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EXPLORING PROBABILITY AND STATISTICS USING COMPUTER GRAPHICS *) 
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Henk Tijms 
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1. Introduction 

In the teaching of probability and statistics microcomputers can do 

more than take the drudgery out of statistical computing: 

they can be used as well to teach basic concepts and ideas 

they make it possible to perform laboratory experiments 

• they enable students to discover basic principles themselves. 

In particular, computer graphics are very effective to gain an understanding 

of basic concepts having a pictorial representation. Many of the basic ideas 

in probability and statistics seem exceedingly difficult for most students 

to grasp. It is extremely important to give students a sound intuitive feel-

ing for basic concepts such as randomness and the normal curve bef ore teach

ing them formal statistical theory. For example, key concepts such as the 

law of large numbers, random walks, and the central limit theorem can be 

made to come alive bef ore one's eyes through computer graphics. Direct expe-

rience and actual experimentation is the best way the student can obtain a 

feeling for these basic concepts. It cannot be emphasized enough how impor

tant it is that students obtain at an early stage a feeling for probabilis

tic reasoning. People. are not born with a natural feeling for probabilistic 

thinking, while probability reasoning is essential for solving many real-

world problems. The micro is the ideal tooi for students to develop a sound 

probabilistic intuition. Computer graphics - the most powerful feature of 

the micro - should be exploited. Most people find it much easier to grasp 

*) Invited paper presented at the Third International Conference on the 

Teaching of Statistics, University of Dunedin, New Zealand, August 1990. 
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concepts in visual terms and through direct experiences than in terms of 

formulas. This paper discusses how we use graphical software to introducé 

the beginning student in both a motivating and coherent way to the following 

very basic concepts: 

• The law of large numbers. Computer animations of the experiment of coin 

and dice tossing is the best way to obtain insight in random fluctua-

tions. Using an interactive simulation program it is possible to fight 

misconceptions that even short runs of the coin-tossing experiment should 

reflect the theoretical 50: 50 ratio of heads to tails. 

• Random walks. The graphical display of random walks provides the student 

with a lot of insight into random fluctuations. The random walk showing 

the actual number of heads minus the expected number in the coin-tossing 

experiment is very instructive. Using this random walk, a natural link 

can be made with the central limit theorem. 

• The central limit theorem. A visual demonstration of this very important 

concept in probability and statistics can be given. In an interactive way 

the student can generate the probability histograms for different sample 

sizes and see how fast the probability histogram gets close to the normal 

curve as the sample size gets larger. 

• Statistical graphs. Plotting the density graphs of various distributions 

such as the binomial, Poissons and chi-square enables the student to dis

cover limiting relations between these distributions and the normal dis-

tribution. 

2. Law of Large Numbers 

Many people tend to expect that even short runs of the coin-tossing ex

periment should reflect the theoretical 50:50 ratio of heads to tails. This 

misconception is known as the gamblers fallacy since some gamblers feel that 
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the probability of tails becomes larger after a run of heads. Mere exposure 

to the theoretical laws of probability may not be sufficiënt to overcome 

such misconceptions. Ho wever, an interactive simulation program on the 

microcomputer is ideally suited to fight misconceptions such as the gamblers 

fallacy. 

Computer animation of the experiment of coin and dice tossing is the 

best way to obtain a feeling for randomness. Within a few seconds students 

can simulate and repeat this statistical experiment on the micro. By looking 

at the graphical representation of the results, they see what randomness 

means. By doing the experiment of tossing a fair coin and observing the re l -

ative frequency at which heads appears, the student will see that this rela-

tive frequency may still significantly differ from the value 1/2 after a 

large number of tosses. As the number of tosses grows, the relative frequen

cy will eventually approach the value 1/2 according to the law of large num-

bers. To see bef ore one's eyes this experimental demonstration of the law of 

large numbers is very instructive. Also, it is instructive to see that the 

relative frequency typically approaches the value of 1/2 in a rather irregu-

lar way. To make the above concepts alive, we developed in Kalvelagen and 

Tijms (1990) a software module that simulates the experiment of rolling a 

die. The program gives the user the option of using either a fair die or a 

loaded die. For the case of a loaded die, the user has to specify the proba-

bilities of each of the six possible outcomes of any given throw of the die. 

By assigning positive probabilities to only two outcomes, the coin-tossing 

experiment is a special case of the die-tossing experiment. Once the data 

have been specified, a computer animation of the die-tossing experiment is 

given in real time. In Figure 1 the final results are displayed of two com

puter simulations each consisting of 600 throws of a fair die. Such pictures 

give the student a good feeling for random fluctuations. 
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The software for the die-tossing experiment is elementary, but it is 

very instructive. Students like to do the experiment themselves and in this 

way they learn what randomness means. Much can sometimes achieved by simple 

means! 

Figure 1 Two simulations of the die-tossing experiment 

113 75 113- -96 100 l@g 
FRQ 0*19 0^13 0-19 0.16 0.17 0.17 

99 113 101 9| 93 10| 
FBQ 0*17 0.19 0.17 0.15 0.16 0.17 
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3. Random Walks 

Let's consider the coin-tossing experiment using a fair coin. Many 

people erroneously believe that a run of heads should be foliowed by a run 

of tails so that heads and tails even out. In placing their bets many gam-

blers use some system that take into account any imbalance between the past 

number of heads and tails. It is illusionary to think that such a system can 

be of any help. The coin has no memory. Suppose a fair coin has been tossed 

100 times and has landed heads 60 times. Then in the next 100 tosses the ab

solute difference between the number of heads and tails may still increase, 

while the relative difference decreases. For example, this occurs when heads 

appears 51 times in the next 100 tosses. The only thing one can be sure of 

is that the relative frequencies of heads and tails will eventually be 

equal, but there is not something as a law of averages for the absolute dif

ference between heads and tails. In fact, the absolute difference between 

the number of heads and tails tends to increase as the number of tosses gets 

larger. This surprising fact can convincingly be shown by simulation and a 

graphical display of the results on the screen. For a simulation experiment 

consisting of 2,000 tosses of a fair coin, Figure 2 displays the graph of 

the random walk giving the actual number of heads minus the expected number. 

By trying themselves different simulation runs of various lengths on the 

micro, the students will learn by experience that realisations such as in 

Figure 2 are no exception, but are typical for the coin-tossing experiment. 

The longer the run, the bigger and bigger the waves of the random walk and 

the relatively more rare the crossings of the x-axis. This finding is rather 

counterintuitive, but can be mathematically explained from the central limit 

theorem. However, before turning to this basic theorem, it is important that 

the student f irst learns by direct experience that a series of independent 

probability tr ials tends to behave better and better in the average sense 
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but wilder and wilder in the absolute sense as the number of tr ials in-

creases. This is a basic lesson in probability! 

Figure 2 A random walk for the coin-tossing experiment 
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Once the students have learned by experimentation on the micro that the 

random walk of the actual number of heads minus the expected number tends to 

exhibit bigger and bigger fluctuations as the number of tosses grows, they 

may be ready to learn more about the mathematical explanation of this beha

vior. At this point a natural link can be made with the central limit 

theorem. Taking for the moment the central limit theorem for granted, how do 

we explain mathematically the behavior exhibited in Figure 2? Defining the 
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random variable X =1 if the i toss gives heads and X =0 otherwise, it f ol-

lows that the actual number of heads minus the expected number can be repre-

sented as X+...+X -nu, where u=l/2 denotes the mean of the X ' s . Since the 

normal distribution has about 687. of its mass within one Standard deviation 

of the mean, a simple consequence of the central limit theorem is that 

P{|X + ... + X -nul > oVn} ~ 0.32 for n large enough, 
' 1 n ' 

where o~=l/2 denotes the Standard deviation of the X ' s . In words, the proba-

bility that af ter n tosses the random walk X + ... + X -nu will take on a 

value larger than oVn is about 327. when n is large. This gives the mathemat-

ical explanation that the absolute difference between the number of heads 

and tails tends to increase as the number of tosses grows. This result is 

not contradictory to the fact that the difference between the relative f re -

quencies of heads and tails tends to zero, since the absolute difference 

between the number of heads and tails roughly tends to increase proportion-

ally to the square root of the number of tosses. This important but subtle 

point is best understood by students through experimental studies using com

puter graphics. 

4. Central Limit Theorem 

The central limit theorem is the most important result in probability 

and statistics. Every beginning student should know about this theorem. 

Using the random walk discussed in the previous section the student's inter

est could be aroused in this theorem, but how to explain it? The central 

limit theorem is extremely difficult to prove. Moreover, the proof will not 

substantially help the student to understand the working of the theorem. It 

will not give the student a clear insight into how large n should be bef ore 

the sum X+...+X of n independent and identically distributed random varia-
1 n 

bles X X is approximately normally distributed. An intuitive feeling 
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for the central limit theorem is best obtained through experimental studies 

based on computer graphics. 

A possible way to demonstrate graphically the central limit theorem is 

to use computer simulation. In an interactive way many samples may be drawn 

from a given probability distribution and a graphical display of the proba

bility histogram of the sum may be given for different sizes. It will then 

be seen that the probability histogram gets close to the bell-shaped form of 

the normal density as the sample size increases. The drawback of the simula

tion approach is that for any fixed sample size n many observations of the 

sum are needed bef ore the simulated probability density of X+...+X is suf-
n 

ficient close to the true density. How many observations are needed is often 

not clear. Hence the simulation approach has the drawback that the law of 

large numbers interferes with the central limit theorem. To avoid this com-

plication which obscures the working of the central limit theorem, we advo

cate an analytical approach in combination with computer graphics. Restrict-

ing to discrete probability distributions allows to compute analytically the 

true probability density of the sum X + ... + X for any fixed value of n. 
1 n 

How to do this can be easily explained to the beginning student, cf. Kalvel-

agen and Tijms (1990). An illustrative case is obtained by using the good 

old die and taking 

X = the number of points shown at the k rolling of a die. 

The sum X +... +X then represents the total number of points obtained when 

the die is rolled n times. 

The software module we developed in Kalvelagen and Tijms (1990) gives 

the student the option of using a fair die or a loaded die. For a loaded 

die, the student has to specify for j=l 6 the probability p(j) of 

getting j points at any given throw of the die. For example, by choosing 

p(l)=p and p(2)=l-p for some 0<p<l, the student has the option to verify ex-
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perimentally that the binomial probability density tends to the normal curve 

as the number of trials gets large. 

Once the underlying probability distribution {p(j)> of the die and the 

number n of throws have been specified, the computer program calculates the 

probability density of the sum X+...+X and displays the graph of this 
1 n 

density on the screen. A glance at the screen is sufficiënt to see whether 

this density has the bell-shaped form of the normal curve or not. Since the 

probabilities p( j) of the die can be varied, students can discover them-

selves that how large n should be before the probability density of the sum 

X+...+X is close to the normal curve depends very much on the degree of 

asymmetry in the underlying probability distribution of the die. It is quite 

instructive to find out that the more the underlying distribution is asym

metrie, the larger n should be. As an illustration, Figure 3 gives the prob

ability densities of the sum X +...+X for n=3 and n=5 tosses of a fair die. 
1 n 

It is removabie how fast the probability density of the sum resembles the 

normal curve when the underlying distribution is symmetrie. However, the 

situation is quite different for an asymmetrie distribution. Figure 4 dis

plays the probability densities of the sum X+...+X for n=5 and n=20 tosses 

of a loaded die having the asymmetrie distribution p(l)=0.2, p(2)=0.1, 

p(3)=p(4)=0, p(5)=0.3 and p(6)=0.4. It is really fun to learn about the cen

t ra l limit theorem in this experimental way. 

5. Sta t is t ical Graphs 

The normal curve in probability theory is a law of nature. Many proba

bility distributions are closely related to the normal distribution. 

Students can learn this fact not only from the central limit theorem, but as 

well by plotting the density graphs of various distributions. 
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Fïgure 3 Probability histograms f or a fair die 
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Figure 4 Probabili ty histogram f or a loaded die 
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The binomial distribution is the most important family of discrete probabil

ity distributions. A binomial random variable with parameters n and p can be 

interpreted as the total number of successes in n independent trials with 

probability p of success on each trial . This interpretation enables to ex-

plain from the central limit theorem the fact that the binomial density 

graph approaches the normal curve as n increases. Alternatively, students 

can discover this limiting relation by plotting the binomial density graphs 

for various values of n and together with the corresponding graphs of the 

normal density. At the same time they can experimentally verify that the 

normal approximation to the binomial density is quite good provided that the 

binomial mean is at least three (say) deviations away from both 0 and n, the 

extreme values of the binomial random variable. Assuming that students know 

that more than 99£ of the area under the normal curve is within three Stan

dard deviations of the mean, this condition will be intuitively obvious to 

them; otherwise, there is enough distance between the mean and the extreme 

values to be able to adopt the shape of the normal curve. The approach of 

plotting the probability density graphs is particularly useful to discover a 

limiting relation between the Poisson and the normal distribution. A Poisson 

random variable X has a single parameter: P{X=k} = e X /k!, k=0,l 

The mean pi and the Standard deviation of the Poisson distribution are given 

by n=\ and oWA. Students may argue that approximate normality for a Pois

son distribution requires that the mean n=\ is at least three deviations 

<r=V\ away from 0. The condition \=3V\ gives X^9. Using graphical plots, 

students can directly verify the validity of this condition. Figure 5 dis

plays the plots for both A=9 and X=50. A lot of insights is obtained by ex-

perimenting with graphical software that displays the density graphs of 

various distributions together with the corresponding density graphs of the 

normal distribution. It is very rewarding to learn in this way about the key 

role of the normal distribution in probability and statistics. 
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Figure 5 Poisson densities and the normal curve 

FDISSON DISTKIBUTIDN | 

1 1 1 

poi 
nor 

sson 
nal 

(9.88 ) 

. • • ' " " ' • • . 

' s 
' s 

Hean 
St.fe 
Skewr 

' s 
' s 

' s 

(ft) 
'V. ( 
less 

' s 

' s 

s) 

' s 
' s , 

' s 

9.88 
3.88 
8.33 

11 -2S n s 1 H S tl »ü 

FDISSDN DISTRIBUTIDN 

•t—i I 

__ : poisson(58.88) 
.. : nopnai 

/ 

Hean (H) : 58.08 
St.fev. (s) : 7.87 
Skewness : 8.14 

T" 
H-2S n»s n*2$ 

HT909AT1 

13 



1990-1 B. Vogelvang 

1990-2 J.C.J.M. van den 
Bergh 
P. Nijkamp 

1990-3 J.C.J.M. van den 
Bergh 
P. Nijkamp 

1990-4 C.Gorter 
P.Nijkamp 
P.Rietveid 

Testing For Co-Integration with Spot Prices of Some Related 
Agricultural Commodities 

Ecologically Sustainable Economie Development 
Concepts and Model Imphcations 

Ecologically Sustainable Economie Development 
in a Regional System: A Case Study in Agri 
cultural Development Planning in the Netherlands 

Employers' Recruitment Behaviour and Re-
Employment Probabilities of Unemployed 

1990-5 KLBurger 

1990-6 H. Visser 

1990-7 P. Rietveld 

1990-8 G. van der Laan 
P.H.M. Ruys 
D.J.J. Talman 

1990-9 F.A.G. den Butter 

1990-10 R.W. van Zijp 

1990-11 J.C. van Ours 

1990-12 B. Vogelvang 

1990-13 A.F. de Vos 
I J . Steyn 

1990-14 Y.H. van Emmerik 
D. de Jong 
W.WA. Zuurmond 
D.N. Dukkers-
van Emden 

1990-15 T.J.J.B. Wolters 

1990-16 E.MA. Scholten 
J. Koelewijn 

1990-17 E. Hüner 
H.P. Smit 

1990-18 FA.G. den Butter 

Off-farm income and the farm-household 
the case of Kenyan smallholders 

Crowding out and the Government Budget 

Ordinal Data in Multicriteria Decision Making, a Stochastic 
Dominance Approach to Siting Nuclear Power Plants 

Signaling devices for the supply of semi-
public goods 

Labour Productivity Slowdown and Technical Progress: An 
empirical analysis for 
The Netherlands 

Neo-Austrian Business Cycle Theory 

Matching Unemployment and Vacancies: 
The Efficiency of the Dutch Labour Market 

Hypotheses Testing Concerning Relationships between Spot 
Prices of Various Types of Coffee 

Stochastic Nonlinearity: A Firm Basis for the 
Flexible Functional Form 

Opereren in overleg: geprotocolleerde samen
werking le-2e-lijn bij dagchirurgie 

Mediation and Collective Bargaining: A 
Diagnostic Approach 

Financieringsproblematiek van startende 
ondernemingen: een mogelijke verklaring op basis van 
empirisch onderzoek. 

Saturation and Model Specification of Passen 
ger car Ownership 

Sociale zekerheid, de wig en economische groei 

14 


