
VU Research Portal

Extending the relational model version 2 to support generalization hierarchies

Veldwijk, R.J.; Boogaard, M.; Spoor, E.

1991

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Veldwijk, R. J., Boogaard, M., & Spoor, E. (1991). Extending the relational model version 2 to support
generalization hierarchies. (Serie Research Memoranda; No. 1991-78). Faculty of Economics and Business
Administration, Vrije Universiteit Amsterdam.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303688634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/02de8a0e-a833-463f-95c3-517e6940c34e

<\\~JÖ

ET xulteit der Economische Wetenschappen en Econometrie

B i b l i o t h e e k E c o n o m i e
05348 3B-02 ,

Extending the Relational Model Version 2
to Support Ceneralization Hierarchies

RJ. Veld wijk
M. Boogaard
E.R.K. Spoor

Research Memorandum 1991-78
December 1991

vrije Universiteit amsterdam

* ^ l s

Extending the Relational Model Version 2

to Support Generalization Hierarchies

by

R J VELDWIJK, M BOOGAARD and E R K SPOOR

Support for generalization hierarchies is widely recognized as a
desirable feature of data models. While such hierarchies are indeed
supported by data models such as NIAM and object oriënted models, the
relational model is still deficiënt in this respect. Proposed
enhancements suggested by Smith and Smith in their SHM model and by
Codd in his RM/T model have not been included in Codd's new version of
the relational model (RM/V2). The present paper proposes an extension
to RM/V2 needed to support generalization hierarchies and thus solve
database design problems induced by generalization hierarchies. The
proposed extension to RM/V2 is first introduced as an extension to a
formal model of RM/V2 expressed in RM/V2 itself, i.e. an RM/V2-catalog
schema. The paper shows that a small extension to relational language,
that uses the extended catalog schema, suffices to solve the
acknowledged problems with respect to inquiries on a generalization
hierarchy. Next, the paper shows that even in an environment as
powerful as SHM or extended RM/V2 there exist inquiries that cannot be
implemented easily or at all. It identifies the distinction between
data and meta data (or catalog instance data) as the root of this
problem. As a powerful solution it then proposes the imploded
relational model, in which the distinction between data and meta data
has been completely removed, as a conceptual vehicle with which a
fundamental solution can be offered.

Key words and phrases:
generalization, relational model, catalog, flexibility, data
independence, structural redundancy, imploded relational model.

1. INTRODUCTION

An important aim of data models is to provide application designers
with constructs that enable them to represent relevant aspects of
reality in a natural manner. Inadequate support for a construct to be
modelled reduces the understandability of application designs and
increases realization and maintenance effort, because the modelling
must then be done in an indirect manner.
The construct of the generalization hierarchy is often encountered

when modelling reality. Indeed, generalization is considered a basic
abstraction mechanism, together with classification, aggregation, and
association [BR0D84]. Any data model should thus be able to represent
at least these abstractions. Unfortunately, the relational model does
not, in contrast with other data models such as NIAM [NIJS89] and
object oriented data models [BHAL91]. Extending the relational model

1

with generalization support has been advocated by Smith and Smith, and
by Codd. Smith and Smith have proposed an extension to the relational
model1, known as the semantic hierarchy model (SHM) in [SMIT77]. Codd
[CODD79] has introduced generalization support as part of his RM/T-
version óf the relational model, but has now come to the conclusion
that the world of DBMS vendors and consumers is not yet ready for
RM/T, which deviates considerably from the existing version of the
relational model. Consequently, the second version of the relational
model (RM/V2), as introduced in [CODD90], offers no solution to
modelling problems caused by generalization hierarchies. Support for
generalization is deferred to a future version of the relational model
[CODD90, p.480]. The authors feel that implementing the frequently
occurring generalization hierarchies in today's RDBMS environments is
so cumbersome that an extension to the relational model and to RDBMS-
products would be welcomed, especially if it would prove to be a
simple one.

In a previous paper the authors introduced a modelling approach that
enables the designer to deal with generalization hierarchies in a very
flexible manner [B00G91a]. However, this approach was presented as a
modelling solution within a relational framework, not as an extension
to the relational model itself. In a more recent paper [VELD91c] the
authors proposed a catalog Standard for DBMSs that conform to RM/V2.
The present paper integrates the catalog Standard with aspects of

the data structuring approach advocated in [B00G91a], thereby making
it possible to represent generalization hierarchies of the SHM type.
It appears that a simple extension to the relational language is
sufficiënt to solve the problems identified in [SMIT77]. Next, the
shows that there still remain modelling and programming problems
frequently encountered with but not limited to generalization
hierarchies. It argues that a more radical approach, based on the
elimination of the distinction between data and meta data, is
necessary to solve these. Examples are given of what this approach
might look like and what it could accomplish.

The paper is divided into six sections. Section 2 discusses the most
abundant class of generalization structures and its problematic
implementation in current relational environments. It also briefly
revisits SHM as introduced by Smith and Smith. Section 3 introduces
the relevant aspects of the proposed RM/V2 catalog Standard extended
with support for generalization hierarchies. Section 4 proposes an
extension to relational language that exploits the enriched RM/V2
catalog and discusses the effects on database design, data
manipulation, and data independence. Section 5 identifies classes of
queries that remain hard to implement, suggests the distinction
between instance data and meta data (or catalog instance data) as the
origin of these problems, and proposes a powerful solution to
implement them. Finally, section 6 contains a number of remarks with
respect to the application and the limitations of the concepts and

1 Although Smith and Smith only speak of their work as a
"structuring discipline", they propose new relational integrity
rules and suggest extensions to relational operators.

2

constructs introduced in this paper.

2. GENERALIZATION HIERARCHIES AND THEIR IMFLEMENTATION

Generalization can be defined as an abstraction in which a set of
similar objects is regarded as a generic object, ignoring differences
between individual objects [SMIT77J. Although different types of
generalization can be distinguished [BRAC83] [CODD79], the most
commonly occurring type is the generalization hierarchy, in which an
object simultaneously belongs to a generic object class and to one or
more sübclasses of that class. Subclasses can be divided into several
sub-subclasses and so on. A classic example can be found in [SMIT77],
a simplified version of which is displayed in figure 1.

vehicle

propulsion category

wind

medium category

man
propelled motorized powered land water
vehicle vehicle vehicle vehicle vehicle vehicle

rotary
vehicle

jet rocket
vehicle vehicle pi helicopter

Figure 1: Example of a generalization hierarchy

Every object that is a vehicle does also belong to one or more
sübclasses of the generic object 'vehicle'. Furthermore, the
generalization hierarchy is subject to clustering, which in this case
means that an individual vehicle must belong to two subclasses, one
for the propulsion category and one for the medium category. An
individual bicycle thus belongs to the subclasses 'man powered
vehicle' (propulsion) and 'land vehicle' (medium). An object that
belongs to a sübclass also belongs to every superior class of that
sübclass. Thus, an individual helicopter is also a 'vehicle'.

The rationale for distinguishing between classes and subclasses can
be explained by the fact that certain information requirements are
relevant for vehicles in general, while others are only relevant for
specific subclasses. Each instance of a sübclass inherits the
properties of its superior classes but also has attributes of its own.

If all vehicle objects were represented in one relation VEHICLE
containing all attributes pertinent to any vehicle, the result would
be a large number of 'not-applicable' nulls. In RM/V2's four-valued
logic terminology these nulls would be denoted by so called I-marks.
Whether implemented by unspecified RM/V1 null values or by RM/V2 I-
marks, only a subset of the tuples in the relation (or R- tab Ie in
RM/V2 terminology) can accept such a null/I-mark. Every null/I-mark
thus has to be accompanied by an appropriate user-defined database
constraint. Moreover, inquiries like "Retrieve all attributes of

3

vehicle VI" cannot easily be interpreted, unlike similar queries on
relations where generalization problems do not apply.
Another extreme approach would be to regard every terminal subclass

as a class in itself and disregard the generalization structure. This
approach of disregarding the generalization hierarchy leads to
semantically poor and complex database structures and gives rise to
complex queries. Suppose for example that every vehicle has an owner.
If the owners we re represented by a separate relation OWNER, the.
number of foreign key constraints would be large and the inquiry
"Retrieve all vehicle numbers of vehicles owned by owner 01" would
result in a lengthy query statement expressing what relations contain
vehicle data. For this inquiry the generalized (single-relation)
modelling solution would be far superior.

The problem with generalization hierarchies manifests itself by the
existence of several modelling alternatives, each of which captures
the semantics of generalization hierarchy in an indirect marmer by a
number of database constraints. McGee [MCGE76] regards the occurrence
of indirect modelling solutions and multiple equivalent modelling
solutions for a real-world construct as indications of a data modei's
shortcomings. Partly based on this observation, [VELD91b] argues that
minimization of the number of database constraints is a good yardstick
against which the quality of a database design can be measured. The
number of database constraints relevant to a particular database
design depends on both the competence of the database designer and the
expressive power of the data model used. If the relational model can
be extended with a feature that permits direct modelling of
generalization hierarchies, its usefulness can be assessed by
considering the effect on the number of ad hoc database constraints in
cases where generalization hierarchies occur.
Smith and Smith [SMIT77] have suggested SHM as an extension to the

relational model which indeed reduces the number of database
constraints induced by generalization hierarchies. Their approach
requires the introduction of so called image domains. An attribute
that belongs to an image domain designates a subclass to which an
instance of a superior class belongs. Figure 2 (overleaf) displays
relational data structures that represent part of the vehicle
generalization hierarchy. Image domain data are displayed in bold
face.
All relations in the vehicle hierarchy have the same primary key

(VH#) . The subclasses to which a tuple with the same primary key value
must belong are designated by the values of the image domain
attributes. The set of permitted values of these attributes consists
of the set of names of the immediate subrelations. If image domains
are supported, the DBMS can enforce most relevant constraints. Neither
the problem of large numbers of I-marks nor the problem of complex
database structures occurs. Moreover, the DBMS can control the
redundancy that occurs in subrelations caused by the fact that these
relations also contain the attributes of their superior relations. The
inquiries discussed above would pose no problems. Both could be
expressed by simple queries on the VEHICLE relation, provided the
specific (sub)classes, in which the vehicle data can be found, are
known.

4

VEHICLE

VH# OUN# PRICE UEIGHT PROP_CAT M3>_CAT

V1
V2
V3

01
02
01

65.4
7900
12.2

10.5
840
1.9

MOTORIZ VEN
H0T0R1Z~VEN
UIW_PR_VEH

I A » VEN
AIR VEN
UATÜR VEN

MOTORI2_VEH

VH# 0UN# PRICE UEIGHT H_P0UER FUEL_CAP WTJCAT

V1
V2

01
02

65.4
7900

10.5
840

150
9600

300
2600

ROTARY VEN
JET_VEN

/ UR_VEH

VH# OUN# PRICE UEIGHT MAX_ALT TAKEJHST LIFTJCAT

V2 02 7900 840 30 1000 PLANE

\ JIND_PR_VEH

VH* OUN# PRICE UEIGHT NUMB_SAILS

V3 01 12.2 1.9 2

Figure 2: Some relations in the vehicle generalization hierarchy

The introduction of a new construct, the image domain, is
characteristic for the SHM approach. Image domains reflect the
structure of the generalization hierarchy on the instance level, but
contain in f act meta data, namely relation names. Image domains are
primarily used because it is often known that a generic object (say
vehicle VI) exists, but its precise classificatlon is not known. If
one is interested in the values of all relevant attributes of vehicle
VI, a second order query language is needed because the value of an
image domain (i.e. a relation name) must be used in the structural
part of a query (i.e. the FROM clause in SQL-terms). As we shall see
in section 5, image domains are a manifestation of a more general
problem that occurs whenever queries request both instance data and
meta data.

The problem is basically caused by the assumption in the relational
model that the relation (class) to which a tuple (object) belongs is
always known beforehand. Wherever generalization hierarchies occur,
this assumption is of ten not valid. A point can also be made for the
inverse proposition: whenever the class to which an object belongs is
not known, the object participates in some sort of generalization
structure. Because generalization hierarchies are commonly
encountered, it is worthwhile to extend the relational model. The real
issue is to minimize the extensions needed in data structures,
integrity rules and operators to achieve this objective. If we compare
the SHM solution to the solution offered by Codd in his RM/T paper
[CODD79] it appears that the RM/T solution for generalization
hierarchies is found at the meta data or catalog level, instead of the
instance level. The present paper demonstrates that this latter

5

approach is superior. To attain this objective, a catalog Standard for
RM/V2 is needed. The next section introduces such a catalog schema
together with an appropriate extension for generalization hierarchies.

3. EXTENDING THE RM/V2 CATALOG SCHEMA

Like the original relational model, its RM/V2 successor is a fairly
simple formal model. The fact that Codd needs a rather voluminous book
[CODD90] to describe RM/V2 is induced by the fact that (1) RM/V2 is as
much a DBMS description as a data model and (2) the specifications of
RM/V2 are cast in a verbal form, rather than in a formal one. Formal
specifications only exist for relational languages like relational
algebra, relational calculus, and of course SQL. The authors have
therefore developed a formal specification of the static or non-
manipulative aspects of RM/V2 [VELD91c]. The choice for RM/V2 itself
as the modelling tooi is obvious if one regards the relational model
as an expressive data model [VELD91b]. A fortunate side effect is that
the resulting description can be seen as a candidate catalog Standard
for future RM/V2 DBMS products.

Basic to both RM/V2 and the original relational model (RM/V1) are
concepts like 'relation', 'domain', 'attribute', 'key', 'entity
integrity' and 'referential integrity'. It appears that these concepts
and the way in which they are related to each other can be captured
elegantly in a relational database schema. It also appears that an
extension to support generalization hierarchies requires only a small
change to this schema, depicted in figure 3a. The boxes represent
relations (R-tables in RM/V2 terms), the arrows represent foreign key
to primary key references between these R_tables. In the R_table
descriptions the primary key attributes (columns in RM/V2) have been
underlined. The additional R_Table and columns that have been added to
the schema introduced in [VELD91c] are displayed in bold face.

CLUSTER R_TABLE COLUMN DOMAIN CLUSTER R_TABLE COLUMN DOMAIN CLUSTER R_TABLE COLUMN DOMAIN CLUSTER R_TABLE COLUMN DOMAIN

A A A A
1

rev
KEY-

R TABLE(RT HM. RT HM CLU, CLU HM, RT TYPE, RL EXPR)
COLUMN<RJ_NM, COL~NHT COL SEOÏ, DOM NM, A_MARK ALL, I MARK ALL)
DOMAIN(DOMJJM, DOM TYPE, COMP ALL, BD TYPE NM, LENGTH, SCALE)
KEY REF(RT NM PK. RT NM FK. KËY NM)
KEYTRT NM. KEY NM. KEY TYPE)
KEY COLUMN(RT NM. KEY NM. COL NM. KEY COL SEQ#)
DOM~RANGE(DOM NM. DR SEQ#. LOVAL, HIVAL)
CLUSTEKCRT MM CLU. CLU MM. A HARK ALL)

Figure 3a: A basic model of RM/V2 with generalization support added

6

Disregarding the extensions to support generalization hierarchies for
the moment, the schema can be interpreted as follows.

An R_TABLE in the relational model must have a unique name (RT_NM). An
R_Table is either a base relation or a view (RT_TYPE). Views are
defined in terms of other views and/or base relations by means of a
statement in a relational language (RL_EXPR).
A COLUMN (or attribute) is identified by its name together with the

name of the relation to which it belongs (RT_NM, COL_NM). Columns are
assigned a sequence momber for default presentation purposes. Every
column belongs to one domain (DOM_NM). Non-primary key columns can be
allowed to be 'missing-but-applicable' (A_MARK_ALL), 'missing-and-
inapplicable' (I_MARK_ALL) or both.
A DOMAIN must have a unique name (DOM_NM). Depending on the question

whether a primary key column draws its values from the domain, it is a
primary or a secondary domain respectively (DOMJTYPE). An indicator
(COMF_ALL) designates whether comparison of domain values is
meaningful. Domains are extended data types based on DBMS dependent
bas ie data types (BD_TYPE_NM) like 'character', 'number' and 'date'.
Depending on the datatype, the columns LENGTH and SCALE can be
applicable.
The relation DOM_RANGE permits the specification of multiple ranges

of values per domain by means of the columns LOVAL and Hl VAL. If no
range of values is specified, the permitted values are limited only by
the domains basic data type and format limitations.
A KEY is formed by one or more columns of one relation that identify

a tuple in some relation. Primary and alternate keys identify tuples
in the R-table to which these keys belong themselves. Foreign keys
identify tuples in one or more R-tables designated by KEYJREF.
KEY_COLUMN contains the columns constituting a key. A key column is

identified by the combination of the identifiers of the R- tables KEY
and COLUMN. The column KEY_COL_SEQ# provides the mechanism to couple a
foreign key column to a primary key column. Composite primary/foreign
key combinations must have matching sequence numbers for their
columns. A foreign key references at least one R-table. Every such
reference is expressed by a KEY_REF tuple.

It appears that the core aspects of RM/V2 can be expressed quite
concisely and, in the our opinion, fairly elegantly by means of RM/V2
itself. Nevertheless, there remain a number of constraints that are
not enforced by the data structure of figure 3a. These constraints
have to be expressed in an ad hoc manner by means of a relational
language and stored in the catalog (see [VELD91c] section 7). Figure
3b (overleaf) lists the most important constraints pertinent to the
basic model of figure 3a. A fuil discussion can be found in [VELD91c].
The constraint identification (BM##) has been copied from that
article.

7

BM03- Every tuple in RJTABLE for which RT_TYPE - 'BASE' or 'CHECKOUT'
is referenced by~a KEY tuple having KEYJTYPE - 'PRIMARY'.

BM04- The subset of KEY tuples for which KEYJTYPE - 'PRIMARY' does not
contain duplicate values for RT_NM.

BM05- Every tuple in KEY having KEYJTYPE - 'FOREIGN' is referenced by
at least one KEY_REF tuple, while other tuples in KEY are not
referenced by KEY_REF tuples.

BM08- KEY tuples with KEYJTYPE - 'PRIMARY', that are referenced via
KEY_REF by a KEY tuple with KEYJTYPE - 'FOREIGN', are referenced
by pairs of KEY_COLUMN tuples with corresponding values for
KEY_COL_SEQ#, referencing COLUMN tuples with the same value for
DOM_NM.

BM10- The column RL_EXPR in R_TABLE contains an I-mark if and only if
RT_TYPE - 'BASE'.

BM13- No tuple in COLUMN that is referenced by a tuple in KEY_COLUMN
that references a tuple in KEY having KEYJTYPE - 'PRIMARY' has a
'YES' value for either A MARK ALL or I MARK ALL.

Figure 3b: User-defined constraints on the basic model of SM/V2
without generalization support

Constraints BM03 and BM04 assert that every base R-table must have
exactly one primary key. Constraint BM05 asserts that a reference from
one R-table to another applies if and only if the key is a foreign
key. Constraint BM08 asserts that foreign keys and primary keys are
realized by matching pairs of columns belonging to similar domains.
Constraint BM10 asserts that base tables have no view definition. It
is an example of simple generalization hierarchy at the definitional
level of RM/V2 itself.

The extensions needed to support generalization hierarchies appear to
be very limited. The only significant addition is the R-table CLUSTER
containing data about clusters like 'propulsion category' and 'medium
category'. Every RJTABLE tuple that contains Information about a
subcategory must reference a CLUSTER tuple that in turn references an
RJTABLE tuple designating the direct superior category. Generic
objects (like 'vehicle') or objects that do not take part in
generalization hierarchies (like 'owner') are represented by RJTABLE
tuples that do not reference a CLUSTER tuple. A cluster is identified
by the superior R_table to which it belongs (RT_NM_CLU) and by its
name (CLU_NM). The column CLU_NM also designates the name of the image
domain that is added to the superior table as a pseudo column2, while
A_MARK_ALL indicates whether an image domain value must be supplied
for every tuple in the superior R_Table. The values the image domain
column can accept are the names of the RJTABLE tuples referencing the
CLUSTER tuple.

2 Because CLUSTER tuples display a close correspondence to COLUMN
tuples, image column would be a more appropriate term.

8

The introduction of support for generalizatlon hlerarchies leads to
some new constraints that are listed In figure 3c below (GH stands for
generalization hierarchy).

GH01- The columns RT_NM_CLU and CLU_NM in R_TABLE are both either
unmarked or A-marked.

GH02- R_TABLE tuples for which RT_NM_CLU is not A-marked have the
value 'BASE' for their column RTJTYPE.

GH03- No R_TABLE tuple may reference itself directly or indirectly via
the R-table CLUSTER.

GH04- RJTABLE tuples referencing a CLUSTER tuple are not referenced
via COLUMN by KEY_COLUMN tuples that reference a KEY tuple for
which KEYJTYPE - 'PRIMARY'.

GH05- The set of CLU_NM values for CLUSTER tuples referencing an
RJTABLE tuple must be disjunct from the set of COL_NM values for
the COLUMN tuples referencing it.

GH06- No COLUMN tuple can have a value for COL_NM that also occurs in
another COLUMN tuple that references a superior (via CLUSTER)
RJTABLE tuple.

GH07- No COLUMN tuple can have a value for COL_NM that also occurs in
another COLUMN tuple that belongs to a different cluster in the
same generalization hierarchy.

GH08- Any two COLUMN tuples with equal values for COL_NM that
reference RJTABLE tuples that are part of a generalization
hierarchy have also equal values for their DOM_NM columns.

Figure 3c: User-defined constraints on the basic model of RM/V2 to
enforce generalization support.

Because Codd's definition of referential integrity allows foreign keys
to be partially marked, constraint GH01 forbids meaningless references
to the CLUSTER R-table. Constraint GH02 limits generalization
hierarchies to base R-tables. Constraint GH03 asserts that the
generalization hierarchy contains no cycles. Constraint GH04 enforces
the rule that primary keys are inherited from the generic object by
all lower class objects. Constraint GH05 expresses the pseudo column
nature of clusters. Constraint GH06 enforces the rule that columns are
inherited from superior R-tables. Finally, constraints GH07 and GH08
specify that columns in different sübclasses having the same names are
in fact the same attributes, which implies that no individual object
designated by a primary key value can have two or more columns with
the same name. This restriction may seem no more than a reasonable
modelling advice at this point. However, in the next section it will
prove to be quite important.

9

Due to the introduction of catalog support for generalization
hierarchies some existing catalog constraints have to be modified.
Figure 3d lists the new versions with the modifications printed in
bold face.

BM03- Every tuple in R_TABLE for which RT_TYPE - 'BASE' or 'CHECKOUT'
and for which RT_NM_CLU is not A-marked is referenced by a KEY
tuple having KEY_TYPE - 'PRIMARY'.

BM08- KEY tuples with KEY_TYPE - 'PRIMARY' , that are referenced via
KEY_REF by a KEY tuple with KEY_TYPE - 'FOREIGN', are referenced
by pairs of KEY_CQLUMN tuples with corresponding values for
KEY_COL_SEQ#, referencing COLUMN tuples with the same value for
DOM_NM. For RTABLE tuples for which RT_NM_CLU is not A-marked,
this rule is applied the primary KEY_TYPE tuple that references
the . R_TABLE tuple recursively referenced via CLUSTER and
R TABLE.

Figure 3d: Altered user-defined constraints on the basic model of
RM/V2 due to the introduction of generalization support.

Constraints GH03, GH06, GH07, GH08, and BM08 cannot be expressed in a
relational language. This situation will cease to exist if these
languages are extended with a recursive join operator as suggested by
Codd in [CODD90].

At this point we can express the vehicle example by means of tuples in
the extended RM/V2 catalog, as is done in figure 4 (overleaf) for the
catalog relations discussed above. It has been assumed that there
exists an OWNER R-table containing data about the vehicles' owners.
Because they add little insight the R-tables DOMAIN and DOM_RANGE have
been omitted. With respect to the R-table COLUMN only those columns
depicted in figure 2 have been displayed. Due to the introduction of
generalization support, no column in the vehicle example is allowed to
contain I-marks. Note that the image domain columns of figure 2 do not
occur as COLUMN tuples and that the generalization hierarchy is fully
determined at the catalog level. Instance data and meta data are not
mixed and there is no need for an image domain construct anymore.

10

R TABLE CLUSTER

RT_NH RT_NM_CLU CLU_NM RT_TYPE

VEHICLE BASE
WIND PR VEH VEHICLE PROPUL CAT BASE
MOTORIZ VEH VEHICLE PROPUL CAT BASE
MAN POW VEH VEHICLE PROPUL CAT BASE
LAND VEH VEHICLE MEDIUM CAT BASE
AIR VEH VEHICLE MEDIUM CAT BASE
WATER VEH VEHICLE MEDIUM CAT BASE
ROTARY VEH MOTORIZ VEH SUBTYPE BASE
JET VEH MOTORIZ VEH SUBTYPE BASE
ROCKET VEH MOTORIZ VEH SUBTYPE BASE
PLANE AIR VEH SUBTYPE BASE
HELICOPTER AIR VEH SUBTYPE BASE
OUNER BASE

RT_NM_CLU CLU_NM A_MARK_ALL

VEHICLE PROPUL CAT NO
VEHICLE MEDIUM CAT NO
MOTORIZ VEH SUBTYPE NO
AIR VEH SUBTYPE NO

RT_NM KEY_NM KEYJTYPE

VEHICLE
VEHICLE
OUNER

IDENTIFICATION
OUNER VEHICLE
IDENTIFICATION

PRIMARY
FOREIGN
PRIMARY

KEY REF KEY COLUMN

RT_NM_PK RT_NM_FK KEY_NM

OUNER VEHICLE OUNER.VEHICLE

RT_NM KEY_NM COL_NM KEY_CQL_SEO#

VEHICLE
VEHICLE
OUNER

IDENTIFICATION
OUNER VEHICLE
IDENTIFICATION

VH#
OWN#
OUN#

1
1
1

COLUMN

RT NM COL NM COL SEQ* DOM NM A MARK ALL I MARK ALL
~

VEHICLE VH# 1 VH* NO NO
VEHICLE OUN# 2 OUN# YES NO
VEHICLE PRICE 3 AMOUNT YES NO
VEHICLE WEIGHT 4 WEIGHT YES NO
MOTORIZ VEH H POWER 1 H POWER YES NO
MOTORIZ VEH FUEL CAP 2 FUEL CAP YES NO
AIR VEH MAX ALT 1 ALTITUDE YES NO
AIR VEH TAKE DIST 2 TAKE DIST YES NO
UIND_PR_VEH NUMB_SAILS 1

" i
NUMB_SAILS YES

NO

NO

NO OUNER OUN*

1

" i OWN#

YES

NO

NO

NO
OUNER NAME 2 ONAME NO NO

Figure 4: A basie model of RM/V2 with generalization support added.

Finally, the reader may have noticed that support for generalization
hierarchies requires not only an extension of the catalog schema, but
also a change in the catalog's structure wherever a generalization
hierarchy occurs in the catalog schema itself. Indeed, [VELD91c]
claims that the RM/V2 universe of discourse is littered with
generalization hierarchies. With respect to the partial catalog
structure presented, we can identify generalization structures in
R TABLE in which base tables, views etcetera are not identified as
such and in the R-tables CLUSTER and COLUMN in which a generalization
hierarchy is ignored (image domain as a pseudo column). Thus, the
unsatisfactory implementations of generalization hierarchies in
current relational databases can be found in the catalog schema itself
too. The proposed extension makes it possible to eliminate these
shortcomings. However, the present paper concentrates on adding a
viable extension to the catalog schema instead of improving the schema

11

itself. Therefore, the fact that the RM/V2 self-descriptive catalog
schema has become suboptimal is ignored for now.

4. ADAPTING RELATIONAL LANGÜAGE

In [B00G91a] the authors identified several problems concerning the
use of SHM in current RDBMS environments. One problem has to do with
problematic integrity monitoring due to the introduction of a large
number of database constraints wherever generalization hierarchies
occur, as discussed in section 2. However, this problem only occurs in
DBMS environments that do not support generalization. Any DBMS with a
catalog structure at least as powerful as the one discussed in the
preceding section can enforce generalization hierarchies with a
minimal number of generalized constraints, represented by appropriate
R_TABLE en CLUSTER tuples. I-mark constraints due to over-
generalization or large numbers of other constraints due to over-
specialization do not occur anymore.

Another problem discussed in [B00G91a] occurs when inquiries are made
with respect to columns, that are relevant to many but not all
subclasses. Consider the inquiry "Retrieve all vehicle numbers and
their weights". This inquiry can be translated into an very simple
query: a projection on the VEHICLE relation over its columns VH# and
WEIGHT (left column of figure 5 overleaf). Now consider what would be
the case if the WEIGHT column were not to apply to one vehicle
subclass, say the subclass of rocket vehicles. As a consequence WEIGHT
ceases to be a VEHICLE column and must be transferred to the relations
WIND_PR_VEH, ROTARY_VEH, JET_VEH and MAN_POW_VEH. Our simple
projection query now becomes the union of three projections (middle
column of figure 5 overleaf). It appears that a trivial and
information preserving3 database restructuring operation leads to
significant changes in DML coding.
The need for such changes would be eliminated if the relational

language would exploit the information in the extended catalog schema.
We therefore propose to extend relational languages with a GENERIC
qualifier which designates that the DML operation is to be executed on
the union of all terminal relations participating in a cluster of
generalization hierarchy for which at least one of the requested
columns is relevant. An I-mark is displayed for every column
irrelevant to a subclass. The right column of figure 5 shows what such
a query would look like. It is equivalent to the other two queries
depending on the specific instance of the generalization hierarchy.
The GENERIC qualifier can be used on any level in a generalization

hierarchy. It has no effect if it is applied to a terminal relation in
a generalization hierarchy or to a relation that does not participate
in such a hierarchy. Furthermore, it is important to note that the

3 Information preserving means that the information content of the
database is not altered by the restructuring operation. Only the
rules to which the data in the database must conform are
changed. See [VELD91a] for a further discussion of this topic.

12

qualifier does not violate the operational closure principle of
relational languages. The virtual R-table constructed by the GENERIC
qualifier is the union of a variable number of relations (extended
with I-marks) and is thus a relation itself. A final important point
is that the addition of constraints GH07 and GH08 in figure 3c is
essential if the GENERIC qualifier is to be applied properly.

The GENERIC qualifier can also be applied to INSERT, UPDATE and DELETE
operations. In case of an INSERT operation though, the DBMS must
ensure that the terminal R-table or R-tables to which a tuple is added
can be unambiguously determined.

UEIGHT AS A GENERAL COLUMN UEIGHT DOES NOT APPLY TO
ALL VEHICLE SUBCLASSES

UEIGHT IS APPLICABLE TO ONE OR
MORE VEHICLE SUBCLASSES

SELECT VH#, UEIGHT
FROM VEHTCLE
ORDER BY VH#

SELECT VH#, UEIGHT
FROM UIND PR VEH
UNION
SELECT VH#, UEIGHT
FROM ROTARY VEH
UNION
SELECT VH#, UEIGHT
FROM JET VEH
UNION
SELECT VH#, UEIGHT
FROM MAN POU VEH
ORDER BY 1

SELECT VH#, UEIGHT
FROM GENERIC.VEHICLE
UHERE UEIGHT IS NOT I WUKED
ORDER BY VH#

Figure 5: Three implementations of an inquiry on the vehicle hierarchy

We conclude that the extension to the catalog schema described in the
preceding section and the introduction of the GENERIC qualifier in
this section raise the level of logical data independence
significantly for any query for which the precise classification in a
generalization hierarchy is unimportant. Because the current
generalization structure has become irrelevant for such queries,
programmers' productivity is increased and recoding due to changing
data structures within a generalization hierarchy is eliminated.
Problems remain however, if one is interested in relevant information
about objects whose specific classification within the generalization
hierarchy is unknown but important. The following section gives an
example of such an inquiry and offers a conceptual solution to these
problems.

5. COPING WITH THE CLASSIFICATION PROBLEM

Up to now we have dealt with the generalization problem very much in
the spirit of SHM*. However, if we take a closer look at the nature of
the proposed extensions to the relational model, we find that we have
only provided a solution for an aspect of a broader problem, namely
that the specific (and current) data structure relevant to a query

* And also in the spirit of RM/T. The paper does not make a
comparison with RM/T because only RM/V2 can be easily extended
in the spirit of SHM, rather than in the spirit of RM/T.

13

raust always be known beforehand and must be *hard-coded' into the
query structure. The solution suggested by Smith and Smith is to merge
instance data with meta data and to extend relational languages with
second order facilities, in other words, to permit the specification
of meta data like R-tables and columns as variables in DML-
statements5. The solution advocated in the preceding section aims at
raising the abstraction level of relational languages by providing
higher level data structures. Although a higher level of logical data
independence is attained, the approach is essentially similar to the
treatment of relational languages of subrelational constructs like
indexes, or physical file structures, which are completely transparent
at the relational language level.
We conclude that although the preceding section presents a practical

and easy to implement solution for a serious design and programming
problem, we still face the same fundamental problem that caused the
introduction of the GENERIC qualifier. It is not hard to come up with
realis tic inquiries that are hard to implement or maintenance-prone.
In some cases query formulation is merely impossible. As an example
consider the inquiry "Retrieve all relevant data about the vehicles
owned by owner 01". This query cannot realistically be translated into
a query, not only because it concerns both instance data and
structural data or meta data, but because the query structure depends
on the specific time varying set of vehicles owned by owner 01. The
GENERIC qualifier does not help us here because we cannot know which
columns are relevant to the query and which are not. Of course we can
attempt to extend the relational language further, but we can also
address the problem in a fundamental way by recognizing the fact that
the inquiry problem is caused by the distinction between data
instances and data structures (or meta data). As long as this
distinction exists it seems possible to conceive meaningful queries
that straddle data and meta data and thus cannot be formulated in a
relational language. The need for such queries can be expected in
particular in circumstances where generalization hierarchies occur, as
we shall show at the end of this section.

Basic to any solution of this problem is the viewpoint that meta data
are just data. As the two preceding sections show, the boundary
between data and meta data is quite fluent (compare for instance
figures 2 and 4). Still, the prevalent information systerns paradigm
presents it more or less as fixed and axiomatic for information
systems and data model design. If we drop the conceptual distinction
between data and meta data we realize that the data structures and
meta data instances in the catalog represent a form of redundancy. As
is the case with other known forms of redundancy this phenomenon which
we shall label structural redundancy can be removed if desired. The
way in which this can be achieved is shown in figure 6 by means of the

5 The SQL language already contains a primitive second order
facility, namely the wildcard '*' in the SELECT clause. However,
this is nothing compared to the extensions that indicated by the
suggestions of Smith and Smith.

14

so called implosion mechanism6. The R-table VALUE, that can be
considered to reference the catalog R-table COLUMN, contains the value
of every data item that occurs in the database. It contains data about
both data structures (columns RT_NM and COL_NM) and about instances
(TUPLE_ID, VAL). Any conventional R-table can be represented in an
imploded form and it can be restored by joining the VALUE R-table with
itself for every column in the R-table. All information necessary to
perform these operations is available in the catalog of section 3.

VALUE

RT_NM COL_MM TUPLEJD VAL RT_NM COL_NM TUPLEJD VAL

VEHICLE VH# 1 VI MOTORIZ VEH VH# 1 V1
VEHICLE OWN# 1 01 MOTORIZ VEH H POWER 1 150
VEHICLE PRICE 1 65.4 MOTORIZ VEH FUEL CAP 1 300
VEHICLE UEIGHT 1 10.5 MOTORIZ VEH VH# 2 V2
VEHICLE VH# 2 V2 MOTORIZ VEH H POWER 2 9600
VEHICLE OWN# 2 02 MOTORIZ VEH FUEL CAP 2 2600
VEHICLE PRICE 2 7900 AIR VEH VH# 1 V2
VEHICLE UEIGHT 2 840 AIR VEH MAX ALT 1 30
VEHICLE VH# 3 V3 AIR VEH TAKE DIST 1 1000
VEHICLE OWN# 3 01 WIMD PR VEH VH# 1 V3
VEHICLE PRICE 3 12.2 WIND PR VEH NUMB SAILS 1 2
VEHICLE UEIGHT 3 1.9 VEHICLE UEIGHT 3 1.9

Figure 6: IMPLOSION: the vehicle database with structural redundancy
removed

With respect to figure 6 it is important to recognize that the
imploded version of the vehicle database together with the catalog
content of figure 4 contains the same Information as the original
database of figure 27. The values of TUPLE_ID have no specific
meaning. In combination with the column RT_NM they just denote what
VALUE tuples constitute an original (non imploded) tuple. Another
important observation is that, thanks to operational closure, any
query on the original database can be reformulated on the imploded
database because any original R-table can always be restored using
relational language.
The benefit of implosion lies in the fact that the kinds of queries

we have identified as straddling data and meta data can now be
formulated without any extension to the relational language. The need
for extensions to relational languages like the GENERIC qualifier is
eliminated. Note however that the need for an extended catalog schema
remains.

6 The implosion concept was introduced in [VELD91a] and first
applied to generalization hierarchies in [B00G91a].

7 Obviously, there still exists structural redundancy with respect
to the catalog's self-descriptive content (not shown in figure
4) and the catalog R-table structures. This remaining redundancy
can be removed by imploding the catalog R-tables too.

15

Figure 7 displays the "impossible" query that induced the introduction
of the imploded version of the vehicle database.

SELECT DISTINCT B.VAL, D.COL m, D.VAL B.VAL D.COL_NN D.VAL
FROM VALUE A, VALUE B, VALUE C, VALUE D stsss •sscixisxa =====
WHERE A.RT MM = 'VEHICLE' V1 FUEL CAP 300

AND A.COL NH * 'OUN#' VI H POWER 150
AND A.VAL = '01' V1 OÜN# 01
AND B.RT NH = 'VEHICLE' V1 PRICE 65.4
AND B.COL NH = 'VH#' V1 VH* VI
AND B.TUPLE ID = A.TUPLE ID V1 WEIGHT 10.5
AND C.COL NH • 'VH#' V3 NUNB SAILS 2
AND C.VAL- = B.VAL V3 OWN#~ 01
AND D.RT NH = C.RT NN V3 PRICE 12.2
AND D.TUPLE ID = C.TUPLE ID V3 VH# V3

ORDER BY B.VAL, D.COL NN, D.VAL V3 WEIGHT 1.9

Figure 7: "Retrieve all relevant data about the vehicles owned by
owner 01"

The query in figure 7 is independent of both the current
generalization hierarchy and the current set of vehicles owned by 01.
Equally important, extensions to the relational language are not
needed anymore. The query of figure 5 can be reformulated on the
imploded database without need of a GENERIC qualifier. The extension
of the catalog schema with the R-table CLUSTER remains necessary.
Unfortunately, there are some problems involved with the implosion

approach. First, queries on an imploded database are difficult to
formulate, not only because of the large number of j oins that has to
be made but also because programming on multiple levels of abstraction
is at least as hard as thinking on multiple levels of abstraction.
Second, the presentation of the query output is not very attractive.
This is no problem if the DBMS is supplied with Information concerning
which data are meta data with respect to the query and which are not.
In the case of figure 7 the output can be converted to a conventional
format (with I-marks) because C0L_NM is known to the DBMS as a meta
data item. Third, confronted with the imploded model, many people feel
that implosion is a purely academie exercise because the performance
problems attached to imploded databases are prohibitive to any
implementation. Performance however is not the issue here. The
imploded database is a purely conceptual construct. With a
sufficiently powerful catalog, it is always possible to translate any
DML-statement on an imploded database to an equivalent statement on a
conventional database.

The impact of the implosion concept goes beyond mere generalization
hierarchies. As noted above, implosion is useful whenever a query
crosses the boundary between data and meta data. Consider as a final
extension to the vehicle example that every vehicle is taxed according
to its specific class. This example shows how fuzzy the boundary
between instance data and meta data can be, because we find ourselves
required to extend the catalog structure. We have to add a column

16

TAX_RATE to the relation R_TABLE8. What we have here is an example of
cover generalization. The f act that even plain inquiries offer
significant problems for query formulation is evident; a query that
accesses the catalog column TAX_RATE will almost always access
instance data too. Consider the inquiry: "Retrieve all vehicle numbers
together with the tax amount due on them". Figure 8 depicts the new
(sub-)table TAXJTABLE, a conventional SQL query, the imploded version
of the query and the query resul ts. Again the imploded vers ion is
independent of current database structure.

SELECT VH#, 'UIND PR VEH', TAX RATE SELECT V.VAL, RT.RT NM, RT.TAX RATE
FRON UIND PR VEH,~R TABLE FROM VALUE V, R TABLE RT
UHERE RT NM = 'WIND PR VEH' UHERE V.COL NM = 'VH#'
UNION AND V.RT NM = RT.RT NM
SELECT VH#, 'NOTORIZ VEH', TAX RATE AND RT.TAX RATE IS NOT I MARKED
FROM NOTORIZ VEH, R TABLE ORDER BY V.VAL
UHERE RT NM « 'NOTORIZ VEH'
UNION
SELECT VH#, 'MAN POU VEH', TAX .RATE
FROM MAN POU VEH, R TABLE
UHERE RT~NM = 'MAN POU VEH'
ORDER BY_1

R_TABLE VH# RT_NM TAX_RATE

RT_NM ... TAX_RATE V1 NOTORIZ VEH 180
V2 MOTORIZ~VEH 180
V3 UIND PR~VEH 25 UIND PR VEH ... 25

V1 NOTORIZ VEH 180
V2 MOTORIZ~VEH 180
V3 UIND PR~VEH 25

MOTORIZ~VEH a e . 180
MAN POU~VEH ... 5

Figure 8: "Retrieve all vehicle numbers together with the tax amount
due on them"

We conclude that, together with a catalog that supports generalization
hierarchies, the implosion concept is a promising extension to the
relational model.

6. CONCLUDING REMARKS

The aim of the paper has been to introducé an extension to the latest
version of the relational model. This extension enables database
designers and programmers to deal with generalization hierarchies in
an elegant and flexible manner. It appears that a simple extension to
the data structures and operators of RM/V2 is sufficiënt to solve many
(but not all) problems induced by RM/V2's disability to support
generalization hierarchies. The extensions are in f act so simple that
pending support by RDBMS-products information systems designers can
themselves reap the benefits of increased programming productivity and
decreased maintenance effort by building their own DML-generator.
Wherever complicated or instable generalization hierarchies occur they

8 Again we ignore the fact that this change introduces another
generalization hierarchy.

17

are advised to consider the possibility.
In the discussion of the extensions needed to support generalization

hierarchies, extending the RM/V2 catalog schema has been the first
step. The introduction of the implosion concept in section 5 provides
justification for this (meta)data driven approach because it shows
that only the addition of new data structures and constraints to the
catalog schema is significant. Extensions to relational languages in
order to support new abstractions are practical, but not necessary and
not very powerful. The implosion approach, on the other hand, may be
less practical but is certainly much more powerful, as the examples in
section 5 show.
Another relevant question concerns the assessment of the implosion

concept. On the one hand it must be stressed again that for the
purpose of this paper the implosion concept is a conceptual construct.
It should be seen as a kind of canonical form in which queries can be
casted by the RDBMS or by application programmers. It seems that any
query on an imploded database can be translated to a conventional
query, based on the contents of the (possibly imploded) catalog (see
also [VELD91a]). The example of the query in figure 8 indicates that
the reverse translation may not be so simple because the conversion
algorithm must then be able to recognize literals as representing
catalog data.
On the other hand it is also possible to view implosion as an

alternative way of looking data. In this view it is appropriate to
speak about an imploded vers ion of the relational model. Such a model
should not be regarded as an alternative to database design nor as a
model that cannot realistically be implemented due to performance
limitations. It should rather be seen as a means to express queries in
a way that captures more in tent., thus offering higher levels of data
independence or flexibility. The price we pay for this gain is loss of
simplicity from a human point of view. It is an intriguing question,
and an interesting research subject (see [B00G91b]), whether an
equally powerful but more user-friendly and comprehensible way to
express queries exists. The question what other applications the
imploded relational model might have in areas in which the relational
model is weak, like database restructuring (see [VELD91a] and
[BOOG92]) and temporal databases is hardly less intriguing.

18

References:

[BHAL91] Bhalla N, "Object-oriented data models: a perspective and
comparative review," Journal of Information Science, 17
(1991) pp. 145-160.

[B00G91a] Boogaard M, Veldwijk R J, Spoor E R K, "An Altemative
Approach to Generalization in the Relational Model," To
appear in the Proceedings of the IFIP WG 8.1 Working
Conference, Alexandria/Egypt, April 1992.

[B00G91b] Boogaard M, Dijk M V van, Spoor E R K and Veldwijk R J,
"Inherently Flexible Information Systems," To appear in the
Proceedings of the STINFON conference, Nijmegen/The
Netherlands, December 1991.

[BOOG92] Boogaard M, Veldwijk R J and Spoor E R K, "Decomposition of
Structural Database Alterations," In Preparation.

[BRAC83] Brachman R J, "What IS-A Is and Isn't: An Analysis of
Taxonomie Links in Semantic Networks," IEEE Computer, 10,
pp. 30-36.

[BR0D84] Brodie M L, "On the Development of Data Models," In M.L.
Brodie: On Conceptual Modelling, New York: Springer-Verlag,
1984, pp. 19-47.

[CODD79] Codd E F, "Extending the Database Relational Model to
Capture More Meaning," ACM Transactions on Database Systems
4, no. 4, december 1979, pp. 397-434.

[C0DD90] Codd E F, The Relational Model for Database Management,
Version 2, Reading, Massachusetts: Addison-Wesley Publishing
Company (1990).

[MCGE76] McGee WC, "On User Criteria for Data Model Evaluation," ACM
Transactions on Database Systems, Vol 1 No 4 (1976)

[NIJS89] Nijssen G M and Halpin T A, Conceptual Schema and Relational
Database Design, A Fact Oriented Approach, Sydney,
Australia: Prentice Hall (1989)

[SMIT77] Smith J M, and Smith, D C P, "Database Abstractions:
Aggregation and Generalization," ACM Transactions on
Database Systems, Volume 2, No. 2, June 1977, pp. 105-133.

[VELD91a] Veldwijk R J, Boogaard M, Dijk M V van and Spoor E R K,
"EDSOs, Implosion and Explosion: Concepts to Automate a Part
of Application Maintenance in Relational Databases,"
Information and Software Technology, Vol 33 No 5 (june
1991), pp. 343-250.

19

[VELD91b] Veldwijk R J, Spoor E R K, Dijk M V van and Boogaard M, "On
The Expressive Power of the Relational Model, a Database
Designers Point of View," To appear in the Proceedings of
the 12th International Conference on Information systems,
New York, December 1991

[VELD91c] Veldwijk R J, Buitendijk R B, Spoor E R K and Boogaard H,
"Towards a Catalog Standard for the Relational Model Version
2: A Manifesto," Research Memorandum 1991-50, Vrije
Universiteit, Amsterdam (1991).

20

The MESDAG Research Group

INTRODUCTION

The MESDAG project is a joint project endorsed by three
organizations in the Netherlands: the N.V. Nederlandse
Spoorwegen (The Netherlands Railways Company), RAET N.V. and
the Vrije Universiteit of Amsterdam. The MESDAG project
originated at RAET N.V. during the second half of 1989 as an
outgrowth of research done in the field of active data
dictionary models. This research and a prototype of an active
data dictionary form the basis for the mission of the MESDAG
project that officially started its activities in September
1990.

MESDAG is an abbreviation of:

MEta Systems Design And Generation

MISSION AND OBJECTIVES

The mission of the MESDAG project is to prove the feasibility
of developing inherently flexible information systems by
introducing higher levels of logical data independence.

Derived from this mission following are the two main
objectives:

1. Examine the feasibility and initiate the development of
an active, self-referential data dictionary model in
which both a description of the database data and a
description of all specifiable application design data
can be stored. This data dictionary model should contain
sufficiënt semantic aspects (like domains, constraints
and time aspects) to assure the integrity, consistency
and validity of the stored (meta) data, to avoid
maintenance and to support query-formulation independent
of current database structure.

2. Examine the feasibility and initiate the development of
the possibilities of data dictionaries in general and
the described data dictionary in specific. This analysis
of possibilities is directed at the embedding in and
developing methods, techniques, methodologie guidelines
and automated tools for the design, implementation and
maintenance of flexible information systems.

The MESDAG Research Group

MEMBERS OF THE MESDAG RESEARCH GROUP

1. Dr. E.R.K. Spoor
Dr. E.R.K. Spoor is associate professor at the Vrije Universiteit
Amsterdam. He teaches and consults in the area of database systems and
database development with a focus on the use of these technologies in
organizations. His eighteen years of experience with computer
technology includes eight years with NCR and six years with the Vrije
Universiteit, first as a systems engineer and later as a computer
scientist. He is one of the founders and board members of two
automation oriented organizations: PSB (Amsterdam) and VDA
(Hilversum).

2. Drs. R.J. Veldwijk
Drs. R.J. Veldwijk graduated from the Vrije Universiteit Amsterdam in
1986. In his quality as consultant at RAET N.V. Utrecht, he is among
others responsible for the design and implementation of data models.
His main interest lies in developing and implementing self-
knowledgeable database models, aimed at reducing maintenance costs and
at improving the accessibility of databases by end-users. Furthermore
he teaches courses in data modelling.

3. Drs. M. Boogaard
Drs. M. Boogaard is assistant researcher at the Vrije Universiteit
Amsterdam. Furthermore, he is part-time involved in projects by the
Netherlands Railways Company. He graduated from the Vrije Universiteit
Amsterdam, in August 1990. The objective of his research is to develop
an approach to achieve higher levels of logical data independence for
both end-users and application programs and to analyze the
consequences of the level of logical data independence accomplished on
the system development life cycle in general and on software
maintenance and database inquiry in particular.

ACCOMMODATION ADDRESS

Vrije Universiteit
Faculteit Economie & Econometrie
Vakgroep BIK
De Boelelaan 1105
1081 HV Amsterdam Phone: +31-20-548708
The Netherlands Fax : +31-20-6462645

