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Abst rac t 

We consider two relations between Fisher's information matrix of a stationary 
ARMA (autoregressive moving average) process and Sylvester's resultant ma
trix. One is based on the Wald test statistic for testing common roots of the 
AR and MA polynomials of an ARMA process, and the other one is established 
by using the structure of Fisher's information matrix. It turns out that the 
latter is also a resultant. 
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1 Introduction 
The Cramér-Rao bound is of paramount importance for evaluating the performance 
of (stationary) autoregressive moving average (ARMA) models, where the focus is 
on the error covariance matrix pf the estimated parameters. See Cramér [3] and Rao 
[7]. For computing the Cramér-Rao bound the inverse of Fisher's information matrix 
is needed. The latter is singular in the presence of common roots of the AR and the 
MA polynomial. 
The purpose of the present paper is to study the link between Fisher's information 
matrix and Sylvester's resultant matrix. From this investigation we conclude that 
Fisher's information matrix of a stationary ARMA model is also a resultant. 
The link between statistical considerations and algebraic results is of independent 
interest since one is based on the Wald test statistic for testing common roots (see 
Klein [6]), and the other one is deduced from the structure of the Fisher information 
matrix of a stationary ARMA process. 

In Barnett [1] a relationship between Sylvester's resultant matrix and the companion 
matrix of a polynomial is given. Kalman [4] has investigated the concept of observ-
ability and controllability in function of Sylvester's resultant matrix. Similar results 
can be found in Barnett [2] which contains discussions on these topics and a number 
of further references. Furthermore in Söderström & Stoica [8] (page 162 ff.) a dis
cussion on overparametrization in terms of the transfer function of a system can be 
found. 

We consider the Wald test for testing common roots of two polynomials where the 
unknown vector valued parameter 9 belongs to 9 C l s and satisfies the restrictions 

gi(9) = ... = gr(9) = 0. 

9n denotes the unrestricted maximum likelihood estimator of 9 based on n observa-
tions. For a large number of observations n we assume y/n{On — 9) —> A^O, F(9)~1) in 
distribution, where F(9) is the Fisher information matrix and (gi(9n),... ,gr(9n)) = 
g{6n) will be considered at the proximity to the zero vector. 
The Wald test is based on the distance between g(9n) and g{9). If the true parameters 
satisfy the restrictions, then \/ng(9n) = GT(9)y/n(9n — 9) + op(l) , where G(9) is the 
s x r matr ix with ij-th element given by dgi(9)/d9j. 

Therefore y/ngifin) is under the null hypothesis that the restrictions are satisfied, 

asymptotically normal with zero mean and covariance matrix equal to 

V{9) = GT(9)F-\9)G{9), 

provided of course that this matrix is nonsingular. A Wald test statistic is then 

ngT(9n)V(9)-1g(9n). (1.1) 

If g{9) = 0, the test statistic from equation (1.1) is distributed approximately as 
X2(r). See Klein [6]. 
If the restriction g{9) is chosen to express the difference between the roots of two 
polynomials involved in the model, then g{9) = 0 in the case of equal roots. Under 
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this condition F(6) becomes singular and hence the Wald test statistic is not well 
defined anymore. In Klein [6] a solution is proposed for the Wald test, when this 
situation occurs. 

2 Prel iminary algebraic results 

Consider the following two scalar polynomials in the variable z. 

A{z) = zv + axz
p-1 + ... + ap 

C{z) = zg + c1z
q-1 + ... + cg 

(2.1) 

(2.2) 

The Sylvester resultant matrix of A and C is defined as the (p + q) x (p + q) matrix 

S(a,c) = 

P 

1 ö l ap 0 

0 1 a.\ . . . . • • ap 

1 Cl cq 0 

0 1 Cl •• ci 

(2-3) 

In the presence of common roots of A and C the matrix S(a, c) becomes singular. 
Moreover it is known that 

P 9 

de tS (a , c ) = n 11(7;-<*«) 
»'=i i = i 

(2.4) 

where the «,- and the jj are the roots of A and C respectively. 
If one takes in the previous section the coefficients of A and C as the parameter 6, 
then an appropriate choice for the restriction function g(6) in the Wald test is 

P 9 

flW=nn(7i-«o (2.5) 

It follows then that the statistic of equation (1.1), under the restriction that (2.5) is 
zero, has asymptotically a x 2 ( l ) distribution. 
A first relationship involving F(0) and S(0) with 0 = (a,c), when equation (2.5) is 
substituted in equation (1.1) yields 

nil^logdetSiêjfF-^e^logdetSiên)}}-1 - x
2 ( l ) (2.6) 

in distribution as n tends to infinity. 
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3 Main result 
In this section we show that F(6) is a resultant. 
First we specify Fisher's information matrix of an ARMA(p,q) process. Let A and C 
be the same monic polynomials as in the previous section. Define A*(z) = zpA(z~1) 
and C*(z) = zgC(z~1). Consider then the stationary ARMA process y that satisfies 

A\L)y = C\L)e (3.1) 

with L the lag operator and e a white noise sequence. Assume also that C has no 
zeros on the unit circle. As can be found in Klein & Mélard [5] the Fisher information 
matrix F(9) then has the following block decomposition 

F(6) = 
F F 
A aa ± ac 

FT F 
•L ns> J CC 

where the matrices appearing here have the following elements 

l r zj-k+p-i 

2iri Ju A(z)A*(z) 
yj-k+q-l 

dz,{j,k = l , . . . , p ) 

2-ni J\z\=x C(z)A*(z) 

F^ _ J _ l 
2TTZ X I = I C(z)C*(z) 

The main theorem is now the following 

dz,(j = l,...,p,k = l, 

dz,(j,k = 1 , . . . , ? ) 

,«) 

(3.2) 

(3-3) 

(3-4) 

(3.5) 

T h e o r e m 3.1 The Fisher information matrix of an ARMA (p,q) process with polyno
mials A*(z) and C*(z) of order p^q repectively becomes singular iff these polynomials 
have at least one common root. 

The proof of this theorem is an immediate consequence of the following lemma to-
gether with equation (2.4). First we have to introducé some auxilary notation. 
Write for each positive integer k Uk(z) = [l,z,... ,z x] , u*k(z) — [z 
= zk-1uk(z-l)&nd let K(z) = A(z)A*(z)C(z)C*{z). Define moreover 

,k-\ 

^ ' 2-KiJ\z\=\ 

UP+l(Z)<+a{z) -dz 
i\2\=i K(z) 

L e m m a 3.2 The following factorization holds. 

F(6) = S{-c,a)P{6)S(-c,a)T 

(3.6) 

(3.7) 

PROOF: A simple computation shows that we can write F{6) in matrix form as 

F(0\ _ _L / -A 
v ' 2-KÏ I\z\=i K( {*) 

-C*(z)up(z) 
A*(z)uq(z) 

-C(z)u;(z)T A(z)u*q(z)T dz{3.B) 
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It also straightforward to verify that the following identities hold. 

S(—c,a)up+g(z) = 

S(-c,a)u*p+g(z) 

-C*(z)up{z) 
A*(z)uq{z) 

-C(z)u;{z) 
A(z)u;(z) 

(3.9) 

(3.10) 

Hence equation (3.7) follows now immediately from equations (3.6), (3.8), (3.9) and 
(3.10). • 

P R O O F of theorem 3.1: Clearly the matrix F(6) becomes singular if A and C have 
at least one common root in view of equation (2.4). In order to prove the converse, 
we only have to prove that P{6) is strictly positive definite. This is also straight 
forward: 
Rewrite P{9) as 

Up + q(z)Up + g(Z~ ) 
P(0) = - ^ / 

/ | , | = I A(z)A{z-1)C{z)C(z-1) 

Take now z = e'*, then we get 

1 f** u p + g ( e ^ K + g ( e - ^ ) T 

rxdz 

A(e**)A(e-«*)C(e'*)C(e-'*) 

which in turn can be rewritten as 

1 [^ up+g(e'>) W ^ ) 

d<f> 

P(6) 
2TT 

d<f> 
A(e^)C(e^) A(e«'*)C(e**) 

Let now x G R p + 9 such that xTP{6) = 0. Then it follows that s ^ f f i j f f i » ) = 0 for 

almost all <j>. But this is clearly only possible if x = 0. So P(0) > 0. • 

The matrix P(0) can be calculated by means of Cauchy's integral formula in the 
presence of common roots as follows. Let 6 be a common root of A and C that 
appears as a zero of AC of order l > 2. Then 

pre) = J_ / J ï fL 
1 ^ 27Ti X |= l (Z - SY 

dz 

with 

ƒ(*) 

'w=i (z - sy 

Up+^Up+^z-1)7 {z-S)1 

A(z)A(z-1)C{z)C(z-1) z ' 

which is analytic in a disk of radius p around ë for sufficiently small p. Cauchy's 
theorem states that P(0) is the sum of residuals, of which in particular the residual 
in 8 can be computed as 

( ' - ! ) ! ƒ ƒ(*) ^ m - ^ J L \z-s\=P (z - sy 
dz. (3.11) 



It then follows that the more common roots A and C have, the less residuals are 
needed for the computation of P(6). 

As a corollary to lemma 3.2 we mention the following. Consider an AR process of 
order m, with AR polynomial A*(z) of order m. According to equation (3.7) and 
the fact that the Sylvester matrix is now the ra-dimensional unit matrix, the Fisher 
information matrix F becomes in this case 

2™ J\z\=i A(z)A*{z) y ' 

Take now in particular A*(z) = A*(z)C*{z) (so m = p + q), then it follows again from 
equation (3.12) and the fact that now A(z)A*(z) — K(z), that one has P{6) — F 
and hence equation (3.7) reads 

F (6) = S(-c, a)FS(-c, af (3.13) 

So equation (3.13) gives a relationship between the Fisher information matrix of an 
ARMA(p,q) process and that of an appropriate AR(p+q) process. 

4 Conclusions 

It has been shown that the Fisher information matrix of an ARMA process, which is 
essential in a fully statistical framework, embraces Sylvester's resultant matrix and 
that both matrices are resultants. By establishing an explicit expression containing 
both matrices a simplified way can be deduced for evaluating the Fisher information 
matrix of a high order (p+q say) AR process by computing the Fisher information 
matrix of a suitable ARMA(p,q) process. 
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