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Abstract—This paper demonstrates how different machine
learning techniques performed on a recent, partially labeled
dataset (based on the Locked Shields 2017 exercise) and which
features were deemed important. Moreover, a cybersecurity
expert analyzed the results and validated that the models were
able to classify the known intrusions as malicious and that they
discovered new attacks. In a set of 500 detected anomalies,
50 previously unknown intrusions were found. Given that such
observations are uncommon, this indicates how well an unlabeled
dataset can be used to construct and to evaluate a network
intrusion detection system.

Index Terms—intrusion detection, cybersecurity, partially la-
beled, autoencoder, gradient boosting machine

I. INTRODUCTION

With the continuing rise in the presence of cyberattacks,

it becomes more and more important to protect computer

networks and data from unauthorized access. To discover mali-

cious activities, network intrusion detection systems (NIDSs)

have been developed. There are different types of systems:

for example, aimed at misuse detection or at anomaly detec-
tion [1]. The first relies on the properties of known attacks to

recognize these in new network traffic, while the second type

focuses on activities different from what is expected. Since

malicious activities are assumed to exhibit abnormal behavior,

anomaly detection is effective in discovering novel intrusions.

Both approaches to network intrusion detection have been

widely researched with the aid of machine learning (ML) [2].

However, in the operational setting, anomaly detection sys-

tems are highly underrepresented. Only recently the use of

these systems has moderately increased. It is argued in [1]

that this low popularity is due to “(i) a very high cost of

errors; [and] (ii) a lack of training data; [. . . ]”. Especially

intrusions labeled as harmless (false negatives) are undesirable,

since they can result in serious damage to the network. There

are few publicly available cyber datasets that can be used to

evaluate NIDSs. In literature [3], [4], the NSL-KDD dataset

is usually used for validation. This is a refined version of a

dataset generated in 1999. Since it is almost 20 years old, it is

impossible for this dataset to resemble current network traffic.

The aim of this paper is, firstly, to study the performance

of different ML techniques on a semi-labeled recent dataset:

some observations are known to be malicious, but for the

rest it is unknown whether they are malicious or benign. We

apply both unsupervised and supervised ML techniques for

TABLE I
ADDITIONAL RAW FEATURES IN CONN.LOG

Name Description
subnet orig source subnet of connection
subnet resp destination subnet of connection
PCR bytes relative difference between #bytes sent and received
PCR pkts relative difference betw. #packets sent and received

PCR ip bytes relative difference betw. #IP bytes sent and received

anomaly detection and examine their results. Secondly, this

research explores the importance of each feature in detecting

cyberattacks. Thirdly, the cybersecurity expert (part of the

research team) analyzes two samples of observations which

the models have assigned either a high or low probability of

being malicious. He determines whether the models correctly

classified the samples, possibly resulting in the discovery of

previously unknown malicious activities. Fourthly, the results

are compared with a benchmark technique from literature.

II. LOCKED SHIELDS 2017

The unique and recent dataset used in this research is based

on the Locked Shields exercise of 2017 (LS’17), organized by

the NATO Cooperative Cyber Defence Centre Of Excellence.

In short, the participating teams were given control over a

fictional country and were expected to maintain its IT networks

and services. Information about the proceedings during the

LS’17 exercise can be found in [5].

The LS’17 data consists of several log files collected by

network security monitor Bro (developed by Vern Paxson).

One of the largest files is conn.log, which contains general

information on TCP/IP, UDP, and ICMP traffic of one of

the teams. A description of the standard variables in this

log file can be found in [6], while Table I describes the

features that we added beforehand. After this preliminary

exploration, conn.log consisted of 22 relevant variables with

N = 15,369,736 observations. Lastly, some IP addresses

appearing in this dataset were indicated as malicious, allowing

us to label the corresponding observations as intrusions.

III. METHODS

As mentioned before, the LS’17 dataset is semi-labeled:

8,442 (≈ 0.055%) observations are indicated as malicious,

while the categories of the remaining 15,361,294 (≈ 99.945%)

connections are not known.
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A. Pre-processing

Firstly, an adequate target dataset had to be assembled by

extracting the appropriate features from the raw LS’17 data.

1) Feature extraction: For some of the considered ML

algorithms solely numerical values are permitted. Therefore,

one-hot encoding was used on the categorical variables sub-
net orig and subnet resp and on the features which indicate

the protocol and service of the connection. However, the four

features representing the source and destination IP addresses

(hosts) and port numbers all have a large number of possible

categories, and therefore, are called overcategorized variables.

It would be inefficient to introduce a binary feature for every

category. The overcategorized variables were replaced by

extracting new features from them. The previously mentioned

NSL-KDD dataset, described in [4], was taken as an example

for this process. For instance, a variable was constructed which

counts the number of connections in the last τ seconds going to

the same destination host as connection i ∈ {1, . . . , N}. Next,

several new features were extracted from conn state. The

categories in this variable indicate whether observation i raised

an error. Now, fractional error variables were constructed

which indicate the fraction of connections inside some count

feature of connection i that have an error state. Going further

beyond the scope of the NSL-KDD dataset, the constructed

count variables were also paired with each other. More details

about this procedure can be obtained from the corresponding

author upon request.

Since relevant information from the categorical variables

had been extracted, they were removed from the dataset.

Also, the features ts and history were discarded, since most

of their added value was already captured by the variables

mentioned before. The extracted features were aggregated over

time windows of τ = 2 and τ = 120 seconds giving rise to a

short-term and long-term analysis of the data. After the process

of one-hot encoding and feature extraction, the transformed

LS’17 dataset consisted of P = 142 variables.

2) Data preparation: Next, the first 120 seconds of data

were removed, because the aggregated temporal variables

were skewed at the start of the exercise. This resulted in

the removal of 614 instances (≈ 0.004%). Furthermore, the

dataset was randomly split into a training, validation and

test set with allocation percentages 70%/15%/15%, such that

Ntrain = 10,758,386 and Nval = Ntest = 2,305,368. Of the

total of 8,442 labeled malicious observations, Mtrain = 6,004
ended up in the training set, Mval = 1,221 in the validation

set and Mtest = 1,217 in the test set. Moreover, Ptrain = Pval =
Ptest = 142.

B. Autoencoder

The first model considered was an unsupervised ML method

called the autoencoder. This technique works well for anomaly

detection and feature dimensionality reduction [7], [8], but this

has not yet been shown in network intrusion detection.

The number of layers L ≥ 3 in the network, the number

of neurons in the middle layer P(L+1)/2 ∈ N and the

Ridge regularization shrinkage parameter λ ∈ R+ were the

hyperparameters, and therefore, had to be determined before

the training procedure could start. The activation function used

was the hyperbolic tangent function. The numbers of neurons

in the other layers were determined by the geometric pyramid

rule, which simplifies the structure of the model. This rule

defines the number of neurons Pl in layer l ∈ {1, . . . , L} by

Pl = P(L+1)/2 ·
(

Ptrain

P(L+1)/2

) |2l−(L+1)|
L−1

.

The optimal values of the three hyperparameters were de-

termined with the aid of the validation set. This set was

fed to a trained autoencoder and for every observation i
the mean squared difference (MSEi) between its input and

output was calculated. The assumption is that a malicious

observation cannot be correctly reconstructed, and hence,

results in a relatively high MSEi. The hyperparameter combi-

nation (L,P(L+1)/2, λ) chosen was the one that maximized

the Discounted Cumulative Gain (DCG). A large value of

DCG indicates that the known malicious observations obtained

relatively high MSEs. In a ‘perfect’ MSE ranking all known

malicious instances obtain the highest MSEs and in the worst

ranking they obtain the lowest, implying that DCG is bounded.

Hence, for convenience, the normalized DCG (nDCG) was

considered. This is a linearly scaled version of DCG such

that it takes values in [0, 1]. Additionally, when the MSE

ranks are randomly assigned, then E(nDCG) ≈ 0.0532 and

Var(nDCG) ≈ 3.68× 10−6.

C. Gradient Boosting Machine

The second ML method considered is called the gradient

boosting machine (GBM), which can also be applied for

anomaly detection purposes [9]. GBM requires labeled training

data, therefore all unknowns were classified as benign: making

the malicious class highly underrepresented (≈ 0.056%).

Here, the hyperparameters were the number of trees T ∈ N

to be constructed and the zero-class sampling factor α0 ∈
(0, 1), which indicates the fraction of benign labeled observa-

tions to sample during training such that the two classes can

be balanced. The optimal values for the hyperparameters were

determined by the validation set similar to what was done for

an autoencoder. Each observation i in the validation set was

fed to the trained GBM (given some parameter combination)

and nDCG was calculated.

IV. RESULTS

The procedures described in the Section III were conducted

in R. Both ML techniques are available in the h2o package. In

the benchmark evaluation the C5.0 algorithm was used, which

is available in the C50 package.

A. Results Autoencoder & Gradient Boosting Machine

To construct an autoencoder network, the training set was

used without the 6,004 (0.056%) known intrusions. These

observations were assumed to be abnormal and go against

the purpose of an autoencoder to design a representation of

normal behavior. Note that there were still possibly many
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TABLE II
OPTIMAL HYPERPARAMETER COMBINATIONS AUTOENCODER AND GBM

(L,P(L+1)/2, λ) (T, α0) nDCG s2(DCG)

auto. (9, 15, 10−4) − 0.230 0.00139
GBM − (300, 8ctrain) 0.992 9.38× 10−6

Fig. 1. mean MSE of test observations

unknown intrusions in the training set. For gradient boosting

the complete training set was used with the assumption that

the unknown observations were benign.

1) Hyperparameter tuning: Since the training procedure

is a stochastic process, 60 models were trained to obtain an

acceptable estimate for the expected value of nDCG per hy-

perparameter combination and for each method. The relatively

optimal hyperparameters for both techniques are shown in

Table II, with ctrain = Mtrain/(Ntrain−Mtrain) the ratio between

the number of labeled malicious and unlabeled observations

in the training set.

2) Evaluation on known intrusions: The test set was used

for the evaluation. For the autoencoder technique this re-

sulted in a reconstruction MSE for each test observation.

Fig. 2. log mean intrusion probability of test observations

TABLE III
TEST RESULTS AUTOENCODER AND GBM

intr. inf intr. sup mean unk. mean intr. nDCG

auto. 0.0323 0.104 0.0230 0.0607 0.176
74.90% 99.89% 62.01% 95.02%

GBM 2.5 · 10−5 1.000 2.4 · 10−4 0.98 0.993
98.59% 100.00% 99.46% 99.95%

TABLE IV
FIVE MOST IMPORTANT FEATURES BY AUTOENCODER

feature share
subnet orig 8.14%

srv 6.74%
resp p same srv rate 120s 4.88%
resp p same srv rate 2s 3.70%

subnet resp 3.69%

TABLE V
FIVE MOST IMPORTANT FEATURES BY GBM

feature share
resp p same srv rate 120s 52.89%

resp p same resp h rate 120s 16.19%
srv 8.00%

subnet orig 7.69%
srv same resp p rate 120s 1.89%

This procedure was repeated 50 times to obtain 50 MSEs

for each test instance. The mean was taken over all these

repetitions to estimate the expected reconstruction MSE. The

same procedure was done for the GBM, which resulted in 50
intrusion probabilities per test observation. However, each run

yielded a different threshold probability θ ∈ (0, 1) representing

the border between the predicted labels 0 (benign) and 1

(malicious). To allow for comparison, each time the threshold

θ was transformed to be 0.5 and the probabilities were

changed accordingly. This was done by applying the function

fθ : [0, 1]→ [0, 1] given by

fθ(p) =
(1− θ)p

(1− 2θ)p+ θ

to all probabilities. This function has desirable properties:

(i) it is continuously differentiable, (ii) fθ(0) = 0, (iii)
fθ(θ) = 0.5, (iv) fθ(1) = 1 and (v) f ′θ(p) ≥ 0. The results

are shown in Figures 1 and 2. In the first figure the mean

MSE (MSE) of every test observation for the autoencoder is

plotted, while in the second the mean (transformed) intrusion

probabilities (p(1)) for the GBM are shown. Note that the

natural logarithm of the probabilities was taken to enhance the

amount of information the plot conveys. In both figures, the

black points are the unknown instances, while the red points

are the labeled intrusions. The lowest orange line indicates

the intrusion infimum: the level such that all known intrusions

are above this line. Likewise, the highest orange line is the

intrusion supremum: the level such that all labeled malicious

instances are below this line. Moreover, the blue line indicates

the mean MSE or mean p(1) of the unknown instances and the

red line that of the labeled observations. The green dashed line

in Figure 2 corresponds to probability 0.5 (99.99th percentile)

and represents the border between the predicted classes. The

corresponding percentiles of these lines and the nDCGs of the

two expected models are presented in Table III.

3) Feature Analysis: For the autoencoder, the per feature

squared errors were obtained for each test observation. To

determine which variables were important for the autoencoder,

the share of each feature in the total squared error sum
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TABLE VI
ANALYSIS BY THE EXPERT

benign malicious unknown
high 65.4% (327) 10.8% (54) 23.8% (119)
low 98.6% (986) 0.1% (1) 1.3% (13)

class total 87.53% (1,313) 3.67% (55) 8.80% (132)

was calculated. For the GBM, the function h2o.varimp was

used to determine the relative predictive strength of each

variable. The features which were partitioned into binary

variables during one-hot encoding were unified again in both

computations. The five most important variables per technique

for the average known intrusion are shown in Tables IV and

V. A complete explanation of these features can be obtained

from the corresponding author upon request.

4) Evaluation by expert: The cybersecurity expert analyzed

two samples of test observations. The ‘high sample’ contained

500 random observations from the top 6% which yielded the

largest MSEs. The (relatively) ‘low sample’ was a random

set of 1,000 observations excluding the top 6%. Table VI

shows the expert classification of the two samples. For the

autoencoder, the precision (0.142), recall (0.982) and F1 score

(0.248) were all maximal when α = 5.76% of the data was

assumed to be anomalous. This threshold value α had to be

imposed, because the technique is unsupervised. The GBM

classified α = 0.0668% of the records as malicious, resulting

in precision 1.00, recall 0.0727 and F1 score 0.136.

B. Results Benchmark

One of the classification techniques that Dhanabal et al. [4]

used on the NSL-KDD dataset was the C4.5 decision tree

algorithm. Here, the improved C5.0 algorithm [10] was applied

to the LS’17 dataset with the subset of variables that matched

the set used by Dhanabal as best as possible. Their feature

set does not contain the variables in Table I, the features

aggregated over 120 seconds, and the variables paired with

the constructed count variables. This reduced the number of

features from P = 142 to Pbench = 39.

1) Evaluation on known intrusions: Since C5.0 is a super-

vised ML technique, all unknown observations were consid-

ered to be benign. The hyperparameters were based on those

selected for the GBM. The expected performance measure

nDCGbench ≈ 0.956 was estimated by training 50 models.

2) Evaluation by expert: The performance of the C5.0

method was also evaluated by the cyber analyst. This technique

classified α = 0.403% of the test observations as malicious

with precision 0.571, recall 0.0727 and F1 score 0.129.

V. DISCUSSION

At first glance, the GBM seems better, because all known

attacks were present in the top 1.42% of the data and the means

of the two classes vastly differed (Figure 2 and Table III).

Figure 1 shows that the autoencoder was able to notice that

the labeled malicious activities do not conform to the normal

behavior of the network traffic, because all test intrusions

yielded MSEs in the top 25.10%. Unfortunately, this result

TABLE VII
ACCURACY MEASURES ON TEST SAMPLES

nDCG α precision recall F1 score
autoencoder 0.176 5.76% 0.142 0.982 0.248

GBM 0.993 0.0668% 1.00 0.0727 0.136
benchmark 0.956 0.403% 0.571 0.0727 0.129

is not desirable when dealing with millions of observations.

There was a clear distinction between the means of both

classes, however.

Next, two samples were thoroughly analyzed. As Table VI

shows, one new malicious activity was discovered in the low

sample and no fewer than 54 intrusions were found in the high

sample (four of them were already known). Table VII gives

a summary of the results obtained in this research. It shows

that the autoencoder was able to discover almost all of the real

attacks in the two samples (recall = 0.982), while the GBM

found almost none of the actual intrusions (recall = 0.0727).

Yet, only a small fraction of the found anomalies by the

autoencoder were in fact malicious (precision = 0.142), while

all predicted intrusions by the GBM were correctly classified

(precision = 1.00).

The results of the benchmark C5.0 algorithm justified the

addition of the new features, since Table VII shows that

nDCGbench < nDCGGBM. This is a statistically significant

difference according to a one-sided Mann-Whitney test on the

two samples of DCGs (p-value < 2.2 × 10−16). Moreover,

the feature analyses of the autoencoder and the GBM showed

that the features introduced here are important in detecting

and discovering intrusions (Tables IV and V). The variables

aggregated over a time horizon of 120 seconds, the variables

added by the expert, and the extra variables which were not

present in [4] all had a large influence on the classification.
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