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Extending the Relational Model Version 2 

to Support Generalization Hierarchies 

by 

R J VELDWIJK, M BOOGAARD and E R K SPOOR 

Support for generalization hierarchies is widely recognized as a 
desirable feature of data models. While such hierarchies are indeed 
supported by data models such as NIAM and object oriënted models, the 
relational model is still deficiënt in this respect. Proposed 
enhancements suggested by Smith and Smith in their SHM model and by 
Codd in his RM/T model have not been included in Codd's new version of 
the relational model (RM/V2). The present paper proposes an extension 
to RM/V2 needed to support generalization hierarchies and thus solve 
database design problems induced by generalization hierarchies. The 
proposed extension to RM/V2 is first introduced as an extension to a 
formal model of RM/V2 expressed in RM/V2 itself, i.e. an RM/V2-catalog 
schema. The paper shows that a small extension to relational language, 
that uses the extended catalog schema, suffices to solve the 
acknowledged problems with respect to inquiries on a generalization 
hierarchy. Next, the paper shows that even in an environment as 
powerful as SHM or extended RM/V2 there exist inquiries that cannot be 
implemented easily or at all. It identifies the distinction between 
data and meta data (or catalog instance data) as the root of this 
problem. As a powerful solution it then proposes the imploded 
relational model, in which the distinction between data and meta data 
has been completely removed, as a conceptual vehicle with which a 
fundamental solution can be offered. 

Key words and phrases: 
generalization, relational model, catalog, flexibility, data 
independence, structural redundancy, imploded relational model. 

1. INTRODUCTION 

An important aim of data models is to provide application designers 
with constructs that enable them to represent relevant aspects of 
reality in a natural manner. Inadequate support for a construct to be 
modelled reduces the understandability of application designs and 
increases realization and maintenance effort, because the modelling 
must then be done in an indirect manner. 
The construct of the generalization hierarchy is often encountered 

when modelling reality. Indeed, generalization is considered a basic 
abstraction mechanism, together with classification, aggregation, and 
association [BR0D84]. Any data model should thus be able to represent 
at least these abstractions. Unfortunately, the relational model does 
not, in contrast with other data models such as NIAM [NIJS89] and 
object oriented data models [BHAL91]. Extending the relational model 
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with generalization support has been advocated by Smith and Smith, and 
by Codd. Smith and Smith have proposed an extension to the relational 
model1, known as the semantic hierarchy model (SHM) in [SMIT77]. Codd 
[CODD79] has introduced generalization support as part of his RM/T-
version óf the relational model, but has now come to the conclusion 
that the world of DBMS vendors and consumers is not yet ready for 
RM/T, which deviates considerably from the existing version of the 
relational model. Consequently, the second version of the relational 
model (RM/V2), as introduced in [CODD90], offers no solution to 
modelling problems caused by generalization hierarchies. Support for 
generalization is deferred to a future version of the relational model 
[CODD90, p.480]. The authors feel that implementing the frequently 
occurring generalization hierarchies in today's RDBMS environments is 
so cumbersome that an extension to the relational model and to RDBMS-
products would be welcomed, especially if it would prove to be a 
simple one. 

In a previous paper the authors introduced a modelling approach that 
enables the designer to deal with generalization hierarchies in a very 
flexible manner [B00G91a]. However, this approach was presented as a 
modelling solution within a relational framework, not as an extension 
to the relational model itself. In a more recent paper [VELD91c] the 
authors proposed a catalog Standard for DBMSs that conform to RM/V2. 
The present paper integrates the catalog Standard with aspects of 

the data structuring approach advocated in [B00G91a], thereby making 
it possible to represent generalization hierarchies of the SHM type. 
It appears that a simple extension to the relational language is 
sufficiënt to solve the problems identified in [SMIT77]. Next, the 
shows that there still remain modelling and programming problems 
frequently encountered with but not limited to generalization 
hierarchies. It argues that a more radical approach, based on the 
elimination of the distinction between data and meta data, is 
necessary to solve these. Examples are given of what this approach 
might look like and what it could accomplish. 

The paper is divided into six sections. Section 2 discusses the most 
abundant class of generalization structures and its problematic 
implementation in current relational environments. It also briefly 
revisits SHM as introduced by Smith and Smith. Section 3 introduces 
the relevant aspects of the proposed RM/V2 catalog Standard extended 
with support for generalization hierarchies. Section 4 proposes an 
extension to relational language that exploits the enriched RM/V2 
catalog and discusses the effects on database design, data 
manipulation, and data independence. Section 5 identifies classes of 
queries that remain hard to implement, suggests the distinction 
between instance data and meta data (or catalog instance data) as the 
origin of these problems, and proposes a powerful solution to 
implement them. Finally, section 6 contains a number of remarks with 
respect to the application and the limitations of the concepts and 

1 Although Smith and Smith only speak of their work as a 
"structuring discipline", they propose new relational integrity 
rules and suggest extensions to relational operators. 
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constructs introduced in this paper. 

2. GENERALIZATION HIERARCHIES AND THEIR IMFLEMENTATION 

Generalization can be defined as an abstraction in which a set of 
similar objects is regarded as a generic object, ignoring differences 
between individual objects [SMIT77J. Although different types of 
generalization can be distinguished [BRAC83] [CODD79], the most 
commonly occurring type is the generalization hierarchy, in which an 
object simultaneously belongs to a generic object class and to one or 
more sübclasses of that class. Subclasses can be divided into several 
sub-subclasses and so on. A classic example can be found in [SMIT77], 
a simplified version of which is displayed in figure 1. 

vehicle 

propulsion category 

wind 

medium category 

man 
propelled motorized powered land water 
vehicle vehicle vehicle vehicle vehicle vehicle 

rotary 
vehicle 

jet rocket 
vehicle vehicle pi helicopter 

Figure 1: Example of a generalization hierarchy 

Every object that is a vehicle does also belong to one or more 
sübclasses of the generic object 'vehicle'. Furthermore, the 
generalization hierarchy is subject to clustering, which in this case 
means that an individual vehicle must belong to two subclasses, one 
for the propulsion category and one for the medium category. An 
individual bicycle thus belongs to the subclasses 'man powered 
vehicle' (propulsion) and 'land vehicle' (medium). An object that 
belongs to a sübclass also belongs to every superior class of that 
sübclass. Thus, an individual helicopter is also a 'vehicle'. 

The rationale for distinguishing between classes and subclasses can 
be explained by the fact that certain information requirements are 
relevant for vehicles in general, while others are only relevant for 
specific subclasses. Each instance of a sübclass inherits the 
properties of its superior classes but also has attributes of its own. 

If all vehicle objects were represented in one relation VEHICLE 
containing all attributes pertinent to any vehicle, the result would 
be a large number of 'not-applicable' nulls. In RM/V2's four-valued 
logic terminology these nulls would be denoted by so called I-marks. 
Whether implemented by unspecified RM/V1 null values or by RM/V2 I-
marks, only a subset of the tuples in the relation (or R- tab Ie in 
RM/V2 terminology) can accept such a null/I-mark. Every null/I-mark 
thus has to be accompanied by an appropriate user-defined database 
constraint. Moreover, inquiries like "Retrieve all attributes of 
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vehicle VI" cannot easily be interpreted, unlike similar queries on 
relations where generalization problems do not apply. 
Another extreme approach would be to regard every terminal subclass 

as a class in itself and disregard the generalization structure. This 
approach of disregarding the generalization hierarchy leads to 
semantically poor and complex database structures and gives rise to 
complex queries. Suppose for example that every vehicle has an owner. 
If the owners we re represented by a separate relation OWNER, the. 
number of foreign key constraints would be large and the inquiry 
"Retrieve all vehicle numbers of vehicles owned by owner 01" would 
result in a lengthy query statement expressing what relations contain 
vehicle data. For this inquiry the generalized (single-relation) 
modelling solution would be far superior. 

The problem with generalization hierarchies manifests itself by the 
existence of several modelling alternatives, each of which captures 
the semantics of generalization hierarchy in an indirect marmer by a 
number of database constraints. McGee [MCGE76] regards the occurrence 
of indirect modelling solutions and multiple equivalent modelling 
solutions for a real-world construct as indications of a data modei's 
shortcomings. Partly based on this observation, [VELD91b] argues that 
minimization of the number of database constraints is a good yardstick 
against which the quality of a database design can be measured. The 
number of database constraints relevant to a particular database 
design depends on both the competence of the database designer and the 
expressive power of the data model used. If the relational model can 
be extended with a feature that permits direct modelling of 
generalization hierarchies, its usefulness can be assessed by 
considering the effect on the number of ad hoc database constraints in 
cases where generalization hierarchies occur. 
Smith and Smith [SMIT77] have suggested SHM as an extension to the 

relational model which indeed reduces the number of database 
constraints induced by generalization hierarchies. Their approach 
requires the introduction of so called image domains. An attribute 
that belongs to an image domain designates a subclass to which an 
instance of a superior class belongs. Figure 2 (overleaf) displays 
relational data structures that represent part of the vehicle 
generalization hierarchy. Image domain data are displayed in bold 
face. 
All relations in the vehicle hierarchy have the same primary key 

(VH#) . The subclasses to which a tuple with the same primary key value 
must belong are designated by the values of the image domain 
attributes. The set of permitted values of these attributes consists 
of the set of names of the immediate subrelations. If image domains 
are supported, the DBMS can enforce most relevant constraints. Neither 
the problem of large numbers of I-marks nor the problem of complex 
database structures occurs. Moreover, the DBMS can control the 
redundancy that occurs in subrelations caused by the fact that these 
relations also contain the attributes of their superior relations. The 
inquiries discussed above would pose no problems. Both could be 
expressed by simple queries on the VEHICLE relation, provided the 
specific (sub)classes, in which the vehicle data can be found, are 
known. 
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VEHICLE 

VH# OUN# PRICE UEIGHT PROP_CAT M3>_CAT 

V1 
V2 
V3 

01 
02 
01 

65.4 
7900 
12.2 

10.5 
840 
1.9 

MOTORIZ VEN 
H0T0R1Z~VEN 
UIW_PR_VEH 

I A » VEN 
AIR VEN 
UATÜR VEN 

MOTORI2_VEH 

VH# 0UN# PRICE UEIGHT H_P0UER FUEL_CAP WTJCAT 

V1 
V2 

01 
02 

65.4 
7900 

10.5 
840 

150 
9600 

300 
2600 

ROTARY VEN 
JET_VEN 

/ UR_VEH 

VH# OUN# PRICE UEIGHT MAX_ALT TAKEJHST LIFTJCAT 

V2 02 7900 840 30 1000 PLANE 

\ JIND_PR_VEH 

VH* OUN# PRICE UEIGHT NUMB_SAILS 

V3 01 12.2 1.9 2 

Figure 2: Some relations in the vehicle generalization hierarchy 

The introduction of a new construct, the image domain, is 
characteristic for the SHM approach. Image domains reflect the 
structure of the generalization hierarchy on the instance level, but 
contain in f act meta data, namely relation names. Image domains are 
primarily used because it is often known that a generic object (say 
vehicle VI) exists, but its precise classificatlon is not known. If 
one is interested in the values of all relevant attributes of vehicle 
VI, a second order query language is needed because the value of an 
image domain (i.e. a relation name) must be used in the structural 
part of a query (i.e. the FROM clause in SQL-terms). As we shall see 
in section 5, image domains are a manifestation of a more general 
problem that occurs whenever queries request both instance data and 
meta data. 

The problem is basically caused by the assumption in the relational 
model that the relation (class) to which a tuple (object) belongs is 
always known beforehand. Wherever generalization hierarchies occur, 
this assumption is of ten not valid. A point can also be made for the 
inverse proposition: whenever the class to which an object belongs is 
not known, the object participates in some sort of generalization 
structure. Because generalization hierarchies are commonly 
encountered, it is worthwhile to extend the relational model. The real 
issue is to minimize the extensions needed in data structures, 
integrity rules and operators to achieve this objective. If we compare 
the SHM solution to the solution offered by Codd in his RM/T paper 
[CODD79] it appears that the RM/T solution for generalization 
hierarchies is found at the meta data or catalog level, instead of the 
instance level. The present paper demonstrates that this latter 
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approach is superior. To attain this objective, a catalog Standard for 
RM/V2 is needed. The next section introduces such a catalog schema 
together with an appropriate extension for generalization hierarchies. 

3. EXTENDING THE RM/V2 CATALOG SCHEMA 

Like the original relational model, its RM/V2 successor is a fairly 
simple formal model. The fact that Codd needs a rather voluminous book 
[CODD90] to describe RM/V2 is induced by the fact that (1) RM/V2 is as 
much a DBMS description as a data model and (2) the specifications of 
RM/V2 are cast in a verbal form, rather than in a formal one. Formal 
specifications only exist for relational languages like relational 
algebra, relational calculus, and of course SQL. The authors have 
therefore developed a formal specification of the static or non-
manipulative aspects of RM/V2 [VELD91c]. The choice for RM/V2 itself 
as the modelling tooi is obvious if one regards the relational model 
as an expressive data model [VELD91b]. A fortunate side effect is that 
the resulting description can be seen as a candidate catalog Standard 
for future RM/V2 DBMS products. 

Basic to both RM/V2 and the original relational model (RM/V1) are 
concepts like 'relation', 'domain', 'attribute', 'key', 'entity 
integrity' and 'referential integrity'. It appears that these concepts 
and the way in which they are related to each other can be captured 
elegantly in a relational database schema. It also appears that an 
extension to support generalization hierarchies requires only a small 
change to this schema, depicted in figure 3a. The boxes represent 
relations (R-tables in RM/V2 terms), the arrows represent foreign key 
to primary key references between these R_tables. In the R_table 
descriptions the primary key attributes (columns in RM/V2) have been 
underlined. The additional R_Table and columns that have been added to 
the schema introduced in [VELD91c] are displayed in bold face. 

CLUSTER R_TABLE COLUMN DOMAIN CLUSTER R_TABLE COLUMN DOMAIN CLUSTER R_TABLE COLUMN DOMAIN CLUSTER R_TABLE COLUMN DOMAIN 

A A A A 
1 

rev 
KEY-

R TABLE(RT HM. RT HM CLU, CLU HM, RT TYPE, RL EXPR) 
COLUMN<RJ_NM, COL~NHT COL SEOÏ, DOM NM, A_MARK ALL, I MARK ALL) 
DOMAIN(DOMJJM, DOM TYPE, COMP ALL, BD TYPE NM, LENGTH, SCALE) 
KEY REF(RT NM PK. RT NM FK. KËY NM) 
KEYTRT NM. KEY NM. KEY TYPE) 
KEY COLUMN(RT NM. KEY NM. COL NM. KEY COL SEQ#) 
DOM~RANGE(DOM NM. DR SEQ#. LOVAL, HIVAL) 
CLUSTEKCRT MM CLU. CLU MM. A HARK ALL) 

Figure 3a: A basic model of RM/V2 with generalization support added 
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Disregarding the extensions to support generalization hierarchies for 
the moment, the schema can be interpreted as follows. 

An R_TABLE in the relational model must have a unique name (RT_NM). An 
R_Table is either a base relation or a view (RT_TYPE). Views are 
defined in terms of other views and/or base relations by means of a 
statement in a relational language (RL_EXPR). 
A COLUMN (or attribute) is identified by its name together with the 

name of the relation to which it belongs (RT_NM, COL_NM). Columns are 
assigned a sequence momber for default presentation purposes. Every 
column belongs to one domain (DOM_NM). Non-primary key columns can be 
allowed to be 'missing-but-applicable' (A_MARK_ALL), 'missing-and-
inapplicable' (I_MARK_ALL) or both. 
A DOMAIN must have a unique name (DOM_NM). Depending on the question 

whether a primary key column draws its values from the domain, it is a 
primary or a secondary domain respectively (DOMJTYPE). An indicator 
(COMF_ALL) designates whether comparison of domain values is 
meaningful. Domains are extended data types based on DBMS dependent 
bas ie data types (BD_TYPE_NM) like 'character', 'number' and 'date'. 
Depending on the datatype, the columns LENGTH and SCALE can be 
applicable. 
The relation DOM_RANGE permits the specification of multiple ranges 

of values per domain by means of the columns LOVAL and Hl VAL. If no 
range of values is specified, the permitted values are limited only by 
the domains basic data type and format limitations. 
A KEY is formed by one or more columns of one relation that identify 

a tuple in some relation. Primary and alternate keys identify tuples 
in the R-table to which these keys belong themselves. Foreign keys 
identify tuples in one or more R-tables designated by KEYJREF. 
KEY_COLUMN contains the columns constituting a key. A key column is 

identified by the combination of the identifiers of the R- tables KEY 
and COLUMN. The column KEY_COL_SEQ# provides the mechanism to couple a 
foreign key column to a primary key column. Composite primary/foreign 
key combinations must have matching sequence numbers for their 
columns. A foreign key references at least one R-table. Every such 
reference is expressed by a KEY_REF tuple. 

It appears that the core aspects of RM/V2 can be expressed quite 
concisely and, in the our opinion, fairly elegantly by means of RM/V2 
itself. Nevertheless, there remain a number of constraints that are 
not enforced by the data structure of figure 3a. These constraints 
have to be expressed in an ad hoc manner by means of a relational 
language and stored in the catalog (see [VELD91c] section 7). Figure 
3b (overleaf) lists the most important constraints pertinent to the 
basic model of figure 3a. A fuil discussion can be found in [VELD91c]. 
The constraint identification (BM##) has been copied from that 
article. 
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BM03- Every tuple in RJTABLE for which RT_TYPE - 'BASE' or 'CHECKOUT' 
is referenced by~a KEY tuple having KEYJTYPE - 'PRIMARY'. 

BM04- The subset of KEY tuples for which KEYJTYPE - 'PRIMARY' does not 
contain duplicate values for RT_NM. 

BM05- Every tuple in KEY having KEYJTYPE - 'FOREIGN' is referenced by 
at least one KEY_REF tuple, while other tuples in KEY are not 
referenced by KEY_REF tuples. 

BM08- KEY tuples with KEYJTYPE - 'PRIMARY', that are referenced via 
KEY_REF by a KEY tuple with KEYJTYPE - 'FOREIGN', are referenced 
by pairs of KEY_COLUMN tuples with corresponding values for 
KEY_COL_SEQ#, referencing COLUMN tuples with the same value for 
DOM_NM. 

BM10- The column RL_EXPR in R_TABLE contains an I-mark if and only if 
RT_TYPE - 'BASE'. 

BM13- No tuple in COLUMN that is referenced by a tuple in KEY_COLUMN 
that references a tuple in KEY having KEYJTYPE - 'PRIMARY' has a 
'YES' value for either A MARK ALL or I MARK ALL. 

Figure 3b: User-defined constraints on the basic model of SM/V2 
without generalization support 

Constraints BM03 and BM04 assert that every base R-table must have 
exactly one primary key. Constraint BM05 asserts that a reference from 
one R-table to another applies if and only if the key is a foreign 
key. Constraint BM08 asserts that foreign keys and primary keys are 
realized by matching pairs of columns belonging to similar domains. 
Constraint BM10 asserts that base tables have no view definition. It 
is an example of simple generalization hierarchy at the definitional 
level of RM/V2 itself. 

The extensions needed to support generalization hierarchies appear to 
be very limited. The only significant addition is the R-table CLUSTER 
containing data about clusters like 'propulsion category' and 'medium 
category'. Every RJTABLE tuple that contains Information about a 
subcategory must reference a CLUSTER tuple that in turn references an 
RJTABLE tuple designating the direct superior category. Generic 
objects (like 'vehicle') or objects that do not take part in 
generalization hierarchies (like 'owner') are represented by RJTABLE 
tuples that do not reference a CLUSTER tuple. A cluster is identified 
by the superior R_table to which it belongs (RT_NM_CLU) and by its 
name (CLU_NM). The column CLU_NM also designates the name of the image 
domain that is added to the superior table as a pseudo column2, while 
A_MARK_ALL indicates whether an image domain value must be supplied 
for every tuple in the superior R_Table. The values the image domain 
column can accept are the names of the RJTABLE tuples referencing the 
CLUSTER tuple. 

2 Because CLUSTER tuples display a close correspondence to COLUMN 
tuples, image column would be a more appropriate term. 
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The introduction of support for generalizatlon hlerarchies leads to 
some new constraints that are listed In figure 3c below (GH stands for 
generalization hierarchy). 

GH01- The columns RT_NM_CLU and CLU_NM in R_TABLE are both either 
unmarked or A-marked. 

GH02- R_TABLE tuples for which RT_NM_CLU is not A-marked have the 
value 'BASE' for their column RTJTYPE. 

GH03- No R_TABLE tuple may reference itself directly or indirectly via 
the R-table CLUSTER. 

GH04- RJTABLE tuples referencing a CLUSTER tuple are not referenced 
via COLUMN by KEY_COLUMN tuples that reference a KEY tuple for 
which KEYJTYPE - 'PRIMARY'. 

GH05- The set of CLU_NM values for CLUSTER tuples referencing an 
RJTABLE tuple must be disjunct from the set of COL_NM values for 
the COLUMN tuples referencing it. 

GH06- No COLUMN tuple can have a value for COL_NM that also occurs in 
another COLUMN tuple that references a superior (via CLUSTER) 
RJTABLE tuple. 

GH07- No COLUMN tuple can have a value for COL_NM that also occurs in 
another COLUMN tuple that belongs to a different cluster in the 
same generalization hierarchy. 

GH08- Any two COLUMN tuples with equal values for COL_NM that 
reference RJTABLE tuples that are part of a generalization 
hierarchy have also equal values for their DOM_NM columns. 

Figure 3c: User-defined constraints on the basic model of RM/V2 to 
enforce generalization support. 

Because Codd's definition of referential integrity allows foreign keys 
to be partially marked, constraint GH01 forbids meaningless references 
to the CLUSTER R-table. Constraint GH02 limits generalization 
hierarchies to base R-tables. Constraint GH03 asserts that the 
generalization hierarchy contains no cycles. Constraint GH04 enforces 
the rule that primary keys are inherited from the generic object by 
all lower class objects. Constraint GH05 expresses the pseudo column 
nature of clusters. Constraint GH06 enforces the rule that columns are 
inherited from superior R-tables. Finally, constraints GH07 and GH08 
specify that columns in different sübclasses having the same names are 
in fact the same attributes, which implies that no individual object 
designated by a primary key value can have two or more columns with 
the same name. This restriction may seem no more than a reasonable 
modelling advice at this point. However, in the next section it will 
prove to be quite important. 
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Due to the introduction of catalog support for generalization 
hierarchies some existing catalog constraints have to be modified. 
Figure 3d lists the new versions with the modifications printed in 
bold face. 

BM03- Every tuple in R_TABLE for which RT_TYPE - 'BASE' or 'CHECKOUT' 
and for which RT_NM_CLU is not A-marked is referenced by a KEY 
tuple having KEY_TYPE - 'PRIMARY'. 

BM08- KEY tuples with KEY_TYPE - 'PRIMARY' , that are referenced via 
KEY_REF by a KEY tuple with KEY_TYPE - 'FOREIGN', are referenced 
by pairs of KEY_CQLUMN tuples with corresponding values for 
KEY_COL_SEQ#, referencing COLUMN tuples with the same value for 
DOM_NM. For RTABLE tuples for which RT_NM_CLU is not A-marked, 
this rule is applied the primary KEY_TYPE tuple that references 
the . R_TABLE tuple recursively referenced via CLUSTER and 
R TABLE. 

Figure 3d: Altered user-defined constraints on the basic model of 
RM/V2 due to the introduction of generalization support. 

Constraints GH03, GH06, GH07, GH08, and BM08 cannot be expressed in a 
relational language. This situation will cease to exist if these 
languages are extended with a recursive join operator as suggested by 
Codd in [CODD90]. 

At this point we can express the vehicle example by means of tuples in 
the extended RM/V2 catalog, as is done in figure 4 (overleaf) for the 
catalog relations discussed above. It has been assumed that there 
exists an OWNER R-table containing data about the vehicles' owners. 
Because they add little insight the R-tables DOMAIN and DOM_RANGE have 
been omitted. With respect to the R-table COLUMN only those columns 
depicted in figure 2 have been displayed. Due to the introduction of 
generalization support, no column in the vehicle example is allowed to 
contain I-marks. Note that the image domain columns of figure 2 do not 
occur as COLUMN tuples and that the generalization hierarchy is fully 
determined at the catalog level. Instance data and meta data are not 
mixed and there is no need for an image domain construct anymore. 
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R TABLE CLUSTER 

RT_NH RT_NM_CLU CLU_NM RT_TYPE 

VEHICLE ... ... BASE 
WIND PR VEH VEHICLE PROPUL CAT BASE 
MOTORIZ VEH VEHICLE PROPUL CAT BASE 
MAN POW VEH VEHICLE PROPUL CAT BASE 
LAND VEH VEHICLE MEDIUM CAT BASE 
AIR VEH VEHICLE MEDIUM CAT BASE 
WATER VEH VEHICLE MEDIUM CAT BASE 
ROTARY VEH MOTORIZ VEH SUBTYPE BASE 
JET VEH MOTORIZ VEH SUBTYPE BASE 
ROCKET VEH MOTORIZ VEH SUBTYPE BASE 
PLANE AIR VEH SUBTYPE BASE 
HELICOPTER AIR VEH SUBTYPE BASE 
OUNER ... ... BASE 

RT_NM_CLU CLU_NM A_MARK_ALL 

VEHICLE PROPUL CAT NO 
VEHICLE MEDIUM CAT NO 
MOTORIZ VEH SUBTYPE NO 
AIR VEH SUBTYPE NO 

RT_NM KEY_NM KEYJTYPE 

VEHICLE 
VEHICLE 
OUNER 

IDENTIFICATION 
OUNER VEHICLE 
IDENTIFICATION 

PRIMARY 
FOREIGN 
PRIMARY 

KEY REF KEY COLUMN 

RT_NM_PK RT_NM_FK KEY_NM 

OUNER VEHICLE OUNER.VEHICLE 

RT_NM KEY_NM COL_NM KEY_CQL_SEO# 

VEHICLE 
VEHICLE 
OUNER 

IDENTIFICATION 
OUNER VEHICLE 
IDENTIFICATION 

VH# 
OWN# 
OUN# 

1 
1 
1 

COLUMN 

RT NM COL NM COL SEQ* DOM NM A MARK ALL I MARK ALL 
~ 

VEHICLE VH# 1 VH* NO NO 
VEHICLE OUN# 2 OUN# YES NO 
VEHICLE PRICE 3 AMOUNT YES NO 
VEHICLE WEIGHT 4 WEIGHT YES NO 
MOTORIZ VEH H POWER 1 H POWER YES NO 
MOTORIZ VEH FUEL CAP 2 FUEL CAP YES NO 
AIR VEH MAX ALT 1 ALTITUDE YES NO 
AIR VEH TAKE DIST 2 TAKE DIST YES NO 
UIND_PR_VEH NUMB_SAILS 1 

" i 
NUMB_SAILS YES 

NO 

NO 

NO OUNER OUN* 

1 

" i OWN# 

YES 

NO 

NO 

NO 
OUNER NAME 2 ONAME NO NO 

Figure 4: A basie model of RM/V2 with generalization support added. 

Finally, the reader may have noticed that support for generalization 
hierarchies requires not only an extension of the catalog schema, but 
also a change in the catalog's structure wherever a generalization 
hierarchy occurs in the catalog schema itself. Indeed, [VELD91c] 
claims that the RM/V2 universe of discourse is littered with 
generalization hierarchies. With respect to the partial catalog 
structure presented, we can identify generalization structures in 
R TABLE in which base tables, views etcetera are not identified as 
such and in the R-tables CLUSTER and COLUMN in which a generalization 
hierarchy is ignored (image domain as a pseudo column). Thus, the 
unsatisfactory implementations of generalization hierarchies in 
current relational databases can be found in the catalog schema itself 
too. The proposed extension makes it possible to eliminate these 
shortcomings. However, the present paper concentrates on adding a 
viable extension to the catalog schema instead of improving the schema 
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itself. Therefore, the fact that the RM/V2 self-descriptive catalog 
schema has become suboptimal is ignored for now. 

4. ADAPTING RELATIONAL LANGÜAGE 

In [B00G91a] the authors identified several problems concerning the 
use of SHM in current RDBMS environments. One problem has to do with 
problematic integrity monitoring due to the introduction of a large 
number of database constraints wherever generalization hierarchies 
occur, as discussed in section 2. However, this problem only occurs in 
DBMS environments that do not support generalization. Any DBMS with a 
catalog structure at least as powerful as the one discussed in the 
preceding section can enforce generalization hierarchies with a 
minimal number of generalized constraints, represented by appropriate 
R_TABLE en CLUSTER tuples. I-mark constraints due to over-
generalization or large numbers of other constraints due to over-
specialization do not occur anymore. 

Another problem discussed in [B00G91a] occurs when inquiries are made 
with respect to columns, that are relevant to many but not all 
subclasses. Consider the inquiry "Retrieve all vehicle numbers and 
their weights". This inquiry can be translated into an very simple 
query: a projection on the VEHICLE relation over its columns VH# and 
WEIGHT (left column of figure 5 overleaf). Now consider what would be 
the case if the WEIGHT column were not to apply to one vehicle 
subclass, say the subclass of rocket vehicles. As a consequence WEIGHT 
ceases to be a VEHICLE column and must be transferred to the relations 
WIND_PR_VEH, ROTARY_VEH, JET_VEH and MAN_POW_VEH. Our simple 
projection query now becomes the union of three projections (middle 
column of figure 5 overleaf). It appears that a trivial and 
information preserving3 database restructuring operation leads to 
significant changes in DML coding. 
The need for such changes would be eliminated if the relational 

language would exploit the information in the extended catalog schema. 
We therefore propose to extend relational languages with a GENERIC 
qualifier which designates that the DML operation is to be executed on 
the union of all terminal relations participating in a cluster of 
generalization hierarchy for which at least one of the requested 
columns is relevant. An I-mark is displayed for every column 
irrelevant to a subclass. The right column of figure 5 shows what such 
a query would look like. It is equivalent to the other two queries 
depending on the specific instance of the generalization hierarchy. 
The GENERIC qualifier can be used on any level in a generalization 

hierarchy. It has no effect if it is applied to a terminal relation in 
a generalization hierarchy or to a relation that does not participate 
in such a hierarchy. Furthermore, it is important to note that the 

3 Information preserving means that the information content of the 
database is not altered by the restructuring operation. Only the 
rules to which the data in the database must conform are 
changed. See [VELD91a] for a further discussion of this topic. 
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qualifier does not violate the operational closure principle of 
relational languages. The virtual R-table constructed by the GENERIC 
qualifier is the union of a variable number of relations (extended 
with I-marks) and is thus a relation itself. A final important point 
is that the addition of constraints GH07 and GH08 in figure 3c is 
essential if the GENERIC qualifier is to be applied properly. 

The GENERIC qualifier can also be applied to INSERT, UPDATE and DELETE 
operations. In case of an INSERT operation though, the DBMS must 
ensure that the terminal R-table or R-tables to which a tuple is added 
can be unambiguously determined. 

UEIGHT AS A GENERAL COLUMN UEIGHT DOES NOT APPLY TO 
ALL VEHICLE SUBCLASSES 

UEIGHT IS APPLICABLE TO ONE OR 
MORE VEHICLE SUBCLASSES 

SELECT VH#, UEIGHT 
FROM VEHTCLE 
ORDER BY VH# 

SELECT VH#, UEIGHT 
FROM UIND PR VEH 
UNION 
SELECT VH#, UEIGHT 
FROM ROTARY VEH 
UNION 
SELECT VH#, UEIGHT 
FROM JET VEH 
UNION 
SELECT VH#, UEIGHT 
FROM MAN POU VEH 
ORDER BY 1 

SELECT VH#, UEIGHT 
FROM GENERIC.VEHICLE 
UHERE UEIGHT IS NOT I WUKED 
ORDER BY VH# 

Figure 5: Three implementations of an inquiry on the vehicle hierarchy 

We conclude that the extension to the catalog schema described in the 
preceding section and the introduction of the GENERIC qualifier in 
this section raise the level of logical data independence 
significantly for any query for which the precise classification in a 
generalization hierarchy is unimportant. Because the current 
generalization structure has become irrelevant for such queries, 
programmers' productivity is increased and recoding due to changing 
data structures within a generalization hierarchy is eliminated. 
Problems remain however, if one is interested in relevant information 
about objects whose specific classification within the generalization 
hierarchy is unknown but important. The following section gives an 
example of such an inquiry and offers a conceptual solution to these 
problems. 

5. COPING WITH THE CLASSIFICATION PROBLEM 

Up to now we have dealt with the generalization problem very much in 
the spirit of SHM*. However, if we take a closer look at the nature of 
the proposed extensions to the relational model, we find that we have 
only provided a solution for an aspect of a broader problem, namely 
that the specific (and current) data structure relevant to a query 

* And also in the spirit of RM/T. The paper does not make a 
comparison with RM/T because only RM/V2 can be easily extended 
in the spirit of SHM, rather than in the spirit of RM/T. 
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raust always be known beforehand and must be *hard-coded' into the 
query structure. The solution suggested by Smith and Smith is to merge 
instance data with meta data and to extend relational languages with 
second order facilities, in other words, to permit the specification 
of meta data like R-tables and columns as variables in DML-
statements5. The solution advocated in the preceding section aims at 
raising the abstraction level of relational languages by providing 
higher level data structures. Although a higher level of logical data 
independence is attained, the approach is essentially similar to the 
treatment of relational languages of subrelational constructs like 
indexes, or physical file structures, which are completely transparent 
at the relational language level. 
We conclude that although the preceding section presents a practical 

and easy to implement solution for a serious design and programming 
problem, we still face the same fundamental problem that caused the 
introduction of the GENERIC qualifier. It is not hard to come up with 
realis tic inquiries that are hard to implement or maintenance-prone. 
In some cases query formulation is merely impossible. As an example 
consider the inquiry "Retrieve all relevant data about the vehicles 
owned by owner 01". This query cannot realistically be translated into 
a query, not only because it concerns both instance data and 
structural data or meta data, but because the query structure depends 
on the specific time varying set of vehicles owned by owner 01. The 
GENERIC qualifier does not help us here because we cannot know which 
columns are relevant to the query and which are not. Of course we can 
attempt to extend the relational language further, but we can also 
address the problem in a fundamental way by recognizing the fact that 
the inquiry problem is caused by the distinction between data 
instances and data structures (or meta data). As long as this 
distinction exists it seems possible to conceive meaningful queries 
that straddle data and meta data and thus cannot be formulated in a 
relational language. The need for such queries can be expected in 
particular in circumstances where generalization hierarchies occur, as 
we shall show at the end of this section. 

Basic to any solution of this problem is the viewpoint that meta data 
are just data. As the two preceding sections show, the boundary 
between data and meta data is quite fluent (compare for instance 
figures 2 and 4). Still, the prevalent information systerns paradigm 
presents it more or less as fixed and axiomatic for information 
systems and data model design. If we drop the conceptual distinction 
between data and meta data we realize that the data structures and 
meta data instances in the catalog represent a form of redundancy. As 
is the case with other known forms of redundancy this phenomenon which 
we shall label structural redundancy can be removed if desired. The 
way in which this can be achieved is shown in figure 6 by means of the 

5 The SQL language already contains a primitive second order 
facility, namely the wildcard '*' in the SELECT clause. However, 
this is nothing compared to the extensions that indicated by the 
suggestions of Smith and Smith. 

14 



so called implosion mechanism6. The R-table VALUE, that can be 
considered to reference the catalog R-table COLUMN, contains the value 
of every data item that occurs in the database. It contains data about 
both data structures (columns RT_NM and COL_NM) and about instances 
(TUPLE_ID, VAL). Any conventional R-table can be represented in an 
imploded form and it can be restored by joining the VALUE R-table with 
itself for every column in the R-table. All information necessary to 
perform these operations is available in the catalog of section 3. 

VALUE 

RT_NM COL_MM TUPLEJD VAL RT_NM COL_NM TUPLEJD VAL 

VEHICLE VH# 1 VI MOTORIZ VEH VH# 1 V1 
VEHICLE OWN# 1 01 MOTORIZ VEH H POWER 1 150 
VEHICLE PRICE 1 65.4 MOTORIZ VEH FUEL CAP 1 300 
VEHICLE UEIGHT 1 10.5 MOTORIZ VEH VH# 2 V2 
VEHICLE VH# 2 V2 MOTORIZ VEH H POWER 2 9600 
VEHICLE OWN# 2 02 MOTORIZ VEH FUEL CAP 2 2600 
VEHICLE PRICE 2 7900 AIR VEH VH# 1 V2 
VEHICLE UEIGHT 2 840 AIR VEH MAX ALT 1 30 
VEHICLE VH# 3 V3 AIR VEH TAKE DIST 1 1000 
VEHICLE OWN# 3 01 WIMD PR VEH VH# 1 V3 
VEHICLE PRICE 3 12.2 WIND PR VEH NUMB SAILS 1 2 
VEHICLE UEIGHT 3 1.9 VEHICLE UEIGHT 3 1.9 

Figure 6: IMPLOSION: the vehicle database with structural redundancy 
removed 

With respect to figure 6 it is important to recognize that the 
imploded version of the vehicle database together with the catalog 
content of figure 4 contains the same Information as the original 
database of figure 27. The values of TUPLE_ID have no specific 
meaning. In combination with the column RT_NM they just denote what 
VALUE tuples constitute an original (non imploded) tuple. Another 
important observation is that, thanks to operational closure, any 
query on the original database can be reformulated on the imploded 
database because any original R-table can always be restored using 
relational language. 
The benefit of implosion lies in the fact that the kinds of queries 

we have identified as straddling data and meta data can now be 
formulated without any extension to the relational language. The need 
for extensions to relational languages like the GENERIC qualifier is 
eliminated. Note however that the need for an extended catalog schema 
remains. 

6 The implosion concept was introduced in [VELD91a] and first 
applied to generalization hierarchies in [B00G91a]. 

7 Obviously, there still exists structural redundancy with respect 
to the catalog's self-descriptive content (not shown in figure 
4) and the catalog R-table structures. This remaining redundancy 
can be removed by imploding the catalog R-tables too. 
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Figure 7 displays the "impossible" query that induced the introduction 
of the imploded version of the vehicle database. 

SELECT DISTINCT B.VAL, D.COL m, D.VAL B.VAL D.COL_NN D.VAL 
FROM VALUE A, VALUE B, VALUE C, VALUE D stsss •sscixisxa ===== 
WHERE A.RT MM = 'VEHICLE' V1 FUEL CAP 300 

AND A.COL NH * 'OUN#' VI H POWER 150 
AND A.VAL = '01' V1 OÜN# 01 
AND B.RT NH = 'VEHICLE' V1 PRICE 65.4 
AND B.COL NH = 'VH#' V1 VH* VI 
AND B.TUPLE ID = A.TUPLE ID V1 WEIGHT 10.5 
AND C.COL NH • 'VH#' V3 NUNB SAILS 2 
AND C.VAL- = B.VAL V3 OWN#~ 01 
AND D.RT NH = C.RT NN V3 PRICE 12.2 
AND D.TUPLE ID = C.TUPLE ID V3 VH# V3 

ORDER BY B.VAL, D.COL NN, D.VAL V3 WEIGHT 1.9 

Figure 7: "Retrieve all relevant data about the vehicles owned by 
owner 01" 

The query in figure 7 is independent of both the current 
generalization hierarchy and the current set of vehicles owned by 01. 
Equally important, extensions to the relational language are not 
needed anymore. The query of figure 5 can be reformulated on the 
imploded database without need of a GENERIC qualifier. The extension 
of the catalog schema with the R-table CLUSTER remains necessary. 
Unfortunately, there are some problems involved with the implosion 

approach. First, queries on an imploded database are difficult to 
formulate, not only because of the large number of j oins that has to 
be made but also because programming on multiple levels of abstraction 
is at least as hard as thinking on multiple levels of abstraction. 
Second, the presentation of the query output is not very attractive. 
This is no problem if the DBMS is supplied with Information concerning 
which data are meta data with respect to the query and which are not. 
In the case of figure 7 the output can be converted to a conventional 
format (with I-marks) because C0L_NM is known to the DBMS as a meta 
data item. Third, confronted with the imploded model, many people feel 
that implosion is a purely academie exercise because the performance 
problems attached to imploded databases are prohibitive to any 
implementation. Performance however is not the issue here. The 
imploded database is a purely conceptual construct. With a 
sufficiently powerful catalog, it is always possible to translate any 
DML-statement on an imploded database to an equivalent statement on a 
conventional database. 

The impact of the implosion concept goes beyond mere generalization 
hierarchies. As noted above, implosion is useful whenever a query 
crosses the boundary between data and meta data. Consider as a final 
extension to the vehicle example that every vehicle is taxed according 
to its specific class. This example shows how fuzzy the boundary 
between instance data and meta data can be, because we find ourselves 
required to extend the catalog structure. We have to add a column 
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TAX_RATE to the relation R_TABLE8. What we have here is an example of 
cover generalization. The f act that even plain inquiries offer 
significant problems for query formulation is evident; a query that 
accesses the catalog column TAX_RATE will almost always access 
instance data too. Consider the inquiry: "Retrieve all vehicle numbers 
together with the tax amount due on them". Figure 8 depicts the new 
(sub-)table TAXJTABLE, a conventional SQL query, the imploded version 
of the query and the query resul ts. Again the imploded vers ion is 
independent of current database structure. 

SELECT VH#, 'UIND PR VEH', TAX RATE SELECT V.VAL, RT.RT NM, RT.TAX RATE 
FRON UIND PR VEH,~R TABLE FROM VALUE V, R TABLE RT 
UHERE RT NM = 'WIND PR VEH' UHERE V.COL NM = 'VH#' 
UNION AND V.RT NM = RT.RT NM 
SELECT VH#, 'NOTORIZ VEH', TAX RATE AND RT.TAX RATE IS NOT I MARKED 
FROM NOTORIZ VEH, R TABLE ORDER BY V.VAL 
UHERE RT NM « 'NOTORIZ VEH' 
UNION 
SELECT VH#, 'MAN POU VEH', TAX .RATE 
FROM MAN POU VEH, R TABLE 
UHERE RT~NM = 'MAN POU VEH' 
ORDER BY_1 

R_TABLE VH# RT_NM TAX_RATE 

RT_NM ... TAX_RATE V1 NOTORIZ VEH 180 
V2 MOTORIZ~VEH 180 
V3 UIND PR~VEH 25 UIND PR VEH ... 25 

V1 NOTORIZ VEH 180 
V2 MOTORIZ~VEH 180 
V3 UIND PR~VEH 25 

MOTORIZ~VEH a e . 180 
MAN POU~VEH ... 5 

Figure 8: "Retrieve all vehicle numbers together with the tax amount 
due on them" 

We conclude that, together with a catalog that supports generalization 
hierarchies, the implosion concept is a promising extension to the 
relational model. 

6. CONCLUDING REMARKS 

The aim of the paper has been to introducé an extension to the latest 
version of the relational model. This extension enables database 
designers and programmers to deal with generalization hierarchies in 
an elegant and flexible manner. It appears that a simple extension to 
the data structures and operators of RM/V2 is sufficiënt to solve many 
(but not all) problems induced by RM/V2's disability to support 
generalization hierarchies. The extensions are in f act so simple that 
pending support by RDBMS-products information systems designers can 
themselves reap the benefits of increased programming productivity and 
decreased maintenance effort by building their own DML-generator. 
Wherever complicated or instable generalization hierarchies occur they 

8 Again we ignore the fact that this change introduces another 
generalization hierarchy. 
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are advised to consider the possibility. 
In the discussion of the extensions needed to support generalization 

hierarchies, extending the RM/V2 catalog schema has been the first 
step. The introduction of the implosion concept in section 5 provides 
justification for this (meta)data driven approach because it shows 
that only the addition of new data structures and constraints to the 
catalog schema is significant. Extensions to relational languages in 
order to support new abstractions are practical, but not necessary and 
not very powerful. The implosion approach, on the other hand, may be 
less practical but is certainly much more powerful, as the examples in 
section 5 show. 
Another relevant question concerns the assessment of the implosion 

concept. On the one hand it must be stressed again that for the 
purpose of this paper the implosion concept is a conceptual construct. 
It should be seen as a kind of canonical form in which queries can be 
casted by the RDBMS or by application programmers. It seems that any 
query on an imploded database can be translated to a conventional 
query, based on the contents of the (possibly imploded) catalog (see 
also [VELD91a]). The example of the query in figure 8 indicates that 
the reverse translation may not be so simple because the conversion 
algorithm must then be able to recognize literals as representing 
catalog data. 
On the other hand it is also possible to view implosion as an 

alternative way of looking data. In this view it is appropriate to 
speak about an imploded vers ion of the relational model. Such a model 
should not be regarded as an alternative to database design nor as a 
model that cannot realistically be implemented due to performance 
limitations. It should rather be seen as a means to express queries in 
a way that captures more in tent., thus offering higher levels of data 
independence or flexibility. The price we pay for this gain is loss of 
simplicity from a human point of view. It is an intriguing question, 
and an interesting research subject (see [B00G91b]), whether an 
equally powerful but more user-friendly and comprehensible way to 
express queries exists. The question what other applications the 
imploded relational model might have in areas in which the relational 
model is weak, like database restructuring (see [VELD91a] and 
[BOOG92]) and temporal databases is hardly less intriguing. 
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The MESDAG Research Group 

INTRODUCTION 

The MESDAG project is a joint project endorsed by three 
organizations in the Netherlands: the N.V. Nederlandse 
Spoorwegen (The Netherlands Railways Company), RAET N.V. and 
the Vrije Universiteit of Amsterdam. The MESDAG project 
originated at RAET N.V. during the second half of 1989 as an 
outgrowth of research done in the field of active data 
dictionary models. This research and a prototype of an active 
data dictionary form the basis for the mission of the MESDAG 
project that officially started its activities in September 
1990. 

MESDAG is an abbreviation of: 

MEta Systems Design And Generation 

MISSION AND OBJECTIVES 

The mission of the MESDAG project is to prove the feasibility 
of developing inherently flexible information systems by 
introducing higher levels of logical data independence. 

Derived from this mission following are the two main 
objectives: 

1. Examine the feasibility and initiate the development of 
an active, self-referential data dictionary model in 
which both a description of the database data and a 
description of all specifiable application design data 
can be stored. This data dictionary model should contain 
sufficiënt semantic aspects (like domains, constraints 
and time aspects) to assure the integrity, consistency 
and validity of the stored (meta) data, to avoid 
maintenance and to support query-formulation independent 
of current database structure. 

2. Examine the feasibility and initiate the development of 
the possibilities of data dictionaries in general and 
the described data dictionary in specific. This analysis 
of possibilities is directed at the embedding in and 
developing methods, techniques, methodologie guidelines 
and automated tools for the design, implementation and 
maintenance of flexible information systems. 
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