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ON THE ARRIVAL THEOREM FOR
COMMUNICATION NETWORKS

Nico M. van Dijk
Free University, The Netherlands

Abstract

The arrival theorem is investigated for communication networks that exhibit
a product form. Two types of blocking protocols are distinguished:

+ a delay protocol

+ a retransmission protocol.

(i} Under the delay protocol the arrival theorem is shown to fail.

(ii) Under the more realistic retransmission protocol, however, the arrival
theorem is shown to be generally valid provided the product form
conditions are guaranteed.

The results show that the arrival theorem is no general consequence of
product form expressions and extend the standard result for closed Jackson

networks to communication networks with blocking. Examples include:

s Standard CSMA or BTMA protocols
+ Circuit switch structures
+ Rude-CSMA.



1 INTRODUCTION

Background

For over two decades queueing network modeling has become a most popular
tool for performance evaluation of computer and communication networks. Un-
questionably two major results that have motivated this direction are:

+ Jackson's celebrated product form
¢+ The MVA-algorithm.

This latter algorithm enables one to efficiently compute performance measure
of interest such as throughputs and sojourn times for closed queueing net-
works (cf. [51,[6],(9),(12]). The algorithm is essentially based on the so-
called:

+ Arrival Theorem

The arrival theorem is a well~-known result for closed Jackson queueing net-
works, that is networks with fixed routing probabilities and no blocking.
Roughly speaking, the theorem states:

Upon arrival at a station a job observes '
w1 the system as if in steady state at an
arbitrary instant for the system

without that job.

As Jackson networks have become famous for their product form expression
while proofs of the arrival theorem for these networks have been given in
the literature based on these product forms (cf. [9],[10],13),[18]), the
general impression seems to have grown that the arrival theorem is generally
valid for any closed queueing or communication network that exhibits a
product form. However, no formal support in this direction seems to be

available.



Motivation

Particularly, over the last decade product form expressions have also been
extended to communication networks or random access schemes such as CSMA,
BTMA, Rude-CSMA and circuit switch structures (cf. [1], {2], [3), [4}, (7],
[11), [15]). In such networks, the transmission or broadcasting of different
sources is dependent, for example due to limited resources or to avoid col-
lisions, so that transmission requests may get blocked. To compute perfor-
mance measures of interest such as the loss probability or throughput of
these systems, an analog of the standard arrival theorem would be appealing.
This would read as:

Upon transmission request by a source,
this source observes the system as if

(1.2} in steady state at an arbitrary

instant for the system
without that source

Ob jective

This paper therefore aims to investigate this version of the arrival theorem
for two types of blocking protocols:

+ The delay or stop protocol (protocol 1)

+ The retransmission protocol (protocol 2)

Results

. For the delay protocol the arrival theorem is shown to fail manner. In
this case, it can apply only for special conditional probabilities.

. For the retransmission protocol, in contrast, the arrival theorem will
apply under the conditions required to conclude the product form. Par-
ticularly, alsc randomized blocking such as in Rude-CSMA is allowed.



The result applies to a wide range of communication networks of which some
illustration will be provided., This includes:

+ CSMA and BTMA-structures
« Circuit switch architectures
+ MAN-gystems, and

¢« Rude-CSMA.

Outline

First, in section 2 we will give an instructive and somewhat counterintui-
tive example of the arrival theorem. Section 3 presents the general model
and the condition for a product form result. The arrival theorem is then se-
parately Investigated for the delay and retransmission protocol in section
4.1 and 4.2, Section 5 contains some examples and an evaluation concludes
the paper. '

2 TWO INSTRUCTIVE EXAMPLES

Example 1

Consider a two-source communication netwerk in which each source is alterna-
tively in an idle (scheduling or non-transmitting) and busy ({transmitting)
mode. However, as there s only a single transmission channel, only one
source can transmit and thus be busy at a time. When a source requests to
start a transmission while the other source is already busy, this request is
blocked and lost and the source has to remain idle to schedule a new request

{retransmission).

Idle Busy -
Assume that the time to schedule a next request is exponential with parame-

ter T, for some source h=1,2 and that the duration of a transmission is also
exponential with parameter M for source h=i,2. '

Let the state (sl.sz} denote by s, the status of source h where shso means
idle and sh=l means busy, h=1,2. The steady state distribution at the set of



possible states
C = {[Oso)i[lgo)p{osl]}

is then determined by the global balance equations:

(i) I(loo} ”1 = I(0,0) 11
(2.1)

{ii) (0,1) B 7{0,0) 7,

(iii) 1:(0,0)'[:'1-*12] = w(1,0) Mo+ =(0,1) ",

where we note that (i} and (ii) can be interpreted as "balance per source”
These also imply (iii) and yield the "product form solution™:

7 * 7, 2
(2.2} u(sl,sz} = o [ "Tl] [ ”_z] (sl,sz)ec

Here one may note that expression (2.2) factorizes to the individual sources
as if they were independent and in isclation with mean idle time ";r;1 and
mean busy time p;l for source h, up to the fact that the state (1,1) is not -
possible, as reflected by the normalization constant ¢. This justifies the
phrase: "product form".

Arrival theorem example

Now let us investigate the arrival theorem as formulated by (1.2). That is,
let us determine the probability distribution of the status of source 2 when
source 1 requests to start a transmission. We denote this distribution by
1

n (sz}. Then:

n{0,0)y T}
Yoy = e = —=
R ®0,0)7, + ®O,Dy, B, * 7,
(2.3)
“1(1) ) I(O,l)')‘l _ v,
®(0,0)y + x(0,1)y, " m, *+ 7,




which corresponds exactly with the probability distribution of source 2 when

it was in isolation following an alternating renewal process with means ,l/z'1

and 1/]12 for being in idle or busy mode. For example, with :rl='a'z=u1=p1=u2-1

we have:

(2.4) w(o) = w1

_1
2

As source 2 in isolation represents the system without source 1, in this

case we can thus state:

(2.5) The arrival theorem applies

Example 2

Now let us reconsider a modification in which, roughly speaking, the strict

dependence between the two sources is reduced to 507 as follows. Both sour-
ces are allowed to transmit at the same time, but in contrast a source is
discouraged to schedule a transmission by a factor -;— when the other source
is already transmitting. More precisely, the scheduling rate of source 1 is

given by:

(2.6) {

and similarly fer source 2 depending on 5

when

-2

T when

M-

Product form

The set of possible states is now given by:

C= {(0.0),[1,0).(0.1).(1.1}}

and the global balance equations become:



®(0,0) [71 + '(21 . = n{1,0) u, o+ n{0,1) K,

n(1,0) [.u1 + -:;72] = %{0,0) 7, ¢ n(1,1) K,
2.7 ‘

®(0,1) [E v+ pzl = %(0,0) 7, * 7(1,1) K

®(1,1) [ + ] = =(0,1) %11 + (1,0) % 7,

which are also verified by balance equations per source:

n(0,0) r, = n(1,0) M, {balance per source 1)

n(0,1) %71 = 7x(1,1) i (balance per source 1)
{2.8)

n(0,0) ¥, = n({0,1) M, (balance per source 2}

x(1,0) % 7, = n(l,1) H, (balance per source 2)

with the “"product form" solution:

kSR F RN
1} 1 2} 2
(&) (&) Brs) = G
{(2.9) Ir(sl,sz) =
e [2)(7) 2 (s,s) = (1,1)
THANTH I 1'72 iy

Here, the term “product form" must be interpreted in somewhat wider sense as
also a scaling factor has been included. Roughly speaking, it could still be
called a product form as the parameters g Y and u, are involved by factors
[1/;11] and (l/pzl when the source is busy. Essentially, the balance per
source will be responsible for this product form feature as will be analyzed
more detailed in section 3.



Arrival theorem counterexample

Let us reinvestigate the arrival distribution as per (1.2) seen by source 1
upon transmission request where we directly assume 11=72=p1-=_uz=1. Then:

u1{0) < (0,01 =241
x(0,0)1 + =(0,1) % 3 2
uztl) - n(0,1) . N |
7(0,0)1 + =(0,1) % T 2

As the arrival theorem (1.2} would have required (2.4), in this case, and
despite the fact that the source dependence seems to be reduced, we have to
conclude:

The arrival theorem
fails

3 GENERAL MODEL

Consider a communiciétion network of M sources, numbered l,....M where each
source is either in an idle (scheduling or non-transmitting) or busy (trans-
mitting) mode depending on the actual protocol in order as described below,

In either case, let H={h1,hz,....hn} denote the set of | busy sources. And as-

sume that source h has

an exponential scheduling rate 7,

an exponential transmission rate B,

Further, we introduce a blocking/delay function: A(h|H},
we write:
H+h=Huv{h)
H~-h=HN\{)}

and we denote the set of possible states by C.



Retransmission protocol (P 1]

Source H always schedules a next transmission request after an exponential
peried with parameter Yy When the system is in state H and source heH re-
quests to start a transmission, this request is accepted with probability
A(h|H) and blocked with probability 1-A(h|H). When blocked, the request is
lost and the source has to schedule a new request.

Delay protocol (Pz)

When the system is in state H, the scheduling rate for a next transmission.
request by source h is delayed by a factor A(h|H) and given by 7, A(hi{H).
Particularly, when A(h|H)=0, the scheduling is stopped. A tranmission re-
quest, however, is always accepted.

One might question why this protocol distinction is made as they seem effec-
tively equivalent. Indeed, as will be clear from the global balance equa-
tions (3.3) below, in the exponential case the steady state distributions
are the same. This itself is already amazing from a physical point of view.

Viz., a scheduling of a next transmission may have been delayed or inter-
rupted during some period of its scheduling under the -Pz-protocol,. while up-
on the actual epoch of the request A(h]HJ=1 so that no blocking would have
been experienced at all wunder the P_l-protocol. Indeed, in the non-
exponential case this equivalence will no longer be generally valid. As
shown in [15] it remains valid only under the additional product form condi-
tion below., More importantly in the line of the present paper, the protocol

distinction will be essential when dealing with the arrival theorem.

Invariance condition

There exists a function P{.) at C such that for all H, H+heC:

(3.1) P(H+h) = P(H) A(h|H)

or equivalently, such that for any H={h1,h2....,hn} € C and any permuta-
tion {il'iz"”'in} e (L,2,...,nk:



n
(3.2) | PBY =T Ah fB ,...h )
k 1

Remark

The equivalence of the conditions (3.1) and (3.2} is directly related to
Kolmogorov's invariance criterion for reversibility, see [8], p.2l, and can
be proven similarly to p.22 of this reference. We will briefly discuss the
verification and provide some examples later on.

Proposition 3.1
Under the invariance condition (3.1), with ¢ a normalizing constant and with
LA and T, the steady state distribution under protocol PI and P2 respective-

1y, we have
7,
(3.3) " (H) = w (H) = P(H) [ n --]
neit Mo
Proof

We need to verify the global balance equations for both protocols. These are
given by:

n{H) r’hEH ot n(H) Eh e n A(h|H)
(3.4) =

}:heﬂ n(H-h) A A(|H-h) + R . n(H+h) K,

where for the retransmission protocol we have deleted blocked transitions as
they would provide exactly the same contribution to both the left and right
hand side and where we must substitute a(H)=0 for HgC. These global balance
equations in turn would be satisfied by verifying the more detailed balance

equations per source:

(3.5) x(H) p_ = w(H-h) 3, A(h{H-h) (HeC)

However, this source balance relation is immediately checked by substituting
(3.1) and (3.4). The proof is hereby completed. o

10



Discussion of invariance condition

The invariance condition may at first glance seem impractical for verifica-
tion. However, in many concrete examples the actual complexity will be sig-
nificantly reduced by exploiting the underlying structure. As such examples
have been extensively studied in the literature (cf. [2), (3], [15], QL17D)
we only present some examples in section 5 for the purpose of illustration
and would like to mention here one special case which covers a wide range of
examples. -

Special case 3.1 (Coordinate convex)

Assume that C, the set of admissible states, is such that

{(3.7) HeC => H-h € C for all heH, HeC
while
_ 1 Hth e C
(3.8) A(hll—l) = {
0 otherwise

The product in (3.2) is then equal to 1 regardless of the order in which
sources become busy so that:

(3.9) P(H} = 1 (HeC)

Some examples are given in section 5.
4 THE ARRIVAL THEOREM

Let us now investigate the arrival theorem as formulated by (1.2). More pre-
cisely, we wish to evaluate the steady state distribution of the state H of
the other sources that a source, say «, observes when it completes a sched-
uling period and requests to start a transmission. We denote this distribu-

tion by:
()
and also introduce the notation:

I, (H) and LA (H)

as given by (3.3) as !(.)-Itl(.)s‘ltz{.) for the system with sources 1,....M
and for the same system with source a excluded.

1



4.1 Delay protocol

Recall the special coordinate convex case 3.1 and consider a state HeC and
source agH such that H+x ¢ C. Hence, by virtue of (3.8):

Alc|H) = 0
Under the delay protocol the scheduling of source « is thus interrupted in

state H so that a transmission request by source h can never take place when
the other sources are in state H. Thus, necessarily:

IT: (H) = 0
while

[ M, () >0

We thus have to conclude as before that:

(4.1) The arrival theorem fails.

Remark

With randomized delay factors A{a|H), as illustrated by example 2 of section
2, essentially the same incor.l_sistency remains present, but kept more hidden,
so that the arrival theorem also fails in such cases. Statement {4.1) can
thus be regarded as generally true under the delay protocol.

4,2 Retransmission protocol
First note that by substituting

- -1
(4.2) c=c (11...1u)
we can rewrite expression (3.3) for x(H) = 'um) as:

oo : -1
(4.3) R’u(H) =cPH T B, .

h€HR he&éH

12



Under the retransmission protocel, the arrival distribution upon transmis-
sion request by source « is given by:

[+ 4
(4.4) L (H) =

tu(H} T,

}:H, ‘ltu(H') 7,

cP(H) 1 u;l n 7;‘
’ h&€H heH, h*a

L. ¢ PH) T " 7;‘
heH’ hEH  hta

However, in the latter expression the common normalization factor ¢ cancels
in the denominator and numerator, and the remaining summation in the denomi-
nator represents the normalization constant as according to (4.3) for the
system with sources 1,....M but source a excluded, that is without source «o.
As also the numerator is of the product form (4.3), we have thus proven the
arrival theorem result:

{4.5) u: (H) == {(H)

4.3 Conditional arrival theorem

As a more detailed version of the arrival theorem one can also investigate
the arrival distribution upon transmission request by a source ¢, given that
the system state is contained in some set or has some property.

Let us give one special case for which a conditional arrival theorem also
applies for the delay protocol. Consider a specific source o and some subset
s%* such that

(4.6) AlelH) = 1 for all Hes®

and consider the conditional arrival distribution for source « at Sa .



denoted by nﬁ(lﬂs“). Then, under both the delay and retransmission protocol
and by recalling the rewritten form (4.3), we obtain as in (4.4);

" o
(4.7) % (H|s%) =

x (1) 7/ [}:H’ i (H) _,a] =

P(H) T p;‘ T 3 /IE JPEIT g oW 1h]

heH heH , h#a K es heo heH, hvo

But by virtue of (4.3) again, the latter expression coincides exactly with
the conditional steady state probability of state H at s% for the system

without source o. Hence:

Under both the delay and retransmission protocol
and with S* satisfying (4.6), a conditional

(4.8) arrival theorem applies as:

w (H|S™) = w,  (H|S%)

L]
M

Remark

This result may at first instance seem trivial as source a cannot experience
blocking at s*. However, one should realize that the possibie blocking out-
side S* or the blocking experienced at s* by other sources also indirectly
influences the steady state probabilities and thus also the conditional
steady state probabilities at s* so that (4.8) is not trivial. For instance,
in the CSMA example 5.1 below, (4.6) and thus (4.8) hold for:

s* = (H| 1,3,6 ¢ H)

while the distribution at S° would be different if , for example, the link

between 1 and § would be cancelled.

14



5 EXAMPLES

An extensive number of applications that satisfy the conditions (3.1), (3.2)
or {3.7) and (3.8) can be found in (2), (3}, {IS), and {17). In this section
we merely aim to provide son;e examples to Illustrate the potential of the
general framework while keeping the paper self-contained.

For each of these, as well as any other that can be adopted from these ref
erences, the Investigation of the arrival theorem, its validity under the
retransmission protocol and its failure under the delay protocol, appear to

be new.

S.1 CSMA and BTMA protocol (cf. [1),12),131,171,1111,114))

(i) CSMA
Sources corresponding to transmitters can be graphically represented such
that adjacent sources (neighbors) cannot be busy (transmit) at the same

time.

In practice this is achieved by the so-called Carrier-Sense Muitiple Access
(CSMA) protocol in which a transmitter senses the state of its channel be-
fore it will start a transmission. If one of these channels is sensed busy
the transmission is aborted (inhibited). For example, in the figure above,
source 1 prohibits sources 3-6 to start a transmission. With N(h) the set of
neighbors of source h, the coordinate convexity condition is guaranteed by:

(5.1) C= {H| hz ¢ N(hi) for all hl.hz-el-l}

15



(if) BTMA

In the figure above, sources 1 and 2 can transmit at the same time as they
are outside hearing range. This may lead to a collision and losses at nodes
3 and 4. To eliminate this so-called Hidden Terminal Problem, under the Busy
Tone Multiple Access scheme, Introduced in [14], a source which senses a
busy channel from a transmitting neighbor will broadcast a busy tone signal
to all its neighbors to prevent any other neighbor to start a transmission.
The coordinate convex set C given by (5.1) now still applies if we let N(h)
represent all one- and two-step neighbors form h.

5.2 Circuit switch networks (cf. [4]

Consider the circuit switch network below with 4 types of sources and Ml
trunks (links) at trunkgroup j=1,...,7. A transmission by a source of type i
requires a free trunk from each of the trunkgroups from Sl to D at the same
time. With n the number of busy sources of type i, the cocordinate convexity
condition (3.7) Is now guaranteed by C the set of all states H with:

l'l' = Ml (i'l.ooo’4’.
n +n, £ Ms
na + n‘ = M‘
n o+n, + n, +n‘s M?.

16



5.3 Rude-CSMA (cf. (D)

The following extension of the standard CSMA-model was proposed in {11} un-
der the name of Rude-CSMA. Roughly speaking, it aims to take into the ac-
count the environment without precise information which neighbors are busy
and which not. A transmission -réquest by source h while the other sources
are in state H is accepted with probability

N:(l'l) N:(H)
Ah|H) = x y

where N:(H) and N:'{H) are the numbers of idle and busy neighbors of source h
in state H, and where x and y are fixed given system values. For example,
x=1 and y=0 yields example 5.1. By simple algebra, condition (3.2) can then
be checked with:

B_(H} B {H)
P(H) = x ° y‘

where .
Bo(!l) = number of pairs of idle neighbtors in state H.
Bltl-l) = npumber of pairs of busy neighbors In state H.

Remark

Other randomized examples satisfying the invariance condition (3.2) can be -
given with features like random gradings, collision detections or losses due
to time-slotting (cf. [15)).

17
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EVALUATION

An extension of the standard arrival theorem for closed queueing networks is
formulated for communication structures of interdependent sources. It is

shown that a product form expression alone is no guarantee for the arrival
theorem to be valid. The actual blocking protocol will also be crucial. The
results are of practical interest for computational reductions.
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