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Abstract The Standard method of uniformization for continuous-time Markov 
chains is shown to be generalizable to time-inhomogeneous Markov chains. A 
finite grid approximation is also provided. 

Key-words Continuous-time Markov chain * uniformization * approximation. 





- 2 -

1. Introduction 

The technique of uniformization, as per the pioneering paper by Jensen [6] 
and also known as randomization, for transforming continuous-time Markov 
chains in discrete time Markov chains, is widely known as a powerful tooi 
for evaluating continuous-time Markov chain applications such as naturally 
arising in computer performance evaluation, telecommunication and reliabi-
lity. Particularly, over the last decade it has been extensively employed 
for computational and sensitivity analysis of both steady-state and tran-
sient measures (e.g. [3], [4], [5], [8], [10], [11], [14]). 

However, beyond the essential requirement of uniformly bounded transition 
rates, the method, so far, seems to be limited to time-homogeneous chains. 
This latter restriction does seem justified for steady-state analysis but 
is much less natural when transient analysis is in order. For example, the 
availability or reliability of a system which is subject to breakdowns will 
generally deteriorate by age. A time-inhomogeneous version of uniformiza­
tion, though, does not seem to be available. 

This note aims to show that such a version can be concluded by relying upon 
a uniqueness result that can be obtained from the literature. Roughly 
speaking, the result is similar in spirit to the homogeneous case in that 
one can randomly sample Poissonian event-epochs at which transitions can 
take place according to conditional jump probabilities. The result seems of 
practical interest as: 

(i) It suggests a computational tooi by combining iterative numerical 
computations with random sampling or Monte-Carlo simulation. 

(ii) Truncation error bounds are more easily concluded. 

To enable practical computation or rather to avoid storage of a continuüm 
of transition matrices, a finite grid approximation is also provided along 
with an error bound. 

2. Model 

Consider a continuous-time inhomogeneous Markov chain with state space S -
{1,2,...,} and at time t a transition rate qt(i,j) for a transition from 
state i into state j*i where we allow qt(i,i)>0. Assume that these tran­
sition rates are continuous in t for all i,j as well as that for some 
constant P and all i,t: 

( i ) q t ( i ) = XJ q t U . j ) * 0 < - . 

Definition. A family of transition probabilities {Ps fc|0<s<t<»} is said to 
be Markov, hereafter called transition semigroup, if for all i, j, s, t and 
v: 

(2) Ps>s + t+v(i.J) " ̂  Ps,s + t(i.k) P. + t.. + t+v<kJ>-

Based on this Markov (or semigroup) property the following uniqueness re­
sult can be adopted from the literature. 
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Lemma 1. There exists a unique transition semigroup (Ps_t|0<s<t<«} such 
that for all t and i,j: 

(3) [ T > t i t + h(l,i)-lu = i}]h-i - qt(i,j)-lu = i}Ijqt(i,j) 

as h-»0, in weak convergent sense, that is with the left hand side of (3) 
uniformly bounded for all t, h, i and j, and where 1{A> denotes an indi­
cator of an event A. 

Proof In analogy with theorem 4 at p.364 and the analysis at pp.347-353 
and 364-366 of [2] the existence and uniqueness is shown by the construc­
tion: 

P..t(i'J> = C o K.^'V- Where 

(4) 1 P° t(i,j) = l{. = .}exp [-sfqu(i)du], and for n>0: 

L Pk + ; (i,j) - f exp [- T q U)d lil q <i,m) ?* <»,j.)]du 
s,t s s v v *Tn u u , t 

As only difference with this reference we need to apply dominated rather 
than uniform convergence arguments in view of the weak rather than uniform 
convergence in (3). D 

Remark 1. Theorem 4 at p. 364 of [2] also yields the construction of a 
Markov process (Xt|t>0) with transition probabilities Ps_t given by (4) and 
right-continuous sample paths. As the finite-dimensional distributions are 
hereby uniquely determined, by virtue of theorem 14.5 of Billingsley [1], 
this Markov pocess is unique at the space of right-continuous sample paths, 
more precisely D[0,«>) (for the precise definition see [1] or [15]). 

Remark 2. We prefer to use a weak convergent version in lemma 1 in order 
to avoid uniform continuity requirements for qt(i,j) in t. 

Remark 3. Note that qt(i,i)>0 is allowed. This will be utilized below. 

3. Uniformization 

For any t>0 define the matrix Pt by 

^(i.j)^-1 , (j-D 
(5) Pt(i,j) 

Zj^qtd.j)^-1, (j-i) c 
which represents the uniformized transition probabilities at time t. Now, 
consider a continuous-time Markov chain with transition rates qt(i,j) -
£Pt(i,j) for all t and i,j (j=i included). Then by virtue of lemma 1 with 
qt(i,j) replaced by qt(i,j) and 
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(6) qt(i) - Ijqt(i,j) - P EjPtCi.j) - fi 

there exists a unique transition semigroup {Us_t|0<s<t<oo) satisfying (3) 
w i t h ps,t a n d qtCiJ) replaced by Us _ t and qt(i,j) and, by (4), 

f Us,t(i.J) = Ik-o UÏ.tCi.J). where 

(7) -j U ° t ( i , j ) - l { j . i } exp [ - ( t - s )0 ] , and for n>0 

U ^ ( i . j ) - s f exp[-(v-s)0]0 [ ^ P v ( i , k ) l £ i t ( m , j ) ] d v 

Theorem 1 For all 0<s<t<=° 

(8) P - U 
s , t s , t 

Ac-0 
[ (t-s)/?] - ( t - s ) p pt pt 

k ! 
f ... f P P ... P d Hk 

s tx t2 tk 
( t l t k ) 

{•t,i. . . < t k ) 

where Hk(...) is the density of the order statistics X( x 5<X(2 }<. . .<X(k j °f 
a homogeneous distribution at [s,t]x...x[s,t]cRk and where Pt Pt ...Pt is 
the Standard product matrix of transition probability matrices (5; at times 
ti*t2<...<tk. 

Proof First note that for t<s+h 

^ = 2 K.t * [/3(t-s)]2/2! < h*C 

while 

[Us.s+h(i,j) +U°iS+h(i,j)]h-i - l{j,i} -

[1 + 0(h)]h/3 [ P s ( i , j ) + o ( l ) ] + [1 - h/3 + 0(h 2)] l { j . i } - l { j . i } -

h{l+o(l)]q1I<i,j)jr
1l{J,i} + lu-uhj9[l+o(.l)]tl-^^iq,(i.j)^-i]-l{j-1} 

where O(h)h"1-»0 and o(l)-K) as h-*0. As a consequence, the weak convergence 
relation (3) of lemma 1 is satisfied if we replace P s t by U, t. Lemma 1 
thus proves the first equality of (8). To prove the second, by (7)and 
repetition we obtain for any k: 

lf .- J* expl-d-i-s)] 0P [ f e x p f - ^ - r ^ ] £P [. . . . 
s , t O T 1 L T 1 T 2 

[ fexp[-(rk-rk_!)/?] fit [ fexp[-(t-rk)^]]...|dr1dr2...drk 
Tk-1 Tk Tk J 



• » 
- 5 -

- ( t - s ) p „k ft rt 

e 
f X f... f P-...P drldr2...drt 0 Tl Tk-1 Tl Tk 

«"•',,EiF;-,r v-v* <«> v 
as the density of a k-dimensional distribution of the order statistics X 

1<X2-- • -^k
 o f k independent random variables X1 ,X2 Xk , each 

homogeneously distributed at [s,t], is standardly known (e.g., pp.100-103 
of [7] or exercise 29, p.240 of [12]) to be k!/(t-s)k. D 

Remark 4 Note that the homogeneous case is included by Pt -Pt -...«Pt -P, 
so that with the above density k!/(t-s)k for outcomes t^t^...^^ we ob-
tain 

(9) sr...sr dHk
( t l t , ) - - ^ [ > f t i f . . £ k _ i j * d t 1 . . . d t B ] - i 

{tl<t2<...<tk} 

Remark 5 The Poisson expansion (8) directly provides one the error bound 

(10) l | P t . t - P s , d l - ^ f ^ 

if Ps , is a truncated version with the sum in (8) truncated at k-L. 
Here ||.|| denotes the Standard supremum norm. 

Remark 6 An approximate though efficiënt computation of the integrals in 
(8) might be established by employing (Monte Carlo) simulation as follows. 

(i) Independently generate k random nuntbers Xj^ets.t]. 
(ii) Determine their order statistics t^x^jStj^x^j^.. .Stk-x(k} . 
(iii) Compute Pti . . .Pt]c . 
(iv) Repeat these steps a reasonably large number of times and determine 

the average of the obtained individual results (matrices or weighted 
values). 

4. Approximation 

The major drawback of the above representation (as well as any other) for 
nonhomogeneous calculations is the fact that a continuüm of transition 
matrices (and thus rates) is needed. To overcome this, below we investigate 
a finite-grid approximation under the simple Lipschitz assumption (for a 
relaxation see remark 7 below) that for some constant K and all t: 

(11) ||Qt+At - Qt|| < AtK 
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where Q* denotes the matrix of transition rates qt(i,j) with qt(i,i)~-qt(i) 
while ||A|^maXiSj \at^ \ for a matrix A. 

Let h>0 be arbitrarily chosen such that /3=h"1 satisfies (1) and set rij-
[tih"

1], i-1,...,n where [x] denotes the entier of a number x. Then 

(12) 

P t x ( P t 2 • • - P t k ) ~ Pr^h ( P n 2 h • • -Pnjjh) I I ** 

[ P t ^ P n . h l ( P t 2 - - - P t k ) " P n l h K P n 2 h - - - I ' n k h ) - ( P t 2 - - - P t k ) ] | l * 

[I + h Q t J " [I + h Q n i h ] | | + | |P„2h---Pnkh - P t 2 . . . P t J I * 

P n 2 b - - - P n k h - P t 2 . - . P t k l l + ^ K < . . . < kh*K. 

where the latter inequality follows by iterating these steps for t x , t 2 , 
. . , tk . 

Theorem 2 For s=nh and t=mh let: 

<"> *.< - K.. hl^ML ••"-" { 3T-3T ' . l b - v «?«-. * 

-k 

where Hd(...) is the probability mass distribution of the order statis-
tics nx<n2<...^nk of k independent discrete homogeneous random variables at 
{0,1, ,m-l) . Then 

(14) ||U* t - P t|| < h (t-s)K. 

Proof Noting that 

(15) S " 1 . . ^ " 1 P„ l hPn ; 
{ n « < - - - < i 

•Pnkh ^ ( t X l - . t v ) 

J • • • J Pn 1 h
 Pn 2 h • P n k h d H k ( t 1 , . t v ) 

s s 

{nL = [ t j h ] } 

while by (12) : ( a l so (see ( 9 ) ) : 
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(16) II ƒ ... ƒ [PtiPt2...Ptk-PnihPn2h...Pnkh]dHMt1(...,tk)|I <hK(kh) 
s s 

{ti<...<tk} 

we conclude from (8), (13) and substitution of h-/?"1: 

(17) -| | UÏ. t -U. .tll * hK^-
1i;.0ke-<t-»>'»[(t-s)^]kA! = hK(t-s). D 

Remark 7 Clearly, the Lipschitz condition (11) is simple in form but can 
be too strong. In fact, following the proof we have only used that for the 
chosen h-grid and all s<rh<t: 

(18) ||QV-Qrh|| < hK (ve[rh,rh+l)). 

For example, with Qv piecewise constant at intervals [rh,rh+l), the Lips­
chitz condition (11) fails, while (18) and thus (14) hold with K-O. 

Remark 8 Result (14) can be seen as a time-inhomogeneous extension of the 
Euler approximation (cf. Meis and Marcowitz [9]) 

[I + hQ]n - Tt (n-[th-M) 

for homogeneous semigroups {Tt|t>0}, satisfying d/dt Tt=QTt~TtQ. As such, 
the probabilistic and direct proof by means of uniformization is of inter­
est in itself. 

Remark 9 In [13] an elegant method is proposed for approximating homoge­
neous transition probabilities of continuous-time Markov chains by inspect-
ing the process at exponential times. This method resembles uniformization 
but is not the same. It turned out to be amazingly efficiënt. Along the 
lines of this section extension of this method to nonhomogeneous Markov 
processes seems promising. 
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