize
itselt each time it examines a new sample (or a set of samples), by changing the
weights of each connection. Consequently, since NNs only learn a part of the
possible samples (which can be infinite), the choice of the samples is very
important (since the samples have to reflect the whole environmental pattern).
Indeed, during the learning phase, internal ‘representations’S of the samples take
shape and define a ‘quantization’® of the patterns by means of vectors of real
numbers,’/ which can be modified in order to minimize the estimated error of the
sample according to different criteria of numerical calculus, e.g. the mean squared
EITOr :

E

N
1 - 2
2 ; (oj-oj)

] (15.3)

where E is the global error, O;! the expected value, O; the obtained result and N the

number of output units. The global error is back propagated along the connections
by means the error back propagating technique of Rumelhart et al. (1986) which
studies the input-output pairs of the training set by means of the ‘generalized delta
rule’. It 1s based on the minimization of the error between the output provided by
the network and the expected output (see Formula 15.3). In general, the generalized
delta rule can be formulated as follows:
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OE
Swij(t)

ﬁwij(t)c-: -
(15.4)

where the error function E is represented in N-dimensional space (N is the number
of the connections). It is possible to find the minimum of such function by means
of the ‘descent of gradient’ technique in order to assure the convergence of the
algorithm. Then the global error is back propagated along the connections (and the
biases) between units assigning to the time t+1 a new weight (t+1) that 1s:

wij(t +1)= wij(t) 1 chwij(t) (15.5)

where w;;(t) is the weight assigned to the connection (and to the biases) between

the i-th and the j-th unit at the t time, while o is the learning coefficient fixed a
priort.

Another formulation of the propagation of the error may be (see again Rumelhart
et al. 1986):

wij(t +1)= wij(t) -0 jE(t) + Mwij(t)

1) (15.6)
where A(0 € A < 1) is defined as the factor moment that can contribute to the
variation of the weight with reference to the variation which had taken at the
preceding time t (see further Fischer and Gopal 1994).

Finally, it is then clear that in this learning phase a great deal of attention should
be paid to the choice of all the ‘strategic’ elements which can influence an
‘optimal’ network - for example, the training choice (random or sequential), the
objective error choice, the initial conditions of the parameters, etc.

15.3 Experiments with neural networks in transport

15.3.1 Introduction

In order to explore the potential of the NN approach, some experiments will be
carried out with reference to the modal split problem between two transport modes
in 67 Italian areas. This study is a continuation of the analysis begun in the paper
by Nijkamp et al. (1996) aimed at exploring the modal split between rail and road
transport modes in Italy in relation to the introduction of a new technological
innovation, the High-Speed Train (see Figure 15.3 for a scheme of the case study).
For our purpose, two methodologically different models, the logit model and the
NN model, will be investigated and compared. Particularly, we will focus our
attention on the performance of two models by varying the number of attributes.
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In Subsection 15.3.2, the data-set and the statistical indicator used in order to
compare the models will briefly be described. Subsection 15.3.3 contains a
description of the experiments carried out by using both the logit model (see
Subsection 15.3.3.1) and the NN model (see Subsection 15.3.3.2). Finally, the
results will be compared in Subsection 15.3.3.3.

Figure 15.3 Scheme of the case study
15.3.2 The basic element for the experiments

The data set The database8 refers to transport flows for the two different modes (rail
and road), as well as the related attributes ‘distance’, ‘time’ and ‘cost’. The Italian
territory 1s divided into 67 areas corresponding to both single provinces and an
aggregation of two or three provinces (the island of Sardinia is not considered);
Figure 15.4 shows a map of such a subdivision.

The data set contains observations, and each describes the link between one origin
towards another destination, in terms of passenger flows and attributes (‘distance’,
‘time’ and ‘cost’) related to the transport modes. The total number of observations
1s 1396, because the flow matrices are symmetric, the intra-areas flows are zero and
the values of attributes and tlows related to some links are zero.

The data set has been randomly subdivided into three sub-sets:

e training-set which contains 698 observations (50% of the total data set);

o validation-set which contains 349 observations (25% of the total data set);
* test set which contains 349 observations (the remaining part).

Both models are calibrated® by using the same training set, while the
performances measures are evaluated by using the same test set. The next
subsection will describe the statistical indicator utilized in order to evaluate the
results.

In Figure 15.8 the D-values are shown.
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The statistical indicator In Subsection 15.4.5, the results of two models, which are

methodologically different, will be compared by using the Average Relative Variance
(ARYV (N)) indicator, whose mathematical expression is:

ne N (157)

where y, denotes the expected value, y, denotes the value calculated from the model

and y 1s the average of the expected values belonging to the set of data N. It is also
useful to define the ARV indicator as follows:

ARV =——=—Y" @,-9,)

6’ N neN (158)

where My 1s the number of samples belonging to the set N (i.e., using NN, one

can fix an arbitrary value of N (epoch)) and 62 is the variance of the expected
values of the entire data set (this is a proxy, since the variance of each epoch would
have been considered).

Thas statistical indicator 1s widely used in the NN literature (see e.g. Fischer and
Gopal 1994; Nijkamp et al. 1996) primarily for two reasons:

It ensures an independence - both quantitatively and qualitatively - of the error
estimated from the selected samples (see expression (15.3.2));

- 1t 18 rather easy to understand the goodness of the indicator values, since it
will tend to zero, the more exact the estimate is.10

Finally, 1t 1s important to underline that all future experiments will be evaluated
by using the absolute values of the predicted flows according to the following
EXpression:

ain byl ain ,
Ty =pfuter, (15.9)

where:

Tj; : Total flow related to link (1j);

Tjjtrain :  Total rail mode flow related to link (ij);

pijlfﬂiﬂ . Probability of choosing the rail mode with reference to
link (1j).
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15.3.3 Observations on the experiments

As mentioned 1n Subsection 15.3.1, this work continues the analysis started in a
previous study by Nijkamp et al. (1996); we will particularly analyze the modal
split problem between rail and road transport modes in Italy by varying the
attributes. The 1nitial case study (developed in the previous paper) concerned a
comparative analysis between the NN model and the logit model and used three
attributes, ‘distance’, ‘time’ and ‘cost’ related to each transport mode (and referring
to each link (1j)). Different possible NN architectures were investigated and finally,
the configuration shown in Figure 15.5 resulted as the best one (by comparing the
values of ARV indicator):

NEURALNETWORKMODEL LOGIT MODEL

train
1)

TD &=

1

LCE

)

1)

Attributes

1

RC;

.

RT:1E!

1)

Figure 15.5 Configuration of the models adopted for the
problem under investigation

The variables in Figure 15.5 have been transformed (in values between [0-1]) by
means of the following functions:

ij = exp(-0.005 * Vj) (15.10)

i
e exp(-0.0002 * Vj) (15.11)
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where in the previous formulas Vi (= 1,..,.9) denote the general variables utilized
in the experiments and where (i) formula (15.10) (1dentified by the index ) has

been adopted for transforming the values of the attributes and (ii) formula (15.11)
(1dentified by the index () is used for transforming the flow values. Furthermore.

the variables, related to the link (ij), are defined as follows:

TD;;f :  transformed train distance (according to 15.10));

TC;;' :  transformed train cost (according to (15.10)):

TT;i": transformed train time (according to (15.10)):

RD;;f :  transformed road distance (according to (15.10)):

RC;;f : transformed road cost (according to (15.10));

RT;if : transformed road time (according to (15.10));

T;t:  transformed total passenger flow (according to (15.11)):
Tij“‘ﬂi““) . transformed rail mode flow (according to (15.11));
pijlfﬂi“ : rail mode probability (see (15.9)).

Since we want to investigate the performance of the models by varying the
attributes, in the first experiment (Case Al), the ‘distance’ attributes for both
transport modes have been eliminated (i.e. 4 attributes in total have been used): in
the second and third experiments (Case A2 and A3), the ‘cost’ and the ‘time’
attributes (again for both transport modes), have been eliminated (i.e. 2 attributes
in total have been used), respectively. Figure 15.6 illustrates a scheme of the three
experiments which have been conducted.

The logit model The application of logit model in modal split problems is rather
common 1n the transport economic literature (see e.g. Ben-Akiva and Lerman,
1985). In general, if we denote the number of attributes by 7y, and the random

component of the j-th possible choice by 9;, then it is possible to define a utility
function, related to the j—th transport mode, as follows:

K
uj=2[3kxk+aj k=1,..K
k (15.12)

where [y are parameters to determine.
The logit model assesses the probability p; of choosing the j-th transport mode
by maximizing (under certain assumptions) the above utility u;; 1ts general form

1S:
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o s 1= 1,...,n
i=1 (15.13)

In the present experiments, j = 1, 2 (n = 2), 1.e. only two choices are possible:
road mode or rail mode. There are six related attributes ¥ (k = 1,...,6); they are the

following:
0. : TC! . TT.: RC..: RD. : RT
i i] i 1] i 1]

which have already been defined above.

In order to calibrate the model, the procedure Blogit in the STATA software has
been used. Such a procedure allows the calculation of logit estimates respecting
aggregate data, adopting a maximum likelihood technique and applying the
Newton—Raphson algorithm as the convergence procedure.

Learning phase of the feedforward neural network model The calibration phase of
the logit model corresponds to the learning phase of the feedtorward NN model.
This phase allows NNs to ‘learn’ an ‘inner’ rule of the variables at hand, without
fixing a priori relationships/models between the variables. The only base 1s
constituted by representative ‘examples’ of the problem at hand.

In this application, the training set (defined in Subsection 15.3.2.1) contains 698
observations whose variables are shown in Figure 15.6. In this figure it i1s also
easy to observe that the signals of the input-layer are propagated forward according
to formulations (15.1) and (15.2).

The NN architecture which has been used is a two-layer feedforward, totally
connected NN with the back-propagation algorithm as learning procedure (see
Subsection 15.2.1.3). According to this procedure, the values of the output unit are
compared with the real values in order to adjust the weights of the network by
thinking of equations (15.3), (15.4) and (15.5).

The parameters defining the neural architectures were set out (after some
experiments) in the previous work by Nijkamp et al. (1996). The results are as
follows:

e learning rate o0 = 0.5

e  momentum factor A = 0.2

 epoch size: |

 initial weight values: randomly between [-0.1-0.1]

No useful mathematical rule exists to decide on the number of hidden units. It is

usually determined empirically. In the current experiments, it has been defined
without changing the degrees of freedom!! of the NN model (according to the
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reasoning on the sample size in the paper by Nijkamp et al., 1996). Therefore, in
the Case Al, the hidden units are 4 and in the Case A2 and A3 are 6.

NEURALNETWORKMODEL
LOGIT MODEL
r train
TC A Pi;
r
T'I’ii
CASE A1 :
> < Attributes
RC
RT[S
e T T
1) 1)
CASE A2
= Attributes
RT [
l Lrain
TC gi[m Ip.','
CASE A3 :
> < Attributes
RC ;|-

Figure 15.6 Scheme of the experiments
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Finally, it should be noted that by using a feedforward NN it is necessary to cope
with the overfitting problem. Consequently, in all three cases Al, A2 and A3, the
cross-validating technique (by using the cross-validation subset defined 1n
Subsection 15.3.2.1) has been used in order to avoid such a problem (for details on
the overfitting problem and the cross-validating technique, see e.g. Fischer and
Gopal 1994; Reggiani and Tritapepe 1997).

Comparison of the results The performance of two models has been evaluated on
the test-set defined in Subsection 15.3.2.1). This subset contains observations
related to new links origin/destination never before used for learning/calibrating the
models. In this sense we will speak of spatial forecasting.

As illustrated in Figure 15.6, three cases corresponding to the variation of the
attributes have been analyzed; therefore, Table 15.1 and Figure 15.7 show the
values of the ARV statistical indicator (presented in Subsection 15.3.2.2).

Table 15.1
The results of the models

ATTRIBUTES

4 Attributes

distance rail, distance road
time rail, time road

cost rail. cost road

time rail, time road

cost rail. cost road

2 Attributes time rail, time road

2 Attributes cost rail, cost road

It is also important to show how the difference between the ARV indicator
changes according to the variation of the attributes. We can define such a difference

as follows:

ogit - ARV AN (15.14)

D = ARV
By examining Table 15.1, Figure 15.7 and Figure 15.8, the following

observations emerge:
. both models seem to be sensitive to the correlation of the attributes;
e by reducing the number of attributes, the NN seems (o perform better than the

logit model.



With regard to the first consideration - although expected for the logit model —
one might expect different results for the NN model; this is due mainly to the
feature of NNs, which should be able to learn and then forecast — even on the basis
of incomplete, noisy and fuzzy information.
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Figure 15.7 Performance measures of the model by varying the

attributes
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Figure 15.8 Differences of the performance measures by varying
the attributes
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Since this characteristic seems to be proven from our second consideration, we
may conclude that the correlation of the attributes does not have similar effects —
other than noisy and fuzzy information — on the NN performance.

15.4 Conclusions

Network planning is a policy activity governed by much uncertainty. There is a
need for flexible and dynamic models that can map out unexpected behaviour or
uncertainties. Conventional assessment and forecasting models do not offer a
proper contribution to network modelling in an uncertain behavioural or policy
environment. The present chapter has aimed at reviewing recent approaches in
spatial interaction modelling that serve to map complex and dynamic space-time
patterns, and to describe a new technique for information processing, viz. neural
networks. both from a theoretical viewpoint and by means of an empirical
application.

The issue of complex multidimensional networks with dynamic, uncertain and
complicated relationships between variables requires new methodologies that are
able to overcome the restricted models usually adopted in spatial economics. In this
context the NN approach, based on an ‘intuitive-logical’ knowledge of the system
by means of appropriate examples from which NNs can learn, offers an interesting
potential, especially for prediction purposes. An empirical test of the NN approach
may be undertaken using a proper indicator which may verify the spatial
forecasting of NN approaches.

Obviously, many research questions in this framework remain, such as the
dimension of the network (number of hidden units), the computer time involved,
the empirical validation/measurement of the parameters, the sample size and - last,
but not least - the ‘economic’ significance of the neural network approach. While,
in fact, it is possible to give a behavioural/economic meaning to the parameters
estimated in ‘classical’ economic models (such as the discrete choice models), an
NN model is still conceived of as a ‘black-box’, thus far otfering no ‘economic’
meaning to the weights of the connections between units (which are the unknown
parameters in NN). This also applies to the related new methodological
contributions of genetic algorithms and Artificial Intelligence in general, which
may open new research lines in the analysis and modelling of complex spatial
networks.

From the results of the experiments carried out in this paper, an interesting
feature of NNs seems to show up. In fact, comparing the NN and the logit
performance by varying the attributes. the NN results are increasingly better than
the logit results. This confirms that NN should be able to learn and then forecast
even on the basis of incomplete, noisy and fuzzy information (which, in this case,
corresponds to a minor number of attributes).

Finally, the lack of intrinsic behavioural contents may be a major advantage of
NN applications, as this eliminates a discussion of subjective modelling choices.
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In any case, there seems to be a great potential for the application of NN methods
In complex network analysis.

Transportation planning may be greatly supplied by the use of NN techniques.
With a minimum of theoretical assumptions on network behaviour, it appears to
be possible to assess the implications of changes in the network configuration in a
fairly reliable way, at least taking a logit model as a benchmark. A disadvantage is

that the learning phase requires a fairly large sample of observations, so that
NNs cannot be applied to small network issues.
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Notes

10.

1812

Dendrites are usually defined as ‘tree-like networks of nerve fibre’ (see Hertz et
al. 1991).

An axon 1s a ‘single long fibre’ (see Hertz et al. 1991).
Here weight is a real number assigned to a connection between two units.

‘Generalizing’ is the capacity of a system to create new patterns in accordance
with previously studied examples.

Prototype of sampled patterns.

‘Quantization’ is the set of weights (real numbers) created by the prototypes.
The ‘Adaptive Vector Quantization’ (AVQ); see Kosko 1992.

The data set has been kindly provided by the Italian State Railways (‘Ferrovie
dello Stato’) and it refers to Census data (1987).

Usually the verb ‘calibrate’ refers to logit model and the verb ‘learn’ refers to
the NN model. We will use the two verbs without distinction referring to
both models.

Note that in this case, because of the non-linear regression nature of the NN
experiments, the well-known R2 statistical indicator no longer has the value |
as maximum value (the more exact the estimate is), but it may assume values
greater than 1.

If we, in an NN model, denote the number of input units by i, the number of
hidden units by h and the number of output units by o, then the degree of
freedom of the model is: (i*h*o + h + 0), where the number of connections
between the hidden and output units with the bias unit (see Figure 15.1) is
taken 1nto account by adding h and o.
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