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Abst rac t 

In multicast Communications responses (acknowledgements) from all redpients are to be returned 
to the sender. The sender buffers these responses in a finite storage buffer for a one by one 
processing. When this buffer is saturated responses are lost. 

The mean number of successful responses per unit time is analytically proven to be monotone 
in the buffersize. This result is of practical assistance such as 

(i) to support (e.g. reduce) numerical computations, 

(ii) to determine a critical buffer size, 

(iii) to apply optimal design. 

Extensions to other performance measures are direct. A rough error bound on the marginal 
value of one buffer place will also be derived. 
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1 Introduction 

Background 

One of the many new technological developments in present-day telecommunications is 
the ability of sending a message (signal or packet) to a specific group of recipients (or 
destinations), called multicasting, rather than to just one receiver (unicasting) or to a 
total neighbouring environment (broadcasting). Substantial improvements of throughput 
and service quality are hereby achieved. However, as transmitting sources or responding 
recipients may interfere, design and control problems are also significantly increased. 

A generic component of multicasting design is the determination of buffer capacity of 
a sender in order to process the responses (or acknowledgments) from recipients one by 
one. Recently, in [1] an elegant study on this topic was performed by using recursive 
Markov reward equations to numerically calculate the mean number of lost responses per 
multicast (i.e. the lost responses to one message). This study has been continued in [6] 
by showing that the underlying Markov chain can be explicitly solved recursively. Also 
other performance measures such as the mean number of successful (non-lost) responses 
per unit time are then obtained easily such as to trade off the buffersize against some cost 
structure. 

Motivation 

In executing such calculations and trading off different parameter values, a priori known 
structural results, that is monotonicity properties, of the performance measure of interest 
are helpful such as: 

(i) to check the calculations, 

(ii) to stop the numerical computations upon excess of a threshold value, 

(iii) to determine a minimal buffer size to achieve a service level, 

(iv) to obtain qualitative rather than only quantitative insights, 

(v) to assist the optimization using monotonicity arguments. 

Resul ts 

This note will illustrate how such monotonicity structures can be established analytically. 
More precisely, the mean number of successful responses per unit time will be shown to be 
monotone in the buffersize. This may seem obvious, but intuitively, an increased buffersize 
will not only increase the number of successful responses per multicast but also the total 
duration of the multicast, so that the resultant per unit time is no longer obvious. In fact 
a counterintuitive sample path realization example will be given. 

In addition, the monotonicity prooftechnique will also be used to provide a rough upper 
bound on the marginal effect on one extra place in the buffer. 
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2 Model and Example 

Consider a single sender which simultaneously transmits a message to N recipients. With
out restriction of generality the actual transmission time is assumed to be 0. All of the 
N recipients have to respond by returning a response of receipt (acknowledgement) to 
the sender. The response times of these recipients are independent and exponentially dis-
tributed with parameter A. The responses in turn are to be processed by the sender, one 
by one with an exponential processing time with parameter p.. To this end, the sender has 
a finite storage buffer for no more than 6 responses, the one in process included. When 
the buffer is saturated an incoming response is rejected and lost. Also referring to remark 
3.3 below, for simplicity we further assume that the sender immediately multicasts a new 
message as soon as all recipients have responded and all responses are handled (either 
successfully processed or rejected). 

We will be interested in qualitative or monotone behaviour of specific performance mea-
sures such as the mean number of successful responses per unit time when the buffersize b 
is increased. To motivate this interest, let us first consider a possible stochastic realization 
of the response and processing times. 

Counterintuitive Example 

With N = 6 assume that the following random generations for the response and processing 
times have been obtained. (Note that this would be possible, for example when, one runs 
a simulation under the exponential assumptions). 

Recipiënt 1 2 3 4 5 6 

Response time 5 7 12 18 24 30 

Processing Time 4 26 4 3 5 18 

The following realizations, when b=l and 6 = 2 would then be obtained. To clarify the 
notation, for example under 6 = 2 at time 18, recipiënt 4 responds but its response is 
rejected which leads to 1 lost response, as responses of recipients 2 and 3 are still present 
requiring 15 and 4 units time of processing respectively. The symbol <f> stands for no 
responses being present. 

3 



6 = 1 6 = 2 

Time Event Present Lost Time Event Present 
5 A(l) (1,4) 5 A(l) (1,4) 
7 A(2) (1,2) 2 7 A(2) (1,2) 
9 D(l) <f> (2,26) 

12 A(3) (3,4) 9 I>(1) (2,26) 
16 D(3) * 12 A(3) (2,23) 
18 ,4.(4) (4,3) (3,4) 
21 D(A) <t> 18 A(4) (2,17) 
24 A(5) (5,5) (3,4) 
29 £>(5) * 24 A(5) (2,11) 
30 A(6) (6,18) (3,4) 
48 D(6) ^,End 30 A(6) (2,5) 

(3,4) 
35 D(2) (3,4) 
39 Z>(3) ^,End 

Total Time : 48 > Total Time : 39 
Number Lost : 1 < Number Lost : 3 
Number Lost per unit time : 1/48 < Number Lost per unit time : 3/39 
Successful responses per unit time : 5/48 > Successful responses per unit time : 3/39 

In all respects, for this stochastic realization example a larger buffersize thus leads to 
reduction of performance. In the next section it will be proven that such counterintuitive 
results are impossible for expected values. 

3 Comparison 

In this section we aim to investigate whether the performance increases by increasing the 
buffersize. To this end a Markov reward technique will be employed as adopted from [5]. 
The actual verification of the essential conditions required for the present application is 
still to be studied which involves special technicalities. The presentation will therefore be 
kept self contained. 

With (n,s) denoting the number of still to respond recipients for a specific multicast 
and s the number of occupied storage places (the one in process included), we first note 
that the model of section 2 constitutes an irreducible continuous-time Markov chain at 

Lost 

4 

5 

6 
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Sb = {(n,s)|n < N,s < 6} with transition rates 

• ft [ n V ] = [ n , s - l ] ( 5 > 1 ) 

(3.1) q([n,s],{n',s')) = < ̂  [n',s']=[n- l , s + l] ( n > l , 5 < 6 ) 
[n\s']=[n-l,b] ( n > l , s = 6) 

To evaluate a specific performance measure L associated with a reward (cost) rate r(n, s) 
per unit of time when the system is in state (n, s), we employ the uniformization technique 
(cf. [2], p 110) and define total reward functions Vb,t = 0 ,1 ,2 , . . . by Vb°(n, s) — 0 for all 
(n, s) and for t > 0: 

Vb
t+\n,s) = ^ + zi^oyV^s - 1) + ^ l ^ V f t n - 1 , 3 + 1) 

(3.2) 
+ ^l{.=*}H'(n - 1,6) + [l - J - ^1{ ,<6} - f 1{,=6}] V?(n,«) 

where C? = [/x + NX] and where l ^ j = 1 if event A is satisfied and 0 otherwise. 

By virtue of this uniformization technique we then obtain 

(3.3) L = Urn Svf tn ,*) 

for arbitrary initial state (nys) at t = 0. For example, we obtain 
t 

L1 : steady state probability jr(0,0)by r^rijS) = l{(n,*)=(o,o)} 
(3.4) L2 : mean number of lost responses per unit time by r2(n,s) = nAl{,_fc} 

L3 : mean number of successful responses per unit time by r3(n, s) = nXlis<b\ 

Also noting that the total time per multicast T is given by T = l/[nA;r(0,0)], performance 
measures per multicast are thus included. 

Comparison Result 

Without restriction of generality (see remark 3.1) consider r = r3 in (3.2) and for conve-
nience, we introducé the probability matrix notation Pb (not to be confused with a power 
matrix like Pb) to rewrite (3.2) as 

(3.5) Vb
t+1(n,s) = n\l{.<h)Q-1 + f\V,'(n,i) 

Then by comparing the system with buffersizes b and 6 + 1, for (n,s)eSb we can write 

<3-6) (yiï-vr)(n,S) 

= n A l ^ j Q " 1 + (P i+iHVi " W) (» ' s ) 

= nXl^Q-1 + (/Vu - A)K'+ i(«,s) + W + i " *?)(»,«) 

where the latter step is justified as V£+1 is well defined at Sb- Further, form (3.2) and 
(3.5), we conclude 

(3.7) (Ffc+i - Pi)Vb\n,s) = nXl^Q-1 [v6'(n - 1,6+ 1) - V6
f(n - 1,6)] 



Also note that Pyg > 0 for any vector g > 0 (both > signs componentwise). As a 
consequence, by using Lemma 3.2 below and assuming that (induction hypothesis): 

(3.8) (H'+1 ~ H') > 0 at 56, 

(3.6) and (3.7) would show that (3.8) also holds for * replaced by 1+1. With Vb°+1 = Vb
l = 0 

(componentwise), by induction we have thus proven (3.8) for all t > 0. Applying (3.3), 
for example with (n, s) = (0,0) now yields: 

Theorem 3.1 

(3.9) ^fc+l > Lb 

Lemma 3.1 For any 6, any (n,s) ,(n,s + l)tSt and all t > 0: 

(3.10) l O ^ V ^ n ^ - V ^ n ^ + l ) ^ ! 

Proof For convenience we suppress the subscript 6. The proof will follow by induction in 
t. Clearly (3.10) holds for t = 0 as V° = 0. Assume that (3.10) holds for t < m. Then, 
by (3.2): 

Vm+1(n,s) - Vm^{n,s- 1) = { n A l ^ j Q " 1 + nXl{t<b}Q-lVm(n - 1 , 3 + 1) 

+ /*<r1l{.M}*"n(n,5 - 1) + [1 - nAl { f < 6 }9- 1 ~ PQ'11^)] 

Vm(n,s)} - {nXl^t^yQ-1 + nXl^^Q-1 Vm(n - l,s + 2) 

+ nM^+r^Q-'V^n - 1,6) + /i<?-1Vm(n,5) 

+ [1 - n A l ^ ^ Q " 1 - n A l ^ + ^ Q - 1 - vQ-*)Vm(n,S + 1)} 

(3-11) 

By substituting 1{,<&} = [l{a+i<«>} + l{.+i=&}] and 1{,>I} + l{,=o} = 1, and comparing 
terms pairwise, this can be rewritten as: 

Vm + 1(n,a) - Vm+1(n,s + 1) = n A l ^ + ^ Q " 1 

+ nXl^^Q-^V^n - 1,5 + 1) - Vm(n -l,s + 2)] 

+ nXl{l+i=h}Q-l[Vm(n - 1,6) - Vm(n - 1,6)] 

+ nQ-lXl{.>i}[Vm(n,s - 1) - V%. , s ) l 

+ fiQ-'nXl^oylV^n^) - Vm(n,0)] 

+ [1 - nXl{3+l=b)Q-1 - nAl { ,+ 1 = 6 }g- 1 - pQ] 

[Vm(n,s)-Vm(n,s + 1)] 

(3.12) 
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Here indeed the third and fifth term in the right hand side are equal to 0 but kept in for 
clarity and an argument below. Substituting the lower estimate 0 from (3.10) for t = m 
one directly verifies Vm+1(n, s) — Vm+1(n, s + 1) > 0. By substituting the upper estimate 
1 from (3.10) for t = m, noting that the first positive term: 

nAl{8+1=t}Q_1 

is exactly equal to the coëfficiënt of the third term which is equal to 0 and recalling that 
all coefficients sum up to 1, we also verify: Vm + 1(n,s) — Vm + 1(n,s + 1) < 1. This proves 
(3.10) for t — m. The induction completes the proof. 

Remark 3.1 (Other measures) By choosing a different reward rate function similar 
results can be expected for other measures along the same Unes of the proof. For example, 
with r2 from (3.4) the monotonicity in (3.9) will be just opposite as the bounds 0 and 1 
in (3.10) are to be replaced by -1 and 0 respectively. 

Remark 3.2 (Nonexponential t imes) By using mixtures of Erlang distributions the 
proof should in principle be extendable to general nonexponential processing and response 
times. The technicalities however can become quite complicated (cf [3]). Another possible 
approach to deal with nonexponential times is to use sample path techniques with coupling 
arguments. The present Markov reward technique is preferred herein as it is rather direct 
and also leads to marginal value bounds as per the next section. 

Remark 3.3 ( Immediate multicasting) The assumption of an immediate new multi-
cast upon completion of handling all responses may not be realistic in certain applications 
but nevertheless be justifiable for the following reasons: 

• Random (say exponential) holding times for a next multicast are easily included 
without essentially affecting the proof. 

• It is one natural form which takes into account both the effect of losses per multi
cast and the duration of multicasts. As such the result and proof can be seen as 
representative also for other forms. 

• Even if only a single multicast is to be considered the assumption of immediate 
repetitive multicases allows computation per multicast by the transformation men-
tioned. 

A rough bound on the marginal value. 

As a further application of the prooftechnique employed, a rough upper bound will be 
derived on the marginal value of one extra buffer place. Though very rough it provides 
a first indication of order of magnitude or a stop criterion for investigation alternative 
buffersizes. 

To this end, conclude from equation (3.6), (3.7), theorem 3.1 and lemma 3.2 for any 
(n,s)cSb: 
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(3.13) O < (HVi ~ V?)(n,a) < nAl^»,*?"1 + AM'+i1 ~ ^ _ 1 ) ( n ^ ) 

Now note that the transition matrix P& remains restricted to Sb- As a consequence, with 
Pb

k t he Jb-th power of matrix Pb and $(n, s) the function defined by: 

$(n,s) = n\l{,=b)Q-1 

we obtain by iterating (3.13) for t = N, N — 1 , . . . ,0 and using V$.x = Vb° = 0, that for 
any (n,s)eSb'-

(3.14) 0 < (V& - K*)(n,a) < E ^ ( n , S ) 

fc=0 

Furthermore, similarly to steps as in [4] one can prove that 

(3.15) i>6*$(0,0) < A*+1*(0,0) < Hm Afc$(o,o) = Q-xL7
b 

k—*oo 

with Li the mean number of Lost responses per unit time. By (3.14), (3.15) and (3.3) we 
have thus concluded: 

Theorem 3.2 

0 < ^ + 1 - ^ < L 6
2 (3.16) 
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