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Abstract. Matching entities between datasets is a crucial step for com-
bining multiple datasets on the semantic web. A rich literature exists on
different approaches to this entity resolution problem. However, much
less work has been done on how to assess the quality of such entity links
once they have been generated. Evaluation methods for link quality are
typically limited to either comparison with a ground truth dataset (which
is often not available), manual work (which is cumbersome and prone
to error), or crowd sourcing (which is not always feasible, especially if
expert knowledge is required). Furthermore, the problem of link evalu-
ation is greatly exacerbated for links between more than two datasets,
because the number of possible links grows rapidly with the number of
datasets. In this paper, we propose a method to estimate the quality of
entity links between multiple datasets. We exploit the fact that the links
between entities from multiple datasets form a network, and we show
how simple metrics on this network can reliably predict their quality.
We verify our results in a large experimental study using six datasets
from the domain of science, technology and innovation studies, for which
we created a gold standard. This gold standard, available online, is an
additional contribution of this paper. In addition, we evaluate our metric
on a recently published gold standard to confirm our findings.

Keywords: Entity resolution · Data integration · Network metrics

1 Introduction

Matching entities between datasets (known as entity resolution) is a crucial step
for the use of multiple datasets on the semantic web. There exists a fair amount
of entity resolution tools for generating links between pairs of resources: AGDIS-
TIS [15], LIMES [12] Linkage Query Writer [7,8], SILK [16], etc. However, much
fewer methods exist for validating the links produced by these methods. Cur-
rently, only three validation options are available for such validation: (1) ground
truth, which is often not available; (2) manual work, which is a cumbersome
c© Springer Nature Switzerland AG 2018
C. Faron Zucker et al. (Eds.): EKAW 2018, LNAI 11313, pp. 147–162, 2018.
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task prone to error; (3) crowd sourcing, which is not always feasible especially
if specialist knowledge is required. Furthermore, the problem of link evaluation
is greatly exacerbated for entity resolution between more than two datasets,
because the number of possible links grows rapidly with the number of datasets.
Therefore, it is important to investigate the accurate automated evaluation
of discovered links. Any answer to this question should generalise beyond the
setting of just two datasets, and be applicable to the general setting of links
between multiple datasets. In such a multi-dataset scenario, linked resources
cluster in small groups that we call Identity Link Networks (ILNs). The goal of
this paper is not to propose any new method for entity resolution but instead
to provide a method to estimate the quality of an identity link network, and
consequently validate a set of discovered links. To do so, we hypothesize that
the structure of an identity link network correlates with its quality . We
test our hypothesis in two experiments where we show that the proposed met-
rics indeed reliably estimates the quality of an identity network. We also test
our hypothesis on recently published experimental data from ESWC 2018 (see
Sect. 8). Here too, the results confirm that our quality metric reliably predicts
human assessment of entity links.

In summary, our contributions is a method that estimates the quality of an
identity network. It is tested against human judgement in three large experiments
and correctly classifies large amount of ILNs available online.1

This paper begins with a short motivation in Sect. 2. Section 3 discusses the
related work and Sect. 4 describes the proposed metric. In Sect. 5 we describe
the datasets involved in our experiments. Sections 6, 7 and 8 describe our three
experiments, and Sect. 9 concludes.

2 Identity Link Networks

We assume the well known setting of a real-world entity that has one or more
digital representations in multiple datasets. The task of entity resolution is to
discover which entity (or entities) in each dataset denotes the same real world
entity. An Identity Link Network (ILN) is a network of links between entities
from a number of datasets that are found by one or more entity resolution algo-
rithms to represent the same real world entity. An ILN can be derived directly
from entity resolution results (Sects. 6 and 7), or it may be generated by sophis-
ticated clustering methods as in our experiment in Sect. 8. In this work we do
not propose any new entity resolution algorithm. Instead, we propose a method
to automatically evaluate discovered links, particularly when they involve more
than two datasets. Unfortunately, gold standards in initiatives such as OAEI do
not go beyond two datasets.

Figure 1 shows two examples of such ILNs that have been generated by an
entity resolution algorithm between entities from six datasets taken from the field
of Science, Technology and Innovation studies (STI) (more details in Sect. 5).
Figure 1a shows the ILN for the real world entity University of Trier, Fig. 1b shows
1 https://github.com/alkoudouss/Identity-Link-Network-Metric.

https://github.com/alkoudouss/Identity-Link-Network-Metric
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the same for the National Chung Cheng University. In this paper, we hypothesise
that the structure of these ILNs is a reliable indicator for the correctness of the
links in the network they form.

(a) The university of Trier
in an ILN across six datasets.

The more an ILN resembles a fully

connected graph, the more evidence

is available to support its identity links. (b) Potentially wrong representation of
the National Chung Cheng University

Fig. 1. Two real life examples of Identity Link Networks (ILNs); dotted lines indicate
links with a low confidence.

3 Related Work

We briefly discuss a number of related areas from the literature, and indicate
how our work differs from these in aim and scope.

Schema Matching. Much work in the literature focuses on ontology matching,
especially schema matching [5]. Some rely on concept distance or an extended
version of it [3,10,17]. Some rely on alignment similarities [4], others relies on
formal logical conflicts between ontologies to detect and possibly repair mappings
at a schema-level [9]. The current paper does not aim to match ontologies, nor
does it critically rely on using ontological or schema information. We only assume
the existence of external entity resolution algorithms for suggesting links between
entities. Such algorithms may or may not exploit ontological information, but
this does not affect our central hypothesis.

Information Gain. The work in [14] also uses network structure to evaluate
link quality, but in a very different way. The main intuition there is that an
individual link in an ILN is more reliable when it leads to a greater information
gain. The paper does not consider the structure of the ILN as a whole, as we do
in this paper.

Entity Clustering. Part of the literature also uses clustering of the digital
representations of the same real world entity in one or multiple sources. While
their data sources are mainly unstructured [1,2], our interest lies in clusters
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derived from the mappings of entities exclusively across knowledge-bases. In
addition, they also do not consider the structure of the ILN as a whole. Another
part of the literature specifically focuses on clustering algorithms. The FAMER
[13] framework for example provides and compares seven different link-based
entity clustering approaches. The aim of our work is different from all of these.
Whereas these works use clustering algorithms to construct entity resolutions, we
show how a cluster-based metric can be used to assess the quality of a network
of entity links, irrespective of how these links were generated.

Network Metrics. The work by Guéret et al. [6] is one of the few papers to
our knowledge that uses network metrics to assess the quality of links. The key
point that separates this work from ours is that it uses local network features,
i.e. only the direct neighbours of a single node, while we employ global network
features. [11] also addresses the same challenge. It evaluates a given cluster G by
comparing it to a reference cluster R based on the number of splits and merges
required to go from G to R. Our proposed metric does not need such a reference
cluster, and is hence more easily applicable.

4 Network Properties and Quality of a Link-Network

Figure 2 illustrates a set of six simple network topologies over the same number
of nodes. Our proposed metric is based on the intuition that multiple links
provide corroborating evidence for each other, suggesting that in the case of
an ILN, the ideal topology is a fully connected network. It illustrates a total
agreement between all resources (not the case for any other topology), and it
does not require any intermediate resource to establish an identity-link between
two resources (again, not the case for any other topology). Hence, intuitively, the
amount of redundancy between paths in an ILN is an indicator for the quality
of the links in the ILN. We will capture these and similar intuitions using three
different global graph features over ILNs: Bridge, Diameter and Closure.

Fig. 2. Example of network topologies.
Source: https://en.wikipedia.org/wiki/
Network topology

We will now first define and
explain the rationale behind each
metric, then normalise each metric to
values2 between 0 and 1, and finally
average the sum of all metrics to
obtain the metric which we will use
for estimating the quality of the ILN.

Bridge Metric. A bridge (also
known as an isthmus or a cut-edge)
in a graph is an edge whose removal
increases the number of connected
components of the graph, or equivalently, an edge that does not belong to
any cycle. The intuition for this measure is that a bridge in an ILN suggests a
potentially problematic link which is not corroborated by any other links. As a
2 The metric value indicates the negative impact of one or more missing links in an ILN.

https://en.wikipedia.org/wiki/Network_topology
https://en.wikipedia.org/wiki/Network_topology
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graph with n nodes contains at most n − 1 bridges (e.g. in a Line network),
the bridge value is normalised as nb = B

n−1 , where B is the number of bridges.
An ideal link network would have no bridge (nb = 0). As nb is sensitive to the
total number of nodes in the graph (it decreases for large graphs, even when the
number of bridges is constant), we “soften” the value of nb with a sigmoid func-
tion: n′

b = max(nb, sigmoid(B)), where the function sigmoid(x) = x
|x|+1.6 helps

stabilising the impact of the size of the graph by providing a minimal value for
n′
b. The value 1.6 is a hyper-parameter that has been determined empirically.

Diameter Metric. The diameter D of a graph with n nodes is the maximum
number of edges (distance) in a shortest path between any pair of vertices (i.e.
the longest shortest path). In an ideal scenario, if three resources A, B and C are
representations of the same real world object, there would be no need for an inter-
mediate resource for confirming the identity of any of the resource in the network.
In a fully connected graph of n nodes, the diameter D = 1. The longest diameter
is observed in a Line network structure, with D = n− 1 for a line network of n
nodes. To scale to the [0,1] interval, the diameter is normalised as nd = D−1

(n−1)−1 .
Like the bridge, because the diameter is also sensitive to the number of nodes,
the normalised diameter is calculated as n′

d = max(nd, sigmoid(D − 1)).

Closure Metric. In a connected graph of n nodes, the closure is the ratio
of the number of arcs A in the graph over the total number of possible arcs
1
2n(n − 1). In a complete graph, this ratio has value 1. Hence, to evaluate how
far the observed graph is from the ideal (complete) one, we normalise the closure
metric as nc = 1 − A

1
2n(n−1)

. The minimum number of connections is n − 1, as
observed in Line and Star network structures.

Estimated Quality Metric. All of these metrics capture the same intuition:
the more an ILN resembles a fully connected graph, the higher the quality of the
links in the ILN. Of course, these three metrics are not independent: nc = 0 or
n′
d = 0 implies n′

b = 0. However, using only nc or n′
d would be too uninformative

since the converse of the implication does not hold. Table 1 shows that each of
nc, n′

d and n′
b capture different (though related) amounts of redundancy in the

ILN and that each metric by itself fails to properly discriminate between the
seven ILNs depicted in Fig. 2. For example, nc and n′

c treat a Tree, Star and Line
as qualitatively equal but disagree on whether a Full Mesh is as good as a Ring.
Consequently, to compute an overall estimated quality eQ of an identity link
network, we combine the three separate metrics by taking their average, and
invert them so that the value 1 indicates the highest quality: (We apply eQ to
ILNs of size ≥ 3 as it is the smallest network where redundancy can be observed.)

eQ = 1 − n′
b + n′

d + nc

3
.

Discrete Intervals. The eQ metric scores all ILNs on a continuous value in the
[0,1] interval. To automatically discriminate potentially good networks from bad
ones, we divide this interval into three segments: ILNs with values 0.9 ≤ eQ ≤ 1
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will be rated as good, with values 0.75 < eQ < 0.9 as undecided, and with
values 0 ≤ eQ ≤ 0.75 as bad. These boundaries are empirically determined,
and can be adjusted depending on the use-case. The specific values of these
boundaries does not affect the essence of our hypothesis.

Hypothesis. We can now state our hypothesis more formally: “The eQ intervals
defined above are predictive of the quality of the links in an entity link network
between multiple datasets”.

Example. By way of illustration, Table 1 gives the value of our eQ metric for
the six networks from Fig. 2, and shows that the metric does indeed capture
redundancy in a network.

In the following sections, we will test this hypothesis against human eval-
uation on hundreds of ILNs containing thousands of links in three experiments
using between three to six datasets.

Table 1. Metrics values for each of the topologies from Fig. 2.

Link-Network Quality Estimation

ILN Bridge Diameter Closure Est. Quality
Ring B = 0 nb = 0.00 D = 3 nd = 0.56 C = 0.40 nc = 0.60 eQ = 0.61

Mesh B = 1 nb = 0.38 D = 3 nd = 0.56 C = 0.47 nc = 0.53 eQ = 0.51

Star B = 5 nb = 1.00 D = 2 nd = 0.38 C = 0.33 nc = 0.67 eQ = 0.32

Full
Mesh

B = 0 nb = 0.00 D = 3 nd = 0.00 C = 1.00 nc = 0.00 eQ = 1.00

Line B = 5 nb = 1.00 D = 1 nd = 1.00 C = 0.33 nc = 0.67 eQ = 0.11

Tree B = 5 nb = 1.00 D = 4 nd = 0.38 C = 0.33 nc = 0.67 eQ = 0.34

5 Datasets

We considered using datasets and gold standards from the OAEI3 initiative, but
none of these go beyond links between two datasets. We therefore created our
own gold standard on realistic datasets taken from the domain of social science,
more specifically from the field of Science, Technology and Innovation studies.
We consider this to be an important contribution of this paper. All datasets and
our gold standard are available online at the locations given in later paragraphs.

Entities of interest to the STI domain of study are (among others) universities
and other research-related organisations, such as R&D companies and funding
agencies. Our six datasets are widely used in the field, and describe organisations
and their properties such as name, location, type, size and other features.4

3 http://oaei.ontologymatching.org/.
4 The information provided here about the datasets was collected in January 2018. The

datasets themselves are of earlier dates: Grid: 2017.07.12; Orgref: 2017.07.03; Ope-
nAire: 2018.08.16; OrgReg: 2017.07.18; Eter: 2014; Leiden Ranking 2015: 2017.6.16;
and Cordis-H2020: 2016.12.22. All these datasets are available on the RISIS platform
at http://datasets.risis.eu/.

http://oaei.ontologymatching.org/
http://datasets.risis.eu/
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Grid5 describes 80248 organisations across 221 countries using 12308 relation-
ships. All organisations are assigned an address, while 96% of them have an
organisation type, and only 78% have geographic coordinates.

OrgRef6 collates data about the most important worldwide academic and
research organisations (31000) from two main sources: Wikipedia and ISNI.

The Leiden Ranking dataset7 offers scientific performance indicators of more
than 900 major universities. These universities are only included when they are
above the threshold of 1000 fractionally counted Web of Science indexed core
publications. This explains its coverage across only 54 worldwide countries.

Eter8 is a database on European Higher Education Institutions that not only
includes research universities, but also colleges and a large number of specialized
schools. The dataset covered 35 countries in 2015.

OrgReg9 is based on Eter but adds to the about 2700 HE institutions some 500
public research organizations and university hospitals. Collected between 2000
and 2016, its organisations are distributed across 36 countries.

The European Organisations’ Projects H2020 database10 documents the
Horizon 2020 participating organisations.

6 eQ Put to the Test

Fig. 3. Disambiguating OrgReg. To evaluate eQ, all
possible links are evaluated. So, the lack of one or
more links is considered a potential evidence for sug-
gesting the corresponding entities being different.

We test our hypothesis on
a real life case study that
revolves around the six
datasets described in Sect. 5,
with as goal to investigate the
coverage of OrgReg (coverage
analysis of datasets is a typ-
ical question asked by social
scientists before including a
dataset in their studies). This
is done by comparing the enti-
ties in OrgReg to those in the
other five datasets (Fig. 3).

5 https://www.grid.ac.
6 http://www.orgref.org.
7 http://www.leidenranking.com/.
8 https://www.eter-project.com/.
9 http://risis.eu/orgreg/.

10 http://www.gaeu.com/sv/item/horizon-2020.

https://www.grid.ac
http://www.orgref.org
http://www.leidenranking.com/
https://www.eter-project.com/
http://risis.eu/orgreg/
http://www.gaeu.com/sv/item/horizon-2020


154 A. K. Idrissou et al.

6.1 Experiment Design

Organizations are linked across or within datasets using an approximate string
matching on their names with minimal similarity threshold 0.8. Based on this,
we generate links between each pair of datasets, resulting in 21 sets of links
(including linking a dataset to itself in order to detect duplicate entities in the
dataset). We then take the union of all 21 sets of links, resulting in a collection
of ILN’s of varying size (see Fig. 4).

Now that we have constructed a large collection of multi-dataset ILNs, we will
compute the eQ value for all of them. Then, the machine-predicted good/bad
categories (using eQ) will be checked against the ground truth by a non-domain
expert (the first author of this paper) and further verified by a domain expert
(the third author). This ground truth is available online.11

Notice that we have deliberately used a very weak entity resolution algorithm
in this experiment (approximate string matching). This produces links of both
very high and rather low quality, providing a genuine test for our eQ metric to
distinguish between them.

6.2 Results of First Evaluation

Ideally, we would find only ILNs of size 6 if each OrgReg entity were linked with
one and only one entity in each of the five other datasets. With less than 100%
coverage of OrgReg, we also expect to find ILNs of size < 6. Figure 4 shows
that we also find a substantial number of ILNs of size > 6. This is due to (a)
duplicates occurring in a single dataset, resulting in links in the ILN between two
items from the same dataset, and (b) an imperfect matching algorithm (in our
case approximate name matching), resulting in incorrect links in the ILN.

Due to the high number of ILNs generated12, we evaluate only the 846 ILNs of
size 5 to 10, with the following frequencies: 391 (size 5), 224 (6), 96 (7), 66 (8),
45 (9) and 24 (10). We predict a ‘good’ or ‘bad’ score based on the eQ interval
values for each of the 846 ILNs, and then compare the scores against those of a
human expert, resulting in F1 scores. In red, Fig. 4 displays the F1 value for each
ILN size. Overall, our eQ metric resulted in high F1 values (0.806 ≤ F1 ≤ 0.933).
We also pitched our eQ metric against a Majority Class Classifier. Table 2 shows
that our eQ metric outperforms the Classifier on F1 measure, Accuracy (ACC)
and Negative Predicted Value (NPC) for ILNs of all sizes.

All of these findings show the very strong predictive power of our eQ metric
for the quality of ILNs when compared to human judgement.

11 https://github.com/alkoudouss/Identity-Link-Network-Metric.
12 On a 6th Gen Intel R©CoreTMi7 notebook with 8 GB RAM, it takes about 1:40 min

to automatically evaluate all 4398 clusters of size three and above (see Fig. 4).

https://github.com/alkoudouss/Identity-Link-Network-Metric
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Fig. 4. Overview of the generated Identity Link Networks.

6.3 Results of Second Evaluation

For a further evaluation by a Dutch domain expert from the field of STI (the
third author of this paper), we selected 148 ILNs (ranging from size 3 to 10 as
depicted in Table 2) in which at least one entity is located in the Netherlands. The
expert deviated from the first evaluation in only 12 out of 148 cases. Although the
changes slightly affect the ground truth for each ILN size, the F1 values computed
here are even higher (0.848 ≤ F1 ≤ 1) as compared to the previous experiment.
This shows that the non-expert nature of the first human judgement was not
detrimental to our results.13 This second experiment confirms our finding in the
first experiment that eQ is a reliable predictor of ILN quality.

Table 2. Network-metric (eQ) results compared to the MCC baseline using non expert
Ground Truth (left), and Expert sampled Ground Truth (right).

Majority Class Classifier (Baseline) vs Network Metric (eQ)

MajorityClassClassifier
NetworkMetrics

GTP = Ground Truth Positive GTN = Ground Truth Negative

Size GTP |GTN F1 ACC NPV GTP |GTN F1 ACC NPV

3 56 | 8 0.933
0.931

0.875
0.875

−
0.5

4 19 | 5 0.884
0.878

0.792
0.792

−
0.5

5 272 | 119 0.821
0.824

0.696
0.747

−
0.598

14 | 1 0.966
0.929

0.933
0.867

−
0

6 139 | 85 0.766
0.817

0.621
0.768

−
0.709

14 | 5 0.848
0.848

0.737
0.737

−
−

7 50 | 56 0.685
0.808

0.521
0.792

−
0.810

10 | 2 0.909
1.0

0.833
1.0

−
1.0

8 35 | 31 0.693
0.806

0.530
0.803

−
0.765

4 | 0 1.0
1.0

1.0
1.0

−
−

9 21 | 24 −
0.894

0.533
0.889

0.533
1

8 | 1 0.941
1.0

0.889
1.0

−
1.0

10 8 | 16 −
0.933

0.667
0.958

0.667
0.941

1 | 0 1.0
1.0

1.0
1.0

−
−

13 However, the very imbalanced character of the ground truth makes it hard to always
outperform the baseline as illustrated in Table 2.
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6.4 Analysis

Both of the evaluations of eQ above resulted in very high F1 average values
of 0.847 and 0.961 respectively. Furthermore, eQ outperformed a majority-class
classifier in the first experiment (not in the second because of the highly imbal-
anced distribution). All this supports our hypothesis that our eQ measure is
strongly predictive of the quality of the links between the entities in an Identity
Link Network.

7 eQ Estimations in Noisy Settings

The previous experiment created links between entities using a rather weak entity
resolution heuristic. This was an interesting setting because such weak matching
strategies are a fact of daily life on the semantic web (and in data integration
in general). In the next experiment, we will use eQ to evaluate ILN’s that have
been constructed using a more sophisticated matching heuristic, where we can
control the amount of incorrect links in the ILNs. We will see that also in this
case, eQ is strongly predictive of human judged link quality.

The stronger matching heuristic that we use in this second experiment com-
bines organisation names with the geo-location of the organisation. The exper-
iment is run over Eter, Grid and OrgReg as they are the only datasets at our
disposal that contain such geo-coordinates for organisations. To test the per-
formance of the eQ metric at various levels of noise, we implement three sub-
experiments where noise (the number of false positive links) is introduced by
decreasing the name similarity threshold from 0.8 (experiment 1) to 0.7 and by
increasing the geographic proximity distance threshold as described in the next
sub-section.

7.1 Experiment Design

This subsection describes in three phases how the experiment is conducted.

Phase-1: Create Links. The first phase links organizations across the three
datasets whenever they are located within a radius of 50 m, 500 m and 2 km.
This creates nine sets of links (three for each radius).

Phase-2: Refine Links. Each set of links is then refined by applying an approx-
imate name comparison over the linked resources with a threshold of 0.7.

By now, we have geo-only (without name comparison) and geo+names
sets of links, organised in three subgroups (50 m, 500 m and 2 km) each.

Phase-3: Combine Links. To generate the final ILNs, the sets of links within
each subgroup are combined using the union operator. The goal of this is to
compare, within a specified distance, ILNs that where generated without name
matching to those generated with name matching.
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Fig. 5. Decrease/Increase of ILNs

7.2 Strict vs. Liberal Clustering

To understand how link-networks are formed as we increase the geo-similarity
distance, Fig. 5 illustrates how ILNs may evolve as we move from strict con-
straints (scenario 1) to liberal constraints (scenario 3). First, in scenario 1,
four ILNs are derived from the six links: c1 = {{a1}, {b3}}, c2 = {{a3}, {b1}},
c3 = {{a4}, {b4}} and c4 = {{a5}, {b6, b8, b9}}. Then, the new link between a3
and b3 in scenario 2 forces c1 and c2 to merge . We now have a total of three
ILNs: c1 = {{a1, a3}, {b1, b3}}, c3 = {{a4}, {b4}} and c4 = {{a5}, {b6, b8, b9}}.
Finally, in scenario 3, two new links appear. The first link between a4 and b8
causes the merging of c3 and c4 while the second link connecting a6 to b2 causes
the creation of a new ILN. Thereby, the total number of ILNs remains 3. These
scenarios show that, as the ILN constraints become more liberal, the number of
links discovered increases while the number of ILNs may increase, remain equal,
or even decrease. In other words, when the matching conditions become liberal or
less strict, two types of event may happen: (1) formation of new ILNs and/or (2)
merging of ILNs. Table 3, shows that, in experiment 2, phenomenon (1) overtakes
(2), which explains the increase in the number of ILNs as the near-by distance
increases.

7.3 Result and Analysis

Overall, as illustrated in Table 3, the number of ILNs generated in this experiment
increases with the increase of the geo-similarity radius. Within a radius of 50 m, a
total of 230 ILNs are generated based on geo-distance only. This number reached
841 ILNs at a 2 km radius. After performing name matching, many links are
pruned. Depending on the matching radius, the number of ILNs then varies from
36 to 371.

Due to manpower limitations we restrict our evaluation efforts to networks of
size 3. These ILNs cover 86% of the overall ILNs within 50 m radius and 92% within
500 m and 2k radius. Table 4 shows the results of pitching our eQ metric against
the human evaluation of the ILNs under both the geo-only and the geo+names
conditions.
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Table 3. Link-network overview.

Statistics on ILNs of size > 2

50 meters 500 meters 2 kilometres

Size geo-only geo+names geo-only geo+names geo-only geo+names
≥ 3 230 36 738 168 841 371

As an example, the values F1 = 0.803 and F1 = 0.912 detail the machine
quality judgements versus human evaluations of the networks generated within
2 km radius under respectively geo-only and geo+names conditions.14

Table 4. Automated flagging versus human evaluation.

50 meters 500 meters 2 kilometres

Size geo-only geo+names geo-only geo+names geo-only geo+names
= 3 92 31 249 155 198 342

Machine statistics on ILN’s of size 3

Machine Mgood: 45
Mmaybe: 0
Mbad: 47

Mgood: 19
Mmaybe: 12
Mbad: 0

Mgood: 115
Mmaybe: 0
Mbad: 134

Mgood: 127
Mmaybe: 0
Mbad: 28

Mgood: 81
Mmaybe: 0
Mbad: 117

Mgood: 279
Mmaybe: 0
Mbad: 63

Human evaluation on ILN’s of size 3

Human Hgood: 31
Hmaybe:4
Hbad: 57

Hgood: 27
Hmaybe:1
Hbad: 3

Hgood: 64
Hmaybe:7
Hbad: 176

Hgood: 148
Hmaybe:1
Hbad: 6

Hgood: 61
Hmaybe:3
Hbad: 134

Hgood: 322
Hmaybe:8
Hbad: 12

F1 measures

F1 = 0.693 F1 = 0.826 F1 = 0.682 F1 = 0.909 F1 = 0.803 F1 = 0.912

Analysis. In this experiment, we test the behaviour of the proposed eQ metric
in both noisy (proximity only) and noise-less (proximity plus name) scenarios.
The proposed eQ metric is in general able to exclude poor networks in noisy
environments and to include good networks in noise-less environments. In addi-
tion, on the one hand, the relatively low F1 measures displayed in Table 5 in
noisy scenarios, highlight that for the data at hand, proximity alone is not a
good enough criterion for identity. On the other hand, the relatively high F1

measures in noise-less scenarios is an indication of stability and consistency that
is in line with results outlined in experiment 1.

The results depicted in Table 5 show an uneven distribution of the candidate-
sets. In a relatively balanced candidate-set scenario, our approach works well as
can be seen in the first experiment and in the proximity only scenario. However,

14 All confusion matrices supporting the analysis can be found on the RISIS project
website at http://sms.risis.eu/assets/pdf/metrics-link-network.pdf.

http://sms.risis.eu/assets/pdf/metrics-link-network.pdf
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even though in extreme cases (proximity plus name) the Majority Class Classifier
takes the lead, the network metric does not fall far behind.

Table 5. Network-metric (eQ) result versus the MCC baseline.

Majority Class Classifier (Baseline) vs Network Metrics (eQ)

MajorityClassClassifier
NetworkMetrics

GT = Ground Truth GTP = Ground Truth Positive GTN = Ground Truth Negative

50m geo-only GT=92 GTP=30 GTN=62 F1 : −
0.693 ACC: 0.6740.75 NPV: 0.674

0.915

500m geo-only GT=249 GTP=66 GTN=183 F1 : −
0.682 ACC: 0.735

0.779 NPV: 0.735
0.978

2km geo-only GT=198 GTP=61 GTN=137 F1 : −
0.803 ACC: 0.692

0.859 NPV: 0.692
0.966

50m geo+names GT=31 GTP=27 GTN=4 F1 : 0.931
0.826 ACC: 0.871

0.742 NPV: −
0.333

500m geo+names GT=155 GTP=148 GTN=7 F1 : 0.977
0.909 ACC: 0.955

0.839 NPV: −
0.179

2km geo+names GT=342 GTP=322 GTN=20 F1 : 0.97
0.912 ACC: 0.942

0.845 NPV: −
0.238

As in the first experiment, for further evaluation, we extracted a sample based
on ILNs in which at least one organisation originates from the Netherlands. Out
of the 107 sampled ILNs, the domain expert deviated from the first evaluation
in only 1 case.

8 eQ Put to a Ranking Test

The authors of the recently published paper [13] compared seven algorithms for
clustering entities from multiple sources at different string similarity thresholds.
They evaluated the quality of the clusters that these algorithms generated on
three gold standard datasets15, one manually built (referred here as GT1), and
two syntactically generated. We take the evaluation results from [13] on GT1, and
then test if our eQ score is able to correctly predict the ranking of the algorithms
as found in the reported evaluation. In contrast to the earlier experiments (where
we use eQ to assess the quality of clusters), we are now testing if eQ can be used
to correctly rank different clustering algorithms across datasets.

A slightly complicating factor is that the evaluation in [13] relies on F1 values
computed on true pairs of entities found. Since eQ evaluates entire clusters (i.e.
sets of pairs of entities) of size greater than 2 (S > 2), we recompute the F1

values based on true clusters found(S > 2) and plot these performance measures
for each algorithm in Fig. 6 as Baseline. The resulting plot is comparable to the
original one in [13]. We then ran the eQ metric over the outputs of each algorithm
at the same thresholds, displayed in Fig. 6 as eQ Evaluation.

15 https://dbs.uni-leipzig.de/de/research/projects/object matching/famer.

https://dbs.uni-leipzig.de/de/research/projects/object_matching/famer
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The results show that the ranking of the algorithms by eQ (eQ Evaluation)
does not significantly deviate from the recomputed ranking (Baseline). This
illustrates the usefulness of the eQ metric as it demonstrates its potential to
rank algorithms whenever they show significant performance differences.
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Fig. 6. Evaluation of eQ on the ranking from [13]

9 Conclusions and Future Work

9.1 Conclusion

Entity resolution is an essential step in the use of multiple datasets on the
semantic web. Since entity resolution algorithms are far from being perfect, the
links they discover must often be human validated. Since this is both a costly
and an error-prone process, it is desirable to have computer support that can
accurately estimate the quality of links between entities. In this paper, we have
proposed a metric for precisely this purpose: it estimates the quality of links
between entities from multiple datasets, using a combination of graph metrics
over the network (>2) formed by these links. Our metric captures the intuition
that high redundancy in such a linking-network correlates with high quality.

We have tested our metric in three different scenarios. Using a collection of
six widely used social science datasets in the first two experimental settings, we
compared the predictions of link quality by our metric against human judgements
on hundreds of networks involving thousands of links. In both evaluations, our
metric correlated strongly with human judgement (0.806 ≤ F1 ≤ 1), and it
consistently beats the Majority Class Classifier baseline (except in cases where
this is numerically near impossible because of a highly skewed class distribution).
In the experimental condition where we deliberately constructed noisy and non-
noisy link-networks, we showed that our metric is in general able to exclude
poor networks in noisy environments and to include good networks in noise-
less environments. With the last experiment, we also show that our metric is
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able to rank entity resolution algorithms on their quality, using an externally
produced dataset and corresponding ground truth. All this amounts to testing
the eQ metric on a dozen different algorithms and parameter settings. Across
these different experimental conditions, our quality metric consistently agrees
with human judgement.

To encourage replication studies and extensions to our work, all the datasets
used in these experiments are available online.

9.2 Future Work

Including Link Strength. The metric eQ is based on the presence and absence
of links, but does not consider any strength associated with these links. We are
currently working on refinements of eQ that use link confidence scores produced
by entity resolution algorithms.

Dynamic Link Adjustment. The current work simply takes the output of an
entity resolution algorithm as given, and tries to estimate the quality of that
output. A closer coupling between our metric and an entity resolution algorithm
would allow the algorithm to dynamically adjust its output based on the eQ
quality estimates. Similarly, embedded in a user-interface, the score of our metric
could help the user to give the final judgement to accept or reject an ILN.

Parameter Tuning. In this work, we empirically determined the 1.6 sigmoid
hyper-parameter, the discrete eQ intervals and the string similarity thresholds.
Experimenting on fine-tuning these parameters using the current ground truths
and data from other domains would help understanding how and when different
choices could lead to an increase or a decrease of the metrics’ predictive power.
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