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Abstract This note deals with two related approximations that were recently 

proposed for the loss probability in finite-buffer queues. The purpose of 

the paper is two-fold. First, to provide better insight and more theoretical 

support for both approximations. Second, to show by an experimental study how 

well both approximations perform. An interesting empirical finding is that in 

many cases of practical interest the two approximations provide upper and 

lower bounds on the exact value of the loss probability. 

1 INTRODUCTION 

Consider the finite-capacity GI/GI/c/N+c queue, where any arriving customer 

finding all c servers busy and all N other waiting places occupied is lost. 

It is assumed that the traffic intensity p=AE(S)/c is smaller than 1, where X 

is the arrival rate of customers and E(S) is the mean service time of a cus

tomer. A problem of considerable practical interest is to find the loss prob

ability P being defined as the long-run fraction of customers that are 
loss 

lost. The recent papers Sakasegawa et al (1990) and Tijms (1991) address this 

problem. The first paper proposes the approximation 

(1) P (time) = 
app 

q-Pif.-C"":"'] 
p + p 

- J l + C-1 (00) 

C o pi 

and the second paper gives the approximation 

(2) P (cus) = 
app 

«•»>(' - C * ' I l 
1 - p + p 

„N + c-1 (oo) 

*M=0 i 
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Here {p } and {ir } denote for the corresponding infinite-capacity queue 

the equilibrium distributions of the number of customers present at an arbi-

t ra ry point in time and just prior to an arrival epoch, respectively. 

In Tijms (1991) the approximation for the loss probability is extended 
x 

to the batch-arrival GI /GI/c/N+c queue with partial overflow: 

(l-pjfl-^-qH 
(3) P (cus) = 1 — l—J- , 

yN+C-l a P P ^JI+c-1 (oo) 
P + p C o <i 

where 

M' «r - l m j o " ! " ' p ( x > i - j ' • 

In the batch-arrival queue with partial overflow only those arriving cus

tomers finding no f ree waiting place are lost. For the batch-arrival case the 

traffic intensity p is defined as p=AE(X)E(S)/c, where X denotes the arrival 

ra te of batches and the random variable X denotes the batch size. The distr i-

bution {ir } has the same meaning as bef ore. It is noted that {q } repre-

sents the stationary distribution of the number of customers left behind at a 

service-completion epoch in the infinite-capacity queue. In view of the ap-

proximations (l)-(3), it is natural to consider for the batch-arrival case 

the alternative approximation 

(5) P (time) 
app 

where 

i - p + p y* z 
K K ^ i = 0 i 

Note that the approximations (3) and (5) contain the approximations (1) and 

(2) as special cases. Also, note that by the PASTA property the approxima

tions (3) and (5) are identical when the arrival process of batches is a 

Poisson process. The approximation (3) is exact for the single-server 
x x 

M /GI/l/N+1 queue with Poisson arrivals and the multi-server M /M/c/N+c queue 
with exponential services, see e.g. Tijms (1991). 
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The remainder of the paper is organized as follows. In the sections 2 

and 3 we discuss some theoretical aspects of the two approximations. Under 

certain conditions on the arrival process of batches it will be shown that 

either P (time) £ P (cus) or P (time) s P (cus) is always true r e -
app «pp app app 

gardless of the service-time distribution and the batch-size distribution. 

Section 4 deals with an experimental study of the two approximations. An in-

teresting empirical finding is that in many cases the two approximations 

provide sharp upper and lower bounds on the exact value of the loss probabil-

ity P . 
loss 

SUFFICIËNT CONDITIONS 

The analysis in this section is given under a relaxation of the 

assumption of independently and identically distributed interarrival times of 
x 

the batches. We are concerned with the G /GI/c/N+c queue in which the arrival 

process of batches is a stationary point process. Denoting by X the number 
n 

of customers in the n batch and by S the service time of the k customer, 
J k 

it is assumed that {X } and {S } are i.d.d. sequences, where {X } and {S } 
n k n k 

are mutually independent and are independent of the arrival process. In the 

following the generic variables X and S denote the batch size and the service 

time of a customer. The assumption of partial overflow is made, that is, only 

those arriving customers finding no free waiting place are lost. There are 

N+c waiting places for the customers including any customer in service. The 
(N) long-run fraction of arriving customers that are lost is denoted by P 
loss 

The stationary distribution of the number of customers in the system at an 

arbitrary point in time and just prior to an arrival epoch are denoted by 
(N) (N) 

{p } and {TT } respectively. It is assumed that the traffic intensity 

p=AE(X)E(S)/c is less than 1, where X is the mean arrival ra te of batches. 

This assumption guarantees the existence of the stationary queue-length 

distributions {p } and {n c°} for the corresponding infinite-capacity 

queue. 

In Sakasegawa et al. (1990) three heuristic assumptions, called Assump-

tions 1, 2 and 3, are made to get the approximation (1). We modify those 

assumptions into suitable forms. Assumption 1 automatically holds for our 

model. We f i rs t replace Assumption 2 by the stronger condition 
(A.l) There exists a constant y satisfying p =yp for i=0,l,...,N+c-l. 
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Remark 2.1 Since 5f+c p(N)= 1, (A.l) implies y=(l-p(N))A*,+c"1p(C°)- Hence, 

y is in general different from the normalizing constant for the truncation 
. (oo).N+c 
{ p i }i=o • 

Assumption A.l holds for both the MX/GI/1/N+1 queue and the MX/M/c/N+c 

queue. A direct proof of this result can be found in Tijms (1991). 

Alternatively, this result can be deduced from results in Miyazawa (1989) and 

Miyazawa and Shanthikumar (1991). The assumption (3) in Sakasegawa et al. 

(1990) could be expressed by p =n 

this assumption to the following form: 

(1990) could be expressed by p =n . For the batch-arrival case, we extend 
N+c K+c 

(A.2) x(yN + c _ 1 p(N) E[(X+i-N-c)+] + E(X) p ( N ) l = X E(X) P 
^'-'1=0 1 N+cJ 

(N) 

loss 

where a+=max(0,a). The assumption (A.2) is motivated by considering the flow-

balance equation for the overflow customers. The assumption is exact if 
(N) (N) 

p =ir for i=0,l N+c. Cleariy, the latter equality holds when the 
arrival process is Poisson. 

Theorem 2.1 If the assumptions (A.l) and (A.2) hold, then 

loss 

E^ -c^rc" 1 " 1 1 3 ^^ 
(I-P) E(x) -ptiii'^T'AT'1 Pix>^ 

Proof. From Little's formula for the average number of busy servers, we 

have 

c - l 

c - T (c-i) p(N) = X E(X) E(S)(1-P(N> ) , 
"" i loss 

i = 0 

cf. also Sakasegawa et al (1990). Dividing both sides of this equation by c 

yields 

C _ 1 i ï <N> „ _(N) 
(8) i - i (i - ±) P ;- ' = P ( i - p " " ) . 

loss 
1=0 

In particular, noting that P =0 for N=oo, 
loss 
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(9) i - ï (i - 1 ) P;
w) = P . 

1=0 

We next substitute p =yp of (A.1) into (8). Then, by using (9), we have 

(io) i - (i-p)r - P ( I - P ! N ) )• 
loss 

Similarly, (A.2) implies 

/ T V 8 * E[(X+i-N-c)+] + E(X) p<N) = E(X) P|N) 
" 1 N+c loss 

1=0 

By using this and (A.1), we get 

i = 0 

N + c - 1 N + c - 1 - 1 
y „ (oo) _ _ , v ^ .. _(N) 

= EïxJ Z p i S P{X>J) + Pioss 
1=0 j = 0 

Thus we get (7) from (10) and (11). 

Theorem 2.1 suggests to use the right-hand side of (7) as an 
x 

approximation for the loss probability in the general G /GI/c/N+c queue. We 
denote this approximation by P (time). It is a matter of simple algebra to 

app 

verify that the right-hand sides of (5) and (7) are the same. The 
x x 

approximation P (time) is exact for the M /GI/l/N+1 and M /M/c/N+c queues, 
app 

since (A.1) and (A.2) hold for these models. The approximation P (cus) can 
app 

be obtained by using similar heuristic assumptions. The assumptions 

(B.l) n<N) = vnm) for i=0,l N+c-l 
,_, „ . (N) (N) . (co) (00) 
(B.2) TC = p and TC = p for 1=0,1 c-1 
lead to the approximation P (cus), cf. also Tijms (1991) for an alternative 

app 
derivation. By the PASTA property, the two approximations P (time) and 

app 
P (cus) are identical when the arrival process of batches is Poisson. How-

app 
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ever, it seems very hard to see which of the two approximations is in general 

better because the assumptions of their heuristic derivations are difficult 

to compare. Nevertheless, the comparison of the two approximations is an 

interesting issue. In the next section, we consider this issue for a 

restricted class of arrival processes. 

3 STOCHASTIC ORDERING 

In the following, we use the notion of stochastic ordering. For two distribu-

tions n and v on the real line, we call fx to be stochastically less than v 

and denote it by lts v if 
st 

1 - F(x) £ 1 - G(x) for all real x, 

where F and G are the cumulative distribution functions of /i and v, 

respectively. 

equivalent to 

respectively. It is well known (e.g. see Stoyan (1983)) that \x£ v is 
st 

r+oo -+oo 

<p(x) ii(dx) £ <f>(x) Wdx) for any nondecreasing function <j>. 
-00 -00 

From the relations (3)-(7), we obtain the following result. 

Proposition 3.1 The approximations P (cus) and P (time) increase if the 
(oo) (oofp a p p 

corresponding distributions <TT } and {p } are stochastically increased. 

This monotonicity is very natural and should be satisfied by any 

approximation for the loss probability that uses the equilibrium 

probabilities of the corresponding infinite-capacity queue. 
x 

From now on, we consider subclasses of the GI /GI/c/N+c queue. We first 

assume that the interarrival-time distribution F is NBUE (New Better than 

Used in Expectation), see Stoyan (1983) for the definition of NBUE. Then the 

same argument as used in Miyazawa (1989) to get relation (4.8) of his paper 

yields 

Hence Proposition 3.1 implies that P (cus) s P (time). If F is NWUE, then 
app app 

all inequalities are reversed. Thus we get the following result. 
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Proposïtion 3.2 For the GIX/GI/c/N+c queue with an NBUE (NWUE) interarrival-

time distribution we have 

P (cus) £ (£) P (time). 
app app 

Finally, it is a practically important question whether P (cus) and 
app 

P (time) provide bounds on the exact value of the loss probability P 
app loss 

Of course, this is a very hard problem to answer. We could only deal with 

this problem in an experimental way. Our numerical investigations to be dis-

cussed in the next section lead to the following conjecture. 

x x 
Conjecture. For both the GI /GI/l/N+1 queue and the GI /M/c/N+c queue, it 
holds that 

P (cus) £ P £ P (time) (NBUE interarrival time) 
app loss app 

and 

P £ P (cus) (NWUE interarrival time). 
loss app 

4. NUMERICAL DÏSCUSSION 

Let us f irs t give a number of numerical results. Table 1 deals with the 
x 

single-server D /E /1/N+l queue with batch arrivals. For several constant 

batch sizes and several Erlangian distributions, the approximate values 

P (cus) and P (time) are given together with the exact value of the loss 
app app 

probability P . In the table these values are respectively denoted by 
loss 

appc, appt and exact. Table 2 deals with the multi-server C /M/c/N+c queue 

with single arrivals, where the interarrival time has a Coxian-2 

distribution. Note that a Coxian-2 distributed interarrival time A can be 

represented as A=A with probability 1-b and A=A +A with probability b, 

where A and A are independently, exponentially distributed random variables 

with respective means l/A and l/A . A Coxian-2 distribution is not uniquely 

determined by its mean E(A) and its coëfficiënt of variation c (= the ratio 
A 

of Standard deviation and mean). To fix uniquely the three parameters, we 

consider the following normalizations: 
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Table 1 The loss probability for the D /E /1/N+l queue 

p = 0 . 8 N=10 p = 0 . 9 N=25 p = 0 . 9 5 N=50 

E 
4 

E 
2 

E 
4 

E 
2 

E 
4 

E 
2 

X = l appc 8 .45x l0" 1 0 1 . 0 6 x l 0 - 5 3 . 4 5 x l 0 - 1 1 1 .69x l0 - 6 4 . 3 8 x l O " U 1.41xl0" 6 

app t 2 .46xl0~ 9 1.74xl0" 5 5 . 4 7 x l O " U 2. l l x l O " 6 5 . 4 3 x 1 0 " " 1.57xlO"6 

exac t 1.24xl0~9 1.26xl0" 5 4 . 2 6 x l 0 - 1 1 1.85xl0" 6 4 . 8 9 x l O " U 1.48xl0" 6 

X=3 appc 9 .36xl0~ 9 2 .68x10" 5 8 . 6 0 x l O " U 2 . 3 4 x l 0 - 6 6 . 4 3 x l O " U 1 .66x l0 - 6 

app t 4 . 4 0 x l 0 - 7 1 .47x l0" 4 4 . 0 5 x l 0 " 1 0 4 . 9 6 x l 0 " 6 1.28xl0" 1 0 2.30x10" 6 

exac t 2 .40xl0~ 8 4 . 7 4 x l 0 " 5 1 . 6 6 x l 0 - 1 0 3 . 4 0 x l 0 - 6 9 . 4 1 x l 0 - 1 1 1.98xl0~6 

X=5 appc 1.79xl0"7 9 .06x l0~ 5 2 . 7 1 x l 0 - 1 0 3 . 8 5 x l 0 - 6 1.02xl0" 1 0 2 . 0 1 x l 0 " 6 

app t 2 . 0 8 x l 0 " 4 2 . 0 2 x l 0 " 3 4 . 5 5 x l 0 " 9 1.36xlO"5 3 . 4 2 x l 0 " 1 0 3.53x10" 6 

exac t 5 .92x l0" 7 2 .10x10" 4 7 . 2 3 x l 0 " 1 0 6 .74x l0" 6 1.91xl0" 1 0 2 . 7 6 x l 0 " 6 

Table 2 The loss probability for the C /M/c/N+c queue with c=10 

p=0.5 

B 

N=25 

G 

p=0.8 

B 

N=100 

G 

p=0.9 

B 

N=200 

G 
2 c c =5 
A 

appc 

appt 

exact 

c =0.7 appc 

appt 

exact 

1.84xl0"5 3 .93xl0~ 4 

1.29xl0"5 2 . 4 8 x l 0 " 4 

1.35xl0"5 3 .25xl0~ 4 

5 .78x l0" 1 2 1 .04xlO" n 

6.77xlO"1 Z 1 .20xl0 - 1 1 

5.90xl0" 1 2 1.08xlO"U 

3 . 7 1 x l 0 " 5 9 . 0 0 x l 0 " 5 

3 . 2 2 x l 0 " 5 7 . 7 5 x l 0 " 5 

3 . 2 0 x l 0 " 5 8 . 5 3 x l 0 " 5 

2 . 0 5 x l 0 ~ 1 3 2 . 4 6 x l 0 " 1 3 

2 . 1 4 x l 0 " 1 3 2 . 5 6 x l 0 " 1 3 

2 . 0 6 x l 0 - 1 3 2 . 4 9 x l 0 " 1 3 

5 . 5 8 x l 0 - 5 7 . 9 5 x l 0 " 5 

5 . 2 1 x l 0 " 5 7 . 4 1 x l 0 " 5 

5 . 2 0 x l 0 " 5 7 . 7 6 x l 0 " 5 

9 . 3 8 x l 0 - 1 3 l . O l x l O " 1 3 

9 . 5 6 x l O - 1 3 1 . 03x l0" 1 3 

9 . 4 1 x l 0 - 1 3 1 .02xlO"1 2 

(i) Gamma normaltzation (G). The parameters b, X and X are chosen such 

that the third moment of the Coxian-2 distribution is the same as the 

third moment of the gamma distribution that is uniquely determined by 

E(A) and c . 

(ii) Balanced means (B). For 0.5^c <1, the parameter b is taken equal to 1, 
A 

2 
i.e. the interarrival time is the sum of two exponentials. For c £l the 

-X t -X t 
parameters of the Coxian-2 density pAe" 1 + p X e 2 are chosen such that p / A i = p,/X2 
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The following conclusions can be drawn from our numerical investigations: 

The two approximations are of a comparable quality with a few exceptions 

in the batch-arrival queue. Each of the two approximations is accurately 

enough to be used for dimensioning the buffer size when a (very) small 

loss probability is required (as is the case in many telecommunication 

problems). 

In many cases of practical interest the two approximations provide sharp 

upper and lower bounds on the exact value of the loss probabhility. 

It is striking how remarkably accurate the approximations are for extremely 

small loss probabilities. This finding was also seen for highly variable 

interarrival times. For example, for the C /M/c/N+c queue with c =50 (gamma), 
2 A 

-12 p=0.9, c=10 and N=3000, we have the approximate values P (cus)=1.32xl0 
-12 -!I and P (time)=l. 10x10 and the exact value P =1.21x10 . Also, it is 

app loss 

remarkable how well the two approximations match the dependency of the loss 

probability on the shape of the arrival process. 

To conclude this section, the following recommendations are made for the 

use of the approximations for engineering purposes: 

(1) In case both approximations are computable, use the approximation 

- j p (cus) + P (time)i 
2 ^ app app J 

(2) For both the GIX/GI/1/N+1 queue and the GIX/M/c/N+c queue, use the 

bounds 

P (cus) £ P S P (time) if c2 £ 1 
app loss app A 

and 

P (cus) £ P if c2 £ 1. 
app loss A 

X 2 
For the GI /M/c/N+c queue with c >1 the approximation P (time) does not 

A app 

provide consistently an upper or lower bound on P as can be seen from 
x 

Table 2. Also, for the GI /GI/c/N+c with c>l and nonexponential services, it 
2 

is not to be expected that P (cus)^(£)P generally holds if c s(>)i-
app loss A 

otherwise, it would be true that P (cus)=P for the M/GI/c/N+c queue, 
app loss 

but this equality does not hold for this multi-server case when the service 

times are non-exponential. 

9 



Acknowledgement 

We are indebted to Professor H. Sakasegawa for valuable discussions. 

References 

1. Miyazawa, M. (1989), Comparison of the loss probability of the 

GI /GI/1/k queues with a common traffic intensity, Journal of the Opera-

tions Research Society of Japan 32: 505-516. 

2. Miyazawa, M. and Shanthikumar, J.G. (1991), Monotonicity of the loss 

probabilities of single server finite queues with respect to convex 

order of arrival or service processes, Probability in the Engineering 

and Informational Sciences, 5: 43-52. 

3. Sakasegawa, H., Miyazawa, M. and Yamazaki, G. (1990), Evaluating the 

overflow probability using the infinite queue (submitted for publication 

to Management Science). 

4. Stoyan, D. (1983), Comparison methods for queues and other stochastic 

models. Edited with revision by D.J. Daley, John Wiley & Sons, New York. 

5. Tijms, H.C. (1991), Heuristics for finite-buffer queues (to appear in 

Probability in the Engineering and Informational Sciences (1992)). 

HT 923Tl.chl 

10 


