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A note on
Monotonicity Results in Multicasting
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Abstract

In multicast communications responses (acknowledgements) from all recipients are to be returned
to the sender. The sender buffers these responses in a finite storage buffer for a one by one
processing. When this buffer is saturated responses are lost.

The mean number of successful responses per unit time is analytically proven to be monotone
in the buffersize. This result is of practical assistance such as

(i) to support (e.g. reduce) numerical comput.ations,
(ii) to determine a critical buffer size,
(iii) to apply optimal design.
Extensions to other performance measures are direct. A rough error bound on the marginal
value of one buffer place will also be derived.
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1 Introduction

Background

One of the many new technological developments in present-day telecommunications is
the ability of sending a message (signal or packet) to a specific group of recipients (or
destinations), called multicasting, rather than to just one receiver (unicasting) or to a
total neighbouring environment (broadcasting). Substantial improvements of throughput
and service quality are hereby achieved. However, as transmitting sources or responding
recipients may interfere, design and control problems are also significantly increased.

A generic component of multicasting design is the determination of buffer capacity of
a sender in order to process the responses (or acknowledgments) from recipients one by
one. Recently, in [1] an elegant study on this topic was performed by using recursive
Markov reward equations to numerically calculate the mean number of lost responses per
multicast (i.e. the lost responses to one message). This study has been continued in (6]
by showing that the underlying Markov chain can be explicitly solved recursively. Also
other performance measures such as the mean number of successful (non-lost) responses
per unit time are then obtained easily such as to trade off the buffersize against some cost
structure.

Motivation

In executing such calculations and trading off different parameter values, a priori known
structural results, that is monotonicity properties, of the performance measure of interest
are helpful such as:

(i) to check the calculations,

(i) to stop the numerical computations upon excess of a threshold value,
(iii) to determine a minimal buffer size to achieve a service level,
(iv) to obtain qualitative rather than only quantitative insights,

(v) to assist the optimization using monotonicity arguments.

Results

This note will illustrate how such monotonicity structures can be established analytically.
More precisely, the mean number of successful responses per unit time will be shown to be
monotone in the buffersize. This may seem obvious, but intuitively, an increased buffersize
will not only increase the number of successful responses per multicast but also the total
duration of the multicast, so that the resultant per unit time is no longer obvious. In fact
a counterintuitive sample path realization example will be given.

In addition, the monotonicity prooftechnique will also be used to provide a rough upper
bound on the marginal effect on one extra place in the buffer.



2 Model and Example

Consider a single sender which simultaneously transmits a message to N recipients. With-
out restriction of generality the actual transmission time is assumed to be 0. All of the
N recipients have o respond by returning a response of receipt (acknowledgement) to
the sender. The response times of these recipients are independent and exponentially dis-
tributed with parameter A. The responses in turn are to be processed by the sender, one
by one with an exponential processing time with parameter u. To this end, the sender has
a finite storage buffer for no more than b responses, the one in process included. When
the buffer is saturated an incoming response is rejected and lost. Also referring to remark
3.3 below, for simplicity we further assume that the sender immediately multicasts a new
message as soon as all recipients have responded and all responses are handled (either
successfully processed or rejected).

We will be interested in qualitative or monotone behaviour of specific performance mea-
sures such as the mean number of successful responses per unit time when the buffersize &
is increased. To motivate this interest, let us first consider a possible stochastic realization
of the response and processing times.

Counterintuitive Ezample

With N = 6 assume that the following random generations for the response and processing
times have been obtained. (Note that this would be possible, for example when, one runs
a simulation under the exponential assumptions).

Recipient 1 2 3 4 5 6
Response time 5 7 12 18 24 30
Processing Time 4 26 4 3 5 18

The following realizations, when b =1 and b = 2 would then be obtained. To clarify the
notation, for example under b = 2 at time 18, recipient 4 responds but its response is
rejected which leads to 1 lost response, as responses of recipients 2 and 3 are still present
requiring 15 and 4 units time of processing respectively. The symbol ¢ stands for no
responses being present.



b=2

Time Event Present Lost Time Event Present Lost
5 A1) (1,4) 5 A1) (1,4)
7T A(2) (1,2) 2 T A2) (1,2
9 D(1) ¢ ' (2, 26)
12 A@3) (3,4) 8 D(1) (2,26)
16 D3) ¢ 12 A(3) (2,23)
18 A(4) (4,3) (3,4)
21 D4) ¢ 18 A(4) (2,17) 4
24 A5) (5,5) (3,4)
29 D(5) ¢ 24 A(5) (2,11) 5
30 A(6) (6,18) (3,4)
48 D(6) ¢,End 30 A(6) (2,5) 6
(3,4)
35 D(2) (3,4)
39 D(3) ¢,End
Total Time : 48 Total Time : 39
Number Lost : 1 Number Lost : 3

Number Lost per unit time : 1/48
Successful responses per unit time : 5/48

Number Lost per unit time : 3/39
Successful responses per unit time : 3/39

VAAYV

In all respects, for this stochastic realization example a larger buffersize thus leads to
reduction of performance. In the next section it will be proven that such counterintuitive
results are impossible for expected values.

3 Comparison

In this section we aim to investigate whether the performance increases by increasing the
buffersize. To this end a Markov reward technique will be employed as adopted from [5)].
The actual verification of the essential conditions required for the present application is
still to be studied which involves special technicalities. The presentation will therefore be
kept self contained.

With (n,s) denoting the number of still to respond recipients for a specific multicast
and s the number of occupied storage places (the one in process included), we first note
that the model of section 2 constitutes an irreducible continuous-time Markov chain at



Sy = {(n,3)[n < N,s < b} with transition rates

b hd)=lme-1  (s21)
[?\d]l=n-1,s+1] (n2>1,s<b)
W,)=lh-18  (r>1,s=0)

(3.1) q([n, 3]!'["2 3‘]) = n\

To evaluate a specific performance measure L associated with a reward (cost) rate r(n, s)
per unit of time when the system is in state (n, s), we employ the uniformization technique
(ef. {2], p 110) and define total reward functions V,t = 0,1,2,... by V;’(n,s) = 0 for all
(n,s8) and for ¢ > 0:

Viti(n,s) =252 + 8lpW(n e — 1) + Flea Vi — 1,5+ 1)
(3.2)
+ “Q_Al{szb}‘fb‘(n - lab) + [1 - '5 - %‘3—1{_'(5} = %Al{a=b}] ‘fb‘(ns 8)

where Q@ = [ + NA] and where 1(4) = 1 if event A is satisfied and 0 otherwise.

By virtue of this uniformization technique we then obtain
. @
(3.3) L= lim TVJ(n,s)

for arbitrary initial state (n,s) at ¢ = 0. For example, we obtain

L' : steady state probability 7(0,0)by r'(n,s) = 1{(s,»)=(00)} .
(3.4) L? : mean number of lost responses per unit time by r?(n,s) = nAlg,-y
L? : mean number of successful responses per unit time by r(n,s) = nAl(,ch

Also noting that the total time per multicast T is given by T’ = 1/[nAx(0, 0)], performance
measures per multicast are thus included.

Comparison Result

Without restriction of generalily (see remark 3.1) consider r = r® in (3.2) and for conve-
nience, we introduce the probability matrix notation Py (not to be confused with a power
matrix like P%) to rewrite (3.2) as

(3.5) Vit (n,s) = nA1e,Q7" + BV (n, )

Then by comparing the system with buffersizes b and b -+ 1, for (n, s)eS® we can write

(3.6) (U = %) (n,9)

= MM =)@ + (BaWh — BV (n,9)
= nAlge3 @' + (Ponn — B)Vin(n, ) + Po(Viyy — W)(n, s)

where the lalter step is justified as Vi1 is well defined at S;. Further, form (3.2) and
(3.5), we conclude

BT (Pos = P)W(n,8) = nAL @ [Vin = 1,5+ 1) = Vi(n — 1,3)]
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Also note that P,g > 0 for any vector ¢ > 0 (both > signs componentwise). As a
consequence, by using Lemma 3.2 below and assuming that (induction hypothesis):

(3.8) Vi~V 20 at S,

(3.6) and (3.7) would show that (3.8) also holds for ¢ replaced by t+1. With V%, =V =0
(componentwise), by induction we have thus proven (3.8) for all ¢ > 0. Applying (3.3),
for example with (n, s) = (0,0) now yields:

Theorem 3.1

(3.9) | L34, =2 L3

Lemma 3.1 For any b, any (n,s),(n,s + 1)eS, and all ¢ > 0:
(3.10) 0 < V¥{n,s) - V(n,s+1) <1,

Proof For convenience we suppress the subscript b. The proof will follow by induction in
t. Clearly (3.10) holds for t = 0 as V® = 0. Assume that (3.10) holds for ¢ < m. Then,
by (3.2):

Vrtl(n s) — V™l (n,s —-1) = {nz‘.l{,d,}Q‘l + 82Xl @ V™ (n - 1,5+ 1)

+ BQ M V™ (rys = 1) + [L = 01y Q" — pQ 1 (ppn)

(3.11)
+ ﬂ/\l{,+1.__5}Q—‘V’“'(n - 1,8+ pQ'V™(n,s)

V™ (n, 3]} - {ni\l{ﬂ-l(b}Q-l + A1) @7V™(n — 1,5 4 2)

+ {1 = A= Q7 = Al =@ — Q7Y V™(n, s + 1)}

By substituting 1{,c5) = {41ty + 1(o41=8)] and 113 + 1{e=0) = 1, and comparing
terms pairwise, this can be rewritten as:

Vott(n,s) - Vi (n,s 4+ 1) = ndln=5Q"
+0Al @ [VP(n~1,841) - V™ (n — 1,5+ 2)]
+ M (1)@ V™ (1 — 1,8) = V™ (n - 1, B)]
+8Q 7 Ao [V™(n,s - 1) ~ V7 (., 9]
+ #Q7'nAl (=g |V™(n,0) — V™ (n,0)]
+[1 = 0l =@t — 1Al (41=) @~ — Q)

{V™(n,s) — V™ (n,s + 1))

(3.12)



Here indeed the third and fifth term in the right hand side are equal to 0 but kept in for
clarity and an argument below. Substituting the lower estimate 0 from (3.10) for t = m
one directly verifies V™+(n,s) — V™+(n,s 4+ 1} > 0. By substituting the upper estimate
1 from (3.10) for t = m, noting that the first positive term:

ﬂ/\l{s<]-1=lt}Q-.l

is exactly equal to the coefficient of the third term which is equal to 0 and recalling that
all coefficients sum up to 1, we also verify: V™+}(n,s) — V™+1(n,s + 1) < 1. This proves
(3.10) for t = m. The induction completes the proof.

Remark 3.1 (Other measures) By choosing a different reward rate function similar
results can be expected for other measures along the same lines of the proof. For example,
with r? from (3.4) the monotonicity in (3.9) will be just opposite as the bounds 0 and 1
in (3.10) are to be replaced by -1 and 0 respectively.

Remark 3.2 (Nonexponential times) By using mixtures of Erlang distributions the
proof should in principle be extendable to general nonexponential processing and response
times. The technicalities however can become quite complicated (cf {3]). Another possible
approach to deal with nonexponential times is to use sample path techniques with coupling
arguments. The present Markov reward technique is preferred herein as it is rather direct
and also leads to marginal value bounds as per the next section.

Remark 3.3 (Immediate multicasting) The assumption of an immediate new multi-
cast upon completion of handling all responses may not be realistic in certain applications
but nevertheless be justifiable for the following reasons:

¢ Random (say exponential) holding times for a next multicast are easily included
without essentially affecting the proof.

o It is one natural form which takes into account both the effect of losses per multi-
cast and the duration of multicasts., As such the result and proof can be seen as
representative also for other forms.

e Even if only a single multicast is to be considered the assumption of immediate
repetitive multicases allows computation per multicast by the transformation men-
tioned.

A rough bound on the marginal value.

As a further application of the prooftechnique employed, a rough upper bound will be
derived on the marginal value of one extra buffer place. Though very rough it provides
a first indication of order of magnitude or a stop criterion for investigation alternative
buffersizes.

To this end, conclude from equation (3.6), (3.7), theorem 3.1 and lemma 3.2 for any
(n, 8)eS:



(3.13) 0 < (Vos ~Wn,s) < "'\I{HG)Q—l + Pb(Vb‘-;ll A )
Now note that the transition matrix P, remains restricted to S;. As a consequence, with
P the k-th power of matrix P, and ®(n, s) the function defined by:

®(n,s) = nAl Q"

we obtain by iterating (3.13) for t = N,N ~1,...,0 and using V3, = V2 = 0, that for
any (n,s)eS:

N-1
(3.14) 0 < (Vi - VM), s) € 3 PhB(n,)

k=0

Furthermore, similarly to sieps as in [4] one can prove that
(3.15) P}®(0,0) < PF*19(0,0) < lim P/®(0,0) = Q™' L}

with L} the mean number of Lost responses per unit time. By (3.14), (3.15) and (3.3) we
have thus concluded:

Theorem 3.2

(3.16) 0< L}, -L} <L}

Acknowledgement

The author would like to thank Les Berry and the Centre for Teletraffic Research at Bond
University for arranging a visit at this Centre by which this paper was motivated.

References

[1] Danzig, P.B. (1989), “Finite buffers and fast multicast”, Performance Evaluation
Review, Vol 17, 108-117.

[2] Tijms, H.C. (1986}, “Stochastic modelling and analysis”, Wiley, New York.

[3] Van Dijk, N.M. (1990), “A formal proof for the insensitivity of simple bounds for
finite tandem queues”, Stochastic Proc. Appl.

{4} Van Dijk, N.M. (1989), “A simple throughput bound for queueing networks with
finite capacities”, Performance Evaluation.

{5] Van Dijk, N.M. (1990), “The importance of bias-terms for error bounds and compar-
ison result”, Proceedings of First International Workshop on Numerical Solutions of
Markov Chains. '

[6] Yunus, N. (1990), “A queueing model for buffer overflows in multicast communica-
tions”, Research Report, Centre for Teletraffic Research, Bond University.



1990-1

1990-2

1990-3

19904 -

1993-5

19906
19907

1990-10
199¢-11

1990.12

1990-13

1990-14

1990-15

1590-16

1990-17

1993-18

1 X C-LM van dea
P. Nijhnp
JCIM. van dea
P. Nijkamp
C.Gorter
PNijkamp
P.Rictveld

KBurger

H. Visser

P. Rietveld

G. van der Laan
PHM. Ruys
DJ1J. Talnan
EAG, den Butter

RW. vaa Zijp
J.C. van Ours

TJIB. Wokters

EMA. Scholten
1. Koelewijn

E. Hiner
H.P. Smit

FA.G. den Buiter

Testing For Co-Integration witk Spat Prices of Sowe Related
Agricoltura) Commodities

iy s - ll E -
Concepts and Mode! Imphications

i & Regional System: A Case Study in Agri
celtursl Development Planniag in e Netherlands
Employers' Recruitment Bebaviour and Re-
Employmesnt Probabilities of Unemployed

Off-farm income and the farts-houschold
the case of Kenyan smallbolders
Crowding out and the Government Bodget

Ordinal Data in Mulicriteria Decision Making, a Stockastic
Dominsace Approach to Siting Nuclsar Power Plaot:

Signaling devicss for the sepply of semi
s de semi-

T Netharins
Neo-Avstrian Business Cycle Theory

Matchiog Usemployment and Vacancies:
The Efficiency of the Dutch Labour Market

Hypotheses Concerning Relationships between
mdvﬁmam« Spot

Stochustic Nonlinearity: A Firm Basis for the
Flexible Functional Form

Opmunhmhpp;lumﬂeerdem
werking le-2e-Ejn bi) dugehirurgic

Mediation and Collactive Bargaining: A

Diagnostic Approach

ondﬂ'nﬂningen. ¢ea mogelijke verklaring op basis van
Suuration and Model Specification of Pagsen

gt car Owperzhip

Socisle zekerheid, de wig ca cconomische groel

1990-19

1990-20

1990-21
1990-22

19%0-23

1990-24
1990-25

1990-26

19%-27
199028

199029
1990-30

1990-31
1990-32

189033

1990-34

1990-353

1990-36
1990-37

1990-38
1990-39

F.A.G. den Butter
RF. vd. Wijngaert

1.P. de Groot
R. Ruben
F_ Ruben

J. van Qury
G. Ridder

AF. de Vos
1J. de Vries
D. van der Wal
RJ. Veldwijk
M. Boogaard
M.V. van Dijk
ER.K. Spoor

B. Hanron

R.W. van Ziip
J. Rotwendat

J. Rouwendal
1. Roywendal

JA Viilbriet

J.G.W. Simoas
H.P. Wansink

1.C. van Qurs
T. Zoethout

HJ. Bierzas

T. Kuhimao

T. Kuhlman
T. Kukblman

R. Zuidema
G.vdLaan

Who is Corvecting the Brror 7 A Co-inte-
gration Approack for Wages, Wage Space and Labout
Conflicts in the Netherlands

Sistemas de Produccibe ¥ Traniferencis de
Teconologie en s Economés Cafetnlers de Centroamerios

Campesinado ¥ Reforma Agraria ez El Salador

Vacancies and the Recruitment of New
Employees

The Likelihood Puncticn of a Generalired
Gravity Model; Handling the Implicit Singularity of a
Nonlineair Trang, ;

EDSO0s, implosion asd explosioa: concepts (o
automste a part of application maintenance

The ares enclosed by the (oriented) Nyquist dingram snd the
Hilbert-Schmidt-Hankel norm of a linear system

Why Lueac is oot & Hayekian

On discrete choice nader oncertainty:
Amln:motthelnﬂmodduduapphnﬂou

On the equitable distribation of the housing stock

Stochastic market equilibria with eflicient ratiouing {with an
application 10 the Dutch housing marker)

The effects of unemployment insurance on the labour market
Traffic Ban, 2 means to combat smog?

De Interme Arbeidsnarkt van de Gemecate Amsterdam
&Nﬂemthehnkmgbmof&mpbm

tions ir the Presence of & Unit Root

The Ecosomic Invegration of Refugess iz Developing
Countries: A Research Model.

Towards a Defimitios of Refugess.
WWSMSMMMRMh

The Neo-Austrian View o Interest
General Equilibrium in a Closed International Trade Model


http://AJ.de

