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ON THE EXISTENCE AND COMPUTATION OF AN EQUILIBRIUM IN AN
ECONOMY WITH CONSTANT RETURNS TO SCALE PRODUCTION
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Abstract

In this paper we consider the problem of finding an equilibrium in an economy with
nonlinear constant returns to scale production activities, To find an equilibrium we
propose an adjustment process in which the prices of the commodities and the activity
levels of production adjust simuitanecusly. The process starts at a price vector at which
each production activity has non positive profit. We show that the process follows a path
which connects the starting point with an equilibrium of the economy. From this it
follows that the existence of a price vector at which each production activity has non
positive profit implies the existence of an equilibrium, The equilibrium can be computed
by using a simplicial algorithm or by solving a sequence of Linear Stationary Point
Problems.
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ON THE EXISTENCE AND COMPUTATION OF AN EQUILIBRIUM IN AN
ECONOMY WITH CONSTANT RETURNS TO SCALE PRODUCTION

1. Introduction,

In this paper we consider the equilibrium problem in an economy with nonlinear
constant returns to scale production activities. In Van den Elzen, Van der Laan and
Talman [4] an adjustment process has been introduced to find an equilibrium in an
economy with linear production activities. This adjustment process starts at an arbitrarily
chosen price vector in the unit price simplex, such that all firms have negative profits
per unit production. Therefore the activity levels of all firms are set initially equal to
zero. Along the path followed by the process prices and activity levels are adjusted
according to the sign vector of the net excess demand and keeping the levels of the
activities equal to zero as long as the profits are negative. It is shown that the adjustment
process converges to a pair of equilibrium prices and activity levels. In Kremers, Van
der Laan and Talman [6] a simplicial algorithm has been described to follow the path of
the adjustment process. In Kremers and Talman [7] an iterative algorithm to solve the
equilibrium problem has been given. This algorithm solves the problem through solving a
sequence of Linear Stationary Point Problems on the set of feasible prices.

In this paper we generalize the adjustment process of Van den Elzen, Van der
Laan and Talman [4] to find an equilibrium in an economy with nonlinear constant
returns to scale production. The production side of such an economy can be described by
an activity matrix whose entries depend continuously on the prices. A sufficient
condition for the existence of an equilibrium is that at any price vector there can be no
production without input. Under this condition there exists a price vector at which all
production technologies have negative profits per unit output. Starting at such a price
vector we propose an adjustment process which generically converges to an eguilibrium
of the economy. This process increases initially the prices of the commodities wit
hpositive excess demand and decreases the prices of the commodities with negative
excess demand. Firms only produce when they mke zero profits,

In Section 2 we describe the mode! and we state conditions under which there
exists 8 price vector for which all production technologies have negative profits. In
Section 3 we describe the adjustment process and prove that the process converges to an
equilibrium. The Sections 4 and 5 are concerned with the computation of an equilibrium.

2. The model.

We consider an economy with a finite number of consumers, m firms having constant
returns to scale production technologies, indexed by i = 1,...,m, and n+] commodities,
indexed by j = 1,...,n+l.

The consumers are assumed to maximize their utilities under their budget
constraints. Each consumer is endowed with an (n+1)-dimensional strictly positive vector
of commodities. At some price vector p € RI+I\(0), the budget of a consumer is the
value of his endowment. Let d{p) be the aggregate demand of the consumers at price



vector p and let z(p) be the excess demand, i.e. z(p) is the aggregate demand d(p) minus
the total initial endowments. Under standard assumptions on the utility functions of the
consumers, utility maximization yields an excess demand function z being homogeneous
of degree zero in the prices, i.e., z(Ap) = z(p) for all X > 0, and which satisfies Walras’
law, i.e., for all p, pTz(p) = 0. Moreover, z is a continuous function of p on R},'!il.

Concerning the production technologies we assume that each firm produces just
one output. Let = {l,...m} — {l,...n+]1} be a function which assigns the output
commodity x(i) € {1,...,n+1} to the production techmology i € {l,..,m). For a € RO+
let a-h be the n-vector (aj,...,8h.1:8h41s---3p41)7- Then firm i produces commodity #(i)
according to a continuous production function fi: R} — R,, ie., if Va(i) = figy-ni)y,
then ¥a(i) is the amount of commodity (i) produced by firm i when y""(l) is the n-
vector of inputs of the other commodities j # #(i). Observe that for some given
commodity j, the set {i | (i) = j} might be empty or contain more than one element. We
assume that there is constant returns to scale production,

Assumption P.

For all i = 1,....,m, fiAy="(1)) = xfi(y=*(1)) for ali A > 0.

From production theory {e.g. see Varian [13]) we know that cost-minimizing behaviour
of producer i yields a cost function ¢ R} — R, per unit of output of commodity #(i)
satisfying '

() ci is non decreasing in pj. i # (i),

(ii) ¢! is homogeneous of degree 1 in p‘“(l),

(iii) ¢! is concave in pj, j # (i),

(iv) ¢! is continuous in p""(l) for p‘“'(l) € RO,

Furthermore, we assume differentiability of the cost functions

Assumn;ign C,
For all i = 1,...,m, ¢l is twice-differentiable in p~7(1) € R,.

With Euler’s law it follows from (ii) that for every p-*(i) € RD,
(1) cip-ri)) = Eiex(i) pjﬁci/éipj.

Since production goes to infinity if profits per unit of output are positive, we have that
in equilibrium prices have to satisfy the nonpositive profit conditions, i.e.,

@) pa) s ™), i=1,..m.
Together with (1) condition (2) can be written as

pTai(p) <0, i = I,....m,



where’ al i)(p) = 1 and aij(p) = -8ci,’6pj, j # w(i). From Hotelling’s Lemma we know
that y‘j(p) - 8c'/6pj, } # x(i), is the cost-minimizing amount of input of good j needed
to produce ome unit of output of commodity «(i}). So, ali(p), j # =(i), is the negative
supply of commodity j by producer i per unit of output of commodity x(i) at prices p.
Following others (e.g. see Morishima [11]) we have now written the nonpositive profit
condition as a generalization of the nonpositive profit condition pTai < 0 for a linear
production technology with activity vector al, The only difference is that the the amount
of inputs of goods j # x(i) per unit of output of good (i) depend on p. Observe that
according to property (ii) of the cost functions, the input aij(p) is homogeneous of
degree zero in p. This formulation is well-known in AGE (Applied General Equilibrium}
models, e.g. see Mathiesen [10] or Fischer, Frohberg, Keyzer and Parikh [5].

Summarizing we have that for positive prices the economy is characterized by the
excess demand function z and the input-output functions al, i =1,..m, with for all p €_
R*), pTz(p) = 0 and pTai(p) the profit of firm i per unit production of commodity
x(i), i = 1,....,m. Moreover, z and ai, i = 1,..,m, are homogeneous in p of degree zero,
To avoid technical discussions, in the following we also assume that both z and ai, i=
1,...,m, are continuous and differentiable on R{*1, '

Let x be a nonnegative m-vector (xl,...,xm)T of production levels, ie., at
production level x;, producer i produces x; units of output of commeodity =(i). Hence at
price vector p and production level x; the input-cutput vector or supply vector of
‘producer i is xiai(p). With A(p) the (n+1) x m matrix [al{p),...,a™(p)], the net supply of
the production side at price vector p and production level vector x is A(p)x. Now an
equilibrium for this economy is a price vector p* and a production level vector x*, such
that the excess demand of the consumption sector is less than or equal to the net supply
of the production sector and that each production technology satisfies the nonpositive
profit condition. Let the net excess demand f: RP*1\{0) x RIM — RO*! be defined as
the excess demand of the consumption sector at p minus the the net supply of the
production sector at (p,x), i.e., f(p,x) = 2(p) - A(p)x.

Definition 2.1, A pair (p*, x*) € RP*1\{0) x R is an equilibrium if
1 fptaM) <o,

*T * :
2) p 'Alp) 50

From 1) it follows that at an equilibrium p*Tf(p*,x*) = p*T2(p") - p*TA(P*K* = -
p*TA(p*)x* < 0, whereas 2) implies that -p‘TA(p')x‘ < 0. Hence p*TA(p*Jx' = (, so that
we have complementarity between x* and p‘TA(p'), ie., x*i = 0 if p'Tai(p') < 0 and
p*Tai(p*) = 0 if x*; > 0. Furthermore, it follows that p*Tf(p*,x*) = 0, so that we also
have complementarity between p* and f(p‘,x*). In equilibriom commodities can only be

in excess demand if the corresponding prices are zero.

Since both z and ai, i=1,..,m, are homogeneous of degree zero in the prices we
have that if (p",x*) is an equilibrium pair, then also (Ap‘,x‘) for any A > O is an
equilibrium pair. Hence we can normalize the price vectors to the n-dimensional unit
simplex



St={peRM|Zip;=1)

From condition 2) of Definition 2.1 it follows that the set of feasible prices in S0 is the
set

Th={peS|pTA(P) <0}

The concavity of the cost functions implies that TR is a convex subset of SD. Since TR is
the set of prices satisfying the nonpositive profit condition, a necessary condition for the
existence of an equilibrium is that the set TR is not empty. Therefore we make the
following no free production assumption.

Assumption F.
For any p € S0, A(p)x > 0 and x = 0 implies that x = 0,

Assumption F says that for any price vector there ¢an not be production without input,
Theorem 2.2. The set T! is not empty.
Proof. Let u: S® — S0 be a correspondence defined by

pp)={qesSt|qTA(p) <0}, p €80,

Assumption F says that A(p)x = 0 if A(p)x > 0 and x > 0. According to Farkas’ lemma,
this implies that p(p) is not empty. For given p, A(p) is a matrix of fixed coefficients.
Hence, p(p) is a subset of SD defined by linear constraints and so u(p) is convex.
Furthermore, p(p) is closed and hence also compact. Finally, since the the functions a-i, i
= 1,...,m, are continuous in p, it follows that p is upper semi-continuous in p. Hence u
satisfies the conditions of Kakutani’s fixed point theorem. From this theorem we have
that there exists a fixed point p* € pp*) = {q € SMqTA(p*) < 0). Hence p* € TN, This
proves that TR is not empty.

The next lemma shows that assumption F is not only sufficient to prove that TP is not
empty, but also that the relative interior of TR, defined by

int(T?) = (p € S7 | p; >0, j = 1,..,n+1 and pTai(p) < 0, i = 1,...,m )
has dimension n and hence int(T®) is not empty. We will use this lemma to prove the
existence of an equilibrium by defining a path which connects an arbitrarily chosen price

vector in int(TD) with an equilibrium price vector. Let int(z(q)) = {p € S“lpj >0, )=
1,...,n+] and pTal{q) <0, i = 1,...,m) denote the relative interior of u(q).

Lemma 2.3, Int(TD) has dimension n.

Proof. Let p* be a fixed point of g. According to Farkas’ lemma the relative interior of
* . . 'k _ . .
#(p ) has dimension n. Now, let pX, k = 1,2..., be any sequence of price vectors in the



relative interior of p(p® ) oonvergmg to p*. So, for all k, pk j > 0, = 1,...n+l, and
kaa‘(p )< 0,1 =1,.m Since al is continuous in p, there exists an M such that
kaa‘(pk) < 0 for k > M. Hence pK, k > M, is in the relative interior of TN. Therefore
the dimension of int(TP) is also n.

Also the next lemma will be used in the the following sessions.

Lemma 2.4. Let v be a point in the relative interior of T Then v € int{u{q)) for any q
€ sn,

Proof. Since v is in int(TR), we have that vj > 0 for all j. So, it remains to prove that for
any q € SN, vTal(q) < 0 for i = 1,...,m. Defme the function gl S" — R by

gi(p) = pa(i) - ci(p~").

Since ¢l is concave, it follows that gi is a convex function of p. Hence, for any q we
have

gi(v) > gi(q) + (v-q)TDgi(q),

where Dgi(p) = (Ggi(p)/spl,...,Sgi(p)lépm;)T. By definition we have that Dgi(p) = ai(p).
Hence

giv) > gi(q) + vTal(q) - qTai(q)
Since gi(q) = qTal(q) it follows that vTai(q) < gi(v) = vTai(v) < 0.
Observe that by the same reasoning we have that v € TD implies that vTai(q) < 0 for all
q € S, So, if we linearize the production side of the economy in a point q € S? by
taking the input-output coefficients al(q) at point g as fixed coefficients, then we have

that TR C {p € SNpTA(g) < 0). Thus we have the following corollary.

Corollary 2.5. For any q € SP, the set of feasible prices TR is a subset of the set of
feasible prices of the economy with linear technologies a¥{q), i = 1,...,m

Example. Let n = 2 and suppose there is one technology given by a(p) = (1, -v(p3/p3), -
V{p2/p3))T. Then TR is given by

T =({peS2ip) -2vPp3 <0 ).
Take q = (1-2b,b,b)7 for 0 < b < 1/2. Then for any b, a(q) = (1, -1, -1)7 and
Thc{peS2|pla@ <0}={peS2|p;-py-p3<0).

Observe that for any q = (1-2b,b,b)T, the set {p € Szlpl - p3 - p3 = 0} is tangent on TN
in the point p = (172, 1/4,/1/4)7.



3. An adiustment process,

In Van den Elzen, Van der Laan and Talman [4] an adjustment process is given for an
economy with linear production activities represented by (n+1)-vectors al, i =1I,.,m In
this section we generalize this process for an economy with nonlinear production
technologies represented by the functions ai, i=1,..,m. We assume that Assumption F is
satisfied. Then, let v be a point in int(TD). Such a point can be found by applying a
simplicial fixed point algorithm to find a fixed point of the correspondence u. Without
Joss of generality we assume that z(v) does not contain zero components.
For a subset U C {1,...,m}, let A(U) be defined by

AU)={(p,x) € TR x RIY pTai(p) = 0 fori€ U, x; = 0 for i & U).

Observe that for (p,x) € A(U), pTf(p,x) = pT(z(p) - A(p)x] = pTz(p) - T; x;pTai(p) = 0,
i.e., the value of the excess demand z({p) minus the value of the net production A(p)x is
equal to zero. So, for positive prices, either f(p,x) = 0 and we have an equilibrivm, or
f(p,x) has both a negative and a positive component. Let the set S of feasible sign
vectors be defined as the set of sign vectors in RO+] with at least one component
positive and one component negative, i.e.

S={se R} sj € {(-1,0,1}, j = 1,..,n+], with s; = - for at least one j
and sp = + | for at least one k}.

Given the starting price vector in the relative interior of TR, we define for s € Sand U
c {1,...,m} the sets A(s,U) by

A(s,U) = { {p,x) € A{U} | pjf\rj = ming pk/vk when sj= -1
pj/\fj = maxy px/vk when $j = +1}.

This definition says that for a pair (p,x) € A(s,U), p; = avj if sj = -1, pj = Av; if sj =
+1 a2nd avj < pj £ )Wj if sj = 0, with a = ming py/vk and A = maxy pg/vk.

Now, let |[Uj be the number of elements of U and let |s|] be the number of
components of s equal to zero. Then the restrictions pj = avj if sj= -1, pj=Av j if ;=
+1 put n-1-Js] restrictions on the prices, Moreover, pTal(p) = 0 for i € U puts |U|
restrictions on the prices. So, for (p,x) € A(s,U), the number of restrictions on the prices
is n-1-Js|+{U]. Since the dimension of S is equal to n, n - (n-1-|s}{U]) = 1+s|-JU] degrees
of freedom are left for the price variables. So, in case JU| > I + |s|, no degrees of
freedom are left and in general there is no price vector satisfying all the conditions, i.e.,
A(s,U) is empty. On the other hand, for (p,x) € A(s,U) and hence (p,x) € A(U), there
are {U] degrees of freedom for the x-variables. Hence, if U] < 1 + |s] we have that
A(s,U) is generically a well-defined manifold of dimension 1+[s]-JUj + {U| = 1+Js|.

Finally, for s € Sand U C {l,...,m} we define the set B(s,lJ) by

B(s,U) = { (p.x) € A(s,U) | f§(p,x) 2 0 when sj = +1, {;(p,x) s 0 when s; = -1,
f_j(p,x) = 0 when sj = 0}.



So, B(s,U) is the closure of the set of pairs (p,x) € A(s,UU), such that the componentswise
sign of the net excess demand is equal to the sign vector s, i.e., 5 is the sign of f j(p,x), ]
= 1,..,n+1., Observe that B(s,U) puts [s] restrictions on the (l+s))-manifold A{s,U).
Assuming standard nondegeneracy, regularity and transversality conditions, this implies
that the set B(s,U) is either empty or a 1-manifold, i.e., a collection of smooth paths and
loops. A path has either two end points, or one end point and goes to infinity, or comes
from and goes to infinity. So, a bounded path has two end points. Let B be the union
over all s € S and all U ¢ {1,...,m) of the sets B(s,U). Using the same arguments as in
Van den Elzen, Van der Laan and Talman for the case of linear production, we have
that en end point (p,x) of a path in B(s,U) either lies in a different set B(s’,U’) or
satisfies one of the following cases:

a) (p.x) = (v,0)

b)  ming pg/vg =0

c) fj(p,x) =0and sy € {-1,0) forall k + j
d) fi(p,x) = 0 and s € {+1,0} for all k # j.

In case an end point (p,x) of a path in B(s,U) lies in some other B(s’,U’), then {p,x) is
also an end point of a path in B(s’,U’). We have that either for just one component j, s j
€ {Sj-l-l,Sj-l}, while s’y = sp forall k # jand U’ = U, or s’ = s and for some i e U, U’
= U\{i) or for some i &€ U, U’ = Y U {i). Linking together all paths we get that the set
B is generically a collection of piecewise smooth paths and loops. Each end point (p,x) of
a path in B satisfies one of the cases a)-d).

Suppose that case a) occurs, Since (v,0) is an end point of a path in B, there exist
an s and U, such that (v,0) is an end peint of B(s,U). We have assumed that z(v) does
not contain zerc components and that vTai(v) < 0 for all i. Hence, s must be equal to s0
with soj = sign Zj(V) = sign f j(v,O), j = 1,...,n+l and U must be the empty set. It follows
that (v,0) is an end point of a path in B(s,U) if and only if s = O and U = g.

In case b), by definition of the set A(s,U), we must have that pj=0 for all j
with sj = -L By definition of B(s,U) we have that f j(p,x) < @ for all j with sj = -l
Hence f j(p,x) < 0 for all j with Pj= 0. Moreover, p; > 0 for all j with f j(-p,x) »>0. Since
pTf(p,x) = 0 for all (p,x) € A(U)), it follows that f (%) = 0 for all j with p; > 0. Hence
f(p,x) satisfies the conditions of Definition 2.1 and therefore (p,x) is an equilibrium pair,

In case ¢) we have by definiticn of the set B(s,U) that fi(p,x) £ 0 for all k # j.
Hence (p,x) is an equilibrium pair.

In case d) we have that fi(p,x) > 0 for all k # j and f j(p,x) = 0. Suppose that for
some k, fy(p,x) > 0. Then by definition of the set B(s,U) we have that s = +1. By
definition of the set A(s,U) we must have that px/vk = maxy pp/vp > 0. This contradicts
the fact that p'f(p,x) = 0. Hence we must have that fr(p,x) = 0 and (p,x) is an
equilibrium pair.



Consequently we can conclude that B contains a path with (v,0) in B(sC,0) as one
of its end points, All other end points of a path in B satisfy one of the cases b}, ¢} or d)
and therefore is an equilibrium pair. So the path in B starting in (v,0) leads fo an
equilibrium if this path is bounded.

Lemma 3.1. Each path in B is bounded.

Proof. Suppose that some path in B is unbounded. Then there exists a sequence (pK,xK),
k = 1,2,..., in B with some of the components of (pk,xk) going to infinity. Without loss
of generality we may assume that for some s € S and some set U it holds that (pK xK) €
A(s,U) for all k. Since pk € TN and therefore the components of pK are bounded, we
must have that some components of the sequence xk go to infinity. Moreover, TR is
compact and hence the sequence pK has a subsequence converging to a point q in TR,
Since (pX,xK) € A(s,U) for all k we have that qTai(g) = 0 for all i € U. Because (pK,xK)
€ B(s,U) we also have that { (pk xk) > 0 when $j = +1, f; (p ,xK) < 0 when $j = -1, and
fi(p,x) = 0 when s; = 0. Hence there exist numbers ukj > 0, for all j with s_l # 0, such
that

fpk k) - Zj ik jsiei) = 2(0%) - Biey xKjalo%) - B(ji;00) #¥j55e0) = 0

with e(j) the j-th unit vector in RD¥1  Since pK has a subsequence converging to q, this
system of equations can only have a solution for all k if the homogeneous system of
linear equations

(3)  Eieu xpha) + S(jse0) jsiel) = 0

has a nonzero solution x'i z0forieUand ,u'_, > 0 for all j with sj # 0. Since q €
A(s,U), there is a number b, 0 < b < 1, and a vector w € R}*1 with wj > 0 if 5j = +1,
wj 2 0 if s = 0 and wj = 0 if 55 = -1, such that 9 = av + w, Since qTai(q) = (bv +
w)Ta'(q) = 0 for i € U, and according to Lemma 2.4 vTai(q) < 0, it follows that wTai(q)
- » 0 for i € U, Premultiplying the system (3) with w7 yields

@) Ziey xwTaka) + E(jisju1) #jWj = 0.

Since wTai(q) > 0 forall i € U and w; > 0 for all j with s;=1, (4) can only hold when
x; =0 for alli € U and pj=0 for all j with sj = 1. Then (3) becomes

) Bjisi=-1) #jsjeli) = 0

which can only hold when Bj = 0 for all j with sj = -1. Hence, system (3) does not have
a nonzero nonnegative solution. This proves that each path in B is bounded.

From Lemma 3.1. we obtain that following the path in B starting at (v,0) we will
reach an equilibrium pair (p.,x.) being the other end point of the path. This gives a
constructive proof of the existence of an equilibrium under condition F.



Theorem 3.2, Under condition F the nonlinear constant returns to scale production
economy has an equilibrium.

‘The path in B starting in (v,0) can be interpreted as an adjustment process. Prices and
production levels are adjusted until an equilibrium has been reached. As long as all
production technologies have negative profits, the prices are adjusted in the relative
interior of TR according to the sign vector of the excess demand, keeping the production
levels equat to zero. If some production technology i has zero profit pTai(p), then also
the level of this activity is adjusted, while prices are adjusted according to the sign
vector of the net demand and keeping the profit of activity i equal to zero. For the case
of a linear production technology with fixed coefficients a detailed description of this
adjustment process can be found in [4].

4. The simplici roximation of an ilibrium

In this section we propose a simplicial algorithm to compute an equilibrium of an
economy with nonlinear constant returns to scale production, A simplicial algorithm to
follow the path in case of linear production has been given in Kremers, Van der Laan
and Talman [6]. In this algorithm each piece of a piecewise linear approximation of the
path is followed by making a linear programming pivot step in a system of n+m+2 linear
equations. The algorithm starts with a price vector v € S, such that vTal < 0 for all
linear technologies ai, i=1,.m. As soon as for some i, pTai becomes equal to zero, a
column representing the linear activity al is pivoted into the system. This column
remains in the system of equations as long as prices are generated satisfying p"'ai = 0,
This makes that the algorithm can not be applied in the case of noniinear technologies,
because the vector of coefficients ai(p) depends on the prices. The linear programming
technique does not allow to adapt all colums representing the technologies ai(p) with
p."'ai(p) = ( at each new price vector p generated by the algorithm, Therefore we propose
an alternative simplicial algorithm to follow piecewise linearly the path described in the
previous section. This algorithm can be seen as a modification of the simplicial algorithm
introduced by Doup, Van der Laan and Talman [1] on S" to find an equilibrium of an
economy without production. The algorithm operates with a system of only n+2 linear
equations, which is an advantage above the algorithm described in [6).

The algorithm of Doup, Van der Laan and Talman is one of the most efficient
variable dimension simplicial algorithms on S, originally initiated by Van der Laan and
Talman [9]. To solve the 2ero point problem of an excess demand function z on SD, the
algorithm can start in an arbitrarily chosen interior point of S?, say v. Given the starting
point v, the unit simplex SP is subdivided in subsets A(s), s € S, defined by

A(s) = { p € 87| pj/vj = ming px/vk when 5] = -1
pj/vj = maxy pg/vg when sj = +1}.

Observe that A(s) N TN is equal to the set of prices in the projection of A(S,2) on SN,
The subset A(s) has dimension is|+1. The algorithm follows by simplicially approximating
a path of prices in A(s) for various sign vectors s € S, such that for any p € A(s) on the
path it holds that z_i(p) > 0 when sj = +1, Zj(p) £ 0 when sj = -1 and zj(p) =0 when sj =
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0. So the algorithm follows in ST the path of prices described in the previous section in
case m = 0 (no production technologies). To do so, the algorithmn traces a piecewise linear
path in a simplicial subdivision of SB, which has the property that each (Jsi+1)-
dimensional set A(s) is triangulated into a finite number of (Js|+1)-dimensional simplices.
An appropiate subdivision having this property is the V-triangulation of 8D, described in
Doup and Talman [2).

To adapt the Doup, Van der Laan and Talman algorithm for the case of an
economy with nonlinear production technologies, each price vector p in S is labelled
according to 8 vector labelling function b: St — R0+2,

Labelling Rule. For p € SE, compute pTai(p), i = 1,..,m. Now, let h be the technology
which maximizes the profit per unit production. In case there are several maximizing
technologies, let h be the technology with the smallest index. So, pTab(p) > pTai(p) for all
i=1,.,mand h <k for all k with pTaK(p) = pTall(p). Then

b(p) = [(-al(p))T,0]7 when pTab(p) > 0
b(p) = [zT(p),1]7 when pTah(p) < 0.

Except for the last additional component with values 0 or 1, this labelling has been
introduced already by Scarf {I2] in order to compute an equilibrium for an economy
with linear production activities. Now, let t be equal to |s}+1. Then we have the following
definition,

Definition 4.1. Let o(pl,...,pt“) be a t-simplex in the simplicial subdivision of SN, Then
the simplex ¢ is s-complete if the (n+2)-system of linear equations

6) By Mb(pK) - I jls;20) Mjsje(i) = e(n+2)

with e(j) the j-th unit vector in RM2_ has a nonnegative solution A*k, k = 1,...,t+1, and
u'j for each j = 1,..,n+] with s # 0.

Let Z be the the piecewise linear approximation of the excess demand function z with
respect to the underlying simplicial subdivision, i.e. for p in a t-simplex o(pl,...,pt*}),
Z(p) = Bk opz(pX) if p = Ty aypK with ay > 0 for ail k and £y ay = 1. For an s-
complete simplex o(pl,...,.pt*1) with solution (M) to the system (6) of linear equations,
let U be the subset of {l,...,m), such that for each i € U, there exists a (unique) index
k(i) € {1,...,t+1} for which b{pk()) = [(-ai(p))T,0)T. So for every index i € U, there is a
vertex in o whose label corresponds to technology i. Furthermore, let K be the subset of
{1,...,t+1), such that vertex pK, k € K has label b{pK) = [zT(pK))T,1]T. System (6) can now
be written as

2(pK) ai(pk(i)) )
() DxeK % ; -~BieUX3{ o = Z(jisje0) #jsje() = elns2),
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From the last equation it follows that Eyex Ak = 1. Hence, K contains at least one
element, so that the label of at least one vertex of o, say ph, corresponds to the excess
demand z(ph) at ph. This implies that for at least one vertex p? of an s-complete
simplex ¢ we have that phTai(ph) <Qforalli=],.. m and hence ph lies in the relative
interior of TR when also phj > 0 for all j. The first n+] equations of (7) can now be
written as '

®  Z0") - Sigy M) 2% = S(gs00) sisiel),

where p* = Zgek MpK. Finally, set x°; = () for i € U and x*; = 0 for i & U.
Observe that for all k € K, pKTai(pk) < 0 for all i = 1,...,m. So, if p*;j > 0 for all j, p* €
int(TD) since T? is convex.

Theorem. 4.2. Let the starting point v be in the interior of S and let for some s € S,
o(pl,....pt*1) be an s-complete simplex in A(s) with solution (\,) to the system (6) of
linear equations. Then ¢ yields an approximating solution to the equilibrium problem if
one of the following properties holds:

a) Bj = 0 for all j with $j = -1
b) gj=0 for all j with §j = +1
c) forall k = 1,... t+]1 with Ap > 0, pjk = 0 for all j with sj = -1.

Proof. Let U, K, p* and x* be defined as above. To prove That (p*,x*) is an
approximating equilibrium, observe that p* € TN, and hence p* satisfies condition (2) of
Definition 2.1. We now consider condition (1). Since p‘= and pk(i) are in the same
simplex o, we have that p‘= is close to pk(i). So ai(pk(i)) is close to ai(p*) and from (8) we
obtain that

©)  Zp") - Bigy x'1 alp") = Bjis;20) #isiei)s

where = stands for *approximately equal to’. Since (pk(i))Tai(pk(i)) > 0, it follows that for
some positive €] close to zero, p'Tai(p*) > -¢] for i € U. Hence, the profit per unit
production p‘Tai(p*) =~ 0 for the technologies i € U with positive production level x‘i .
Now, in case a) we have that Zjiiu0) #jsjeli) = E(jjsjm+1) #jSje(i) 2 0. For ease of
notation, let Fj(p*,x*) be the j-th component of Z(p‘) - BieU xti ai(p*). Then it follows
from (9) that Fj(p‘,x‘) ~ 0 if Sj * +1 and Fj(p‘,x*) ~ 0 or Fj(p*,x*) > 0if Sj = +1.
However, v is in the interior of S® and ¢ lies in A(s). By definition of A(s) this implies
that .p' j> 0 for all j with sj = +1. Moreover Z is the piecewise linear approximation to z
and hence p*TZ(p") = 0, while also p*Tai(p*) ~ 0 for all i € U. From this it follows that
also Fj(p‘,x‘) =~ { in case 5j = +1. Hence (p‘,x‘) satisfies approximately condition (1) of
Definition 2.1,
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In case b), we have that jje;x0) #jsje(d) = B(jisj=-1) #jsje(i) < 0. Then Fj(p*,x*)
~ 0 if Sj * -1 and Fj(p',x‘) £ 0 or Fj(p*,x*) ~ ¢ if sj = -1. Hence (p*,x*) satisfies
approximately condition (1) of Definition 2.1.

Finally, in case ¢} we have that Fj(p*,x‘) o 0 if 5§ = 0, Fj(p*,x*) =~ Q0 or Fj(p‘,x*)
<0 if s; = -1 and Fj(p".x") = 0 or Fj0",x") 2 0 if 5j = +1. However, p*j = 0 in case s; =
-1 and hence p'}Fj(p‘,x*) ~ 0 if §j = -1. By the same reasoning as in case a) it follows
that Fj(p‘,x*) = 0 in case s; = +1. Hence for all j, Fj(p’,x*) ~ 0 or Fj(p*,x*) < 0. This
completes the proof.

We now consider the piecewise linear path of prices followed by the algorithm,
Firstly, observe that the left hand side of this system has |s]+2 + n+1-Js] = n+3 columns.

Nondegeneracy Assumption. For each solution to the system (6) of linear equations, at

most one of the n+3 variables (A1) is equal to zero.

Under this assumption the system has a line segment of solutions (/\*,,u*), if any. An end
point of such a line segment is called a basic solution and has exactly one of the
variables equal to zero.

Now, let v € int{T®) be a price vector such that zJ-(v) # 0 for all j and set 0 =
sgn z(v). Then there is a unique 1-dimensional simplex o{pl,p?) in A(s?) with v as one
of its vertices, say v = pl. This simplex is so-compiete with A = 1, A9 = 0 and pi =
|zj(v)| as one of its basic solutions. The algorithm starts by making a linear programming
step with b(p2) in the corresponding system (6). In general, the algorithm traces a
piecewise linear path of prices by making linear programming pivot steps in the system
(6) with respect to a sequence of adjacent s-complete (Js|+I)-simplices in A(s) for various
sign vectors s. At a solution (A,u), let p = By Akpk. By making a linear programming step
in the system (6) corresponding to a simplex o(pl,...p™*1) in some subset A(s), the
following cases can occur,

Case 1: A; becomes zero for some g € {1,...,t+1}. Then p lies in the facet r of o opposite
the vertex p8. This facet is either a facet of exactly one other t-simpiex ¢’ in A(s), or 7
lies in the boundary of A(s). In the first case, a pivot step is made in (6) with b(p') with
p’ the unique vertex of ¢’ not being a vertex of r. In the latter case, either r lies in the
boundary of SB, or r is a simplex in a subset A(s’), where s’ is a sign vector such that ]
# 0 for some i with s; = 0 and §'j = 3; for all j # i. If 7 lies in the boundary of SD, then
by definition of A(s) and the fact that v lies in the interior of TN, we have that pk j= 0
if 55 = -1 for all k # g. Hence by c) of Theorem 4.2, we have an approximate
equilibrium, If r lies in A(s") with s* as just defined, then 7 is an s’-complete (t-1)-
simplex in A(s’) and the algorithm continues in A(s’) by pivoting the (n+2)-column -
sie(i) into the system, thereby raising g; from zero.

Case 2: pg becomes zero for some k with s # 0. If s; > 0 for alt j # k, we have an
approximate equilibrium according to a) of Theorem 42 If 5j £ 0 for all j # k, we have
an approximate equilibrium according to b) of Theorem 4.2. Otherwise, o(pl,...,p"’l) is a
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facet of a unique (t+1)-simplex ¢’ in A(s'), where s’ = 0 and s’ j =5 for all j # k. Let p’
be the vertex of ¢ not in ¢. Then ¢ is s’-complete and the algorithm continues in A(3%)
by pivoting b(p’) into the system,

Since all steps are unique the algorithm either terminates with an approximating
equilibrium within a finite number of steps, or one of the variables Ay corresponding to
a vertex pK with a label b(pk) = [(-ah(pK))T,0]T for some h goes to infinity. Now, let
o(pl....,pt*l) be an s-complete simplex in A(s) and let U, K, p* and x* be as defined
earlier. Then, analogously to the reasoning in Theorem 4.2, it can be shown that (p*, x‘)
is approximately close to a pair (p,x) in B(s,U). So, the path of prices followed by the
- algorithm approximately follows the projection on TD of the adjustment path in B of
prices and quantities starting in (v,0). Similarly to the proof that the path in B is
bounded, it can be shown that all variables )y are bounded. This implies together with
the finiteness of the number of simplices that the algorithm ends with an approximating
equilibrium (p‘,x‘) as defined in Theorem 4.2. We have seen that p‘ satisfies condition
(2) of Definition 2.1. Therefore, we can measure the inaccuracy of the approximation by
taking the smallest ¢ > 0 such that f j(p‘,x‘) <€ j = 1,.,n+l. If the accuracy is not
sufficient, i.e. ¢ is too large, then the algorithm can be repeated with a finer simplicial
subdivision of 5% with :p' € int{TR) as the new starting point if _p* j> G for all j, or a
point in int(TB) close to p‘l if p‘j = 0 for some j. In this way a sequence of
approximating equilibria can be found with inaccuracy going to zero.

Mathiesen [10] approximates the equilibrium problem by sclving a sequence of Linear
Complementarity Problems (LCP’s). Each LCP in the sequence is solved by the Lemke-
Howson algorithm. It can however not be assured that this algorithm solves each LCP in
a finite number of steps. If not, the method breaks down. Otherwise, the sequence
possibly converges to a solution of the equilibrium problem. For an economy with linear
production technologies, Eaves [3] proposed an alternative formulation of the Linear
Complementarity Problems. For this formulation it can be shown that the Lemke-
Howson algorithm always finds a solution within a finite number of steps. So, the
method always generates a sequence of approximating solutions which may converge to a
solution of the equilibrium problem. In Kremers and Talman [7], the equilibrium
problem for the economy with linear production is formulated as a stationary point
problem on the set of feasible prices T, By linearizing the excess demand function, they
obtain a Linear Stationary Point Problem (LSPP) on TN, This LSPP is solved by an
algorithm on TM by using an algorithm of Kamiya and Talman {8] for solving a
stationary point problem on a polytope. This algorithm always finds a solution within a
finite number of steps. By linearizing the excess demand function at the solution of the
previous problem, again a sequence of approximate solutions is generated, possibly
converging to 2 solution of the equilibrium problem. In this section we generalize the
aigorithm of Kremers and Talman to deal with the case of nonlinear production.

A point x*eRKisa stationary point of a function Rk - RKon a nonempty
subset C of RK if x*Tf(x*) > xTf(x*) for all x € C. For the excess demand function z of
the consumption sector in our economy with nonlinear production technologies
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characterized by ai(p), i=1,.,m, we have the following stationary point theorem {e.g.
see Yamamoto [14]). '

Theorem 5.]. A price vector p* € TR is 3 solution to the equilibrium problem of the
economy with production technologies aX{p), i = 1,...,m, if and only if p* is a stationary
point of the excess demand function z on TR,

The theorem implies that if p‘ is a stationary point of z on TR, there exists production
levels x*;, i = 1,....m, such that (p',x") satisfies the conditions of Definition 2.1. Given
the stationary point -p* € T8, let U be the set of indices, such that p*'rai(p*) =0 foralli
€ U and p*Tai(p*) < 0 for all i € U. Then x*; = 0 for i € U, For i € U, x*; follows by
solving the linear system z(p‘) « Bieu xiai(p*) £ 0. From Theorem 5.1 it follows that the
equilibrium problem can be reduced to the statiomary point problem of the excess
demand function z on TR, This problem can possibly be solved by a sequence of Linear
Stationary Point Problems as follows.

Let pk € S0 pe the solution to the k-th iterative in the sequence of Linear
Stationary Point Problems, k = 1,2...., and take p? arbitrarily in SO, Furthermore, let v be
a point in the interior of TR. We will see that pK may lie outside T2, Therefore, let ak
be the solution to

(10) ‘max ), such that p(*)Tak(p(})) <0 foralli, 0 < A< 1,

with p(*) = ApK + (1-))v. Finally, let vK = XkpK + (1-2K)v. So, 3K = 1 and vk = pK if
pk is in the interior of the convex set TD. If pk g TZ, then XK < | and vK lies on the
boundary of TB with vkai(vk) = 0 for some i. We now take vK € TN as the initial point
in the (k+1)~th iterate and linearize the problem around vK. So we define for p € S0,

2K+l (p) = 2(vK) + [Jz(vK)]p,

where [Jz(_vk)] is the Jacobian matrix of first order derivatives of z to p in vK.
Furthermore, we set ak+1ii(p) = ai(vK), So, at the (k+1)-th iterate we consider the linear
production technology given by a‘(v’k), i=1,..m. Let Tn(vk) be defined by

™) = {pe st | pTa(vk) < 0).

Then, by Corollary 2.5, T? c To(vK). Since, vk € TP we have that vk € Th(vK),
Moreover, vK lies on the boundary of Tn(vk) if vK lies on the boundary of TR, Applying
the algorithm in {7], we can solve the stationary point problem of the linearized excess
demand function zK*+1(p) on the set of feasible prices TR(vK) of the economy with linear
technologies ai(vK). The algorithm always finds a solution pX+! within a finite number of
steps. Since TN c TN(vK), pk*! may lie outside T® and we have to solve the one-
dimensional maximization problem (10) for k+1 to find vk*! & TN as the approximate
solution to the stationary point problem of z on T™., This approximate solution vk+! can
be used as the new initial point in the next iterate. The sequence of approximate
solutions vK, k = 1,2..., may converge to a stationary point p' of the excess demand
function on TR, If the sequences converges, the SLSPP is generally more efficient than
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the simplicial algorithm described in the previous section. If not, then the simplicial
algorithm should be applied to solve the equilibrium problem because such an aigorithm
is globally convergent.
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