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Abstract. 

In this paper we use and develop the concept of a semi-public good. A semi-
public good is defined as an ordered pair of commodities, the first one being a 
private commodity and the second one a public good, which are related to each 
other by an individual inequality constraint for each individual agent. This 
approach allows us to design economie institutions which carry out price 
discrimination among users of a semi-public good. People who are seriously 
hampered by too small a provision of a public good, because it constrains their 
use of the private commodity, are willing to pay a mark-up on the price for the 
latter one if this mark-up is spent for expanding the provision of the public 
good. In the model the availability of a public good is planned and organized by 
a central planner. The consumer's willingness to pay an individual mark-up on 
the price of a private commodity reflects his preferences for the availibility of 
the public good. These mark-ups are collected by the private goods industry and 
transferred to the central planner in order to cover the costs of the public good 
infrastructure. This framework of a private industry and a central planner 
providing semi-public goods is called an industrial economy. The model will be 
illustrated by some numerical examples. 
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COMPUTATION OF AN INDUSTRIAL EQUILIBRIUM 

by 

Pieter H.M. Ruys and Gerard van der Laan 

1. Introduetion. 

General equilibrium models in economie theory are isomorphic to fixed point 

theorems. This insight is due to Von Neumann [18], who applied Brouwer's fixed point 

theorem to prove the existence of a process of proportional growth in a competitive 

economy. McKenzie [11], Arrow and Debreu [1] and other authors used this tooi in the 

fifties to prove existence of an equilibrium for the model designed by Walras [19]. They 

thus have put the general equilibrium model for an economy with private goods only 

and with private ownership, on a solid axiomatic foundation. 

The mathematical tools were strong enough to extend the economy with public 

goods, a concept introduced by Samuelson [15]. The concept of public goods has been 

studied intensively, see e.g. Cornes and Sandler [3]. The problems raised since Samuelson 

in public good models are more related to economie behaviour and institutions than to 

mathematical limitations. One of the fundamental issues in the theory of public goods is 

the individual's revelation of preferences about the provision of public goods. It is 

individually rational to behave as a free rider, but it is socially harmful. Many solutions 

for this problem have been proposed and rejected. It is still an unresolved issue in 

economie theory. For a recent survey we refer to Blümel, Pethig and Von dem Hagen 

[2]. 

In this paper we develop and use the concept of a semi-public good, introduced 

by Ruys [14]. A semi-public good is defined as an ordered pair of commodities, the first 

one being a private good and the second one a public good. The amount y1 of 

consumption of agent i of the private commodity and the amount z of availability of the 

public good are related to each other by an individual inequality constraint y ^ ^ z ) for 

each agent i. This constraint might be implicitly expressed in the consumer's utility 

function or the producer's production function. But the explicit formulation makes it 

possible to distinguish between whether an individual constraint is binding or not. If for 

some agent, say consumer i, the constraint is binding, then an increase of z has a direct 

effect on his demand because of the fact that z appears in the consumer's utility 
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function, but also it has an indirect effect through the weakening of the constraint. The 

price for raising z offered by a truth-telling consumer will reflect the impact of both 

effects on his utility. The part reflecting the constraint will show up as a mark-up on 

the market price the consumer is willing to pay for the private commodity. If no agent 

in the economy feels himself constrained, the semi-public good reduces to a private good 

having a uniform market price, and a pure public good with, if desired, Lindahl prices. 

In general, the definition of a semi-public good is relevant only if the constraints are 

binding for a considerable number of agents. 

The main advantage of this approach is that economie institutions can be 

designed which make price discrimination possible among users of a semi-public good. 

People who are seriously hampered by too small a provision of a public good, because it 

constrains their use of the private commodity, are thought of forming (political) pressure 

groups to expand its provision, or are informing the industry otherwise. They are also 

willing to pay a mark-up on the price of the private commodity if this mark-up is spent 

on expanding the provision of the public good. In the context of an industrial economy 

the enterprises in an industry discriminate between consumers by setting different 

prices, and not the public authority or planner. These differentiated prices inform the 

planner and partially finance the public good. 

We will explore a model in which there is just one industry producing private 

goods, which form semi-public goods with a public good. The infrastructure of this 

public good is planned and organized by a central planner. The consumer's willingness to 

pay an individual mark-up on each of the prices of the private commodities reflects his 

preferences for the infrastructure of the public good. These mark-ups are collected by 

the private goods industry and transferred to the central planner in order to cover the 

costs of the public good infrastructure. As an alternative the private goods industry may 

levy a uniform mark-up on the prices of the private commodities to provide an 

infrastructure necessary for using their products. We call this framework of a central 

planner and private firms providing together semi-public goods an industrial economy. 

It is evident that there are many spill-over effects resulting from any decision 

about the provision of a semi-public good. This calls for a general equilibrium approach, 

with an associated fixed point or zero point formulation. In order to calculate a fixed 

point, simplicial algorithms first have been designed by Scarf [16,17] and Kuhn [6,7] for 

fixed point problems on the unit price simplex. Van der Laan and Talman [9] developed 

a variable dimension algorithm for problems on the unit simplex. Similar algorithms for 

fixed or zero point problems on R n have been introduced by van der Laan and Talman 

[10], Wright [20], Kojima and Yamamoto [5], and others. These algorithms allow for f ast 
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movements in lower dimensional spaces and are therefore very efficiënt. A code for 

these algorithms has been implemented on the computer by Seelen, see [9]. We will use 

this code for solving some numerical examples to illustrate the framework of an 

industrial economy. 

This paper is organized as follows. In the next section we discuss the framework 

of an industrial economy by giving some examples. The mathematical model is given in 

section 3. In this section we also state the first order conditions for a Pareto efficiënt 

allocation. The institutional framework to reach a Pareto efficiënt allocation is given in 

section 4. In section 5 we give some numerical examples to illustrate the concept of an 

industrial economy. Finally, in section 6 we make some concluding remarks and we 

discuss the possibilities for further research. 

2. An industrial economy. 

An industrial economy consists of a number of (small) enterprises which produce 

private commodities that are close substitutes or complements and which have a common 

interest in maintaining the availability of a public good, called the infrastructure. The 

presence of an infrastructure increases the utility of the private goods or may even be a 

necessary complement to them. Examples are: 

a. airline transportation: several carrier companies provide substitutable transport 

services; they have a common interest in for example airports, a reservation network, 

safety measures. 

b. tourist industrv: there are many enterprises providing services that are close 

substitutes and complements (hotels, restaurants, entertainment, travel agencies); these 

enterprises have a common interest in for example a clean and attractive environment, 

promotion activities and a reputation for good quality of services. 

c surface transport: there are several modes of transportation which are close substitutes 

and complements (bicycle, car, taxi, tramway, bus, railroad); for each mode there are 

one or more enterprises providing transportation services; producers of a mode have a 

common interest, such as a road or a railroad system, and time and working schedules. 

There are much more examples, of course, but the three given here are specific 

in some aspects. In example a) the private goods are close substitutes. The enterprises 

compete and they are comparable. Moreover, there is only one public good for all, called 

the infrastructure. In example b) the private goods are both substitutes and complements. 

The enterprises can be clustered in various branches each having a completely different 
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production technology (hotels, attractions, souvenir shops), and most of the branches are 

competitive. The common infrastructure is induced rather than planned and organized. 

In example c) the private goods are again close substitutes and complements (trains have 

connections with buses). Some modes of transportation are competitive (taxis), but other 

are monopolistic and regulated. Again there is a common infrastructure from which 

some of the modes may benefit and some others may not. This infrastructure is planned. 

The central problem in all examples is the way on which the infrastructure is 

provided and financed. In the air industry example it seems to be obvious that the 

enterprises organize and finance the infrastructure and pass on the costs in the prices the 

consumers have to pay. However, the consumers also benefit directly from the 

infrastructure. It enlarges their possibilities to travel and therefore they should also show 

a willingness to pay for having an airport. On the other hand, people living close to the 

airport may suffer from its noise. We have similar characteristics in the other examples. 

For organizing and financing the infrastructure we distinguish the following cases: 

i) the infrastructure is not planned or decided upon, but it results from unorganized 

individual actions of the agents (e.g. it is attractive to do shopping in a city with a wide 

variety of supplies) 

ii) there is an agent (a government or a private enterprise), who provides the 

infrastructure and who determines tariffs or prices for making use of it (e.g. a shopping 

center or airport). An agent can decide to take or leave the offer 

iii) the infrastructure is planned and organized by an agent who has been established by 

the enterprises and by others who have interest in the production of the industry. 

Case i) is not relevant for our problem. Case ii) gives a way out of our problem 

if the agent providing the infrastructure is economically self-supporting or can make 

prof its. It remains interesting to analyse the rules of price setting with the theory 

developed here. Our approach is mainly relevant for case iii). In this case either the 

infrastructure is not apt for private (or profitable) exploitation, or there are political, 

juridicial and other non-economic elements involved that influence the productivity of 

an industry and its chances of survival. In the next section we present a model for this 

case. From this model we derive conditions for an efficiënt allocation. These conditions 

show that the prices the agents are willing to pay for the private commodities reveal the 

preferences for the infrastructure. 
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3. The matheniatical model. 

We consider a model of an industrial economy with two semi-public goods, 

composed from private goods a and b and a public good. For example, the public good 

is a road system that is used both by private cars, a, and by public buses, b. There are 

two other commodities, private goods 1 and 2. There is a (possibly private) producer 

who plans and organizes the level of the infrastructure, z, taking into account the wishes 

of the (transportation) industry. This industry has two branches, Ya and Y , each 

consisting of a representative private firm producing commodity a and b respectively. 

For instance, the first firm leases private cars to consumers and the second firm exploits 

the public bus system. 

There are h consumers, indexed by i=l,...,h. Each consumer i has a utility 

function M1(xj1,X21,ya
1,y|J

1,z) on X*=R +. Furthermore, each consumer i faces individual 

semi-public (quantity) constraints on the consumption ya* and y^1 of the private goods a 

and b. That means, each consumer is constrained in his' or her's car driving and public 

transportation because of the limitations of the road system. So, we assume that there are 

constraints y^(z) and y-^\z) for i=l,...,h, such that the consumption of consumer i is 

restricted by, 

ya* < Vfz) (3.1) 

The industry is aware of these (subjective) constraints because it observes 

rationing in the demand functions. Separate from these subjective feasibility constraints, 

the respective technical production constraints of the firms Ya and Yb are given by 

Fa(ya;x1
a,x2

a) < 0 (3.3) 

Fb(yb;X l
b ,x2

b) < 0, (3.4) 

where Xja, x2
a and Xj , x2 respectively the amounts of inputs in the production of a 

and b respectively, and ya and y^ are the amounts of output of commodity a and b 

respectively. Moreover, we assume that firm Y faces a constraint 

yD < yb(z), (3.5) 
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This constraint reflects the fact that the system of public transportation is restricted by 

the limitations of the road system. 

The enterprise producing the (public) infrastructure is given by the technical 

constraint 

F z(z;X l
z ,x2

z) < 0, (3.6) 

with XjZ and x 2
z the amounts of inputs. Finally, there is a firm which produces the 

commodities 1 and 2 from a production factor. Initially there is a total amount w of this 

production factor available. The technical constraint of this firm is given by 

^ ( x ^ V ) < 0, (3.7) 

where Xj° and x 2° are the output amounts of the commodities 1 and 2 respectively. 

We assume that this economy, denoted by E = {(u1,y^,y^)
1) i=l,...,h, Fa, (F°,y^), 

Fz, F°, w} is regular, i.e., the utility and production functions and the constraint 

functions are continuously differentiable, the utility functions ul are quasi-concave, the 

productions functions are concave, and w is positive. Furthermore we assume that in all 

technical constraints both the inputs and the outputs are measured positively. From this 

it follows that for re{a,b,z,o}, and for the variables v = x j° , x 2 ° , Xja , x 2
a , Xjb , x 2

b , 

x j z , x 2
z , y a , y b and z, holds 

8FT/Sv < 0 if v is an input, 

and 

SFT/Sv > 0 if v is an output. 

We are now ready to give some definitions. 

Definition 3.1. An allocation e = { (x jSx^y^y , , 1 ) , i=l,...,h, (ya ,Xja ,x2
a), (yb ,Xjb ,x2

b) , 

(z,XjZ,x2
z), (x2°,x2

0)} is in the set A of feasible allocations if the constraints (3.1)-(3.7) 

hold, and if 

Sj Xj1 + Xja + Xjb + Xjz < Xj° j -1 ,2 (3.8) 

Si Ya1 * Ya 0-9) 
^ y ^ < yb . (3.10) 
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Observe that this definition includes the subjective constraints (3.1) and (3.2). 

The quantity constraints (3.8)-(3.10) say that total demand is less than or equal to total 

supply. 

Pefinition 3.2. A feasible allocation e is efficiënt if there is a distribution of strictly 

positive individual weights &-v i=l,...,h, for which e maximizes the social welfare 

function 

over the set A of feasible allocations. 

According to Definition 3.2 the necessary conditions for an allocation of a 

regular economy to be efficiënt follow from the maximization problem, 

max ?• öi«
1(x1

1,x2
1,ya

1,yb
1,z), (3.11) 

such that, with the shadow prices of the constraints between brackets, 

(a1) y»1 - ya\z) < 0 

Ü31) y ^ - yh\z) < 0 

(7) y b - 7b(z) < 0 

(Aa) Fa(ya;X l
a ,x2

a) < 0 

(Ab) Fb(yb;X l
b ,x 2

b) < 0 

(Az) Fz(z;Xl
z ,x2

z) < 0 

(A°) F0(x1
0,x2°;w) < 0 

G"j) S | X:1 + Xja + Xjb 

0*a) s i ya' * y a 

(Mb) s i y ^ * yb-

Differentiating the corresponding Lagrange function gives with respect to the variable 

between brackets, with j=l,2 and i=l,...,h: 
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(Xj1) 0j SMVSXJ1 - /i j - 'O 

(Ya1) *i Sul/Syi - a1 - /za = 0 

(yb
i) *• Si/VSYb1 - /31 - Mb = O 

(ya) -Aa 5Fa/5ya + / i a = 0 

(Yb) -7 - Ab 5f b /5y b + Mb = O 

(z) Sj t?i 5«V5z + Sj a1 Sy^/Sz + Sj /31 Sy^/Sz + 7 Syb/<Sz - Az SFZ/Sz = O 

(Xja) Aa 5Fa/5xja + juJ = O 

(Xj
b) Ab 5Fb /5xjb + ij = O 

(Xjz) Az 8FZ/Sx-Z + y? m O 

(Xj°) A° 5F 0 /5X j
0 - /P = 0 , 

with all shadow prices nonnegative. With commodity 1 taken as the numeraire, we obtain 

from these equations the next first order conditions for an efficiënt allocation. For all 

i=l,...,h, 

Su1/Sx2
1 SFT/Sx2

T 

Stj/Sx^ SFr/Sxl
r 

6tj/5yj SFa/5ya a{ 

Su^Sx^ -5F a /5xj a -XZ8FZ/Sx]
7 

Sul/Syh
l SFh/Syh 7 

for r€{a,b,o,z} (3.12) 

(3.13) 

(3.14) 
SiS/Sx^ -SFb/8x]

b -Xz8Fz/8x]
z -Az5Fz/5xjZ 

Suk/Sz S k ak8yk/8z S k pk8yh
k/8z i8yh/8z SFz/8z 

S k - r ,+ + + . (3.15) 
SiP/Suf -XZ8FZ/Sx]

z -XZ8FZ/Sx]
z -XZ8FZ/Sxl

z -8Fz/8xl
z 

Condition (3.12) is the usual condition for pure private goods, saying that the 

marginal rate of substitution (MRS) equals the marginal rate of transformation (MRT). 

Notice that for each firm the two private commodities are either both an output with 

positive derivative, or both an input with negative derivative. The latter fact explains 

the minus signs in (3.13)-(3.15). If ax=0 for all i, then no consumer feels himself 

constrained in the use of commodity a. This commodity is then a private good having a 

uniform MRS equal to the MRT between a and the numeraire commodity. However, if 

aS-0 for some i, then consumer i is willing to pay a mark-up on the MRT of 

commodity a in order to subsidize an expansion of the infrastructure. In the condition 

(3.14) for commodity b an extra term appears in the equation. This term reflects the 
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constraint of producer YD with respect to the availability z of the public good. If 7=0 

then the producer is not constrained and we have the same situation as for commodity a. 

If 7>0therwise, the second term on the right hand side of equation (3.14) reflects the 

additional costs the producer is willing to make for getting an expansion of the 

infrastructure, in order to enlarge his production possibilities. If /3S-0, then consumer i 

is willing to pay a mark-up on the costs of commodity b, including the costs the 

producer has to pay for the expansion. All the mark-ups and the producer's costs for 

expanding the public good reappear in (3.15). Notice that the mark-ups in (3.13) and 

(3.14) reveal the willingness to pay for weakening of the constraints j>a\ y^1 and y^, 

whereas the terms in (3.15) reveal the willingness to pay for an expansion of the 

infrastructure. We see that the sum of the MRS plus the sum of the mark-ups of the 

consumers plus the mark-up of the producer is equal to the MRT of the public good. If 

all mark-ups are equal to zero, then the public good behaves as a pure public good. 

The main advantage of introducing semi-public goods in this way is that an 

industrial economy can discriminate between agents who are and who are not 

constrained by the infrastructure, because it can observe demand-behaviour. This 

information can solve partially (and sometimes completely) the difficult problem of 

determining the individual contributions to the provision of a public good. 

4. The institutional framework. 

In this section we describe the institutional framework under which an industrial 

equilibrium can be formulated satisfying the first order conditions for efficiency. This 

institutional framework is the private ownership industrial economy. In the economy E 

there are four private good markets in operation: one for each good 1, 2, a and b. The 

demands and supplies on these markets depend on the prices p j , p2 , Pa and p^ 

respectively, with the price of the numeraire commodity, p j , equal to one. In an 

efficiënt allocation these prices are equal to the respective MRT's. For the fifth 

commodity, the public good, the situation is much more complicated. Later on we will 

make some simplifying assumptions. For the moment we deal with the general model 

given in the previous section. 

We assume that the industry is able to discriminate among consumers who are 

constrained and who are not. At some allocation e, let, for i=l,...,h, 

t ^ e ) = -a\\zSFz/8xl
zyl 

and 
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%\e) = -p\\HFz/8xl
zyl 

be the willingness of consumer i to pay for the weakening of the constraints ^ ( z ) and 

yb
1(z) respectively. Then the sum of Ta*(e) = ta

1(e)5j;a
1/5z and T ^ e ) = tb

1(e)5yb
1/5z is 

his willingness to pay for the expansion of the infrastructure. Suppose that the 

willingness to pay is known to the industry. Of course this is not an innocuous 

assumption, but it can be approached in reality under the simplifications we will make 

later on. Furthermore, let tb(e)=-7/Az5Fz/5xjZ and Tb(e)=tb(e)$j>b/Sz be the willingness 

to pay of firm Y for weakening yJjz) and expanding z respectively. This information is 

of course known to the industry. Finally, at some allocation e, denote the marginal rate 

of substitution of consumer i between z and x^ by Pz\e), i=l,...,h. Now, the planner's 

task is to find the desired level of the infrastructure, i.e., to plan and to organize an 

amount z such that the sum of the MRS's plus the total willingness to pay is equal to the 

marginal rate of transformation, denoted by Pz(e). 

Planner's problem: Find z such that 

S£ \pz\&) + T^e) + T^e)] + Tb(e) = pz(e). (4.1) 

The price p z is the price to be paid by the planner for each unit of the public good and 

equals the MRT. On the other, hand the revenues of the planner consist of the 

consumers' contributions pz* per unit, and the mark-ups t * tt-1 and tb, per unit of 

consumption y a \ yb* and per unit of production yb, respectively. Since yb=SJyb
1 if tb>0, 

the planner's profit 7rq(p,z), where p=(pj,p2,Pa,pb)T, equals 

Ap,z) = E£ pz*z + Ej {t^\l + (tb1 + tbJyb1] - pzz . 

" S i ^W + tb^b1) + tb^b - S i (Ta1 + Tb1)2 - Tb z-

To complete the description of the economy, we assume that the private firms 

are profit maximizing producers. We denote the respective profits by 7r°(p,z), 7ra(p,z), 

^"(p^) and ^(p.z). Since we assume that only firm producing the private commodities 

1 and 2 is endowed with a production factor, all individual labour and wealth in the 

economy is put in the production function F°. Wages are paid as profits. All profits are 

distributed among the consumers, with, for i=l,...,h and re{o,a,b,z,q}, <j>1T the share of 
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consumer i in the profit of firm (or planner) r. All shares are nonnegative and E- 0ir=l 

for all r. The income of consumer i at (p,z) is given by w1(p,z) = S r ^>iri^(p,z). 

We are now able to define an industrial eauilibrium for the economy E. Recall 

that a feasible allocation satisfies (3.1)-(3.10). 

Definition 4.1. An industrial equilibrium for the economy E is a feasible allocation e = 

{(x1
1,x2

1,ya
1,yb

1), i=l,...,h, (ya,x1
a,x2

a), (yb ,x1
b ,x2

b), (z,XjZ,x2
z), (x1°,x2

0)}, a set of 

prices pj , P2, Pa, Pb for the private commodities and a price pz for the public good, a 

set of individual prices p z \ i=l,...,h, and a set of mark-ups t a \ t b \ i=l,...,h, and tb, 

such that 

1. for all i, (xj1,X21,ya
1,y.j)

1,z) maximizes u1(xj1,X21,ya
1,y|J

1,z) under the budget 

constraint 

PjXj1 + p2x2
J + (Pa+ta^Ya1 + ( P b + V V W + pzz = wl(P>z) 

2. each producer maximizes profit subject to his technical constraint, i.e., 

7r°(p,z) - p1x1
0+p2x2° = max{p1x1

o+p2x2
o|FO(x1

o,X2O;w)<0} 

jrz(p,z) - pzz-p1x1
z-p2x2

z = max{pzz-p1x1
z-p2X2Z|irZ(2;x1

z,X2Z<0)} 

7Ta(p,z) = Paya-Pix ia-P2x2a " max{paya-p1x1
a-p2X2a|Fa(ya;x1

a,x2
a<0)} 

irb(p,z) = Pbyb-Plxlb_P2x2b = m a x {Pbyb" p l x l b " p 2 x 2 b | F b ( y b ' x l b ' x 2 b ) - 0 } 

3. for all i: t^1 > 0, implies ya
x = Ja

x(z) and t^1 > 0, implies y^1 = yu\z) 

4. tb > 0 implies yb = yu(z) 

5. (4.1) is satisfied, i.e., the planner equates marginal social costs with marginal social 

benefits of the public good 

6. (3.8)-(3.10) are satisfied with equalities, i.e., the markets clear demand and supply. 

Notice that the availability z of public good is completely determined by the 

planner. So, actually the consumers do not maximize their utility over z. Instead, the 

prices p^ are determined such that for all i, z is optimal under p z \ The same reasoning 

holds for the public good's producer, who determines pz given the amount z. The third 

condition has analogies in fixed price theory, from which it is well-known that 

quantity-constrained allocations can be sustained by virtual prices (see e.g. Neary and 

Roberts [12], Ruys [13] and Cornielje and van der Laan [4]. Here condition 3) says that 
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a consumer is not willing to pay a mark-up on the cost price of a commodity if he or 

she is not constrained in the use of that commodity. Analogously, condition 4) says that 

the producer is willing to levy a mark-up on his output price p^ if he is constrained by 

the infrastructure level z. In this paper we assume that an equilibrium exists. We will 

address the existence problem in a subsequent paper, see also section 6. 

We now make some simplifying assumptions. First, we assume, without loss of 

the generality of our approach, that the public good does not appear in the utility 

function of the consumers, i.e., Pz
1=0 for all i. In this case the consumers are only 

interested in the infrastructure if they are constrained. Now, the planner's problem 

becomes: find z such that 

Ei [ T ^ e ) + T ^ e ) ] + Tb(e) = pz(e). (4.2) 

Secondly, assume that the consumers' constraint functions are linear with constant term 

equal to zero, i.e., for all i, 

V ( z ) = a!z 

yh\z) = b*z. 

In general, we are not able to say anything about the concavity or convexity of the 

constraint functions. Both cases may occur. Therefore the assumption of linear functions 

is very simplifying, but not too bad. For simplicity we also assume that j/^(z)=bpz. Now 

(4.2) becomes 

Ei [a\\e) + b y t e ) ] + bPtb(e) = pz(e). 

From this it follows that the planner's profit becomes equal to zero. Moreover, the 

coefficients a1 and b1 follow from the consumption level of the goods a and b of the 

constrained consumers. The willingness to pay can be approached in reality if the 

consumers are partitioned in classes with different needs to expand the infrastructure. 

These needs can be inferred from the unconstrained demands for the goods a and b. 

Under these simplifying assumptions the planner can obtain enough information 

to decide upon the infrastructure level z, given the mark-ups on the cost prices p„ and 

p b . In this linear case, the infrastructure is completely financed by the returns on the 

mark-ups on the prices of the private goods. 
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5. Examples. 

For all firms we take constant returns to scale production functions, implying 

that the firm with production function F a , F b and Fz respectively, is cost minimizing 

with in equilibrium zero profit. The income of consumer i equals ftir0, with <f>x the 

share of i in the profit of the firm with production function F°. For the consumers we 

take Cobb-Douglas utility functions. Recall that we assume that z does not appear in 

these functions. Furthermore we assume that the consumers are not constrained in the 

use of commodity b, i.e., b1 = oo for all i. This gives the next example. For i=l,...,h, the 

utility of consumer i is given by 

u1 = p^ln x j 1 + p2 'ln x2
x + paMn ya* + pb*ln yb* 

under ya* < a*z, where p1
1+P21+Pa

1+Pb1 is normalized to one. The production constraints 

are given by, with all V;r>0» 

F° = ^ ( X ! 0 ) 2 + V2°(X2°)2 " w 2 * ° 

Fz = ln z - ip{
z In x j 2 - ^ 2

Z l n ^2 * 0 w i t h ip^+^^l, 

and for rE{a,b,} 

Fx = ln y r - V>ir ln Xj r - i>2
T ln x 2

r < 0 with ^1 ' r+^2
r=l-

For firm Y we have the quantity constraint yb<bpz. 

Given prices pj and p 2 we obtain from cost minimizing that for re{a,b,z} the 

conditional factor demand per unit of output is given by 

X l
r = ( A p 2 / B P l )

B (5.1) 

x 2
r = ( B P l / A p 2 ) A , (5.2) 

where A=V>jr, B=V2r- The zero profit condition gives 

p r = p l x i r + p 2 x 2 r - (5-3) 

Maximizing profit under F°<0 gives the private goods supply functions 
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Xj° = PjW/tfj0c j-1,2, (5.4) 

while the profit is given by 

TT0 = CW, (5.5) 

with c2 = P j 2 / ^ ! 0 + P2
2/V>2°-

Utility maximizing of consumer i under the budget constraint 

P l x l ' + P2X2' + (Pa+V^a1 + ( P b + V V " ^ c w 

gives for the consumer's demand 

Xj1 •-PjVcw/pj j - 1 , 2 (5.6) 

ya
J " ^a^ icw/(Pa+ta i) <5-7> 

y ^ - pbycw/(pb + tb) . (5.8) 

For given z and demand y a \ the mark-up ta
x is determined by firm Ya by setting 

t^ = max{0, (^Vcw/aM - pa). (5.9) 

So, the mark-ups are determined by the industry such that the individual demands do 

not exceed the individual constraints a*z. From (5.7) and (5.9) we obtain that 

ya* = PaVcw/pa and t^-0 if paVcw/pa < a*z (5.10) 

and 

ya* = a*z and ta* = p ^ c w / a ^ - p a if paVcw/pa > a*z. (5.11) 

Observe that the discrimination among consumers is determined by the parameters p a \ 

01 and a1. In fact, the willingness to pay increases with pa* and <j>1 and decreases with a1. 

Firm YD determines the mark-up tb on his output price p b such that the total demand 

yb does not exceed the constraint bpz. We obtain from (5.8) that 

tb = max{0, (Sj pbVcw/bPz) - pb), (5.12) 

Hence 
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y ^ P b V c w / : andt b = 0 if Ej / > b V W p b < bpz (5.13) 

and 

yb1 " V ^ c w / ' + t b ) a n d *b = ( S i Pb^ l c w / b P z ) " pb 

if Ej PbVcw/pb > bz (5.14) 

Finally the production /els ya and yb are set by the producers such that they are equal 

to the total consumptie i.e., 

y ^ E j y ^ a n c b = Siyh
i. (5.15) 

Notice that yb=bpz if />bV*cw/pb > bpz. Consequently, given the prices Pj and pj 

and the infrastructure vel z, the values of all other variables, prices, quantities and 

mark-ups, can be calc ted through (5.1)-(5.15). So, the equilibrium problem is to find 

market prices Pj and p and a level z of the infrastructure such that the markets for the 

private commodities 1 id 2 clear and the mark-ups revenues are equal to the costs of 

the infrastructure, i.e., 

Ej x-1 + x:a + x = Xj - X:z, j = 1,2 (market-condition) 

S i a1^1 + bp tb oz. (planner-condition) 

In the next sec; i we discuss this problem both from a numerical and economie 

viewpoint. Here we cc entrate ourselves on the numerical results. Using the computer 

code described in van r Laan and Seelen [8] we have calculated the equilibrium with 

the following data. 

Example 1. Number of msumers: 4. Input: w = 100. Constraint coëfficiënt producer Y : 

b p = 4. The data of tlu ther coefficients are given in the Tables 1 and 2. 

Table 1. Coefficients o he producers. 

Producer r = 0 b z 

^ ! r 1 .5 .5 

*2X 1 .5 .5 
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Table 2. Coefficients of the consumers. 

Consumer i = 1 2 3 4 

>ii .4 .3 .2 .1 

P2] .1 .1 .1 .1 

< .5 .6 .7 .8 

v 0 0 0 0 

Profit shares ft .1 .2 .3 .4 

Constr. coef. a1 1 1 1 1 

Observe that the budget shares for commodity b are zero for all consumers. So, the 

demands for commodity b are zero, implying that firm Y b is not active and tj=0. The 

equilibrium values are given in Table 3 with the unconstrained demands (i.e., with ta
1=0) 

between brackets. 

Table 3. Equilibrium values Example 1. 

?b ft*0 

pnce 
mark-up t^ 
Producers: 
output 
input a 

b 
z 

Consumers: 
1 
2 
3 

5.4 
8.1 
8.1 

5.4 

0.905 1.902 1.902 1.902 
0 

74.2 67.1 
35.3 39.0 
0 0 

11.9 13.2 

1.5 
3.0 
4.5 

6.0 

37.1 

3.5 
8.5 

12.5 
(14.9) 
12.5 
(22.7) 

0 

0 
0 
0 

12.5 

0 13.5 
0 27.0 
).36 40.5 

1.54 53.9 

Example 2. Same data as in Example 1, except that the budget shares for the 

commodities a and b are equal to Pa
1=0.1, 0.2, 0.3, 0.4, for i=l,...,4 respectively, and 

p ^ O . 4 for all i. The equilibrium values are given in Table 4 with again the 

unconstained demands between brackets. 

In the two examples the expenditures for the private commodities 1 and 2 are 

equal to each other. The only difference comes from the budget shares for a and b. So, 

the total budget share for the "public" sector is the same. This budget spent on the public 

sector finances the costs of the total output of the three firms. Since the three firms 
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have identical cost structure and have constant returns to scale, the total output of the 

three firms is equal for the two examples. However, in Example 1 all income spent on 

the public sector is spent on commodity a Because of the constraints on the use of this 

commodity it results in a higher need for the public good than in Example 2. 

Table 4. Equilibrium values Example 2. 

kl *b 

price 1 0.905 1.902 1.902 1.902 
mark-up t^ 0.136 
Producers: 
output 74.2 67.1 16.5 26.5 

(28.3) 
6.617 

input a 15.8 17.3 
b 25.2 27.8 
z 6.3 7.0 

Consumers: 
1 5.4 1.5 0.71 2.65 

(2.84) 
2 8.1 3.0 2.84 5.30 

(5.67) 
3 8.1 4.5 6.38 7.94 

(8.50) 
4 

5 4 
6.0 6.62 

01.3) 
10.59 
(H.3) 

4Ü> 

0 13.5 

0 27.0 

0 40.5 

1.36 53.9 

The results show that in the first example the consumers 3 and 4, being the 

consumers with the highest profit shares and the highest budget shares for a, are 

constrained in the use of the private commodity a. Notice that the sum of the mark-ups 

these consumers are willing to pay for an expansion of the infrastructure equals to the 

price of one unit of the public good. 

In example 2 for each consumer i the sum of the (unconstrained) demahds for a 

and b is equal to the (unconstrained) demand for a in the example 1. Observe that both 

the individual unconstrained demands for a and the total unconstrained demand for b 

are less than the corresponding constraint function values given the level of the 

infrastructure found in Example 1. So, for this level neither an individual nor the firm 

Yb is willing to pay. Consequently, the infrastructure has been cut down to the level at 

which the mark-ups are again high enough to cover the costs. In equilibrium, only 

consumer 4 is constrained in the use of a. Moreover the production of firm Y is 

constrained by the infrastructure, which results in a mark-up t^ on the price od 

commodity b, so that ta + 4t^ = pz, (planner-condition). 
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It is not difficult to gain some more insight from these examples. Decreasing the 

coefficients a1 will result in a higher willingness of the consumer to pay (see formula 

5.11)). To remain in equilibrium this induces a higher value of z, so that the producer 

would become unconstrained for low enough values of the consumers' constraint 

coefficients. In this case the infrastructure is financed by the consumers' mark-ups only. 

For example, taking a^O.75 for all i, the equilibrium values of t a \ t^ and z become 

t j 1 = 0 for i=l,2; t a
3 = 0.381; t a

4 = 2.155; t b = 0; and z = 7.09. 

On the other hand, increasing the coefficients a1 and/or decreasing the producer's 

constraint coëfficiënt b p results in a lower willingness of the consumer to pay and/or a 

higher mark-up t^ on the producer's price p^. For a^OJSi for i=l,...,4, and bp=2 we 

obtain that in equilibrium 

ta
J=0 for all i, tb=0.95 and z=9.452. 

In this case the infrastructure is completely financed through the mark-up the producer 

is willing to levy on his price p^. Because the consumers are willing to spend 40% of 

their income on commodity b, the low constraint coëfficiënt b p enforces a (relatively) 

high level of z. In the first case the infrastructure can be seen as a public good for 

which. the willingness to pay expresses the marginal utility. In the latter case the 

infrastructure can be seen as an investment of producer Y , without which the producer 

is not able to produce anything. For both alternatives the prices are equal to those given 

in the examples. 

6. Concluding remarks and further research. 

This paper has been concerned with the problem of financing an infrastructure 

needed for operating and utilizing private services and commodities. The paper has to be 

seen as a first attempt to give a solid framework for the idea that the industry plays a 

central role in financing the infrastructure. In fact, the infrastructure is financed 

through mark-ups on the private services and commodities that make use of it. These 

mark-ups come from the constraints experienced by the agents. With respect to the 

consumers, the level of the infrastructure yields a (subjective) constraint on their private 

consumption. In case of producers the level of the infrastructure puts a constraint on 

their production possibilities. The mark-ups reveal these constraints and therefore the 

need for the infrastructure. Given the mark-ups the agents are willing to pay, the 
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planner determines the optimal level of the infrastructure. In subsequent papers we will 

develop this idea. 

A first question concerns the existence of an industrial equilibrium and the way 

in which the optimal level is determined. We want to make some remarks on this topic. 

Therefore we return to the previous section, in which we formulated the market-

condition and the planner-condition. To solve these equilibrium conditions we used a 

computer code based on simplicial approximation. We remark that the computational 

procedure adjusts prices and quantities until an approximate equilibrium has been found. 

It should be observed that all quantities are homogeneous of degree zero in prices and 

mark-ups. So, by setting Pj=l, we can take commodity 1 as the numeraire commodity. 

Then, for the examples considered in the previous section, the problem reduces to 

finding a price p£ and a quantity z such that the market-condition holds for j=2 and the 

planner-condition is satisfied. Then there is also equilibrium on the numeraire market 

(Walras' property), since all consumers spend all their income. The algorithm adjusts P2 

and z simultaneously until (approximate) equilibrium values have been reached. So, 

numerically the price p£ and the quantity z are determined simultaneously. However, 

from an economie viewpoint we may consider the following procedure. Suppose that, 

given p2, the industry (or planner) solves the planner-condition, i.e., given p£ the 

planner searches for a quantity z for which the planner-condition holds. Let z(p£) be 

this quantity as function of P2- On the other hand, let the market solve the market-

condition for j=2 given a quantity z. So, the market determines a price P2(z) for which 

the market for commodity 2 is in equilibrium. Starting with either some P2 or some z, 

the quantity z and pnee P2 are adjusted subsequently and alternately until a price P2 

and a quantity z are found such that 

• # * • 
z = z(p2 ) and p2 = p2(z ). 

# * 
Such a pair (p2 ,z ) solves the equilibrium problem. Using this "Nash formulation", in a 

subsequent paper we will investigate the conditions for the existence of an industrial 

equilibrium. One of the issues showing up is whether the constraint functions have to 

satisfy certain conditions. 

A second question concerns the problem of determining the mark-ups. We want 

to elaborate the idea that the individual mark-ups are determined by the industry and 

are corporated in the prices the producers set for their products. We may think of a 

partitioning of the consumers into a number of groups. Then for each group the industry 
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sets the mark-ups by considering a representative agent. So, in this way we get different 

prices for different types of agents. 

A third topic concerns the characterization of public goods by classifying the 

agents who pay for it. The examples have shown that within the same model the 

equilibrium may result in a situation in which either the consumers, or the producers, or 

both types of agents finance the infrastructure. This result urges us to be careful in 

making recommendations for the way in which the costs of public goods should be 

shared. In the near future we plan to do "cost-sharing" analysis for some (Dutch) "public 

sector" industries. 
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