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ON THE EXISTENCE AND COMPUTATION OF AN EQUILIBRIUM IN AN 
ECONOMY WITH CONSTANT RETURNS TO SCALE PRODUCTION 

1. Introduction. 

In this paper we consider the equilibrium problem in an economy with nonlinear 
constant returns to scale production activities. In Van den Elzen, Van der Laan and 
Talman [4] an adjustment process has been introduced to find an equilibrium in an 
economy with linear production activities. This adjustment process starts at an arbitrarily 
chosen price vector in the unit price simplex, such that all firms have negative profits 
per unit production. Therefore the activity levels of all firms are set initially equal to 
zero. Along the path foliowed by the process prices and activity levels are adjusted 
according to the sign vector of the net excess demand and keeping the levels of the 
activities equal to zero as long as the profits are negative. It is shown that the adjustment 
process converges to a pair of equilibrium prices and activity levels. In Kremers, Van 
der Laan and Talman [6] a simplicial algorithm has been described to follow the path of 
the adjustment process. In Kremers and Talman [7] an iterative algorithm to solve the 
equilibrium problem has been given. This algorithm solves the problem through solving a 
sequence of Linear Stationary Point Problems on the set of feasible prices. 

In this paper we generalize the adjustment process of Van den Elzen, Van der 
Laan and Talman [4] to find an equilibrium in an economy with nonlinear constant 
returns to scale production. The production side of such an economy can be described by 
an activity matrix whose entries depend continuously on the prices. A sufficiënt 
condition for the existence of an equilibrium is that at any price vector there can be no 
production without input. Under this condition there exists a price vector at which all 
production technologies have negative profits per unit output. Starting at such a price 
vector we propose an adjustment process which generically converges to an equilibrium 
of the economy. This process increases initially the prices of the commodities wit 
hpositive excess demand and decreases the prices of the commodities with negative 
excess demand. Firms only produce when they mke zero profits. 

In Section 2 we describe the model and we state conditions under which there 
exists a price vector for which all production technologies have negative profits. In 
Section 3 we describe the adjustment process and prove that the process converges to an 
equilibrium. The Sections 4 and 5 are concerned with the computation of an equilibrium. 

2. The model. 

We consider an economy with a finite number of consumers, m firms having constant 
returns to scale production technologies, indexed by i = l,...,m, and n+1 commodities, 
indexed by j = l,...,n+l. 

The consumers are assumed to maximize their Utilities under their budget 
constraints. Each consumer is endowed with an (n+l)-dimensional strictly positive vector 
of commodities. At some price vector p e R?+^\{0}, the budget of a consumer is the 
value of his endowment. Let d(p) be the aggregate demand of the consumers at price 
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vector p and let z(p) be the excess demand, i.e. z(p) is the aggregate demand d(p) minus 
the total initial endowments. Under Standard assumptions on the utility functions of the 
consumers, utility maximization yields an excess demand function z being homogeneous 
of degree zero in the prices, i.e., z(Ap) = z(p) for all A > 0, and which satisfies Walras' 
law, i.e., for all p, pTz(p) = 0. Moreover, z is a continuous function of p on RJJ1. 

Concerning the production technologies we assume that each firm produces just 
one output. Let T. {l,...,m} —» {l,...,n+l} be a function which assigns the output 
commodity 7r<i) e {l.—»n+l} to the production technology i e {l,...,m}. For a e Rn+1, 
let a"h be the n-vector (aj,...,ai1_i,aj1+i,...,an+i)T. Then firm i produces commodity 7r(i) 
according to a continuous production function f1: R? -f R+, i.e., if y^j) = f^y""^), 
then yjrfi) is the amount of commodity jr(i) produced by firm i when yfO) is the n-
vector of inputs of the other commodities j # jr(i). Observe that for some given 
commodity j , the set {i | jr(i) « j} might be empty or contain more than one element. We 
assume that there is constant returns to scale production. 

Assumption P. 
For all i - 1 ,m, fKAy"*!1)) = Afi(y-*(i)) for all A > 0. 

From production theory (e.g. see Varian [13]) we know that cost-minimizing behaviour 
of producer i yields a cost function c1: Rn -+ R+ per unit of output of commodity 7r(i) 
satisfying 

(i) c* is non decreasing in pj, j # 7r(i), 
(ii) c1 is homogeneous of degree 1 in p_7rW, 
(iii) c1 is concave in p:, j # jr(i), 
(iv) ei is continuous in p"^1) for p"^1) e R$+. 

Furthermore, we assume differentiability of the cost functions 

Assumption C. 
For all i = l,....,m, c1 is twice-differentiable in 

p-7r(i) e Rn+ . 

With Euler's law it follows from (ii) that for every p"^1) 6 Rn
+ 

(1) Ci(p-*(i)) = E j ^ i ) pj5cV5pj. 

Since production goes to infinity if profits per unit of output are positive, we have that 
in equilibrium prices have to satisfy the nonpositive profit conditions, i.e., 

(2) P,r(i) * ci(p-*(i)), i = l,...,m. 

Together with (1) condition (2) can be written as 

PTaJ(p) < 0, i = 1 m, 
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where a^jrfp) = 1 and aJj(p) « -6^/Spu j # jr(i). From Hotelling's Lemma we know 
that y*j(p) = 5cV*Pj» j * ""(i), is the cost-minimizing amount of input of good j needed 
to produce one unit of output of commodity jr(i). So, a*j(p), j # jr(i), is the negative 
supply of commodity j by producer i per unit of output of commodity 5r(i) at prices p. 
Following others (e.g. see Morishima [11]) we have now written the nonpositive profit 
condition as a generalization of the nonpositive profit condition p^V < 0 for a linear 
production technology with activity vector aJ. The only difference is that the the amount 
of inputs of goods j # jr(i) per unit of output of good ir(i) depend on p. Observe that 
according to property (ii) of the cost functions, the input a'j(p) is homogeneous of 
degree zero in p. This formulation is well-known in AGE (Applied General Equilibrium) 
models, e.g. see Mathiesen [10] or Fischer, Frohberg, Keyzer and Parikh [5]. 

Summarizing we have that for positive prices the economy is characterized by the 
excess demand function z and the input-output functions a*, i = l,...,m, with for all p e 
R n +1, pTz(p) = 0 and p^Hp.) the profit of firm i per unit production of commodity 
jr(i), i = l,....,m. Moreover, z and a1, i = l,...,m, are homogeneous in p of degree zero. 
To avoid technical discussions, in the following we also assume that both z and a1, i = 
l,...,m, are continuous and differentiable on Rn +1. 

Let x be a nonnegative m-vector (xi,...,xm)T of production levels, i.e., at 
production level xj, producer i produces xj units of output of commodity 7r(i). Hence at 
price vector p and production level xj the input-output vector or supply vector of 
producer i is xjai(p). With A(p) the (n+1) x m matrix [a1(p),...,am(p)], the net supply of 
the production side at price vector p and production level vector x is A(p)x. Now an 

* * 
equilibrium for this economy is a price vector p and a production level vector x , such 
that the excess demand of the consumption sector is less than or equal to the net supply 
of the production sector and that each production technology satisfies the nonpositive 
profit condition. Let the net excess demand f: Rn+i\{0} x Rm -+ Rn+1 be defined as 
the excess demand of the consumption sector at p minus the the net supply of the 
production sector at (p,x), i.e., f(p,x) = z(p) - A(p)x. 

Definition 2.1. A pair (p*, x*) G Rn+1\{0} x Rm is an equilibrium if 

1) f(P*,x*) < 0, 

2) p*TA(p*) < 0. 

From 1) it follows that at an equilibrium p Tf(p ,x ) = p Tz(p ) - p TA(p )x = -

p TA(p )x < 0, whereas 2) implies that p TA(p )x < 0. Hence p TA(p )x = 0, so that 

we have complementarity between x and p TA(p ), i.e., x j = 0 if p Ta*(p ) < 0 and 

p TaJ(p ) = 0 if x i > 0. Furthermore, it follows that p Tf(p ,x ) = 0, so that we also 

have complementarity between p and f(p ,x ). In equilibrium commodities can only be 

in excess demand if the corresponding prices are zero. 
Since both z and a\ i • l,...,m, are homogeneous of degree zero in the prices we 

have that if (p ,x ) is an equilibrium pair, then also (Ap ,x ) for any A > 0 is an 
equilibrium pair. Hence we can normalize the price vectors to the n-dimensional unit 
simplex 
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Sn = { P 6 R?+ 1 I Ej Pj = 1 }. 

From condition 2) of Definition 2.1 it follows that the set of feasible prices in Sn is the 
set 

Tn - { p e Sn | pTA(p) < 0 }. 

The concavity of the cost functions implies that Tn is a convex subset of Sn. Since Tn is 
the set of prices satisfying the nonpositive profit condition, a necessary condition for the 
existence of an equilibrium is that the set T n is not empty. Therefore we make the 
following no f ree production assumption. 

Assumption F. 

For any p G Sn, A(p)x > 0 and x > 0 implies that x = 0. 

Assumption F says that for any price vector there can not be production without input. 

Theorem 2.2. The set Tn is not empty. 

Proof. Let p: Sn —• Sn be a correspondence defined by 

M(p) = { q G Sn | qTA(p) < 0 }, p G Sn. 

Assumption F says that A(p)x = 0 if A(p)x > 0 and x > 0. According to Farkas' lemma, 
this implies that /j(p) is not empty. For given p, A(p) is a matrix of fixed coefficients. 
Hence, /j(p) is a subset of Sn defined by linear constraints and so /x(p) is convex. 
Furthermore, /i(p) is closed and hence also compact. Finally, since the the functions a1, i 
= l,...,m, are continuous in p, it follows that y. is upper semi-continuous in p. Hence y. 
satisfies the conditions of Kakutani's fixed point theorem. From this theorem we have 
that there exists a fixed point p* G M(P*) = {q e Sn|qTA(p*) < 0}. Hence p* G Tn. This 
proves that Tn is not empty. 

The next lemma shows that assumption F is not only sufficiënt to prove that Tn is not 
empty, but also that the relative interior of Tn, defined by 

in t(T
n) = { p G Sn | pj > 0, j = l,...,n+l and pTai(p) < 0, i = l,...,m } 

has dimension n and hence int(Tn) is not empty. We will use this lemma to prove the 
existence of an equilibrium by defining a path which connects an arbitrarily chosen price 
vector in int(Tn) with an equilibrium price vector. Let int(/*(q)) = {p G Sn|pj > 0, j = 
l,...,n+l and pTa!(q) < 0, i « l,...,m} denote the relative interior of /i(q). 

Lemma 2.3. Int(Tn) has dimension n. 

Proof. Let p be a fixed point of fi. According to Farkas' lemma the relative interior of 
jt(p ) has dimension n. Now, let p^, k = 1,2..., be any sequence of price vectors in the 
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relative interior of p(p ) converging to p . So, for all k, pkj > 0, j = l,...,n+l, and 
pkTai(p ) < o, i = l,...,m. Since a1 is continuous in p, there exists an M such that 
pkTai(pk) < 0 for k > M. Hence p^, k > M, is in the relative interior of Tn. Therefore 
the dimension of int(Tn) is also n. 

Also the next lemma will be used in the the following sessions. 

Lemma 2.4. Let v be a point in the relative interior of Tn. Then v € int(/*(q)) for any q 
€ S n . 

Proof. Since v is in int(Tn), we have that v: > 0 for all j . So, it remains to prove that for 
any q e Sn, vTaJ(q) < 0 for i = l,...,m. Define the function g1: Sn -+ R by 

gHp) = P<i) - cHp"^1)). 

Since c1 is concave, it follows that g1 is a convex function of p. Hence, for any q we 
have 

gKv) > gJ(q) + (v-q)TDgi(q), 

where Dgi(p) = (5gi(p)/5pi,...,6gi(p)/Spn+j)T. By definition we have that Dgi(p) = aJ(p). 
Hence 

g](v) > gHq) + vTaHq) - qTaJ(q) 

Since g'(q) = qTa*(q) it follows that v^^q) < g\\) = vTaJ(v) < 0. 

Observe that by the same reasoning we have that v e Tn implies that vTa1(q) < 0 for all 
q S Sn. So, if we linearize the production side of the economy in a point q G Sn by 
taking the input-output coefficients aJ(q) at point q as fixed coefficients, then we have 
that Tn C {p G Sn|pTA(q) < 0}. Thus we have the following corollary. 

Corollarv 2.5. For any q G Sn, the set of feasible prices Tn is a subset of the set of 
feasible prices of the economy with linear technologies a1(q), i = l,...,m. 

Example. Let n = 2 and suppose there is one technology given by a(p) = (1, -v/(P3/P2), -

•/(P2/P3»7- T n e n Tn ^ 8 i v e n fey 

T n - { p G S2 | pj - 2VP2P3 * ° )• 

Take q = (l-2b,b,b)T for 0 < b < 1/2. Then for any b, a(q) = (1, -1, -1)T and 

T" c { p G S2 | pTa(q) < 0 } = { p G S
2 | Pl - p2 - p3 < 0}. 

Observe that for any q = (l-2b,b,b)T, the set {p G S2|pj - p2 - P3 = 0} is tangent on Tn 

in the point p - (1/2, l/4,/l/4)T. 
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3. An adiustment process. 

In Van den Elzen, Van der Laan and Talman [4] an adjustment process is given for an 
economy with linear production activities represented by (n+l)-vectors a*, i = l,...,m. In 
this section we generalize this process for an economy with nonlinear production 
technologies represented by the functions a1, i = l,...,m. We assume that Assumption F is 
satisfied. Then, let v be a point in int(Tn). Such a point can be found by applying a 
simplicial fixed point algorithm to find a fixed point of the correspondence \i. Without 
loss of generality we assume that z(v) does not contain zero components. 

For a subset U c {l,...,m}, let A(U) be defined by 

A(U) = { (p,x) G Tn x Rm | pTai(p) = 0 for i G U, Xi = 0 for i € U}. 

Observe that for (p,x) e A(U), pTf(p,x) = pT[z(p) - A(p)x] = pTz(p) - E| XjpTai(p) = 0, 
i.e., the value of the excess demand z(p) minus the value of the net production A(p)x is 
equal to zero. So, for positive prices, either f(p,x) «• 0 and we have an equilibrium, or 
f(p,x) has both a negative and a positive component. Let the set S of feasible sign 
vectors be defined as the set of sign vectors in Rn+1 with at least one component 
positive and one component negative, i.e. 

S = {s G Rn+1 | Sj G {-1,0,1}, j = l,...,n+l, with SJ = -1 for at least one j 
and sk - + 1 for at least one k}. 

Given the starting price vector in the relative interior of Tn, we define for s G S and U 
c {l,...,m} the sets A(s,U) by 

A(s,U) = { (p,x) G A(U) | PJ/VJ = mink pk /vk when SJ = -1 
PJ/VJ = maxk pk /vk when SJ = +1}. 

This definition says that for a pair (p,x) G A(s,U), pj = avj if SJ = - 1 , pj = AVJ if SJ = 
+1 and av: < p; < Av: if s; = 0, with a = mink pk /vk and A = maxk pk /vk . 

Now, let |U| be the number of elements of U and let |s| be the number of 
components of s equal to zero. Then the restrictions pj = avj if SJ = - 1 , pj = Av: if s: = 
+1 put n-l-|s| restrictions on the prices. Moreover, p^Kp) = 0 for i G U puts |U| 
restrictions on the prices. So, for (p,x) G A(s,U), the number of restrictions on the prices 
is n-l-|s|+|U|. Since the dimension of Sn is equal to n, n - (n-l-|s|+|U|) = l+|s|-|U| degrees 
of freedom are left for the price variables. So, in case |U| > 1 + |s|, no degrees of 
freedom are left and in general there is no price vector satisfying all the conditions, i.e., 
A(s,U) is empty. On the other hand, for (p,x) G A(s,U) and hence (p,x) G A(U), there 
are |U| degrees of freedom for the x-variables. Hence, if |ü| < 1 + |s| we have that 
A(s,U) is generically a well-defined manifold of dimension l+|s|-|U| + |U| = l+|s|. 

Finally, for s G S and U C {l,...,m} we define the set B(s,U) by 

B(s,U) = { (p,x) G A(s,U) | fj(p,x) > 0 when Sj = +1, fj(p,x) < 0 when Sj = - 1 , 
fi(P»x) = 0 when s; = 0}. 
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So, B(s,U) is the closure of the set of pairs (p,x) G A(s,U), such that the componentswise 
sign of the net excess demand is equal to the sign vector s, i.e., s: is the sign of fj(p,x), j 
» l,...,n+l. Observe that B(s,U) puts |s| restrictions on the (l+|s|)-manifold A(s,U). 
Assuming Standard nondegeneracy, regularity and transversality conditions, this implies 
that the set B(s,U) is either empty or a 1-manifold, i.e., a collection of smooth paths and 
loops. A path has either two end points, or one end point and goes to infinity, or comes 
from and goes to infinity. So, a bounded path has two end points. Let B be the union 
over all s e S and all U C {l,„.,m} of the sets B(s,U). Using the same arguments as in 
Van den Elzen, Van der Laan and Talman for the case of linear production, we have 
that en end point (p,x) of a path in B(s,U) either lies in a different set B(s',U') or 
satisfies one of the following cases: 

a) (p,x) = (v,0) 

b) mink pk /vk = 0 

c) fj(p,x) = 0 and sk G {-1,0} for all k # j 

d) fj(p,x) = 0 and sk G {+1,0} for all k # j . 

In case an end point (p,x) of a path in B(s,U) lies in some other B(s',U'), then (p,x) is 
also an end point of a path in B(s',U'). We have that either for just one component j , s'; 
G {s;+l,Sj-l}, while s'k = sk for all k # j and U' = U, or s' = s and for some i G U, U' 
= U\{i} or for some i G U, U' = U u {i}. Linking together all paths we get that the set 
B is generically a collection of piecewise smooth paths and loops. Each end point (p,x) of 
a path in B satisfies one of the cases a)-d). 

Suppose that case a) occurs. Since (v,0) is an end point of a path in B, there exist 
an s and U, such that (v,0) is an end point of B(s,U). We have assumed that z(v) does 
not contain zero components and that v^VCv) < 0 for all i. Hence, s must be equal to ŝ  
with s^j = sign z:(v) = sign f;(v,0), j = l,...,n+l and U must be the empty set. It follows 
that (v,0) is an end point of a path in B(s,U) if and only if s = s^ and U = 0. 

In case b), by definition of the set A(s,U), we must have that Pj = 0 for all j 
with Sj = - 1 . By definition of B(s,U) we have that fj(p,x) < 0 for all j with Sj = - 1 . 
Hence fj(p,x) < 0 for all j with p: = 0. Moreover, p; > 0 for all j with fj(p,x) >0. Since 
pTf(p,x) = 0 for all (p,x) G A(U), it follows that fj(p,x) = 0 for all j with pj > 0. Hence 
f(p,x) satisfies the conditions of Definition 2.1 and therefore (p,x) is an equilibrium pair. 

In case c) we have by definition of the set B(s,U) that fk(p,x) < 0 for all k # j . 
Hence (p,x) is an equilibrium pair. 

In case d) we have that fk(p,x) > 0 for all k # j and fj(p,x) = 0. Suppose that for 
some k, fk(p,x) > 0. Then by definition of the set B(s,U) we have that sk = +1. By 
definition of the set A(s,U) we must have that pk /vk = maxn Ph/vh > 0. This contradicts 
the fact that pTf(p,x) « 0. Hence we must have that fk(p,x) = 0 and (p,x) is an 
equilibrium pair. 
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Consequently we can conclude that B contains a path with (v,0) in B(s^,0) as one 
of its end points. All other end points of a path in B satisfy one of the cases b), c) or d) 
and therefore is an equilibrium pair. So the path in B starting in (v,0) leads to an 
equilibrium if this path is bounded. 

Lemma 3.1. Each path in B is bounded. 

Proof. Suppose that some path in B is unbounded. Then there exists a sequence (pk,xk), 
k = 1,2,..., in B with some of the components of (pk,xk) going to infinity. Without loss 
of generality we may assume that for some s G S and some set U it holds that (pk,xk) G 
A(s,U) for all k. Since p k E Tn and therefore the components of p k are bounded, we 
must have that some components of the sequence xk go to infinity. Moreover, Tn is 
compact and hence the sequence p k has a subsequence converging to a point q in Tn. 
Since (pk,xk) G A(s,U) for all k we have that qTa*(q) = 0 for all i e U. Because (pk,xk) 
E B(s,U) we also have that fj(pk,xk) > 0 when SJ = +1, f:(pk,xk) < 0 when SJ = - 1 , and 
fj(p,x) = 0 when Sj = 0. Hence there exist numbers #kj > 0, for all j with SJ # 0, such 
that 

f(pk,xk) - Ej /ikjSje(j) = z(pk) - E i e U xk
iai(pk) - E{j|sj*0} MkjSje(j) = 0 

with e(j) the j-th unit vector in Rn +1. Since p k has a subsequence converging to q, this 
system of equations can only have a solution for all k if the homogeneous system of 
linear equations 

(3) E i e U x^Cq) + E{j | s j # 0 } PjSje(j) - 0 

has a nonzero solution x j > 0 for i G U and \i ; > 0 for all j with s; + 0. Since q e 
A(s,U), there is a number b, 0 < b < 1, and a vector w e Rn+1 with w: > 0 if Sj = +.1, 
w: > 0 if s; = 0 and w; = 0 if s; = - 1 , such that q = av + w. Since qTa'(q) = (bv + 
w)Ta'(q) = 0 for i e U, and according to Lemma 2.4 v^^q) < 0, it follows that wTa1(q) 
> 0 for i G U. Premultiplying the system (3) with wT yields 

(4) E i e U xiwTai(q) + Ejjjs^!} MjWj = 0. 

Since w^aKq) > 0 for all i e U and w: > 0 for all j with s; = 1, (4) can only hold when 
XJ = 0 for all i G U and p\ = 0 for all j with s: = 1. Then (3) becomes 

(5) E{j|sj=-1} MjSje(j) = 0, 

which can only hold when /*j «= 0 for all j with SJ = - 1 . Hence, system (3) does not have 
a nonzero nonnegative solution. This proves that each path in B is bounded. 

From Lemma 3.1. we obtain that following the path in B starting at (v,0) we will 
reach an equilibrium pair (p ,x ) being the other end point of the path. This gives a 
constructive proof of the existence of an equilibrium under condition F. 
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Theorem 3.2. Under condition F the nonlinear constant returns to scale production 
economy has an equilibrium. 

The path in B starting in (v,0) can be interpreted as an adjustment process. Prices and 
production levels are adjusted until an equilibrium has been reached. As long as all 
production technologies have negative profits, the prices are adjusted in the relative 
interior of Tn according to the sign vector of the excess demand, keeping the production 
levels equal to zero. If some production technology i has zero profit pTa^p), then also 
the level of this activity is adjusted, while prices are adjusted according to the sign 
vector of the net demand and keeping the profit of activity i equal to zero. For the case 
of a linear production technology with fixed coefficients a detailed description of this 
adjustment process can be found in [4]. 

4. The simplicial approximation of an equilibrium . 

In this section we propose a simplicial algorithm to compute an equilibrium of an 
economy with nonlinear constant returns to scale production. A simplicial algorithm to 
follow the path in case of linear production has been given in Kremers, Van der Laan 
and Talman [6]. In this algorithm each piece of a piecewise linear approximation of the 
path is foliowed by making a linear programming pivot step in a system of n+m+2 linear 
equations. The algorithm starts with a price vector v € Sn, such that vTa1 < 0 for all 
linear technologies a\ i = l,...m. As soon as for some i, p7^1 becomes equal to zero, a 
column representing the linear activity a1 is pivoted into the system. This column 
remains in the system of equations as long as prices are generated satisfying pTa* = 0. 
This makes that the algorithm can not be applied in the case of nonlinear technologies, 
because the vector of coefficients a*(p) depends on the prices. The linear programming 
technique does not allow to adapt all colums representing the technologies aHp) with 
pTaHp) = 0 at each new price vector p generated by the algorithm. Therefore we propose 
an alternative simplicial algorithm to follow piecewise linearly the path described in the 
previous section. This algorithm can be seen as a modification of the simplicial algorithm 
introduced by Doup, Van der Laan and Talman [1] on Sn to find an equilibrium of an 
economy without production. The algorithm operates with a system of only n+2 linear 
equations, which is an advantage above the algorithm described in [6]. 

The algorithm of Doup, Van der Laan and Talman is one of the most efficiënt 
variable dimension simplicial algorithms on Sn, originally initiated by Van der Laan and 
Talman [9]. To solve the zero point problem of an excess demand function z on Sn, the 
algorithm can start in an arbitrarily chosen interior point of Sn, say v. Given the starting 
point v, the unit simplex Sn is subdivided in subsets A(s), s € S, defined by 

A(s) = { p e Sn | PJ/VJ - mink pk /vk when SJ = -1 
PJ/VJ = maxk pk /vk when Sj = +1}. 

Observe that A(s) n Tn is equal to the set of prices in the projection of A(S,0) on Sn. 
The subset A(s) has dimension |s|+l. The algorithm follows by simplicially approximating 
a path of prices in A(s) for various sign vectors s e S, such that for any p e A(s) on the 
path it holds that zj(p) > 0 when SJ • +1, Zj(p) < 0 when SJ = -1 and zj(p) = 0 when SJ = 
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0. So the algorithm follows in Sn the path of prices described in the previous section in 
case m = 0 (no production technologies). To do so, the algorithm traces a piecewise linear 
path in a simplicial subdivision of Sn, which has the property that each (|s|+l)-
dimensional set A(s) is triangulated into a finite number of (|s|+l)-dimensional simplices. 
An appropiate subdivision having this property is the V-triangulation of Sn, described in 
Doup and Talman [2]. 

To adapt the Doup, Van der Laan and Talman algorithm for the case of an 
economy with nonlinear production technologies, each price vector p in Sn is labelled 
according to a vector labelling function b: Sn -» Rn+2. 

Labelline Rule. For p G Sn, compute pTa*(p), i = l,...,m. Now, let h be the technology 
which maximizes the profit per unit production. In case there are several maximizing 
technologies, let h be the technology with the smallest index. So, pTah(p) > pTa*(p) for all 
i = l,...,m and h < k for all k with pTak(p) • pTa^(p). Then 

b(p) = [(-ah(p))T,0]T when pTah(p) > 0 

b(p) = [zT(p),l]T when pTah(p) < 0. 

Except for the last additional component with values 0 or 1, this labelling has been 
introduced already by Scarf [12] in order to compute an equilibrium for an economy 
with linear production activities. Now, let t be equal to |s|+l. Then we have the following 
definition. 

Definition 4.1. Let o(pl,...,pt+l) be a t-simplex in the simplicial subdivision of Sn. Then 
the simplex o is s-complete if the (n+2)-system of linear equations 

(6) Ek Akb(pk) - E{j|sj#0} MjSje(j) = e(n+2) 

with e(j) the j-th unit vector in Rn+2, has a nonnegative solution A k , k = l,...,t+l, and 
H ; for each j = l,...,n+l with s; # 0. 

Let Z be the the piecewise linear approximation of the excess demand function z with 
respect to the underlying simplicial subdivision, i.e. for p in a t-simplex o(p1,...,pt+1), 
Z(p) = Ek a ^ p ^ ) if p • Ek ajfP^ with a^ > 0 for all k and Ek (% = 1. For an s-
complete simplex o(pl,...,pt+l) with solution (A,/*) to the system (6) of linear equations, 
let U be the subset of {l,...,m}, such that for each i E U, there exists a (unique) index 
k(i) G {l,...,t+l} for which b(pk(J>) = [(-ai(p))T,0]T. So for every index i G U, there is a 
vertex in o whose label corresponds to technology i. Furthermore, let K be the subset of 
{l,...,t+l}, such that vertex p k , k G K has label b(pk) = [zT(pk))T,l]T. System (6) can now 
be written as 

z(pk) ai(pk(i>) 
(?) %GK Ak i ~ siGU Ak(i) o " E{j|sj#0} PjSjeü) = e(n+2). 
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From the last equation it follows that EfcgK \ = 1. Hence, K contains at least one 
element, so that the label of at least one vertex of o, say ph , corresponds to the excess 
demand z(ph) at p*1. This implies that for at least one vertex ph of an s-complete 
simplex o we have that p^aHp'1) < 0 for all i = l,...,m and hence p h lies in the relative 
interior of Tn when also p n ; > 0 for all j . The first n+1 equations of (7) can now be 
written as 

(8) Z(p*) - E i e U Ak(i) aHpkC»)) - S{j|sj#0} MjSje(j), 

• Ir • • 

where p = SJJ^K ^kP • Finally, set x j • AJ^Ï) for i e ü and x j = 0 for i € U. 
Observe that for all k e K, pkTaHpk) < 0 for all i - l,...,m. So, if p*j > 0 for all j , p* € 
int(Tn) since Tn is convex. 

Theorem 4.2. Let the starting point v be in the interior of Sn and let for some s e S, 
o(p1,...,pt+l) be an s-complete simplex in A(s) with solution (A,/x) to the system (6) of 
linear equations. Then o yields an approximating solution to the equilibrium problem if 
one of the following properties holds: 

a) /*j = 0 for all j with Sj = -1 
b) /ij = 0 for all j with SJ = +1 
c) for all k = l,...,t+l with Â  > 0, p: k .= 0 for all j with s: = - 1 . 

Proof. Let U, K, p and x be defined as above. To prove That (p ,x ) is an 
approximating equilibrium, observe that p e Tn, and hence p satisfies condition (2) of 
Definition 2.1. We now consider condition (1). Since p and Dk(i) are in the same 
simplex er, we have that p is close to pkM. So a'(pk(*)) is close to a*(p ) and from (8) we 
obtain that 

(9) Z(p*) - E i G U x*1 aJ(p*) » E{j|sj#o} A*jSje(j), 

where a* stands for 'approximately equal to'. Since (pk(1))Ta'(pk^)) > 0, it follows that for 

some positive t\ close to zero, p 'a^p ) > - q for i e U. Hence, the profit per unit 

production p TaJ(p ) =* 0 for the technologies i e U with positive production level x \ . 

Now, in case a) we have that E{j|s#()} /*jsjeÜ) = ^{j|sj=+l} /ijsjeÜ) ^ 0- F o r e a s e °f 

notation, let Fj(p ,x ) be the j-th component of Z(p ) - EJ€TJ x l aJ(p ). Then it follows 

from (9) that Fj(p*,x*) :- 0 if Sj # +1 and Fj(p*,x*) =s 0 or Fj(p*,x*) > 0 if Sj = +1. 

However, v is in the interior of Sn and o lies in A(s). By definition of A(s) this implies 

that p ; > 0 for all j with s; = +1. Moreover Z is the piecewise linear approximation to z 

and hence p TZ(p ) m 0, while also p ""Vfo ) s 0 for all i e U. From this it follows that 
* * * * 

also Fj(p ,x ) s 0 in case Sj = +1. Hence (p ,x ) satisfies approximately condition (1) of 
Definition 2.1. 
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* * » In case b), we have that £{j|Sj#Q} MjSje(j) = £{j.|sj=-l} MjSje(j) < 0. Then Fj(p ,x ) 

zi 0 if Sj # -1 and Fj(p ,x ) < 0 or Fj(p ,x ) e: 0 if SJ = - 1 . Hence (p ,x ) satisfies 

approximately condition (1) of Definition 2.1. 

Finally, in case c) we have that Fj(p ,x ) K Ü if s; = 0, F;(p ,x ) si 0 or F;(p ,x ) 

< 0 if Sj = -1 and Fj(p ,x ) ^ 0 or Fj(p ,x ) > 0 if Sj = +1. However, p j = 0 in case Sj = 

-1 and hence PjFj(p ,x ) =* 0 if Sj • - 1 . By the same reasoning as in case a) it follows 

hat Fj(p*,x*) si 0 ii 

completes the proof. 

that Fj(p ,x ) Ü: 0 in case SJ « +1. Hence for all j , Fj(p ,x ) a 0 or Fj(p*,x*) < 0. This 

We now consider the piecewise linear path of prices foliowed by the algorithm. 
Firstly, observe that the left hand side of this system has |s|+2 + n+l-|s| = n+3 columns. 

Nondeeeneracv Assumotion. For each solution to the system (6) of linear equations, at 
most one of the n+3 variables (A,/i) is equal to zero. 

Under this assumption the system has a line segment of solutions (A ,/i ), if any. An end 
point of such a line segment is called a basic solution and has exactly one of the 
variables equal to zero. 

Now, let v e int(Tn) be a price vector such that z:(v) # 0 for all j and set s^ = 
sgn z(v). Then there is a unique 1 -dimensional simplex a(pl,p2) in A(s^) with v as one 
of its vertices, say v = p1. This simplex is s^-complete with A] = 1, A2 = 0 and /ij = 
|ZJ(V)| as one of its basic solutions. The algorithm starts by making a linear programming 
step with b(p2) in the corresponding system (6). In general, the algorithm traces a 
piecewise linear path of prices by making linear programming pivot steps in the system 
(6) with respect to a sequence of adjacent s-complete (|s|+l)-simplices in A(s) for various 
sign vectors s. At a solution (A,/i), let p = Ejj A^pk. By making a linear programming step 
in the system (6) corresponding to a simplex o(p1,...,pt+1) in some subset A(s), the 
following cases can occur. 

Case 1: Ag becomes zero for some g e {l,...,t+l}. Then p lies in the facet r of o opposite 
the vertex pS. This facet is either a facet of exactly one other t-simplex & in A(s), or r 
lies in the boundary of A(s). In the first case, a pivot step is made in (6) with b(p') with 
p' the unique vertex of a' not being a vertex of r. In the latter case, either T lies in the 
boundary of Sn, or r is a simplex in a subset A(s'), where s' is a sign vector such that s'j 
# 0 for some i with sj « 0 and s'j « Sj for all j # i. If r lies in the boundary of Sn, then 
by definition of A(s) and the fact that v lies in the interior of Tn, we have that p^j = 0 
if Sj = -1 for all k # g. Hence by c) of Theorem 4.2, we have an approximate 
equilibrium. If r lies in A(s') with s' as just defined, then r is an s'-complete (t-1)-
simplex in A(s') and the algorithm continues in A(s') by pivoting the (n+2)-column -
Sje(i) into the system, thereby raising n\ from zero. 

Case 2: fi^ becomes zero for some k with s^ # 0. If SJ > 0 for all j # k, we have an 
approximate equilibrium according to a) of Theorem 4.2. If s; < 0 for all j # k, we have 
an approximate equilibrium according to b) of Theorem 4.2. Otherwise, tr(p1,...,pt+1) is a 
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facet of a unique (t+l)-simplex o' in A(s'), where s\ = 0 and s'j = SJ for all j # k. Let p' 
be the vertex of <? not in o. Then & is s'-complete and the algorithm continues in A(s') 
by pivoting b(p') into the system. 

Since all steps are unique the algorithm either terminates with an approximating 
equilibrium within a finite number of steps, or one of the variables Â  corresponding to 
a vertex pk with a label b(p^) • {(-ak(pk))T,0]T for some h goes to infinity. Now, let 
<Kpl,...,Pt+*) be an s-complete simplex in A(s) and let U, K, p and x be as defined 
earlier. Then, analogously to the reasoning in Theorem 4.2, it can be shown that (p , x ) 
is approximately close to a pair (p,x) in B(s,U). So, the path of prices foliowed by the 
algorithm approximately follows the projection on Tn of the adjustment path in B of 
prices and quantities starting in (v,0). Similarly to the proof that the path in B is 
bounded, it can be shown that all variables A^ are bounded. This implies together with 
the finiteness of the number of simplices that the algorithm ends with an approximating 
equilibrium (p ,x ) as defined in Theorem 4.2. We have seen that p satisfies condition 
(2) of Definition 2.1. Therefore, we can measure the inaccuracy of the approximation by 
taking the smallest e > 0 such that fj(p ,x ) < e, j = l,...,n+l. If the accuracy is not 
sufficiënt, i.e. e is too large, then the algorithm can be repeated with a finer simplicial 
subdivision of Sn with p e int(Tn) as the new starting point if p ; > 0 for all j , or a 

$ Je 

point in int(Tn) close to p if p ; = 0 for some j . In this way a sequence of 
approximating equilibria can be found with inaccuracy going to zero. 

5. An SLSPP-algorithm for the computation of an eQuilibrium. 

Mathiesen [10] approximates the equilibrium problem by solving a sequence of Linear 
Complementarity Problems (LCP's). Each LCP in the sequence is solved by the Lemke-
Howson algorithm. It can however not be assured that this algorithm solves each LCP in 
a finite number of steps. If not, the method breaks down. Otherwise, the sequence 
possibly converges to a solution of the equilibrium problem. For an economy with linear 
production technologies, Eaves [3] proposed an altemative formulation of the Linear 
Complementarity Problems. For this formulation it can be shown that the Lemke-
Howson algorithm always finds a solution within a finite number of steps. So, the 
method always generates a sequence of approximating solutions which may converge to a 
solution of the equilibrium problem. In Kremers and Talman [7], the equilibrium 
problem for the economy with linear production is formulated as a stationary point 
problem on the set of feasible prices Tn. By linearizing the excess demand function, they 
obtain a Linear Stationary Point Problem (LSPP) on Tn. This LSPP is solved by an 
algorithm on Tn by using an algorithm of Kamiya and Talman [8] for solving a 
stationary point problem on a polytope. This algorithm always finds a solution within a 
finite number of steps. By linearizing the excess demand function at the solution of the 
previous problem, again a sequence of approximate solutions is generated, possibly 
converging to a solution of the equilibrium problem. In this section we generalize the 
algorithm of Kremers and Talman to deal with the case of nonlinear production. 

A point x G R.k is a stationary point of a function f: Rk —• Rk on a nonempty 
subset C of Rk if x Tf(x ) > xTf(x*) for all x £ C. For the excess demand function z of 
the consumption sector in our economy with nonlinear production technologies 
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characterized by a^p), i = l,...,m, we have the following stationary point theorem (e.g. 
see Yamamoto [14]). 

Theorem 5.1. A price vector p € Tn is a solution to the equilibrium problem of the 
economy with production technologies aHp), i = l,...,m, if and only if p is a stationary 
point of the excess demand function z on Tn. 

The theorem implies that if p is a stationary point of z on Tn, there exists production 
levels x :, i * l,...,m, such that (p ,x ) satisfies the conditions of Definition 2.1. Given 
the stationary point p e Tn , let U be the set of indices, such that p Ta'(p ) = 0 for all i 
G U and p*Ta*(p*) < 0 for all i € U. Then x*t - 0 for i £ U. For i e U, x*: follows by 
solving the linear system z(p ) - Ej eu xja^P ) 5 0. From Theorem 5.1 it follows that the 
equilibrium problem can be reduced to the stationary point problem of the excess 
demand function z on Tn. This problem can possibly be solved by a sequence of Linear 
Stationary Point Problems as follows. 

Let pk G Sn be the solution to the k-th iterative in the sequence of Linear 
Stationary Point Problems, k = 1,2...., and take p0 arbitrarily in Sn. Furthermore, let v be 
a point in the interior of Tn. We will see that p k may He outside Tn. Therefore, let Ak 

be the solution to 

(10) max A, such that p(A)TaJ(p(A)) < 0 for all i, 0 < A < 1, 

with p(A) - Apk + (l-A)v. Finally, let vk = Akpk + (1-Ak)v. So, Ak = 1 and vk = pk if 
p k is in the interior of the convex set Tn. If pk £ Tn, then Ak < 1 and vk lies on the 
boundary of Tn with vkax(vk) = 0 for some i. We now take vk € Tn as the initial point 
in the (k+l)-th iterate and linearize the problem around vk. So we define for p e Sn, 

zk+l(p) . z (vk) + [jz(v
k)]p, 

where [Jz(vk)] is the Jacobian matrix of first order derivatives of z to p in vk. 
Furthermore, we set ak+1»HP) = a*(vk). So, at the (k+l)-th iterate we consider the linear 
production technology given by a^vfy, i = l,...,m. Let Tn(vk) be defined by 

Tn(vk) - { p e Sn | pTA(vk) < 0 }. 

Then, by Corollary 2.5, Tn c Tn(vk). Since, vk e Tn we have that vk e Tn(vk). 
Moreover, vk lies on the boundary of Tn(vk) if vk lies on the boundary of Tn. Applying 
the algorithm in [7], we can solve the stationary point problem of the linearized excess 
demand function zk+1(p) on the set of feasible prices Tn(vk) of the economy with linear 
technologies aJ(vk). The algorithm always finds a solution p k + 1 within a finite number of 
steps. Since Tn c Tn(vk), p k + 1 may lie outside Tn and we have to solve the one-
dimensional maximization problem (10) for k+1 to find vk + 1 G Tn as the approximate 
solution to the stationary point problem of z on Tn. This approximate solution vk+l can 
be used as the new initial point in the next iterate. The sequence of approximate 
solutions vk, k = 1,2..., may converge to a stationary point p of the excess demand 
function on Tn. If the sequences converges, the SLSPP is generally more efficiënt than 
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the simplicial algorithm described in the previous section. If not, then the simplicial 
algorithm should be applied to solve the equilibrium problem because such an algorithm 
is globally convergent. 
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