## VU Research Portal

## A synopsis of the smoothing formulae associated with the Kalman Filter

Merkus, H.R.; Pollock, D.S.G.; de Vos, A.F.

## document version

Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

## citation for published version (APA)

Merkus, H. R., Pollock, D. S. G., \& de Vos, A. F. (1991). A synopsis of the smoothing formulae associated with the Kalman Filter. (Serie Research Memoranda; No. 1991-79). Faculty of Economics and Business Administration, Vrije Universiteit Amsterdam.

## General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain
You may freely distribute the URL identifying the publication in the public portal ?

## Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

## E-mail address:

vuresearchportal.ub@vu.nl

# Serie Research Memoranda 

# A Synopsis of the Smoothing Formulae Associated with the Kalman Filter 

## H.R. Merkus

D.S.G. Pollock
A.F. de Vos

Research Memorandum 1991.79
November 1991

*

# A SYNOPSIS OF THE SMOOTHING FORMULAE ASSOCIATED WITH THE KALMAN FILTER 

by H.R. Merkus, D.S.G. Pollock and A.F. de Vos<br>Vrije Universiteit, Amsterdam, The Netherlands.


#### Abstract

This paper provides straightforward derivations of a wide variety of smoothing formulae which are associated with the Kalman filter. The smoothing operations are of perennial interest in the fields of communications engineering and signal processing. Recently they have begun to interest statisticians. It is often asserted that it is tedious and difficult to derive the formulae. We show that this need not be so.


## 1. Introduction

The object of this paper is to provide a synopsis of the various algorithms which can be used for the retrospective enhancement of the state-vector estimates generated by the Kalman filter.

In its normal mode of operation, the Kalman filter generates an estimate of the current state of a system using information from the past and the present. Often an estimate can be improved greatly in the light of subsequent observations. In many real-time signal-processing applications, there is scope for a brief delay between the reception of a signal and the provision of the state estimate; and this delay can be used for gathering and processing additional observations. The classical fixed-lag smoothing algorithm is then the appropriate device for improving the estimate.

In recent years, statisticians have begun to use the Kalman filter in contexts where there is virtually no real-time constraint; and their attention has been concentrated upon the algorithms of fixed-interval smoothing which bring all of the information in a fixed sample to bear upon the estimation of a sequence of state vectors. The consequence of this renewed interest has been the discovery of several new algorithms as well as the rediscovery of older, partly-forgotten, algorithms.

Diverse approaches have been taken in the derivation of the various algorithms, and a welter of alternative notation has arisen. We fear that, nowadays, only the few veritable cognoscenti feel at ease in this specialised but highly profitable area of statistical theory; and we believe that the time is ripe for a synopsis of the results which aims to be both brief and accessible.

In pursuance of this aim, we feel bound to begin with a complete and self-contained derivation of the Kalman filter. With the help of the calculus of conditional expectations, this can be accomplished within a page. The same

SMOOTHING FORMULAE
calculus is the ideal method for deriving the majority of the smoothing algorithms. The exceptions are the forward-backward algorithms, presented in the final section, for which a Bayesian approach is more appropriate.

## 2. Equations of the Kalman Filter

We shall present the basic equations of the Kalman filter in the briefest possible manner. The state-space model, which underlies the Kalman filter, consists of two equations

$$
\begin{array}{lr}
y_{t}=H_{t} \xi_{t}+\eta_{t}, & \text { Observation Equation } \\
\xi_{t}=\Phi_{t} \xi_{t-1}+\nu_{t}, & \text { Transition Equation } \tag{2}
\end{array}
$$

where $y_{t}$ is the observation on the system and $\xi_{t}$ is the state vector. The observation error $\eta_{t}$ and the state disturbance $\nu_{t}$ are mutually uncorrelated random vectors of zero mean with dispersion matrices

$$
\begin{equation*}
D\left(\eta_{t}\right)=\Omega_{t} \quad \text { and } \quad D\left(\nu_{t}\right)=\Psi_{t} \tag{3}
\end{equation*}
$$

It is assumed that the matrices $H_{t}, \Phi_{t}, \Omega_{t}$ and $\Psi_{t}$ are known for all $t=1, \ldots, n$ and that an initial estimate $x_{0}$ is available for the state vector $\xi_{0}$ at time $t=0$ together with a dispersion matrix $D\left(\xi_{0}\right)=P_{0}$. The empirical information available at time $t$ is the set of observations $\mathcal{I}_{t}=\left\{y_{1}, \ldots, y_{t}\right\}$.

The Kalman-filter equations determine the state-vector estimates $x_{t \mid t-1}=$ $E\left(\xi_{t} \mid \mathcal{I}_{t-1}\right)$ and $x_{t}=E\left(\xi_{t} \mid \mathcal{I}_{t}\right)$ and their associated dispersion matrices $P_{t \mid t-1}$ and $P_{t}$. From $x_{t \mid t-1}$, the prediction $\hat{y}_{t \mid t-1}=H_{t} x_{t \mid t-1}$ is formed which has a dispersion matrix $F_{t}$. A summary of these equations is as follows:

$$
\begin{align*}
x_{t \mid t-1} & =\Phi_{t} x_{t-1}, & & \text { State Prediction }  \tag{4}\\
P_{t \mid t-1} & =\Phi_{t} P_{t-1} \Phi_{t}^{\prime}+\Psi_{t}, & & \text { Prediction Dispersion }  \tag{5}\\
e_{t} & =y_{t}-H_{t} x_{t \mid t-1}, & & \text { Prediction Error }  \tag{6}\\
F_{t} & =H_{t} P_{t \mid t-1} H_{t}^{\prime}+\Omega_{t}, & & \text { Error Dispersion }  \tag{7}\\
K_{t} & =P_{t \mid t-1} H_{t}^{\prime} F_{t}^{-1}, & & \text { Kalman Gain }  \tag{8}\\
x_{t} & =x_{t \mid t-1}+K_{t} e_{t}, & & \text { State Estimate }  \tag{9}\\
P_{t} & =\left(I-K_{t} H_{t}\right) P_{t \mid t-1} . & & \text { Estimate Dispersion } \tag{10}
\end{align*}
$$

We shall also define

$$
\begin{align*}
M_{t} & =\Phi_{t} K_{t-1} \quad \text { and }  \tag{11}\\
\Lambda_{t} & =\Phi_{t}\left(I-K_{t-1} H_{t-1}\right) . \tag{12}
\end{align*}
$$

## SMOOTHING FORMULAE

Alternative expressions are available for $P_{t}$ and $K_{t}$ :

$$
\begin{align*}
& P_{t}=\left(P_{t \mid t-1}^{-1}+H_{t}^{\prime} \Omega_{t}^{-1} H_{t}\right)^{-1}  \tag{13}\\
& K_{t}=P_{t} H_{t}^{\prime} \Omega_{t}^{-1} \tag{14}
\end{align*}
$$

By applying the well-known matrix inversion lemma to the expression on the RHS of (13), we obtain the original expression for $P_{t}$ given under (10). To verify the identity $P_{t \mid t-1} H_{t}^{\prime} F_{t}^{-1}=P_{t} H_{t}^{\prime} \Omega_{t}^{-1}$ which equates (8) and (14), we write it as $P_{t}^{-1} P_{t \mid t-1} H_{t}^{\prime}=H_{t}^{\prime} \Omega_{t}^{-1} F_{t}$. The latter is readily confirmed using the expression for $P_{t}$ from (13) and the expression for $F_{t}$ from (7).

A variant of the Kalman filter known as the information filter is available which replaces the variables $x_{t \mid t-1}$ and $x_{t}$ of (4) and (9) respectively by the variables $a_{t \mid t-1}=P_{t \mid t-1}^{-1} x_{t \mid t-1}$ and $a_{t}=P_{t}^{-1} x_{t}$, thereby transforming the equations into

$$
\begin{align*}
a_{t \mid t-1} & =P_{t \mid t-1}^{-1} \Phi_{t} P_{t-1} a_{t-1}, & & x_{t \mid t-1}=P_{t \mid t-1} a_{t \mid t-1}  \tag{15}\\
a_{t} & =a_{t \mid t-1}+H_{t}^{\prime} \Omega_{t}^{-1} y_{t}, & & x_{t}=P_{t} a_{t} . \tag{16}
\end{align*}
$$

The first of these comes immediately from (4). The second is established by writing the combination of equations (9) and (6) as

$$
\begin{equation*}
x_{t}=\left(I-K_{\mathrm{t}} H_{t}\right) x_{t \mid \mathfrak{t}-1}+K_{t} y_{t} \tag{17}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
a_{t}=P_{t}^{-1}\left(I-K_{t} H_{t}\right) P_{t \mid t-1} a_{t \mid t-1}+P_{t}^{-1} K_{t} y_{t} \tag{18}
\end{equation*}
$$

whence the result is obtained with the use of the equations (10) and (14). The inverse matrices $P_{t \mid t-1}^{-1}$ and $P_{t}^{-1}$ are obtained with reference to (5) and (13).
Derivation of the Kalman Filter. The equations of the Kalman filter may be derived using the ordinary algebra of conditional expectations which indicates that, if $x, y$ are jointly distributed variables which bear the linear relationship $E(y \mid x)=\alpha+B\{x-E(x)\}$, then

$$
\begin{align*}
& E(y \mid x)=E(y)+C(y, x) D^{-1}(x)\{x-E(x)\}  \tag{19}\\
& D(y \mid x)=D(y)-C(y, x) D^{-1}(x) C(x, y)  \tag{20}\\
& E\{E(y \mid x)\}=E(y)  \tag{21}\\
& D\{E(y \mid x)\}=C(y, x) D^{-1}(x) C(x, y)  \tag{22}\\
& D(y)=D(y \mid x)+D\{E(y \mid x)\}  \tag{23}\\
& C\{y-E(y \mid x), x\}=0 \tag{24}
\end{align*}
$$

## SMOOTHING FORMULAE

Of the equations listed under (4)-(10), those under (6) and (8) are merely definitions.

To demonstrate equation (4), we use (21) to show that

$$
\begin{align*}
E\left(\xi_{t} \mid \mathcal{I}_{t-1}\right) & =E\left\{E\left(\xi_{t} \mid \xi_{t-1}\right) \mid \mathcal{I}_{t-1}\right\} \\
& =E\left\{\Phi_{t} \xi_{t-1} \mid \mathcal{I}_{t-1}\right\}  \tag{25}\\
& =\Phi_{t} x_{t-1} .
\end{align*}
$$

We use (23) to demonstrate equation (5):

$$
\begin{align*}
D\left(\xi_{t} \mid \mathcal{I}_{t-1}\right) & =D\left(\xi_{t} \mid \xi_{t-1}\right)+D\left\{E\left(\xi_{t} \mid \xi_{t-1}\right) \mid \mathcal{I}_{t-1}\right\} \\
& =\Psi_{t}+D\left\{\Phi_{t} \xi_{t-1} \mid \mathcal{I}_{t-1}\right\}  \tag{26}\\
& =\Psi_{t}+\Phi_{t} P_{t-1} \Phi_{t}^{\prime} .
\end{align*}
$$

To obtain equation (7), we substitute (1) into (6) to give $e_{t}=H_{t}\left(\xi_{t}-\right.$ $\left.x_{t \mid t-1}\right)+\eta_{t}$. Then, in view of the statistical independence of the terms on the RHS, we have

$$
\begin{align*}
D\left(e_{t}\right) & =D\left\{H_{t}\left(\xi_{t}-x_{t \mid t-1}\right)\right\}+D\left(\eta_{t}\right)  \tag{27}\\
& =H_{t} P_{t \mid t-1} H_{t}^{\prime}+\Omega_{t}=D\left(y_{t} \mid \mathcal{I}_{t-1}\right) .
\end{align*}
$$

To demonstrate the updating equation (9), we begin by noting that

$$
\begin{align*}
C\left(\xi_{t}, y_{t} \mid \mathcal{I}_{t-1}\right) & =E\left\{\left(\xi_{t}-x_{t \mid t-1}\right) y_{t}^{\prime}\right\} \\
& =E\left\{\left(\xi_{t}-x_{t \mid t-1}\right)\left(H_{t} \xi_{t}+\eta_{t}\right)^{\prime}\right\}  \tag{28}\\
& =P_{t \mid t-1} H_{t}^{\prime} .
\end{align*}
$$

It follows from (19) that

$$
\begin{align*}
E\left(\xi_{t} \mid \mathcal{I}_{t}\right) & =E\left(\xi_{t} \mid \mathcal{I}_{t-1}\right)+C\left(\xi_{t}, y_{t} \mid \mathcal{I}_{t-1}\right) D^{-1}\left(y_{t} \mid \mathcal{I}_{t-1}\right)\left\{y_{t}-E\left(y_{t} \mid \mathcal{I}_{t-1}\right)\right\} \\
& =x_{t \mid t-1}+P_{t \mid t-1} H_{t}^{\prime} F_{t}^{-1} e_{t} \tag{29}
\end{align*}
$$

The dispersion matrix under (10) for the updated estimate is obtained via equation (20):

$$
\begin{align*}
D\left(\xi_{t} \mid \mathcal{I}_{t}\right) & =D\left(\xi_{t} \mid \mathcal{I}_{t-1}\right)-C\left(\xi_{t}, y_{t} \mid \mathcal{I}_{t-1}\right) D^{-1}\left(y_{t} \mid \mathcal{I}_{t-1}\right) C\left(y_{t}, \xi_{t} \mid \mathcal{I}_{t-1}\right)  \tag{30}\\
& =P_{t \mid t-1}-P_{t \mid t-1} H_{t}^{\prime} F_{t}^{-1} H_{t} P_{t \mid t-1} .
\end{align*}
$$

Innovations and the Information Set. The remaining task of this section is to establish that the information of $\mathcal{I}_{t}=\left\{y_{1}, \ldots, y_{t}\right\}$ is also conveyed by the prediction errors or innovations $\left\{e_{1}, \ldots, e_{t}\right\}$ and that the latter are mutually uncorrelated random variables.

First we demonstrate that each error $e_{t}$ is a linear function of $y_{1}, \ldots, y_{t}$. From equations (9), (6) and (4), or, equally, from equations (17) and (4), we obtain the equation $x_{t \mid t-1}=\Lambda_{t} x_{t-1 \mid t-2}+M_{t} y_{t-1}$. Repeated backsubstitution gives

$$
\begin{equation*}
x_{t \mid t-1}=\sum_{j=1}^{t-1} \Lambda_{t, j+2} M_{j+1} y_{j}+\Lambda_{t, 2} x_{1 \mid 0} \tag{31}
\end{equation*}
$$

where $\Lambda_{t, j+2}=\Lambda_{t} \cdots \Lambda_{j+2}$ is a product of matrices which specialises to $\Lambda_{t, t}=$ $\Lambda_{t}$ and to $\Lambda_{t, t+1}=I$. It follows that

$$
\begin{align*}
e_{t} & =y_{t}-H_{t} x_{t \mid t-1} \\
& =y_{t}-H_{t} \sum_{j=1}^{t-1} \Lambda_{t, j+2} M_{j+1} y_{j}-H_{t} \Lambda_{t, 2} x_{1 \mid 0} \tag{32}
\end{align*}
$$

Next, we demonstrate that each $y_{t}$ is a linear function of $e_{1}, \ldots, e_{t}$. By backsubstitution in the equation $x_{t \mid t-1}=\boldsymbol{\Phi}_{t} x_{t-1 \mid t-2}+M_{t} e_{t-1}$ obtained from (4) and (9), we get

$$
\begin{equation*}
x_{t \mid t-1}=\sum_{j=1}^{t-1} \Phi_{t, j+2} M_{j+1} e_{j}+\Phi_{t, 2} x_{1 \mid 0}, \tag{33}
\end{equation*}
$$

wherein $\Phi_{t, j+2}=\Phi_{t} \cdots \Phi_{j+2}$ is a product of matrices which specialises to $\Phi_{t, t}=$ $\Phi_{t}$ and to $\Phi_{t, t+1}=I$. It follows that

$$
\begin{align*}
y_{t} & =e_{t}+H_{t} x_{t \mid t-1} \\
& =e_{t}+H_{t} \sum_{j=1}^{t-1} \Phi_{t, j+2} M_{j+1} e_{j}+H_{t} \Phi_{t, 2} x_{1 \mid 0} \tag{34}
\end{align*}
$$

Given that there is a one-to-one linear relationship between the observations and the prediction errors, it follows that we can represent the information set in terms of either. Thus we have $\mathcal{I}_{t-1}=\left\{e_{1}, \ldots, e_{t-1}\right\}$; and, given that $e_{t}=y_{t}-E\left(y_{t} \mid \mathcal{I}_{t-1}\right)$, it follows from (24) that $e_{t}$ is uncorrelated with the preceding errors $e_{1}, \ldots, e_{t-1}$. The result indicates that the prediction errors are mutually uncorrelated.

## 3. The Smoothing Operations

The object of smoothing is to improve our estimate $x_{t}$ of the state vector $\xi_{t}$ using information which has arisen subsequently. For the succeeding observations $\left\{y_{t+1}, y_{t+2}, \ldots\right\}$ are bound to convey information about the state of the system which can supplement the information $\mathcal{I}_{t}=\left\{y_{1}, \ldots, y_{t}\right\}$ which was available at time $t$.

## SMOOTHING FORMULAE

There are several ways in which we might effect a process of smoothing. In the first place, there is fixed-point smoothing. This is used whenever the object is to enhance the estimate of a single state variable $\xi_{t}$ repeatedly, using successive observations. The resulting sequence of estimates is described by

$$
\begin{equation*}
\left\{x_{t \mid n}=E\left(\xi_{t} \mid \mathcal{I}_{n}\right) ; n=t+1, t+2, \ldots\right\} . \quad \text { Fixed-Point Smoothing } \tag{35}
\end{equation*}
$$

The second mode of smoothing is fixed-lag smoothing. In this case, enhanced estimates of successive state vectors are generated with a fixed lag of, say, $t$ periods:

$$
\begin{equation*}
\left\{x_{n-t \mid n}=E\left(\xi_{n-t} \mid \mathcal{I}_{n}\right) ; n=t+1, t+2, \ldots\right\} . \quad \text { Fixed-Lag Smoothing } \tag{36}
\end{equation*}
$$

Finally, there is fixed-interval smoothing. This is a matter of revising each of the state estimates for a period running from $t=1$ to $t=n$ once the full set of observation in $\mathcal{I}_{n}=\left\{y_{1}, \ldots, y_{n}\right\}$ has become available. The sequence of revised estimates is

$$
\begin{equation*}
\left\{x_{n-t \mid n}=E\left(\xi_{n-t} \mid \mathcal{I}_{n}\right) ; t=1,2, \ldots, n\right\} . \quad \text { Fized-Interval Smoothing } \tag{37}
\end{equation*}
$$

Here, instead of $x_{t \mid n}$, we have taken $x_{n-t \mid n}$ as the generic element, which gives the sequence in reverse order. This is to reflect the fact that, with most algorithms, the smoothed estimates are generated by running backwards through the initial set of estimates.

There is also a variant of fixed-interval smoothing which we shall describe as Intermittent Smoothing. For, it transpires that, if the fixed-interval smoothing operation is repeated periodically to take account of new data, then some use can be made of the products of the previous smoothing operation.

For each mode of smoothing, there is an appropriate recursive formula. We shall derive these formulae, in the first instance, from a general expression for the expectation of the state vector $\xi_{t}$ conditional upon the information contained in the set of innovations $\left\{e_{1}, \ldots, e_{n}\right\}$ which we have shown to be identical to the information contained in the observations $\left\{y_{1}, \ldots, y_{n}\right\}$.

## 4. Conditional Expectations and Dispersions of the State Vector

Given that the sequence $e_{1}, \ldots, e_{n}$ of Kalman-filter innovations are mutually independent vectors with zero expectations, it follows from (19) that

$$
\begin{equation*}
E\left(\xi_{t} \mid \mathcal{I}_{n}\right)=E\left(\xi_{t}\right)+\sum_{j=1}^{n} C\left(\xi_{t}, e_{j}\right) D^{-1}\left(e_{j}\right) e_{j} \tag{38}
\end{equation*}
$$

However, the sum is recursive in the sense that

$$
\begin{equation*}
E\left(\xi_{t} \mid \mathcal{I}_{j}\right)=E\left(\xi_{t} \mid \mathcal{I}_{j-1}\right)+C\left(\xi_{t}, e_{j}\right) D^{-1}\left(e_{j}\right) e_{j} \tag{39}
\end{equation*}
$$

and so we have

$$
\begin{equation*}
E\left(\xi_{t} \mid \mathcal{I}_{n}\right)=E\left(\xi_{t} \mid \mathcal{I}_{m}\right)+\sum_{j=m+1}^{n} C\left(\xi_{t}, e_{j}\right) D^{-1}\left(e_{j}\right) e_{j} \tag{40}
\end{equation*}
$$

In a similar way, we see from equation (20) that the dispersion matrix satisfies

$$
\begin{equation*}
D\left(\xi_{t} \mid \mathcal{I}_{n}\right)=D\left(\xi_{t} \mid \mathcal{I}_{m}\right)-\sum_{j=m+1}^{n} C\left(\xi_{t}, e_{j}\right) D^{-1}\left(e_{j}\right) C\left(e_{j}, \xi_{t}\right) \tag{41}
\end{equation*}
$$

The task of evaluating the expressions under (40) and (41) is to find the generic covariance $C\left(\xi_{t}, e_{k}\right)$. For this purpose, we must develop a recursive formula which represents $e_{k}$ in terms of $\xi_{t}-E\left(\xi_{t} \mid \mathcal{I}_{t-1}\right)$ and in terms of the state disturbances and observation errors which occur from time $t$.

Consider the expression for the innovation

$$
\begin{align*}
e_{k} & =y_{k}-H_{k} x_{k \mid k-1}  \tag{42}\\
& =H_{k}\left(\xi_{k}-x_{k \mid k-1}\right)+\eta_{k}
\end{align*}
$$

Here the term $\xi_{k}-x_{k \mid k-1}$ follows a recursion which is indicated by the equation

$$
\begin{equation*}
\xi_{k}-x_{k \mid k-1}=\Lambda_{k}\left(\xi_{k-1}-x_{k-1 \mid k-2}\right)+\left(\nu_{k}-M_{k} \eta_{k-1}\right) \tag{43}
\end{equation*}
$$

The latter comes from subtracting from equation (2) the equation $x_{t \mid t-1}=$ $\Lambda_{t} x_{t-1 \mid t-2}+M_{t}\left(H_{t-1} \xi_{t-1}+\eta_{t-1}\right)$, obtained by substituting (1) into (17) and putting the result, lagged one period, into (4). By running the recursion from time $k$ back to time $t$, we may deduce that

$$
\begin{equation*}
\xi_{k}-x_{k \mid k-1}=\Lambda_{k, t+1}\left(\xi_{t}-x_{t \mid t-1}\right)+\sum_{j=t}^{k-1} \Lambda_{k, j+2}\left(\nu_{j+1}-M_{j+1} \eta_{j}\right) \tag{44}
\end{equation*}
$$

wherein $\Lambda_{k, k+1}=I$ and $\Lambda_{k, k}=\Lambda_{k}$. It follows from (42) and (44) that, when $k \geq t$,

$$
\begin{align*}
C\left(\xi_{t}, e_{k}\right) & =E\left\{\xi_{t}\left(\xi_{t}-x_{t \mid t-1}\right) \Lambda_{k, t+1}^{\prime} H_{k}^{\prime}\right\} \\
& =P_{t \mid t-1} \Lambda_{k, t+1}^{\prime} H_{k}^{\prime} \tag{45}
\end{align*}
$$

Using the identity $\Phi_{t+1} P_{t}=\Lambda_{t+1} P_{t \mid t-1}$ which comes via (10), we get for $k>t$

$$
\begin{equation*}
C\left(\xi_{t}, e_{k}\right)=P_{t} \Phi_{t+1}^{\prime} \Lambda_{k, t+2}^{\prime} H_{k}^{\prime} \tag{46}
\end{equation*}
$$

Next we note that

$$
\begin{equation*}
C\left(\xi_{t+1}, e_{k}\right)=P_{t+1 \mid t} \Lambda_{k, t+2}^{\prime} H_{k}^{\prime} . \tag{47}
\end{equation*}
$$

## SMOOTHING FORMULAE

It follows, from comparing (46) and (47), that

$$
\begin{equation*}
C\left(\xi_{t}, e_{k}\right)=P_{t} \Phi_{t+1}^{\prime} P_{t+1 \mid t}^{-1} C\left(\xi_{t+1}, e_{k}\right) \tag{48}
\end{equation*}
$$

If we substitute the expression under (45) into the formula of (40) where $m \geq t-1$, and if we set $D^{-1}\left(e_{j}\right)=F_{j}^{-1}$, then we get

$$
\begin{align*}
E\left(\xi_{t} \mid \mathcal{I}_{n}\right) & =E\left(\xi_{t} \mid \mathcal{I}_{m}\right)+\sum_{j=m+1}^{n} C\left(\xi_{t}, e_{j}\right) D^{-1}\left(e_{j}\right) e_{j} \\
& =E\left(\xi_{t} \mid \mathcal{I}_{m}\right)+\sum_{j=m+1}^{n} P_{t \mid t-1} \Lambda_{j, t+1}^{\prime} H_{j}^{\prime} F_{j}^{-1} e_{j}  \tag{49}\\
& =E\left(\xi_{t} \mid \mathcal{I}_{m}\right)+P_{t \mid t-1} \Lambda_{m+1, t+1}^{\prime} \sum_{j=m+1}^{n} \Lambda_{j, m+2}^{\prime} H_{j}^{\prime} F_{j}^{-1} e_{j} .
\end{align*}
$$

An expression for the dispersion matrix is found in a similar way:

$$
\begin{align*}
& D\left(\xi_{t} \mid \mathcal{I}_{n}\right)=D\left(\xi_{t} \mid \mathcal{I}_{m}\right) \\
& \quad-P_{t \mid t-1} \Lambda_{m+1, t+1}^{\prime}\left\{\sum_{j=m+1}^{n} \Lambda_{j, m+2}^{\prime} H_{j}^{\prime} F_{j}^{-1} H_{j} \Lambda_{j, m+2}\right\} \Lambda_{m+1, t+1} P_{t \mid t-1} \tag{50}
\end{align*}
$$

Notice that the sums in the two final expressions may be accumulated using recursions running backwards in time of the form

$$
\begin{align*}
g_{t} & =\sum_{j=t}^{n} \Lambda_{j, t+1}^{\prime} H_{j}^{\prime} F_{j}^{-1} e_{j}  \tag{51}\\
& =H_{t}^{\prime} F_{t}^{-1} e_{t}+\Lambda_{t+1}^{\prime} q_{t+1}
\end{align*}
$$

and

$$
\begin{align*}
Q_{t} & =\sum_{j=t}^{n} \Lambda_{j, t+1}^{\prime} H_{j}^{\prime} F_{j}^{-1} H_{j} \Lambda_{j, t+1}  \tag{52}\\
& =H_{t}^{\prime} F_{t}^{-1} H_{t}+\Lambda_{t+1}^{\prime} Q_{t+1} \Lambda_{t+1} .
\end{align*}
$$

These recursions are initiated with $q_{n}=H_{n}^{\prime} F_{n}^{-1} e_{n}$ and $Q_{n}=H_{n}^{\prime} F_{n}^{-1} H_{n}$.

## 5. The Classical Smoothing Algorithms

An account of the classical smoothing algorithms is to be found in the book by Anderson and Moore [1] which has become a standard reference for the Kalman filter.

## SMOOTHING FORMULAE

Anderson and Moore have adopted a method for deriving the filtering equations which depends upon an augmented state-transition equation wherein the enlarged state vector contains a sequence of the state vectors from the original transition equation. This approach is common to several authors including Willman [13] who deals with fixed-point smoothing, Premier and Vacroux [11] who treat fixed-lag smoothing and Farooq and Mahalanabis [8] who treat fixedinterval smoothing. We believe that an approach via the calculus of conditional expectations is more direct.
The Fixed-Point Smoother. Of the classical smoothing algorithms, the fixed-point smoothing equations are the easiest to derive. The task is as follows: given $x_{t \mid n}=E\left(\xi_{t} \mid e_{1}, \ldots, e_{n}\right)$, we must find an expression for $x_{t \mid n+1}=$ $E\left(\xi_{t} \mid e_{1}, \ldots, e_{n+1}\right)$ with $n \geq t$. That is to say, we must enhance the estimate of $\xi_{t}$ by incorporating the extra information which is afforded by the new innovation $e_{n+1}$. The formula is simply

$$
\begin{equation*}
E\left(\xi_{t} \mid \mathcal{I}_{n+1}\right)=E\left(\xi_{t} \mid \mathcal{I}_{n}\right)+C\left(\xi_{t}, e_{n+1}\right) D^{-1}\left(e_{n+1}\right) e_{n+1} \tag{53}
\end{equation*}
$$

Now, (45) gives

$$
\begin{align*}
C\left(\xi_{t}, e_{n}\right) & =P_{t \mid t-1} \Lambda_{n, t+1}^{\prime} H_{n}^{\prime} \\
& =L_{n} H_{n}^{\prime} \tag{54}
\end{align*}
$$

and

$$
\begin{align*}
C\left(\xi_{t}, e_{n+1}\right) & =P_{t \mid t-1} \Lambda_{n+1, t+1}^{\prime} H_{n+1}^{\prime}  \tag{55}\\
& =L_{n} \Lambda_{n+1}^{\prime} H_{n+1}^{\prime}
\end{align*}
$$

Therefore we may write the fixed-point algorithm as

$$
\begin{align*}
& E\left(\xi_{t} \mid \mathcal{I}_{n+1}\right)=E\left(\xi_{t} \mid \mathcal{I}_{n}\right)+L_{n+1} H_{n+1}^{\prime} F_{n+1}^{-1} e_{n+1}  \tag{56}\\
& \text { where } \quad L_{n+1}=L_{n} \Lambda_{n+1}^{\prime} \quad \text { and } \quad L_{t}=P_{t \mid t-1} .
\end{align*}
$$

The accompanying dispersion matrix can be calculated from

$$
\begin{equation*}
D\left(\xi_{t} \mid \mathcal{I}_{n+1}\right)=D\left(\xi_{t} \mid \mathcal{I}_{n}\right)-L_{n+1} H_{n+1}^{\prime} F_{n+1}^{-1} H_{n+1} L_{n+1}^{\prime} \tag{57}
\end{equation*}
$$

The fixed-point smoother is initiated with values for $E\left(\xi_{t} \mid \mathcal{I}_{t}\right), D\left(\xi_{t} \mid \mathcal{I}_{t}\right)$ and $L_{t}=P_{t \mid t-1}$, which are provided by the Kalman filter. From these initial quantities, a sequence of enhanced estimates of $\xi_{t}$ is calculated recursively using subsequent observations. The values of $e_{n+1}, F_{n+1}$ and $K_{n}$, needed in computing (56) and (57), are also provided by the Kalman filter, which runs concurrently with the smoother.
The Fixed-Interval Smoother. The next version of the smoothing equation to be derived is the fixed-interval form. Consider using the identity of (48) to rewrite equation (40), with $m$ set to $t$, as

$$
\begin{equation*}
E\left(\xi_{t} \mid \mathcal{I}_{n}\right)=E\left(\xi_{t} \mid \mathcal{I}_{t}\right)+P_{t} \Phi_{t+1}^{\prime} P_{t+1 \mid t}^{-1} \sum_{j=t+1}^{n} C\left(\xi_{t+1}, e_{j}\right) D^{-1}\left(e_{j}\right) e_{j} \tag{58}
\end{equation*}
$$

## SMOOTHING FORMULAE

Now

$$
\begin{equation*}
E\left(\xi_{t+1} \mid \mathcal{I}_{n}\right)=E\left(\xi_{t+1} \mid \mathcal{I}_{t}\right)+\sum_{j=t+1}^{n} C\left(\xi_{t+1}, e_{j}\right) D^{-1}\left(e_{j}\right) e_{j} \tag{59}
\end{equation*}
$$

so it follows that equation (58) can be rewritten in turn as

$$
\begin{equation*}
E\left(\xi_{t} \mid \mathcal{I}_{n}\right)=E\left(\xi_{t} \mid \mathcal{I}_{t}\right)+P_{t} \Phi_{t+1}^{\prime} P_{t+1 \mid t}^{-1}\left\{E\left(\xi_{t+1} \mid \mathcal{I}_{n}\right)-E\left(\xi_{t+1} \mid \mathcal{I}_{t}\right)\right\} \tag{60}
\end{equation*}
$$

This is the formula for the fixed-interval smoother.
A similar strategy is adopted in the derivation of the dispersion of the smoothed estimate. According to (41), we have

$$
\begin{equation*}
D\left(\xi_{t} \mid \mathcal{I}_{n}\right)=D\left(\xi_{t} \mid \mathcal{I}_{t}\right)-\sum_{j=t+1}^{n} C\left(\xi_{t}, e_{j}\right) D^{-1}\left(e_{j}\right) C\left(e_{j}, \xi_{t}\right) \tag{61}
\end{equation*}
$$

and

$$
\begin{equation*}
D\left(\xi_{t+1} \mid \mathcal{I}_{n}\right)=D\left(\xi_{t+1} \mid \mathcal{I}_{t}\right)-\sum_{j=t+1}^{n} C\left(\xi_{t+1}, e_{j}\right) D^{-1}\left(e_{j}\right) C\left(e_{j}, \xi_{t+1}\right) \tag{62}
\end{equation*}
$$

Using the identity of (48) in (61) and taking the result from (62) enables us to write

$$
\begin{equation*}
P_{t \mid n}=P_{t}-P_{t} \Phi_{t+1}^{\prime} P_{t+1 \mid t}^{-1}\left\{P_{t+1 \mid t}-P_{t+1 \mid n}\right\} P_{t+1 \mid t}^{-1} \Phi_{t+1} P_{t} \tag{63}
\end{equation*}
$$

An Interpretation. Consider $E\left(\xi_{t} \mid \mathcal{I}_{n}\right)$, and let us represent the information set, at first, by

$$
\begin{equation*}
\mathcal{I}_{n}=\left\{\mathcal{I}_{t}, h_{t+1}, e_{t+2}, \ldots, e_{n}\right\} \quad \text { where } \quad h_{t+1}=\xi_{t+1}-E\left(\xi_{t+1} \mid \mathcal{I}_{t}\right) \tag{64}
\end{equation*}
$$

We may begin by finding

$$
\begin{equation*}
E\left(\xi_{t} \mid \mathcal{I}_{t}, h_{t+1}\right)=E\left(\xi_{t} \mid \mathcal{I}_{t}\right)+C\left(\xi_{t}, h_{t+1} \mid \mathcal{I}_{t}\right) D^{-1}\left(h_{t+1} \mid \mathcal{I}_{t}\right) h_{t+1} \tag{65}
\end{equation*}
$$

Here we have

$$
\begin{align*}
& C\left(\xi_{t}, h_{t+1} \mid \mathcal{I}_{t}\right)=E\left\{\xi_{t}\left(\xi_{t}-x_{t}\right)^{\prime} \Phi_{t+1}^{\prime}+\xi_{t} \nu_{t}^{\prime} \mid \mathcal{I}_{t}\right\}=P_{t} \Phi_{t+1}^{\prime} \quad \text { and }  \tag{66}\\
& D\left(h_{t+1} \mid \mathcal{I}_{t}\right)=P_{t+1 \mid t}
\end{align*}
$$

It follows that

$$
\begin{equation*}
E\left(\xi_{t} \mid \mathcal{I}_{t}, h_{t+1}\right)=E\left(\xi_{t} \mid \mathcal{I}_{t}\right)+P_{t} \Phi_{t+1}^{\prime} P_{t+1 \mid t}^{-1}\left\{\xi_{t+1}-E\left(\xi_{t+1} \mid \mathcal{I}_{t}\right)\right\} \tag{67}
\end{equation*}
$$

## SMOOTHING FORMULAE

Of course, the value of $\xi_{t+1}$ in the RHS of this equation is not observable. However, if we take the expectation of the equation conditional upon all of the information in the set $\mathcal{I}_{n}=\left\{e_{1}, \ldots, e_{n}\right\}$, then $\xi_{t+1}$ is replaced by $E\left(\xi_{t+1} \mid \mathcal{I}_{n}\right)$ and we get the formula under (60). This interpretation was published by Ansley and Kohn [2]. It highlights the notion that the information which is used in enhancing the estimate of $\xi_{t}$ is contained entirely within the smoothed estimate of $\xi_{t+1}$.

The Intermittent Smoother. Consider the case where smoothing is intermittent with $m$ sample points accumulating between successive smoothing operations. Then it is possible to use the estimates arising from the previous smoothing operation.

Imagine that the operation is performed when $n=j m$ points are available. Then, for $t>(j-1) m$, the smoothed estimate of the state vector $\xi_{t}$ is given by the ordinary fixed-interval smoothing formula found under (60). For $t \leq$ ( $j-1$ ) $m$, the appropriate formula is

$$
\begin{equation*}
E\left(\xi_{t} \mid \mathcal{I}_{n}\right)=E\left(\xi_{t} \mid \mathcal{I}_{(j-1) m}\right)+P_{t} \Phi_{t+1}^{\prime} P_{t+1 \mid t}^{-1}\left\{E\left(\xi_{t+1} \mid \mathcal{I}_{n}\right)-E\left(\xi_{t+1} \mid \mathcal{I}_{(j-1) m}\right)\right\} \tag{68}
\end{equation*}
$$

Here $E\left(\xi_{t} \mid \mathcal{I}_{(j-1) m}\right)$ is being used in place of $E\left(\xi_{t} \mid \mathcal{I}_{t}\right)$. The advantage of the algorithm is that it does not require the values of unsmoothed estimates to be held in memory when smoothed estimates are available.

A limiting case of the intermittent smoothing algorithm arises when the smoothing operation is performed each time a new observation is registered. Then the formula becomes

$$
\begin{equation*}
E\left(\xi_{t} \mid \mathcal{I}_{n}\right)=E\left(\xi_{t} \mid \mathcal{I}_{n-1}\right)+P_{t} \Phi_{t+1}^{\prime} P_{t+1 \mid t}^{-1}\left\{E\left(\xi_{t+1} \mid \mathcal{I}_{n}\right)-E\left(\xi_{t+1} \mid \mathcal{I}_{n-1}\right)\right\} \tag{69}
\end{equation*}
$$

The formula is attributable to Chow [4] who provided a somewhat lengthy derivation. Chow proposed this algorithm for the purpose of ordinary fixedinterval smoothing, for which it is clearly inefficient.

The Fixed-Lag Smoother. The task is to move from the smoothed estimate of $\xi_{n-t}$ made at time $n$ to the estimate of $\xi_{n+1-t}$ once the new information in the prediction error $e_{n+1}$ has become available. Equation (39) indicates that

$$
\begin{equation*}
E\left(\xi_{n+1-t} \mid \mathcal{I}_{n+1}\right)=E\left(\xi_{n+1-t} \mid \mathcal{I}_{n}\right)+C\left(\xi_{n+1-t}, e_{n+1}\right) D^{-1}\left(e_{n+1}\right) e_{n+1} \tag{70}
\end{equation*}
$$

which is the formula for the smoothed estimate, whilst the corresponding formula for the dispersion matrix is
$D\left(\xi_{n+1-t} \mid \mathcal{I}_{n+1}\right)=D\left(\xi_{n+1-t} \mid \mathcal{I}_{n}\right)-C\left(\xi_{n+1-t}, e_{n+1}\right) D^{-1}\left(e_{n+1}\right) C\left(e_{n+1}, \xi_{n+1-t}\right)$.

## SMOOTHING FORMULAE

To evaluate (70), we must first find the value of $E\left(\xi_{n+1-t} \mid \mathcal{I}_{n}\right)$ from the value of $E\left(\xi_{n-t} \mid \mathcal{I}_{n}\right)$. On setting $t=k$ in the fixed-interval formula under (60), and rearranging the result, we get

$$
\begin{equation*}
E\left(\xi_{k+1} \mid \mathcal{I}_{n}\right)=E\left(\xi_{k+1} \mid \mathcal{I}_{k}\right)+P_{k+1 \mid k} \Phi_{k+1}^{\prime-1} P_{k}^{-1}\left\{E\left(\xi_{k} \mid \mathcal{I}_{n}\right)-E\left(\xi_{k} \mid \mathcal{I}_{k}\right)\right\} . \tag{72}
\end{equation*}
$$

To obtain the desired result, we simply set $k=n-t$, which gives

$$
\begin{align*}
& E\left(\xi_{n+1-t} \mid \mathcal{I}_{n}\right)=E\left(\xi_{n+1-t} \mid \mathcal{I}_{n-t}\right) \\
& \quad+P_{n+1-t \mid n-t} \Phi_{n+1-t}^{-1} P_{n-t}^{-1}\left\{E\left(\xi_{n-t} \mid \mathcal{I}_{n}\right)-E\left(\xi_{n-t} \mid \mathcal{I}_{n-t}\right)\right\} \tag{73}
\end{align*}
$$

The formula for the smoothed estimate also comprises

$$
\begin{equation*}
C\left(\xi_{n+1-t}, e_{n+1}\right)=P_{n+1-t \mid n-t} \Lambda_{n+1, n+2-t}^{\prime} H_{n+1}^{\prime} \tag{74}
\end{equation*}
$$

If $\Lambda_{n+1-t}$ is nonsingular, then $\Lambda_{n+1, n+2-t}=\Lambda_{n+1}\left\{\Lambda_{n, n+1-t}\right\} \Lambda_{n+1-t}^{-1}$; and thus we may profit from the calculations entailed in finding the previous smoothed estimate which will have generated the matrix product in the parentheses.

In evaluating the formula (71) for the dispersion of the smoothed estimates, we may use the following expression for $D\left(\xi_{n+1-t} \mid \mathcal{I}_{n}\right)=P_{n+1-t \mid n}$ :

$$
\begin{align*}
& P_{n+1-t \mid n}=P_{n+1-t \mid n-t} \\
& \quad-P_{n+1-t \mid n-t} \Phi_{n+1-t}^{\prime-1} P_{n-t}^{-1}\left(P_{n-t}-P_{n-t \mid n}\right) P_{n-t}^{-1} \Phi_{n+1-t}^{-1} P_{n+1-t \mid n-t} . \tag{75}
\end{align*}
$$

This is demonstrated is the same manner as equation (73).
A process of fixed-lag smoothing, with a lag length of $t$, is initiated with a value for $E\left(\xi_{1} \mid \mathcal{I}_{t+1}\right)$. The latter is provided by running the fixed-point smoothing algorithm for $t$ periods. After time $t+1$, when the $(n+1)$ th observation becomes available, $E\left(\xi_{n+1-t} \mid \mathcal{I}_{n}\right)$ is calculated from $E\left(\xi_{n-t} \mid \mathcal{I}_{n}\right)$ via equation (73). For this purpose the values of $x_{n+1-t \mid n-t}, x_{n-t}, P_{n+1-t \mid n-t}$ and $P_{n-t}$ must be available. These are generated by the Kalman filter in the process of calculating $e_{n-t}$, and they are held in memory for $t$ periods. The next smoothed estimate $E\left(\xi_{n+1-t} \mid \mathcal{I}_{n+1}\right)$ is calculated from equation (70), for which the values of $e_{n+1}, F_{n+1}$ and $K_{n}$ are required. These are also provided by the Kalman filter which runs concurrently.

## 6. Variants of the Classical Algorithms

The attention which statisticians have paid to the smoothing problem recently has been focussed upon fixed-interval smoothing. This mode of smoothing is, perhaps, of less interest to communications engineers than the other modes; which may account for the fact that the statisticians have found scope for improving the algorithms.

## SMOOTHING FORMULAE

Avoiding an Inversion. There are some modified versions of the classical fixed-interval smoothing algorithm which avoid the inversion of the matrix $P_{t \mid t-1}$. In fact, the basis for these has been provided already in section 4. Thus, by replacing the sums in equations (49) and (50) by $q_{m+1}$ and $Q_{m+1}$, which are the products of the recursions under (51) and (52), we get

$$
\begin{gather*}
E\left(\xi_{t} \mid \mathcal{I}_{n}\right)=E\left(\xi_{t} \mid \mathcal{I}_{m}\right)+P_{t \mid t-1} \Lambda_{m+1, t+1}^{\prime} q_{m+1}  \tag{76}\\
D\left(\xi_{t} \mid \mathcal{I}_{n}\right)=D\left(\xi_{t} \mid \mathcal{I}_{m}\right)-P_{t \mid t-1} \Lambda_{m+1, t+1}^{\prime} Q_{m+1} \Lambda_{m+1, t+1} P_{t \mid t-1} \tag{77}
\end{gather*}
$$

These expressions are valid for $m \geq t-1$.
Setting $m=t-1$ in (76) and (77) gives a useful alternative to the classical algorithm for fixed-interval smoothing:

$$
\begin{gather*}
x_{t \mid n}=x_{t \mid t-1}+P_{t \mid t-1} q_{t}  \tag{78}\\
P_{t \mid n}=P_{t \mid t-1}-P_{t \mid t-1} Q_{t} P_{t \mid t-1} \tag{79}
\end{gather*}
$$

We can see that, in moving from $q_{t+1}$ to $q_{t}$ via equation (51), which is the first step towards finding the next smoothed estimate $x_{t-1 \mid n}$, there is no inversion of $P_{t \mid t-1}$. The equations (78) and (79) have been derived by De Jong [6].

The connection with the classical smoothing algorithm is easily established. From (78), we get $q_{t+1}=P_{t+1 \mid t}^{-1}\left(x_{t+1 \mid n}-x_{t+1 \mid t}\right)$. By setting $m=t$ in (76) and substituting for $q_{t+1}$ we get

$$
\begin{align*}
x_{t \mid n} & =x_{t}+P_{t \mid t-1} \Lambda_{t+1}^{\prime} P_{t+1 \mid t}^{-1}\left(x_{t+1 \mid n}-x_{t+1 \mid t}\right)  \tag{80}\\
& =x_{t}+P_{t} \Phi_{t+1}^{\prime} P_{t+1 \mid t}^{-1}\left(x_{t+1 \mid n}-x_{t+1 \mid t}\right),
\end{align*}
$$

where the final equality follows from the identity $\Phi_{t+1} P_{t}=\Lambda_{t+1} P_{t \mid t-1}$ already used in (46). Equation (80) is a repetition of equation (60) which belongs to the classical algorithm.

Equation (63), which also belongs to the classical algorithm, is obtained by performing similar manipulations with equations (77) and (79).
Smoothing via State Disturbances. Given an initial value for the state vector, a knowledge of the sequence of the state-transition matrices and of the state disturbances in subsequent periods will enable one to infer the values of subsequent state vectors. Therefore the estimation of a sequence of state vectors may be construed as a matter of estimating the state disturbances. The information which is relevant to the estimation of the disturbance $\nu_{t}$ is contained in the prediction errors from time $t$ onwards. Thus

$$
\begin{equation*}
E\left(\nu_{t} \mid \mathcal{I}_{n}\right)=\sum_{j=t}^{n} C\left(\nu_{t}, e_{j}\right) D^{-1}\left(e_{j}\right) e_{j} \tag{81}
\end{equation*}
$$

## SMOOTHING FORMULAE

Here, for $j \geq t$, the generic covariance is given by

$$
\begin{align*}
C\left(\nu_{t}, e_{j}\right) & =E\left\{\nu_{t} \nu_{t}^{\prime} \Lambda_{j, t+1}^{\prime} H_{j}^{\prime}\right\}  \tag{82}\\
& =\Psi_{t} \Lambda_{j, t+1}^{\prime} H_{j}^{\prime}
\end{align*}
$$

which follows from the expression for $e_{t}$ which results from substituting (44) in (42). Putting (82) into (81) and setting $D^{-1}\left(e_{j}\right)=F_{j}^{-1}$ gives

$$
\begin{align*}
E\left(\nu_{t} \mid \mathcal{I}_{n}\right) & =\Psi_{t} \sum_{j=t}^{n} \Lambda_{j, t+1}^{\prime} H_{j}^{\prime} F_{j}^{-1} e_{j}  \tag{83}\\
& =\Psi_{t} q_{t}
\end{align*}
$$

where $q_{t}$ is a sum which may be accumulated using the recursion under (51).
By taking the expectation of the transition equation conditional upon all of the information in the fixed sample, we obtain the recursive equation which generates the smoothed estimates of the state vectors:

$$
\begin{align*}
x_{t \mid n} & =\Phi_{t} x_{t-1 \mid n}+E\left(\nu_{t} \mid \mathcal{I}_{n}\right)  \tag{84}\\
& =\Phi_{t} x_{t-1 \mid n}+\Psi_{t} q_{t} .
\end{align*}
$$

The initial value is $x_{0 \mid n}=x_{0}+P_{0} \Phi_{1}^{\prime} q_{1}$. This is obtained by setting $t=0$ in the equation $x_{t \mid n}=x_{t}+P_{t} \Phi_{t+1}^{\prime} q_{t+1}$ which comes from ( 80 ).

Equation (84) has been presented recently in a paper by Koopman [9]. A similar approach has been pursued by Mayne [10].

With some effort, a connection can be found between equation (84) and equation (78) which is its counterpart in the previous algorithm. From (4) and (9), we get $x_{t \mid t-1}=\Phi_{t}\left(x_{t-1 \mid t-2}+K_{t-1} e_{t-1}\right)$. From (5) and (10), we get $P_{t \mid t-1}=\Phi_{t} P_{t-1 \mid t-2}\left(I-K_{t-1} H_{t-1}\right)^{\prime} \Phi_{t}^{\prime}+\Psi_{t}$. Putting these into (78) gives

$$
\begin{equation*}
x_{t \mid n}=\Phi_{t} x_{t-1 \mid t-2}+\Psi_{t} q_{t}+\Phi_{t}\left(K_{t-1} e_{t-1}+P_{t-1 \mid t-2} \Lambda_{t}^{\prime} q_{t}\right) \tag{85}
\end{equation*}
$$

Equation (78) lagged one period also gives an expression for $x_{t-1 \mid t-2}$ in terms of $x_{t-1 \mid n}$ :

$$
\begin{equation*}
x_{t-1 \mid t-2}=x_{t-1 \mid n}-P_{t-1 \mid t-2} q_{t-1} . \tag{86}
\end{equation*}
$$

Using the identity $g_{t-1}=H_{t-1}^{\prime} F_{t-1}^{-1} e_{t-1}+\Lambda_{t}^{\prime} g_{t}$ and the latter equation, we can rewrite (85) as

$$
\begin{align*}
x_{t \mid n}= & \Phi_{t} x_{t-1 \mid n}+\Psi_{t} q_{t}-\Phi_{t} P_{t-1 \mid t-2}\left(H_{t-1}^{\prime} F_{t-1}^{-1} e_{t-1}+\Lambda_{t}^{\prime} g_{t}\right) \\
& +\Phi_{t}\left(K_{t-1} e_{t-1}+P_{t-1 \mid t-2} \Lambda_{t}^{\prime} q_{t}\right)  \tag{87}\\
= & \Phi_{t} x_{t-1 \mid n}+\Psi_{t} q_{t},
\end{align*}
$$

## SMOOTHING FORMULAE

where the final equality follows from equation (8). This is (84) again.
An alternative algorithm exists which also uses estimates of the state disturbances. In contrast to the previous algorithm, it runs backwards in time rather than forwards. The basic equation is

$$
\begin{equation*}
x_{t-1 \mid n}=\Phi_{i}^{-1} x_{t \mid n}-\Phi_{i}^{-1} \Psi_{t} q_{t} \tag{88}
\end{equation*}
$$

which comes directly from (84). The value of $q_{t}$ is obtained via equation (51). However, because we have a backward recursion in (88), an alternative recursion for $q_{t}$ is available, which reduces the number of elements which must be held in memory. A reformulation of equation (51) gives

$$
\begin{align*}
q_{t} & =H_{t}^{\prime} F_{t}^{-1} e_{t}+\Lambda_{t+1}^{\prime} q_{t+1} \\
& =H_{t}^{\prime} F_{t}^{-1} e_{t}+\left(I-K_{t} H_{t}\right)^{\prime} \Phi_{t+1}^{\prime} q_{t+1}  \tag{89}\\
& =H_{t}^{\prime} s_{t}+\Phi_{t+1}^{\prime} q_{t+1}^{\prime}
\end{align*}
$$

where $s_{t}$ is defined as

$$
\begin{equation*}
s_{t}=F_{t}^{-1} e_{t}-K_{t}^{\prime} \Phi_{t+1}^{\prime} q_{t+1} \tag{90}
\end{equation*}
$$

Now, consider the smoothed estimates of the observation errors. Because $\eta_{t}$ is independent of $y_{1}, \ldots, y_{t-1}$, these are given by

$$
\begin{equation*}
E\left(\eta_{t} \mid \mathcal{I}_{n}\right)=\sum_{j=t}^{n} C\left(\eta_{t}, e_{j}\right) D^{-1}\left(e_{j}\right) e_{j} \tag{91}
\end{equation*}
$$

The covariances follow once more from equations (42) and (44). For $j>t$, we get

$$
\begin{equation*}
C\left(\eta_{t}, e_{j}\right)=-\Omega_{t} M_{t+1}^{\prime} \Lambda_{j, t+2}^{\prime} H_{j}^{\prime} \tag{92}
\end{equation*}
$$

whereas, for $j=t$, we have $C\left(\eta_{t}, e_{t}\right)=\Omega_{t}$. Substituting these in (91) gives

$$
\begin{align*}
E\left(\eta_{t} \mid \mathcal{I}_{n}\right) & =\Omega_{t}\left\{F_{t}^{-1} e_{t}-M_{t+1}^{\prime} \sum_{j=t+1}^{n} \Lambda_{j, t+2}^{\prime} H_{j}^{\prime} F_{j}^{-1} e_{j}\right\} \\
& =\Omega_{t}\left\{F_{t}^{-1} e_{t}-K_{t}^{\prime} \Phi_{t+1}^{\prime} q_{t+1}\right\}  \tag{93}\\
& =\Omega_{t} s_{t}
\end{align*}
$$

from which

$$
\begin{equation*}
s_{t}=\Omega_{t}^{-1} E\left(\eta_{t} \mid \mathcal{I}_{n}\right)=\Omega_{t}^{-1}\left\{y_{t}-H_{t} x_{\left.2\right|_{n}}\right\} \tag{94}
\end{equation*}
$$

where the final equality is justified by the observation equation (1). Notice that, in order to calculate $s_{t}$ from this expression, we need $x_{t \mid n}$, which is available only because we are using a backward smoothing algorithm. Thus $s_{i}$ is calculated

## SMOOTHING FORMULAE

from (94) using the previous smoothed estimate. Then it is substituted in (89) to obtain $q_{t}$. Finally, the smoothed estimate of the state vector is obtained from equation (88). Whittle [12] has derived this algorithm by maximising a log-likelihood function.

Comparing the Fixed-Interval Smoothers. By its avoidance of a matrix inversion, the algorithm of equations (78) and (79), which we may call De Jong's [6] algorithm, is more efficient than the classical fixed-interval smoother; and we can advise that it should be used in preference. Our attention must be focussed, therefore, on a comparison of the latter algorithm with the two algorithms which are based upon estimates of the state disturbances.

De Jong's algorithm requires the values of $x_{t \mid t-1}, P_{t \mid t-1}, e_{t}, F_{t}^{-1}$ and $K_{t}$ to be computed in a forward pass of the Kalman filter. The backward recursions for $q_{t}$ and $Q_{t}$, which employ equations (51) and (52), then can be executed; and in each step the used values of $e_{t}, F_{t}^{-1}$ and $K_{t}$ can be deleted from memory. In combining the results by means of equations (76) and (77), we are able to generate both the smoothed estimate and its dispersion matrix.

The first of the state-disturbances algorithms, which is Koopman's [9] algorithm, uses successively a forward, a backward and a forward run to obtain the smoothed estimates. First, $e_{t}, F_{t}^{-1}$ and $K_{t}$ are calculated for all $t$ via the Kalman filter. Then a backward recursion is used to generate the values of $q_{t}$ which are committed to memory. Finally, the smoothed estimates of the state vector are calculated using the forward recursion of (84).

Since Koopman's algorithm and De Jong's algorithm both entail the calculation of $q_{t}$, their comparison amounts to the comparison of the equations $x_{t \mid n}=\Phi_{t} x_{t-1 \mid n}+\Psi_{t} q_{t}$ and $x_{t \mid n}=x_{t \mid t-1}+P_{t \mid t-1} q_{t}$ of (84) and (78) respectively. The latter equation-De Jong's-is favoured by the fact that it uses one less vector-matrix multiplication in each step. However, Koopman claims that the former equation leads to a more efficient algorithm when the structure of the matrices $\Phi_{t}$ and $\Psi_{t}$ is taken into account. A clear advantage of this algorithm over De Jong's is its limited use of memory, since there is no need to retain the values of $P_{t \mid t-1}$ and $x_{t \mid t-1}$. However, this advantage does not extend to the calculation of the dispersion matrix of the smoothed estimates.

The second of the state-disturbance algorithms, which is Whittle's [12] algorithm, consists of a forward and a backward pass. Of the products of the forward pass, which involves the Kalman filter, only the value of $x_{n \mid n}$ is used in further calculations. The backward pass is initialised with $x_{n \mid n}$ and $q_{n+1}=0$; and, in each step, values of $s_{t}$ and $q_{t}$ are calculated, via (94) and (89) respectively. The smoothed estimate follows from equation (88). This algorithm is efficient in both time and memory; and virtually no storage is required. Its disadvantage is that it is prone to numerical instability; which limits the size of the sample to which it can be safely applied. The primary source of this instability is in the calculation of $s_{t}$ via equation (94) wherein the elements of $\Omega^{-1}$ and of $y_{t}-H_{t} x_{t \mid n}$ are liable to have disparate magnitudes.

## SMOOTHING FORMULAE

## 7. The Forward-Backward Algorithm

The approach pursued in this final section differs from those found elsewhere in the paper. Instead of conditional expectations, Bayesian analysis is used in deriving a smoothing algorithm; and it is assumed that all random variables are normally distributed.

The forward-backward algorithm which is presented here has been derived by Mayne [10] via the principle of least-squares. It has been rediscovered recently De Vos and Merkus [7], who have used the principle of combining informationto develop a variety of algorithms.
Combining Information. Imagine that the sample is split into two sets $\mathcal{I}_{1}=\left\{y_{1}, \ldots, y_{t-1}\right\}$ and $\mathcal{I}_{2}=\left\{y_{t}, \ldots, y_{n}\right\}$. Then, by applying Bayes' rule twice, we get

$$
\begin{align*}
N\left(\xi_{t} \mid \mathcal{I}_{1}, \mathcal{I}_{2}\right) & \propto N\left(\mathcal{I}_{2} \mid \xi_{t}, \mathcal{I}_{1}\right) N\left(\xi_{t} \mid \mathcal{I}_{1}\right) \\
& =N\left(\mathcal{I}_{2} \mid \xi_{t}\right) N\left(\xi_{t} \mid \mathcal{I}_{1}\right)  \tag{95}\\
& \propto \frac{N\left(\xi_{t} \mid \mathcal{I}_{1}\right) N\left(\xi_{t} \mid \mathcal{I}_{2}\right)}{N\left(\xi_{t}\right)}
\end{align*}
$$

where the symbol of proportionality indicates that a factor has been omitted. The omitted factors make no reference to the state vector $\xi_{t}$.

Within the final expression, the factor $N\left(\xi_{t} \mid \mathcal{I}_{1}\right)$ stands for the density function associated with an estimate of $\xi_{t}$ based upon the information of $\mathcal{I}_{1}$ and upon prior information. The factor $N\left(\xi_{t} \mid \mathcal{I}_{2}\right)$ relates to the density function of an estimate based upon prior information and upon the information $\mathcal{I}_{2}$ from the second half of the sample. The factor $N\left(\xi_{t}\right)$ stands for a Bayesian prior relative to the state vector.

The formula under (95) indicates how the three factors may be combined to form a smoothed estimate of $\xi_{t}$ based upon all of the information. The presence of the prior in the denominator of the final expression indicates that the prior information must be subtracted somehow from one or other of the numerator factors to avoid its being used twice in forming $N\left(\xi_{t} \mid \mathcal{I}_{1}, \mathcal{I}_{2}\right)$.

The decision to subtract the prior information from $N\left(\xi_{t} \mid \mathcal{I}_{2}\right)$ leads to a so-called inverse model which satisfies

$$
\begin{equation*}
N\left(\xi_{t} \mid \mathcal{I}_{2} ; \text { Inv }\right) \propto \frac{N\left(\xi_{t} \mid \mathcal{I}_{2}\right)}{N\left(\xi_{t}\right)} \tag{96}
\end{equation*}
$$

Substituting (96) into (95) gives

$$
\begin{equation*}
N\left(\xi_{t} \mid \mathcal{I}_{1}, \mathcal{I}_{2}\right) \propto N\left(\xi_{t} \mid \mathcal{I}_{1}\right) N\left(\xi_{t} \mid \mathcal{I}_{2} ; \text { Inv }\right) \tag{97}
\end{equation*}
$$

Let us denote the expectation and the dispersion of the inverse model by

$$
\begin{align*}
& \tilde{x}_{t}=E\left(\xi_{t} \mid y_{t}, \ldots, y_{n} ; \text { Inv }\right)  \tag{98}\\
& \tilde{P}_{t}=D\left(\xi_{t} \mid y_{t}, \ldots, y_{n} ; \text { Inv }\right) . \tag{99}
\end{align*}
$$

Then, after taking logarithms in equation (97), we can manipulate the exponents of the normal density functions to show that

$$
\begin{align*}
&-2 \ln \left\{N\left(\xi_{t} \mid y_{1}, \ldots, y_{n}\right)\right\} \\
& \propto-2 \ln \left\{N\left(\xi_{t} \mid y_{1}, \ldots, y_{t-1}\right)\right\}-2 \ln \left\{N\left(\xi_{t} \mid y_{t}, \ldots, y_{n} ; \operatorname{Inv}\right)\right\} \\
& \propto\left(\xi_{t}-x_{t \mid t-1}\right)^{\prime} P_{t \mid t-1}^{-1}\left(\xi_{t}-x_{t \mid t-1}\right)+\left(\xi_{t}-\tilde{x}_{t}\right)^{\prime} \tilde{P}_{t}^{-1}\left(\xi_{t}-\tilde{x}_{t}\right)  \tag{100}\\
& \propto \xi_{t}^{\prime}\left(P_{t \mid t-1}^{-1}+\tilde{P}_{t}^{-1}\right) \xi_{t}-2 \xi_{t}^{\prime}\left(P_{t \mid t-1}^{-1} x_{t \mid t-1}+\tilde{P}_{t}^{-1} \tilde{x}_{t}\right) \\
& \propto\left(\xi_{t}-x_{t \mid n}\right)^{\prime} P_{t \mid n}^{-1}\left(\xi_{t}-x_{t \mid n}\right) .
\end{align*}
$$

It follows, from comparing the final and the penultimate expressions, that

$$
\begin{gather*}
x_{t \mid n}=\left(P_{t \mid t-1}^{-1}+\tilde{P}_{t}^{-1}\right)^{-1}\left(P_{t \mid t-1}^{-1} x_{t \mid t-1}+\tilde{P}_{t}^{-1} \tilde{x}_{t}\right)  \tag{101}\\
P_{t \mid n}=\left(P_{t \mid t-1}^{-1}+\tilde{P}_{t}^{-1}\right)^{-1} \tag{102}
\end{gather*}
$$

Equations (101) and (102) show that the estimate of $\xi_{t}$ which uses all of the data is a weighted average of the estimate using data 'from the left' and the estimate using data 'from the right'.

Although $x_{t \mid t-1}$ and $P_{t \mid t-1}$ may be calculated via the Kalman filter, it is more efficient to employ the information filter which is defined under (15) and (16), since only $a_{t \mid t-1}=P_{t \mid t-1}^{-1} x_{t \mid t-1}$ and $P_{t \mid t-1}^{-1}$ are needed in (101) and (102). To obtain $\tilde{x}_{t}$ and $\tilde{P}_{t}$, we may apply filtering techniques to the inverse model; and, for this, we need to derive recursive equations which run in reversed time.
Derivation of the Inverse Model. First, consider the update step of the inverse model. On the one hand is the equation

$$
\begin{align*}
N\left(\xi_{t} \mid y_{t}, \ldots, y_{n} ; \text { Inv }\right) & \propto \frac{N\left(\xi_{t} \mid y_{t}, \ldots, y_{n}\right)}{N\left(\xi_{t}\right)} \\
& \propto \frac{N\left(y_{t} \mid \xi_{t}, y_{t+1}, \ldots, y_{n}\right) N\left(\xi_{t} \mid y_{t+1}, \ldots, y_{n}\right)}{N\left(\xi_{t}\right)}  \tag{103}\\
& \propto N\left(y_{t} \mid \xi_{t}\right) N\left(\xi_{t} \mid y_{t+1}, \ldots, y_{n} ; \text { Inv }\right) .
\end{align*}
$$

which shows how additional information is assimilated to the inverse model. The first and the final proportionalities follow from the definition of the inverse model, whilst the second one comes from applying Bayes' rule. Notice also that, in writing $N\left(y_{t} \mid \xi_{t}\right)$ in the final expression, we omit to make $y_{t}$ conditional on the observations $y_{t+1}, \ldots, y_{n}$ since these are redundant in predicting $y_{t}$ if $\xi_{t}$ is known. On the other hand is the equation

$$
\begin{equation*}
N\left(\xi_{t} \mid y_{t}, \ldots, y_{n} ; \operatorname{Inv}\right) \propto N\left(y_{t} \mid \xi_{t}, y_{t+1}, \ldots, y_{n} ; \operatorname{Inv}\right) N\left(\xi_{t} \mid y_{t+1}, \ldots, y_{n} ; \text { Inv }\right) \tag{104}
\end{equation*}
$$

## SMOOTHING FORMULAE

By comparing equations (103) and (104), we see that

$$
\begin{equation*}
N\left(y_{t} \mid \xi_{t}, y_{t+1}, \ldots, y_{n} ; \text { Inv }\right) \propto N\left(y_{t} \mid \xi_{t}\right) \tag{105}
\end{equation*}
$$

which indicates that the inverse model has the same measurement equation as the ordinary (forward) state-space model.

In the prediction step, we have, on the one hand, the equation

$$
\begin{align*}
N\left(\xi_{t-1} \mid y_{t}, \ldots, y_{n} ; \text { Inv }\right) & \propto \frac{N\left(\xi_{t-1} \mid y_{t}, \ldots, y_{n}\right)}{N\left(\xi_{t-1}\right)} \\
& =\int \frac{N\left(\xi_{t-1} \mid \xi_{t}, y_{t}, \ldots, y_{n}\right) N\left(\xi_{t} \mid y_{t}, \ldots, y_{n}\right)}{N\left(\xi_{t-1}\right)} d \xi_{t}  \tag{106}\\
& \propto \int \frac{N\left(\xi_{t-1} \mid \xi_{t}\right) N\left(\xi_{t}\right)}{N\left(\xi_{t-1}\right)} N\left(\xi_{t} \mid y_{t}, \ldots, y_{n} ; \operatorname{Inv}\right) d \xi_{t} \\
& =\int N\left(\xi_{t} \mid \xi_{t-1}\right) N\left(\xi_{t} \mid y_{t}, \ldots, y_{n} ; \text { Inv }\right) d \xi_{t}
\end{align*}
$$

where we have used the equality $N\left(\xi_{t-1} \mid \xi_{t}, y_{t}, \ldots, y_{n}\right)=N\left(\xi_{t-1} \mid \xi_{t}\right)$, which holds due to the fact that the information contained in $y_{t}, \ldots, y_{n}$ which is not in $\xi_{t}$, relates solely to observation errors. On the other hand, we have the equation

$$
\begin{align*}
& N\left(\xi_{t-1} \mid y_{t}, \ldots, y_{n} ; \text { Inv }\right)= \\
& \quad \int N\left(\xi_{t-1} \mid \xi_{t}, y_{t}, \ldots, y_{n} ; \text { Inv }\right) N\left(\xi_{t} \mid y_{t}, \ldots, y_{n} ; \operatorname{Inv}\right) d \xi_{t} . \tag{107}
\end{align*}
$$

The comparison of (106) and (107) shows that

$$
\begin{equation*}
N\left(\xi_{t-1} \mid \xi_{t}, y_{t}, \ldots, y_{n} ; \text { Inv }\right) \propto N\left(\xi_{t} \mid \xi_{t-1}\right) . \tag{108}
\end{equation*}
$$

The latter implies that, in the inverse model, $y_{t}, \ldots, y_{n}$ are redundant for predicting $\xi_{t-1}$ if $\xi_{t}$ is known, and that the transition equation of the inverse model can be calculated from

$$
\begin{align*}
-2 \ln \{ & \left.N\left(\xi_{t-1} \mid \xi_{t} ; \operatorname{Inv}\right)\right\} \\
& \propto-2 \ln \left\{N\left(\xi_{t} \mid \xi_{t-1}\right)\right\} \\
& \propto\left(\xi_{t}-\Phi_{t} \xi_{t-1}\right)^{\prime} \Psi_{t}^{-1}\left(\xi_{t}-\Phi_{t} \xi_{t-1}\right)  \tag{109}\\
& \propto \xi_{t-1}^{\prime} \Phi_{t}^{\prime} \Psi_{t}^{-1} \Phi_{t} \xi_{t-1}-2 \xi_{t-1}^{\prime} \Phi_{t}^{\prime} \Psi_{t}^{-1} \xi_{t} \\
& \propto\left(\xi_{t-1}-\Phi_{t}^{-1} \xi_{t}\right)^{\prime}\left(\Phi_{t}^{-1} \Psi_{t} \Phi_{t}^{-1 t}\right)^{-1}\left(\xi_{t-1}-\Phi_{t}^{-1} \xi_{t}\right)
\end{align*}
$$

Here we have assumed that $\Psi_{t}$ is invertible. However, the result also holds if this matrix is singular. The initialisation of the inverse model follows from the

## SMOOTHING FORMULAE

prediction step, for $t-1=n$. Since $N\left(\xi_{n}\right.$ Inv $) \propto N\left(\xi_{n}\right) / N\left(\xi_{n}\right)=1$, the inverse model has a non-informative prior distribution.

Equations (105) and (108) thus lead to the following equations for the inverse model:

$$
\begin{align*}
y_{t} & =H_{t} \xi_{t}+\tilde{\eta}_{t}  \tag{110}\\
\xi_{t-1} & =\Phi_{t}^{-1} \xi_{t}+\tilde{\nu}_{t} \tag{111}
\end{align*}
$$

where

$$
\begin{align*}
& \tilde{\eta}_{t} \sim N\left(0, \Omega_{t}\right), \quad \tilde{\eta}_{t}=\eta_{t},  \tag{112}\\
& \tilde{\nu}_{t} \sim N\left(0, \Phi_{t}^{-1} \Psi_{t} \Phi_{t}^{-1 \prime}\right) \tag{113}
\end{align*}
$$

are mutually independent random vectors. Application of the information filter to the inverse model shows that the backward recursions which we are seeking are

$$
\begin{gather*}
\tilde{a}_{t}=H_{t}^{\prime} \Omega_{t}^{-1} y_{t}+\Phi_{t+1}^{\prime}\left(\tilde{P}_{t+1}+\Psi_{t+1}\right)^{-1} \tilde{P}_{t+1} \tilde{a}_{t+1}  \tag{114}\\
\tilde{P}_{t}^{-1}=H_{t}^{\prime} \Omega_{t}^{-1} H_{t}+\Phi_{t+1}^{\prime}\left(\tilde{P}_{t+1}+\Psi_{t+1}\right)^{-1} \Phi_{t+1} \tag{115}
\end{gather*}
$$

where $\tilde{a}_{t}=\tilde{P}_{t}^{-1} \tilde{x}_{t}$.
To summarise, the forward-backward algorithm consists of three steps:

1. calculate $P_{t \mid t-1}^{-1}$ and $a_{t \mid t-1}$, using the information filter or the Kalman filter.
2. calculate $\tilde{P}_{t}^{-1}$ and $\tilde{a}_{t}$.
3. combine both estimates using the smoothing formulae (101) and (102) to get the smoothed estimates.

A relation with the algorithm avoiding an inversion is found by applying the matrix inversion lemma to (102); this results in

$$
\begin{equation*}
P_{t \mid n}=P_{t \mid t-1}-P_{t \mid t-1}\left(P_{t \mid t-1}+\tilde{P}_{t}\right)^{-1} P_{t \mid t-1} \tag{116}
\end{equation*}
$$

As is easily verified, (101) can now be rewritten as

$$
\begin{equation*}
x_{t \mid n}=x_{t \mid t-1}+P_{t \mid t-1}\left(P_{t \mid t-1}+\tilde{P}_{t}\right)^{-1}\left(\tilde{x}_{t}-x_{t \mid t-1}\right) \tag{117}
\end{equation*}
$$

The comparison of (117) and (78) indicates that

$$
\begin{equation*}
q_{t}=\left(P_{t \mid t-1}+\tilde{P}_{t}\right)^{-1}\left(\tilde{x}_{t}-x_{t \mid t-1}\right) \tag{118}
\end{equation*}
$$

equations (116) and (79) together show that

$$
\begin{equation*}
Q_{t}=\left(P_{t \mid t-1}+\tilde{P}_{t}\right)^{-1} \tag{119}
\end{equation*}
$$

These identities suggest that the forward-backward algorithm is less efficient than the algorithms of De Jong [6] and Koopman [9].

## SMOOTHING FORMULAE

In concluding this section, we should mention that the forward-backward smoothing algorithm is particularly useful in computing cross-validation errors for a state-space model. The cross-validation error associated with a given sample element is the error in predicting that element using the information from the rest of the sample. The estimate of the state vector upon which the prediction is based can be calculated most efficiently by combining the products of a forward and a backward filter proceeding from either end of the sample. These filters stop short of including information from the sample element whose value is to be predicted. Alternative algorithms which serve the same purpose has been provided by De Jong [5] and by Ansley and Kohn [3].

## References

[1] Anderson, B.D.O. and J.B. Moore, (1979), Optimal Filtering, PrenticeHall, Englewood Cliffs, New Jersey.
[2] Ansley, C.F. and R.Kohn, (1982), A Geometrical Derivation of the Fixed Interval Smoothing Equations, Biometrika, 69, 486-7.
[3] Ansley, C.F. and R. Kohn, (1989), A Fast Algorithm for Signal Extraction, Influence and Cross-Validation in State Space Models, Biometrika, 76, 6579.
[4] Chow, G.C., (1983), Econometrics, McGraw-Hill, New York.
[5] De Jong, P., (1988), A Cross-Validation Filter for Time Series Models, Biometrika, 75, 594-600.
[6] De Jong, P., (1989), Smoothing and Interpolation with the State-Space Model, Journal of the American Statistical Association, 84, 1085-1088.
[7] De Vos, A.F., and H.R. Merkus, (1991), The Prior, the Past, the Present and the Future: Smoothing Algorithms in the Kalman Filter as a Combination of Information, Discussion paper of the Department of Econometrics, The Free University of Amsterdam.
[8] Farooq, M. and A.K. Mahalanabis, (1971), A Note on the Maximum Likelihood State Estimation of Linear Discrete Systems with Multiple Time Delays, IEEE Transactions on Automatic Control, AC-16, 105-106.
[9] Koopman, S.J., (1990), Efficient Smoothing Algorithms for Time Series Models, discussion paper of the Department of Statistics, The London School of Economics.
[10] Mayne, D.Q., (1966), A Solution of the Smoothing Problem for Linear Dynamic Systems Automatica, 4, 73-92.
[11] Premier, R. and A.G. Vacroux, (1971), On Smoothing in Linear Discrete Systems with Time Delays, International Journal of Control, 13, 299-303.
[12] Whittle, P., (1991), Likelihood and Cost as Path Integrals, Journal of the Royal Statistical Society, Series B, 53, 505-538.
[13] Willman, W.W., (1969), On the Linear Smoothing Problem, IEEE Transaction on Automatic Control, AC-14, 116-117.

| 1991-1 | N.M. van Dijk | On the Effect of Small Loss Probabilities in Input/Output Transmission Delay Systems |
| :---: | :---: | :---: |
| 1991-2 | N.M. van Dijk | Letters to the Editor: On a Simple Proof of Uniformization for Continious and Discrete-State Continious-Time Markov Chains |
| 1991-3 | N.M. van Dijk P.G. Taylor | An Error Bound for Approximating Discrete Time Servicing by a Processor Sharing Modification |
| 1991-4 | W. Henderson C.E.M. Pearce P.G. Taylor N.M. van Dijk | Insensitivity in Discrete Time Generalized Semi-Markov Processes |
| 1991.5 | N.M. van Dijk | On Error Bound Analysis for Transient Continuous-Time Markov Reward Structures |
| 1991-6 | N.M. van Dijk | On Uniformization for Nonhomogeneous Markov Chains |
| 1991.7 | N.M. van Dijk | Product Forms for Metropolitan Area Networks |
| 1991.8 | N.M. van Dijk | A Product Form Extension for Discrete-Time Communication Protocols |
| 1991-9 | N.M. van Dijk | A Note on Monotonicity in Multicasting |
| 1991-10 | N.M. van Dijk | An Exact Solution for a Finite Slotted Server Model |
| 1991-11 | N.M. van Dijk | On Product Form Approximations for Communication Networks with Losses: Error Bounds |
| 1991-12 | N.M. van Dijk | Simple Performability Bounds for Communication Networks |
| 1991-13 | N.M. van Dijk | Product Forms for Queueing Networks with Limited Clusters |
| 1991-14 | F.A.G. den Buther | Technische Ontwikkeling, Groei en Arbeidsproduktiviteit |
| 1991-15 | J.C.J.M. van den Bergh, P. Nijkamp | Operationalizing Sustainable Development: Dynamic Economic-Ecological Models |
| 1991-16 | J.C.J.M. van den Bergh | Sustainable Economic Development: An Overview |
| 1991-17 | J. Barendregt | Het mededingingsbelcid in Nederland: Konjunktuargevoeligheid en effektiviteit |
| 1991-18 | B. Hanzon | On the Closure of Several Sets of ARMA and Linear State Space Models with a given Structure |
| 1991-19 | S. Eijffinger <br> A. van Rixtel | The Japanese Financial System and Monetary Policy: a Descriptive Review |
| 1991-20 | L.J.G. van Wissen <br> F. Bonnerman | A Dynamic Model of Simultaneous Migration and Labour Market Behaviour |

