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1 Introduction 

A new balanced canonical form is presented for stable multivariabie linear systems. In [3] 
overlapping continuous block-balanced canonical forms were introduced for the stable SISO 

a generalization of the balanced canonical form of [9] for the SISO case. Such a 
generalization of the multivariabie balanced canonical form of [9] appears to be hard (and 
whether one exists is an open problem) This was the motivation to construct a different 
multivariabie balanced canonical form, which will be presented here. The new canonical 
form has a number of nice properties. The integer invariants that appear in the canonical 
form are the multiplicities of the Hankel singular values and a number of new invariants, 
which are in one-to-one bijective correspondence with the Kronecker indices of subsystems. 
Truncation of the state vector leads to stable minimal models in canonical form, just as in 
the case of [9]. In the SISO case the canonical form coincides with Ober's balanced canonical 
form. The reachability matrix of a system in canonical form with identical singular values 
is positive upper triangular. A detailed treatment of the canonical form and an extension to 
an atlas of continuous balanced canonical forms for the class of stable multivariabie all-pass 
systems is presented in [4]. 

2 Baïancing, canonical forms and Kronecker indices 

Let us consider continuous-time multivariabie systems of the form 

xt = Axt + But, (2.1) 

yt = Cxt + Dut (2.2) 

with t G R,«t 6 Rp,xt G Rn,yt G Rm,A G R n X n , 5 € R n X p , C G RmXn,D G R m X p . 
Let for each n G {1,2,3,---} the set C„ be the set of all quadruples (A, B,C, D) G 

R nxn x R n x P x R m X n x R m X p with the properties: (a) (A, B, C, D) is a minimal realization 
and (b) the spectrum of A is contained in the open left half plane. 
As is well-known two minimal system representations (A\,B\,Ci,D\) and (A2,B2,C2,D2) 
have the same transfer function G(s) = Ci(sl — A i ) - 1 5 i + D\ = Ö2{sl — A2)~ÏB2 + D2, 

' Pa r t of the research for this paper was conducted while the author visited the Dept. Engineering, Univer
sity of Cambridge and the Center for Engineering Mathematics, University of Texas at Dallas. Discussions 
with Jan Maciejowski, Raimund Ober and others are gratefully acknowledged. This paper is submitted to 
the 32nd CDC, San Antonio, Texas, December 1993 and the IEEE Transactions on Antomatic Control 
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and therefore describe the same input-output behaviour, iff there exists a n u x n matrix 
T G G7n(R) such that Ax = TA2T~x,Bi = TB2,Ci = C 2 r _ 1 , i ? i = D2. In that case 
we say that (Ai,Bi,C\,Di) and (A2,B2,Ci,D2) are i/o-equivalent. This is clearly an 
equivalence relation; write (Ai,Bi,Ci,Di) ~ (A2,B2,C2,D2). A unique representation of 
a linear system can be obtained by deriving a canonical form: 

Definitien 2.1 A canonical form for an equivalence relation " ~ " on a set X is a map 

Y:X^X 

which satisfies for all x,y G X : 

(i) T(x) ~ x 

(ii) x~y<^)> T(x) = T(y) 

Equivalently a canonical form can be given by the image set T(X); a subset B C X describes 
a canonical form if for each x G X there is precisely one element b G B such that b ~ x. 
The mapping X —> B C X, x •-• b then describes a canonical form. 

Let (A,B,C,D) G Cn. The controllability Grammian Wc is the positive definite matrix 
that is given by the integral 

Wc= exp(At)BBT exp(ATt)At 
Jo 

As is well-known Wc can be obtained as the unique solution of the following Lyapunov 
equation: 

AWC + WCAT = -BBT (2.3) 

In a dual fashion, the observability Grammian W0 is the positive definite matrix that is 
given by the integral 

f00 rw, ™ 
W0= exv(ATt)CTCexp(At)dt 

Jo 
This matrix is the unique solution of the following Lyapunov equation 

ATW0 + W0A = -CTC (2.4) 

Definition 2.2 Let (A,B,C,D) G Cn, then (A,B,C,D) is called balanced if the corre-
sponding observability and controllability Grammians are equal and diagonal, i.e. there 
exist positive numbers OÏ,0"2, • •. v0n such that 

W0 = Wc = diag{ox,..., on) =: E (2.5) 

The numbers o\,..., an are called the (Hankel) singular values of the system. It will be 
convenient to call an arbitrary quadruple (A,B,C,D) G R n X n X R n X p X RTOXn X R m X p 

balanced if the pair of Lyapunov equations AL + EAT = —BBT,ATY> + HA = —CTC has 
a positive definite solution of the form S = diag{a\,...,ak)(assuming neither asymptotic 
stability nor minimality). 

The singular values are known to be uniquely determined by the input-output behaviour 
of the system. 

Definition 2.3 A balanced canonical form (on Cn) is a canonical form T : Cn —»• Cn, such 
that T(A,B,C,D) is balanced for each quadruple (A,B,C,D) G C„. 
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Deflnition 2.4 Consider a pair (A,B) of matrices A G R n x n and B G R n X p . Let Rn = 
Rn(A,B) — [B,AB,. ..,AnB] denote the corresponding reachability matrix. Suppose the 
pair (A, B) is reachable, i.e. the reachability matrix has rank n. The selection of the first n 
linearly independent columns is called the Kronecker selection. It has the property that it 
is a so-called nice selection, which means that if the j—th column of Rn is in the selection, 
then either j < p or otherwise the (j — p)th column is also in the selection. For each 
i € {1 ,2 , . . . ,p} let di denote the largest value of j such that the (jp + i)th column is in 
the selection. Then we will call (d\,d2,..-,dp) the dynamical indices (also called successor 
indices) corresponding to the selection. By ordering these according to magnitude, one 
obtains a non-decreasing sequence of m indices Ki < K2 < ... < Km which are called the 
Kronecker reachability (or controllability) indices. 

With any nice selection corresponds a sequence of integers p = so > «i > S2 > 
. . . > si > si+i = 0 which add up to n + p and a sequence of sets of indices 
{{ij(l),ij(2),...,ij(sj)} C {1,2,. ..,Sj-i},j = 1 ,2, . . .} , / with the property that of the 
Sj-i columns that can be chosen from A*~XB in the nice selection the *j(l)—th, the ij(2)—th 
etc until the ij(sj)—th are chosen. Because the Kronecker selection is also a nice selection 
these quantities are also defined for the Kronecker selection. It is clear that the sequence of 
sets of indices determines the Kronecker selection completely and is in bijective correspon-
dence with the sequence of dynamical indices {d\, e^, • • •, dp} that describes the Kronecker 
selection. It is well-known and can easily be derived from the foregoing that the Kronecker 
indices are in one-to-one bijective correspondence with the sequence {su}i= 1 (cf. e.g. [2]). 

Remark. A similar deflnition holds for the Kronecker selection of rows from the ob-
servability matrix of a pair of matrices (A, C) € R n X n x R m x n , the corresponding Kronecker 
observability indices etc. 

The following lemma is basic for our considerations (see e.g. [9]): 

L e m m a 2.5 Let M € H.nxl,rank(M) = n < l. There exists an orthogonal matrix QQ G 
R n X n and natural numbers 1 < ii < i2 < ... < in < / such that 

Mo := Q0M = 

^ 0 . . . mi t l * . . . * * ^ 
0 . . . 0 0 . . . m2i2  

V 0 . . . 0 0 . . . 0 . . . mnin * , 

with mjij > 0 for all j G 1,2,. . . , n, Mo is unique and Qo is unique. Such a matrix will be 
called positive upper triangular with independency indices t i , Ï2 , . . . , i n -

A matrix will be called full rank upper triangular if it is positive upper triangular up 
to multiplication of some (or possibly all or none) of its rows by — 1. 

3 A balanced canonical form for systems with identical sin-
gular values 

The following theorem of [1] is basic for the relation between systems with all singular 
values equal and all-pass systems. 
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Theorem 3.1 Let m = p. 
(a) If a balanced stable triple (A, B, C) has identical Hankel singular values a = 1 then 
there exists an orthogonal matrix D such that C = —DBT. 
(b) (A, B, C,D) is a balanced realization ofa stable all-pass system ijf(A, B, C) is a balanced 
stable triple with identical singular values and D is an orthogonal matrix such that C — 
-DBT. 

It will be useful to extend the usual definition of orthogonal square matrices to rectangular 
matrices: 

Definition 3.2 An m x p matrix U will be called orthogonal if UTU = Ip or UUT = Im. 

TJsing this, a balanced realization (A, B, C) of a stable system with identical singular values 
(with possibly m ^ p) can be characterized as follows: 

Corollary 3.3 The following three statements are equivalent: 

(i) A triple (A,B,C) is a balanced realization of a stable system with identical singular 
values a > 0 

(ii) The pair (A,B) is reachable and A + AT = -\BBT = -\CTC,o > 0, 

(Ui) The pair (A,B) is reachable, A + AT = —jBBT, and there exists a (possibly rectan
gular) orthogonal matrix D such that C = —DBT 

Proof. Without loss of generality one can assume that m = p, because 'ifm^p than one 
can add a sufficiënt number of zero rows to C or zero columns to B to obtain a system with 
the same number of in- and outputs and clearly if the result holds for the square system 
obtained in this way, it also holds for the original system. If m = p the theorem follows 
from the previous theorem together with a theorem of [10], (here applied to the special case 
where the Lyapunov equation involved has the identity matrix as a solution) which says 
that if (A, B) satisfies the equation A + AT = —BBT then: 
A is asymptotically stable iff (A, B) is reachable. 

Now consider the following canonical form for the set of stable multivariable all-pass 
systems of fixed McMillan degree. 

T h e o r e m 3.4 The following two statements are equivalent: (i) A system II a stable 
all-pass system with McMillan degree n. (ii) There exists a unique balanced realization 
(A,B,C,D) G Cn of Tl of the following form: There are integers p = So > si > S2 > . . . > 
si > s;+i = 0 which add up to n + p, such that 

B = 

where B\ is an si x SQ positive upper triangular matrix; 

/ An Au 0 . . . 0 

A = 

A21 A22 A23 

0 A3 2 ' •• 

V o 

o 

0 Au-t Au ) 
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a block tridiagonal matrix with Au>v an su x sv matrix, u,v € { 1 , 2 , . . . , / } , Au>v = O if 
\u-v\ > 1; 

1 T 

Au on otherwise arbitrary skew symmetrie si X Si matrix; 
Auu = Auu an otherwise arbitrary skew symmetrie su x su matrix for each u € { 2 , 3 , . . . , / } ; 
Au+itU o. positive upper triangular su+i X su matrix for each u € { 1 , 2 , . . . , / — 1}; 
Au,u+i = -A%+hu for each u E { 1 , 2 , . . . , / - 1}; 
D an otherwise arbitrary orthogonal px p matrix and 

C = -DBT. 

The indices su,u= 1 , . . . , / are in bijective correspondence with the Kronecker indices. The 
canonical form is balanced and its reachability matrix is positively upper triangular. 

Proof. Cf. [4]. D 
For triples (A, B,C) with identical singular values one obtains the same balanced 

canonical form with the only exception that, while in the case of all-pass systems the 
matrix C can be determined from B and D here instead C is an arbitrary solution of the 
equation 

cTc = BBT=fBiBf o \ 

It follows that the matrix C can be partitioned as [Ci,0], Ci an mx si matrix which is a 

solution of Ci Ci = BiBf. Let Bi = (.Bi-Bf ) ï , 0 , where the zero matrix is si x (p — si) 

and (BiBi)ï is the «i x si positive definite symmetrie square root of BiBf. Then clearly 
Ci Ci = BiBi and CTC = BBT in an obvious notation. From the corollary above it 
follows that there exists an m x p orthogonal matrix D such that C = —DBT and so 
Ci = —DÉf. Partition D = [—U,V] where U is an m x si orthogonal matrix and V is 
an m x (p — si) orthogonal matrix. It follows that Ci = U(BiBf)?. Because (BiB^)ï 
is positive definite, the relation between Ci and U is bijective: U = Ci(B\Bf)~ï and 
therefore U can be used to parametrize C\. In this way one obtains a parametrization of 
the canonical form for systems with one singular value: The matrices B and A together have 
S1 + S2 + ...+S1 = n positive parameters due to the requirement that Bi, A21, A32 ,...,>!/,/_ 1 
are all positive upper triangular,while all other entries in these positive upper triangular 
matrices are either prescribed to be zero by the structural indices, or are free to vary over 
the reals; furthermore the skew symmetrie matrices I n , A22, ••••, -Ai,i have J2u=i | su( ' su — 1) 
parameters that are free to vary over the reals and finally Ci = TJ{BiBj)ï, is parametrized 
by the mx Si orthogonal matrix U; the set of all such orthogonal matrices has dimension 
(«i — l ) (m — | « i ) . Of course one could add a feedthrough matrix to the system, which 
would have mp freely varying real parameters. 

4 A new balanced canonical form for stable multivariable 
systems 

Consider a system with balanced state space representation (A,B,C,D). The Grammians 
are equal and of the form 

S = diag f (Ti /„(x), 0-2In(2), • • • , 0kln{k)) , 
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where a\ > er2 > . . . , > a\. > 0 are the Hankel singular values of the system 
and n(l),Ti(2), . . . ,n(k) the corresponding multiplicities. Partition A,B,C, according to 
n( l ) , n (2 ) , . . . , n(k) to obtain 

f A( l , l ) A(l,2) . . . A(l,Jb) \ 
A(2,l) A(2,2) . . . A(2,k) 

and 

B 

\ A(k,l) A{k,2) 

5(1) 

(4.6) 

A(k,k) ) 

C{2) C(*)] (4.7) , C = [ C ( 1 ) 

lB(k) 

The following result is very important for the construction of balanced canonical forms: 

Theorem 4.1 ([10],[7]) Let (A,B,C,D) be partitioned as above, balanced in the sense of 
definition 2.2, but not necessarily stable and minimal. Then (A,B,C,D) G Cn iff for each 
i e {l,2,...,k},(A(i,i),B(i),C(i),D) e Cn(iy 

The balancing (Lyapunov) equations for (A, B,C,D) are given in terms of the 
A(i,j), B{i),C{j), i = 1 , . . . , k, j = 1 , . . . , k by 

A(i,i) + A(i,i)T = —BWBii)1 

-±-C{ifC{i) 

-B(i)B(jf 

-C(i)TC{j), 

(4.8) 

(4.9) 

(4.10) 
^ ( i , j > i + ^(i ,0T < r« 
A(i,j)(Ti + A(j,i)To-j 

where i G { 1 , . . . , k},j G { 1 , . . . , k}, i ^ j . Note that the last two equations can be solved 
in terms of A(i,j) and A(j,i) for given pair {i,j),i / j and given B(i), B(j),C(i),C(j), 
because o-,- ^ crj. Therefore, and because of the theorem 4.1, the construction of a balanced 
canonical form can be reduced to constructing a balanced canonical form for the subsystems 
(A(i,i),B(i),C(i)) ,i = 1,2,.. . ,k. For each i G {1, . • •,k} such a system is a system with 
identical singular values, or perhaps one should say with one singular value <r,-. For such 
systems the canonical form presented in section 3 can be used. This leads to the following 
result: 

Theorem 4.2 The following statements are equivalent: 

(i) "E is a stable i/o-system with p inputs and m outputs and McMillan degree n. 

(ii) E has a realization (A,B,C,D) G Cn of the following form: There are numbers 
o~i > 02 > . . . > <Tfc > 0, the Hankel singular values, and integers n( l ) , n (2 ) , . . . , n(k), 
the corresponding multiplicities of the singular values, and for each i G {1,2,... ,k} 
there are integers p = so(i) > si(i) > ... > «/(,•)(*) > •s;(,)+1(i) = 0 which add up to 
n(i) + p, such that 

( A( l , l ) A(l,2) . . . 4(1,Jb) \ 
A(2,l) A(2,2) . . . A(2,k) 

A = (4.11) 

V A(k,l) A(k,2) ... A{k,k) j 
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and 
B(l) 

B= : , C = [ C ( 1 ) C(2) . . . C(k)\, (4.12) 

. B(k) J 
where A(i,j) is an n(i) x n(j) matrix, B(i) an n(i) x p matrix and C(j) an m x 
n(j) matrix,i = 1 ,2, . . . ,k , j = 1,2,...,fc and i/ie triples (A(i,i),B(i),C(i)) have the 
following form: 

~ B^i) 

B{ï) = 
O 

(4.13) 

A(i,i) = 

O \ 

\ 

where B\{ï) is an Sx(i) x p positive upper triangular matrix and 

( Ai,\{i,ï) AXy2(i,ï) O 

A2,i(»,t) A2,2(i,i) A2,3(i,i) '"• : 

O A2|3(t\*) '•• '•• O 

: ' ' • ' ' • '•• -A/(t)-i,/(i)(M) 
o ••• o %),/(«)-ie».o -Aj(f),i(t)(*»o y 

(4.14) 
a 6/ocA; tridiagonal matrix where for each u,v G {1,2, . . . , / ( i )} , >lu>v(i,i) is an 
su(i) X sv(i) matrix, 
Au,v(i,i) = 0 if\u-v\>l; 
An(i,i) — Au(i,i) — \B\(Ï)B\(Ï)T, ip/iere An(i , i ) is an otherwise arbitrary skew 
symmetrie si(i) x $i(i) matrix; 
Auu(i,i) = Auu{i,ï) an otherwise arbitrary skew symmetrie su(i) x su(i) matrix for 
each u G { 2 , 3 , . . . , l(i)}; 
Au+i,u(i,i) a positive upper triangular s«+i(i) X su(i) matrix for each u G 
{ l , 2 , . . . , / ( i ) - l } ; 
Au,u+i(i,i) = — Au+xtU(i,Ï)T for each u £ {1 ,2 , . . . ,/(i) — 1}, and furthermore 

where 

c (0 = [c1(«),o,...,o] 

C1(i) = U(i)(B(ï)B(i)T)*, 

(4.15) 

(4.16) 

in lüAicA U(i) is an TO x si(i) orthogonal matrix, i.e. U(i)TU(i) = I51(,-); 
furthermore the matrices A(i,j),i ^ j ; z, j ' G { 1 , . . . , k} are determined as the solution 
of the equations 4-9,4-10. 

Proof. From the introduction to this theorem it is clear that each stable multivariable 
lineax system has a unique representation of this form. It remains to be shown that each 
system of this form is indeed minimal and stable. This follows from theorem 4.1 together 
with the fact that the canonical form that is used for the systems with identical singular 
values has the same property: for each choice of the parameters that is allowed the resulting 
system is minimal and stable (cf. [4]). 

• 
Remarks 
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(i) 1£ si = p then one can just as well parametrize Ci(i) by C\{i) = U(i)B(i); U(i) a 
(possibly rectangular) orthogonal matrix. 

(ii) Truncation of the last n — k components of the state vector corresponds to the trun
cation mapping 

(A,B,C,D)~ ((Ik,0)A(Ik,0)T,(Ik,0)B,C(Ik,0)T,D) (4.17) 

The canonical form presented has the property that if truncation is applied, the result 
is again in canonical form. Therefore the resulting lower order system is again minimal 
and stable. 
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