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Abstract 

In this paper the correlation between two multivariate martingales is stud-
ied. This correlation can be expressed in a non decreasing process. that remains 
zero in the case of linear dependence. A key result is an imegral representation 
for this process. 

1 introduction 

Let (Q,JF, F , P ) be a complete filtered probability space. Let M : fl x [0. co) —> R n 

and m : 'fi x [0, oo) —> R^ be locally square integrable martingales. 
Denote by (m,M) the predictable covariation process of m and M. So (m,M) : 
ifi x [0,oo) —* R fcxn and if m' and AfJ are the i-th and j- th components of m and 
M respectively, then the ij entry (m,M)^ of (m,M) equals the real valued process 
(m',M J ' ) . (m) = (m,m) and (M) = (M,M) are defined likewise. 
Assume now that for some t > 0 the matrices (m)t and (M)t are invertible. Then, 
parallel to what one can do when dealing with multivariate random variables, it is 
natural to express the correlation between m and M over the interval [0,t] by 

p(m,M)t = (m);t{m,M)t(M);* 

Let c(m,M)t = (m)t - (m,M)t{M}^1(M,m)t. Then we have the identity 

I-p(m,M)tp(M,m)t = {m)~*c{m,M)t{m);K 
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It follows that c(m, M)t carries the same amount of information about the correlation 
between m and M as p(m,M)t- It turns out that it is more convenient to study 
c(m,M)t than p(m,M)t. The process c(m,M) is of interest in its own right, because 
it appears at several places in probability and statistics. For example, this process — 
or rather a slightly different one — appears in [1], where we studied a strong law of 
large numbers for martingales. The results of the present paper offer an alternative 
approach to such a study. In a statistical context c(m,M) can be interpreted as a 
measure of deficiency when comparing an arbitrary estimator with an optimal one. 
Cf [2] for details. 

In the present paper we drop the restrictions that (m)t and (M)t are invertible. So 
we have to replace (M)J"1 in the definition of c(m,M)t by a suitable generalized 
inverse. The Moore- Penrose inverse turns out to be a good choice. Working with a 
generalized inverse however complicates the analysis of c(m, M) considerably. 
The rest of the paper is organized as follows. In section 2 we describe some properties 
of (M), its Moore-Penrose inverse process (M)+ and invariance properties of M under 
a to (M)t related orthogonal projection. Section 3 contains an important integral 
representation of c(m.M). In section 4 linear dependence between m and M is 
defmed by c(m,M) = 0 and characterized by the property that there is constant 
(random) matrix C such that m = CM. The familiar case where m and M are 
random variables is easily recognized. 

2 some technical results 

In this section we describe some properties of the process (M). (M) takes its values in 
the space of positive semidefinite n x n matrices Vn, and if t > s, then (M)t — (M)s E 
V 
For fixed t, u> (M)t — (i\/)t(u>) may have non trivial kernel. This is typically the case 
if Mt — ]Ci=i xïeiiwhere a is a real valued martingale difference sequence and x a R™ 
valued predictable process. Then (M)t for t < n is always a singular matrix. 
For t > s we always have Im(M)t D Im(M)s, where Im{M)t is the image space of 
{M)t, a linear subspace of R n . 
Define r : ü x [0,oo) —> { 0 , . . . , n } by rt = dim Im(M)t = rank(M)t. Then r is 
a predictable process (see proposition 2.1). Although (M) is a right continuous 
process, r may fail to be right (or left) continuous. See example 2 below. Define 
the stopping times Tj. (k — 0 , . . . ,n -f- 1) by T0 = 0 and T/.+1 = inf{ï > 2\. : rt > 
ryfc}(inf 0 = oo). Then each Tk : ü —* [0,oo], and Tn+1 = oo. The Tj. are in general 
not predictable. See example 1. For (u>,t) E}Tk,Tk+i{ we have that Im(M)t does 
not depend on t, and hence r is constant on this stochastic interval. So we can find 
a (random) matrix F(k) of size n x rt such that the columns of F(k) span Im{M)t 

and F(k)TF(k) = Irt, the rt x rt identity matrix. Similarly we can find matrices 
G(k) of size n x rxkl{Tk«x>] such that the columns of G(k) span Im(M)Tkl{Tk«x>} 
and such that G(k)TG(k) = ITT 1 { r <oo}. Moreover, since Im(M)t D Im(M)s for 
t > s, we can always assume that F(k) is of the form [G(k),U\(k)], where Uj(k) is a 
n x (rt — rrkl{Tk<oo}) matrix for (w,t) E ]Tfc,Tfc+i[. and likewise G(k) is of the form 
[F(k-l)Mk)}. 
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Then for (u>,t) E J7]fe,jjfc+i[ there exists a rt x rt matrix Vt(k) sucli that 

(M)t = F(k)Vt(k)F(k)T 

and there exists a rTkl{Tk<<x>} x r7*l{r*<oo} matrix W(k) such that 

(M)Tkl{Tk<<x} = G(k)W(k)G(k)T. 

Notice that the Vt(k) and the W(k) are in general not diagonal. Hence 

(M). = ± hTktTk+dF(k)V.(k)F(k)T + £ llTk]G(k)W(k)G(k)T (2.1) 
*=o fc=o 

On the sets where the Vt(k) and W(k) are defined, these matrices are invertible. 
Therefore we can define the generalized inverse process (M)+ by 

(M)+ = £ l]Tkn+1[F(k)V.(k)-lF(k)T + E lpï^f*)^*)-1^*)7 , (2.2) 
k=0 k=0 

P R O P O S I T I O N 2.1 (M)f defined by equation (2.2) isfor each t the Moore-Penrose 
inverse of (M)t and r and (M)+ are predictable processes. 

PROOF: First we show that the map rank : R m x n —+ { 0 , . . . , m A n) is upper semi-
continuous, that is the sets Gv — {A E R m X n : rankA > p] are open in the ordinary 
topology on KmXn. Let A E Gv, and rankA = q > p. Then A contains a submatrix 
Aq E R? X 9 with rank Aq = q. Let {e^} C R m X n be a sequence of matrices converging 
to zero. Let tqk be the submatrix of tk that is obtained in the same way as Ag, that 
is by deleting the same rows and columns. Then lim/^cc, det(Aq +€,;-) ^ 0. (by 
continuity of the determinant). Hence rank(Ag + tqk) = q for all k large enough 
and consequent Ij' rank(A + ejt) > Q for the same k. This shows that Gp is open. 
As a consequence rank is a (Borel) measurable map. Since r is the composition 
r = rank(M), it is predictable. Since {M)t and (M)f are both symmetrie and since 
they commute, it follows from [3] that (M)f is the Moore-Penrose inverse of (M)t. 
To show predictability of (M)+, we need the following algorithm for the computation 
of the Moore-Penrose inverse of any symmetrie matrix A E Rn X". Let 0 < k < n 
be the multiplicity of A = 0 as a root of the characteristic polynomial p of A. Then 
7r(A) = X[~kp{\) = \n~k+1 -f aïX

n~k + . . . -f a„_iA is a polynomial and it is easy to see 
that TT(J4) = 0. Notice that an_* is equal to the product of all nonzero eigenvalues 
of A (an empty product equals 1). Hence an_^ ^ 0. Let q be the polynomial of 
degree n-k-1 defined by q(X) = —^57—[7r(^) — fln-fcA]. (The zero polynomial has 
degree -1). Then Aq(A)A = A2q(A) = A, as can easily be verified. Next we define 
A+ — q(A)Aq(A). Using again the characterization of [3], we see that A+ is indeed 
the Moore-Penrose inverse of A. Apply this procedure to A = (M)t. Because the 
characteristic polynomial and the eigenvalues are obtained by a continuous trans-
formation of the elements of a matrix, we easily obtain that in the above algorithm 
an-k = EI ^ 1 { A „ > O } J

 w i th the At-t the eigenvalues of (M) t , yields a predictable process. 
Moreover in this context k = n — rt is predictable. Hence {q({M)t)} and (M)+ are 
predictable processes. • 
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REMARK: Proposition 2.1 really needs a proof, since another generahzed inverse of 
{M)t may not yield a predictable process. Consider the following example. (M)t = 

_ _ . Let at be an arbitrary stochastic process, possibly not adapted. Then for 

t > 0 
at 2 is a generahzed inverse of (M)t, different from the Moore-Penrose 

inverse (which corresponds with at = 0), and viewed as a stochastic process it is in 
general not predictable. 

EXAMPLE 1: Let N be the Standard Poisson process. Define T = iirf{t > 0 : 
Nt = 1}. Then T is a totally inaccessible stopping time. Define now the martin-
gale M by Mt = N t - t - (NtAT - t A T). Then (M)t = t - t AT. But now 
Ti = inf{2 > 0 : (M)t > 0} = T. So Ti is not predictable. Notice that rt — 1{(>T}

 1S 

predictable. 

We need some technical properties of M ans (M), to be used in section 3. These are 
formulated in the next three lemmas. In the notation introduced above we have the 
following 

L E M M M A 2.2 On the set {Tk < oo} we have 
(i) Vrk-(k — 1) = limj|jfc Vt(k — 1) exists and is invertible. 
(ii) If F(k)=G(k), thenMmtiTkVt(k) = W{k). If F(k) = [G{k),U: 

Rt(k)Rt(k)T with Rt{k) = 

(fc)], with Ui{k) 
' at{k) bt(k) 

0 ct(k) 
decomposed in blocks of appropriate sizes such that \\mt{Tk bt{k) — 0, \imt\Tk

 ct{k) = 0 
and limtiTk at{k)at(k)T = W(k). 

nontrivial, then we can write Vt(k) 

PROOF: (i) is obvious. 
(ii) If F(k) = G(k), then right continuity of (M) yields the result. Assume therefore 

" W{k) 0 " 
that F(k) = [G{k),Ui(k)}. Then (M)Tk = F(k) 

blocks of appropriate dimension. 

Decompose Vt(k) in blocks of the same dimension as 

0 0 
F(k)T, with the zero 

Since 
Vt(k)u Vt(k)i2 

Vt(k)2l Vt(k)22 

Vt{k) > 0, we also have Vt{k)22 > 0. Since on }Tk,Tk+il also (M)t - (M)Tk > 0, we 

have that f W ) " - ^ ' $*>»" | > 0. 
L V4(fc)2i Vt{k)22 J -

Hence Vt{k)n - W(k) - Vt{k)i2Vt{k)2lVt{k)2i > 0. Use the decomposition Vt(k) = 

Rt(k)Rt(k)T to write this inequality as 

at(k)at{k)T + bt(k)bt(k)T - W(k) - 6t(fc)ct(A;)
T[cf(fc)ct(^)T]-1

Cl(/c)6t(fc)T > 0 

But ct{k) is invertible, so this inequality becomes 

at{k)at{k)T - W(k) > 0 (2.3) 
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Right continuity of (M) gives lim^j). Vt(k)n = W(k). So 

0 = ljm[yt(fe)n - W{k)\ = lun[(at(k)at(k)T - W(k)) + bt(k)bt(kf] 

The term in brackets is because of equation (2.3) the sum of two nonnegative matrices. 
Hence \imtiTk at(k)at(k)T = W(k) and lim^j,. &/(&) = 0. Because l i m ^ ^4(^)22 = 0, 
we obtain l\mtiTk ct(k) = 0. D 

Introducé the following notation. Pt = (M)t(M)f. Observe that Pt for fixed (t,u) is 
the orthogonal projection on Im(M)t along Ker(M)t. P as a process doesn't depend 
on t on }Tk,Tk+-il. It is, like r, nor right or left continuous at the Tk. Furthermore, 
for t > s, we have PtPs = PsPt = Ps, because Irn(M)s C Im(M)t-

L E M M A 2.3 M is indistinguishable from the stochastic integral P.M and from the 
product PM. 

PROOF P is predictable (from proposition 2.1). Hence P.M defines again a martin-
gale. Then (M - P.M) = ((I - P).M) = f0(I - P)d(M)(I - P)T. On]Tk,Tk+i[vfe 
have Pd(M) = d{P{M)) = d(M) which makes the integral zero over ]Tk,Tk+1{. On 
{Tk < 00} we can apply the same argument if Pxk = Prk-- Otherwise we get 

( / - PTk)A(M)Tk = (I - PTk)[{M)Tk - (M)Tk_) = 

- ( / - PTk){M)rk- = - ( / - PTk)PTk-(M)Tk_ = 0, 

since PTkPrk- — Prk-- Hence (M — P.M) is indistinguishable from the zero process. 
Consider now the product PM. On ]Tk,Tk+1l we have d{PM) = PdM. Let Ta < 00. 
Then 

PTlMTl = PTlAMTl = A(RM)Tl = AMTl = MTl. 

Now we use an induction argument. Let Tk < 00 and assume that P^^M^^ — 
% , . Then 

A(PTkMTk) = PTk+MTk - PTk-MTk- = PTk+AMTk + (PTk+ - PTk-)MTk- = 

AMTk + (PTk+ - PTk-){MTk_ - M T k J + (PTk+ - PT^PT^MT^ = 

AMTk + (PTk+ - i V ) / PdM + 0 = 
•/(ï*_i,T fc) 

AMTk + (PTk+ - PTk-)PTk- I dM = AMTk. 
J(Tk_uTk) 

Hence PM and M are indistinguishable. D 

The covariation process (m, M) enjoys the following property. 

L E M M A 2.4 {m,M) = {m,M)P. 
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PROOF: 

(m,M)tPtl}Tk>Tk+ll = J l}TktTk+i[d(m,M)sPs = J l]Tk,Tk+lld(m,P.M)s = 

/ hTk,Tk+1ld(m,M)s(by lemma 2.3) = (m, M)tl]Tt,r*+1(-

On {Tjt < co} we have 

(m,M)TkPTk = A(m,M)TkPTk + (m,M)Tk.(PTk - PTk_) + (m,M)Tk_PTk„ = 

A(m,P.M)Tk + (m,M)Tk_(PTk - PTfc_) + (m,M)Tk_PTk_ = 

A{m,M)Tk + {m,M)Tk_PTk_, 

because the second term equals zero, as can be seen by the first part of the proof and 
by using an induction argument like in the proof of lemma 2.3. By the same argument 
it follows that (m,M)Tk-PTk- = \im^Tk(m,M)tPt = lim t Trk(m,M) f = (m,M)Tk--
So (m, M)xkPrk — (,ni,M}Tk- Combining this with the first part of the proof we get 
(m,M) = (m,M)P. D 

REMARK: Lemmas 2.3 and 2.4 as well the results in subsequent sections can be 
generalized by taking other generalized inverses of (M). Pt is then still a projection, 
although not symmetrie. For our purposes the specific choice of the Moore-Penrose 
inverse suffices. 

3 the process c(m, M) 

Let m and M be as in section 1. Define the predictable process (related to the 
correlation between m and M) c(m,M) : 0 x [0, oo) -» Rkxk by 

c{m,M) = (m) - (m,M)(M)+{M,m) 

The main result of this section is an integral representation for c(m, Ad). The dimculty 
that we encounter is that ( M ) + and even (m,M)(M)+ may not be right continuous. 
See example 2. Typically right limits of (M) + at the Tk are not fmite. Take for 
example the trivial case where {M)t = t - / A l , then (M)f — ^ - , for t > 1. 
Therefore we need some agreements concerning the notation that we will follow. The 
considerations above forbid us to define A(M)f as (M)f+ — (M)f_. Therefore we 
adopt the convention 

A(M)t = (M)+ - (M)t 

All integrals of the type Jt = f^otTad(M)+ are then to be understood such that 
AJt = atA{M)f = at((M)f — (M)f_), provided of course that Q is such that this 
convention makes sense, which is the case if J is right continuous. 
We need the following representation result (Cf [4] for the univariate case). 
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LEMMA 3.1 There exists a (in general not unique) predictable process K : Cl x 
[0,oo) -+ Rkxn, such that m — K.M is an Rk valued square integrable martingale, 
orthogonal to M in the sense that (m — K.M,M) = 0. However the martingale 
m — K.M is uniquely defined (up to indistinguishability). D 

With a process K as in lemma 3.1 we can write 

c(m,M) = (m-K.M) + (K.M)-(m,M){M) + {M,m) 

= (m - K.M) + C(K.M, M) 

The proof of theorem 3.3 below involves some calculus rules. As for {M) + , we also 
use for P the notation APt = Pt — Pt-. 

L E M M A 3.2 (i) d{M)t{M)t- = -(M)td(M)t + dPt 

(ii) d{M)t = -(M)t-d(M)t{M)t + dPt{M)t 

PROOF On J7i, J\.+i[ the ordinary calculus rules apply to Vt(k) and P doesn't vary 
with t on this stochastic interval. Hence the result follows in this case. Consider now 
what happens if t = Tk < 00. If (M) happens to be left continuous at this point we 
are back in the previous case. So assume that A(M)j fc ^ 0. Then 

A{M)Tk{M)l_ + (M)TkA(M)ïk = (M)Tk(M)l - <M) r , - (M)J ,_ = APTk 

This proves (i). Similarly we have 

A(M)Tk + (M)Tk-A{M)ïk(M)Tk = (M)Tk - (M)Tk. + (M)Tk_PTk - Prk-{M)Tk 

= (/ - PTk-)(M)Tk - (M)Tk_(I - PTk) = APTk(M)Tk 

which proves the second assertion. • 

In the notation that we introduced above we are now able to present the principal 
result of this section. 

T H E O R E M 3.3 (i) c(m,M) is a right continuous process. 
(ii) With K as in lemma 3.1 we have for m — K.M the following integral representa-
tion: 

c(m,M) = -f(K(M)-(m,M))d(M)+(K(M)-(7Ti,M))T 

= - ƒ(« - (m,M)(M)+)(M)d(M)+(M)(K - (m,M){M)+)r 

= -/(K-(m,M)_(M)i)(M)_^(M)+(M}_(/c-(m,7¥)_(M}l)T 

= + /(« - (m,M)_(M)t){I ~ A(M){M)+)d(M)(K - (m, M)_{M)V)T 

7 



PROOF (i) This is a simple consequence of right continuity of all involved pro-
cesses if we restrict our attention to the open intervals ]Tfc,Tfc+i[. Therefore we con-
sider what happens at the Tk (on {Tk < oo}). Define the process q on ]7fc,X)t+i| 
by qt = (m, M)tF(k)Rt(k)~l, where Rt(k) is as in lemma 2.2. We will show 
that \imtiTk qtlj exists. Write qt = qj + qf, with q\ = (m,M)xkF(k)Rt(k)~T and 
q] = ((m,M)t - {m, M)Tk)F{k)Rt(k)-T. First we will show that IimtlTfc 9? = 0. 
It is sufficiënt to prove that tr[q^(q^)T] tends to zero for t j Tk- Write ql{ql)T = 
I(Tk,t] nd{M){M)f f(Tk,t] d(M)KT > 0. Let /c,- be the i-th row of K and write (M)f = 
I3"=i QjtQjf, where the Qjt are Rn valued random variables and QjtQJt = 0 if i^j . 
Then tr(q^q^T) = J2i,j[fiTk,t]

 Kid{M}Qjt]
2, which is by Schwartz' inequality less than 

W .*id(M)KÏ f Qjtd(M)Qjt = 

W «d{M)K?Y:Qjt((M)t-(M)Tk)Q. 

tr f Kd(M)KTtr[{{M)t - {M)Tk){M)t} (3-1) 

The first factor of this product tends to zero as t J, Tk- Consider now the second 
factor. First we notice that tr[{M)t(M)t] = tr[F(k)F{kf} = tr[F(k)TF(k)} = rt. 
(Remember that rt = rank{M)t). Next we compute 

tr[(M)Tk{M)t] = trlGWWWGikFFWVtikyiFW -lp(U\T-i _ 

tr[Vt(k)-iF(kyG(k)W(k)G{kyF(k)] = 

trlVtik)-1 

tr{ 

W{k) 0 
0 0 

= trlRtik)-1 

at{k)-1 * 
0 * 

W{k) 0 
0 0 

W{k) 0 
o o 

at{k)~T 0 
* * 

Rt(k) - T i 

tr 
(a^atikfy'Wik) 0 

0 0 ir[(at(*)a*(*0 )_1W(&) 

which tends to tr^k^Wik)] = rTk. Hence limUTJ((M) t - (M)Tk)(M)t] = rTk+ -
rjk < oo. So from equation (3.1) we obtain that indeed q2 —> 0 as t J, Tk- Secondly 
we look at qj. From lemma 2.4 we see that there exists a random matrix A{k) such 
that (m,M)Tk = A(k)G(k)T. Hence 

q) = A(k)G(k)TF(k)Rt(k)-T 

= A(k) \l 0 1 f ü^k)'T ° 

= A(fc) [ a,(fc)-r 0 

So q\(q))T = A(Jb)(a1(Jfc)at(fc)T)-M(fc)r -+ A(k)W(fc)"1 A(k)T, since W(Jfc) is invert-
ible and at{k)at{k)T —s- VF(Ar) by lemma 2.2. Because of the fact that limtjTA. <?t

2 = 
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O, and that at(k) is bounded for t J. Tk, we get lim t|jfc qtq[ = l i m ^ qj(ql)T = 
A{k)W(k)-1A(k)T. 
But (m,M)Tk(M)$k(M,m)Tk = A(k)G{k)TG{k)W{k)-lG{kfG{k)A{k)T 

= j4(fc)Ty(fc)~M(k)T, which gives right continuity of (m,M)(M)+(M,m) at the 
Tjt (on {Tk < 00}), thus proving the first assertion of the theorem. In order to prove 
the second one we proceed as follows. Because c(m,M) is right continuous we can 
use the results of lemma 3.2 in the computations below. 

dc{m,M) = Kd(M)icT -(m,M)-(M)±d{M)KT 

~{m,M)-d{M)+{M,m) - itd{M){M) + (M,m} (3.2) 

from which we obtain by lemma 3.2 

dc(m,M) = -(«(Af)_ - (m,M)_)d{M)+(K(M) - (m,M)f 
+KdP{M)KT - {m,M).dPKT - KdP{M,m) (3.3) 

= -(K(M)~ {m,M))d(M)+(K(M) - (m,M))T 

+KdP{M)„KT - {m,M)_dPKT - KdP(M,m)_ (3.4) 

It is immediately seen that on JT^TVhiJ the last three terms vanish, whereas on 
{Tk < 00} we have 

APTk(M)Tk. = APTkPTk_(M)Tk„ = 0 

and 

(m, M)TkAPTk = (m, M)TkPTk_APTk = 0, 

since Prk-APTk = 0. This proves the first formula of the second assertion. The other 
ones follow similarly. O 

REMARK At t = Tk it is not true that A(M)+ < 0 and that (M)tA(M) +(M)t < 0. 
However for all t one has (M)4_A(M)*(M) t_ < 0. This is trivially true on the open 
intervals jTfc,2Vt-i|. Consider what happens at Tk on {1\ < oc} if A(ilf) j i ^ 0. We 
know that G(k)W{k)G{k)T - F(k - l)VTk-(k - l)F(k - 1)T > 0 or, with an obvious 
decomposition of W(k): 

W{k)u-VTk-{k-l) W{k)21 

W{k)l2 W(k)22 
> 0 . 

Hence, since W(k)22 is invertible, we get 

W{k)n - W(k)uW{k)£W(k)21 - VTk4k - 1) > 0 (3.5) 

Now look at 

(M)Tk_A(M)+k(M)Tk„ 

= {M)Tk-{M)l(M)Tk-- {M)Tk. 

= F(k - l)VTk-(k - l)[F(k - \)TG{k)W[k)-lG{k)TF[k - 1) -

VTk-{k-l)-']VTk-{k-l)F(k-l)T. 

Consider the term in brackets. Again in obvious notation, it becomes 
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[W(k)u - W(k)12W(k)^W(k)21]-1 - VTk_{k - l ) " 1 < O, 

from equation( 3.5). Thus we have proved the following 

COROLLARY 3.4 The process c(m, M) is non decreasing. 

4 linear dependence 

In this section we will study a suitably defined notion of linear dependence between 
two square integrable martingales m and M. By analogy with the situation in which 
one deals with multidimensional random variables we have the following 

DEFINITION 4.1 (i) m is said to be linearly dependent on M if the process 
c(m,M) G R f c x i is indistuinguishable from zero. 
(ii) m and M are said to be mutually linearly dependent if both c(m, M) and c(M, m) 
are indistuinguishable from zero. 

Here is the main result of this section. 

T H E O R E M 4.2 m is linearly dependent on M iff there exisls a (possibly random) 
matrix C G R.kxn with C(M) a predictable process such that rn = CM. Moreover in 
this case C{M) = (m,M). Furthermore m and M are mutually linearly dependent 
iff there exist matrices C\ and C2 such that m — C\M and M = C2m. In the latter 
case we also have that C\ and C2 are each others Moore-Penrose inverses. 

REMARK The matrix C in theorem 4.2 is not necessarily JF0- measurable. See 
example 3. 

PROOF Define yt = {m,M)t(M)t- Then jt(M)t = (m,M)t from lemma 2.4. 
On }Tk,Tk+il we have 

dlt = (m,M)t-d{M)t + d{m,M)t(M)t 

= lt_{M)t.d{M)t + Ktd{M)t{M)t 

= (7i_ - Kt)(M)t.d(M)t 

So if c(m,M) = 0, then from theorem 3.3 we obtain that 7 is constant on jT)t,Tfc+1|[. 
This also implies that 7 admits right limits at I* if T* < 00. We need some more 
properties of 7. On {T^ < 00} we have 

(lTk+-lTk)G(k) = 0 (4.1) 

72* - lTk- = KTk[G(k)G(k)T - F(k - l)F(k - l)T] = KTkAPTk (4.2) 

Indeed right continuity of (m, M) gives 

lTk{M)Tk = {m,M)Tk = l im(m,M) ( = Umft(M)t = lTk+{M)Tk. 
tUk UJfc 
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Hence (7rfc+ — lTk)(M)Tk = O, which is equivalent to equation (4.1). Next we use 
lemma 3.2 to write 

!Tk-lTk- = {m,M)Tk{M)+k-{m,M)Tk-(M)$k_ 

= (m,M)Tk-A(M)ïk + KTkA(M)Tk(M)+k 

= lTk_(M)Tk.A(M)l + KTkA(M)Tk(M)l 

= lTk-(M)Tk.A(M)+k - KTk(M)Tk.A(M)+k + nTkAPTk 

= (in- - KTk){M)Tk-A(M)+k + KTkAPrk 

The assumption that c(m, M) = 0 yields the first term zero from theorem 3.3, which 
gives equation 4.2. Notice that equation 4.1 and equation 4.2 imply 

(77* - lTk.){M)Tk- = 0, (7r i + - lTk)(M)Tk = 0 (4.3) 

Hence <yTk{M)Tk- = 0 and A(-yTk(M)Tk) = -yTkA{M)Tk, or A(m, M)Tk = -)TkA{M)Tk. 
Define now C = limt_+007(.We claim that this is the matrix in the assertion of the 
theorem. Notice that on the set f̂  = {Tk < oo,Tk+i — °°} C equals 77**4 • Further-
more U^_0 flk = $1 and ük f] fi; = 0 if k ^ /. First we prove the following facts. CM 
is a martingale and CMt — itMt = {^.M)t. 
From lemma 2.3: CMt = C(M)t(M)tMt. On Ük we have for j < k: 

k k 

C{M)Tj = lTk+(M)Tj = £ ( 7 r , + - 7 T 1 _ 1 + ) ( M ) T J = £ ( 7 r , + - 1X-){M)TJ = 
t= i t'=i 

j 

E O . + - 7T,-)(M)TJ = 7ri+(M)T., 
t = i 

since (77--,+ — 7r i_)(M)r j = 0 if i < j . But 

1T1+{M)TI = {IT3+ - 7T J)(M) r j + fT}{M)Tj = IT,{M)T} 

by equation( 4.3). 
Furthermore on iïk x [0, oo)njTj, ï j+ i [ we have in the same way C(M)t = 7jv+(M) t , 
because (77,+ — 7r,-)-F(j) = 0 if j < i and so C(M) is equal to -y{M). 
Hence CM t = 7 tMj = (7~M)t + f^tydfsMs.. Now on $7* for j < k we have 
&1TiMTj- = A7T j(M) r . (M)J.MT j ._ = 0. Hence f[ot]djaMs„ = !>,.<< A 7 T J M T J _ = 
0. 

Predictability of 7 (lemma 2.3) gives that CM = 7.M is indeed a martingale. 
Finally we have to show that m and CM are indistuinguishable. Compute (m — 
CM) = (m - 7.M) = ((/c - 7 ) .M) = / M ( K - j)d{M)(K - jf. Consider (/c -
t)td{M)t = d(m,M)t - ltd(M)t = d(jt{M)t) - -ytd(M}t = dft(M)t-, which is zero 
on all iTijTjfc+il, because here djt = 0. At t = Tk < 00 we also get zero from equa
tion (4.2). This proves the only if part. 
Next we prove the converse statement. Assume that C{M) is predictable, equiv-
alently CP is predictable. Then the product m — CM is a martingale. Indeed 
CM = CPM is adapted. Let now 7 = CP. Then m = -y.M + fodiM- = 
7.M + f^djP_M-. The last integral is easily seen to be zero. So m is equal to 
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•y.M and thus a martingale. Moreover we also obtain (m,M) = 7-{M) •= ~f{M) — 
/od7(M)_, where again the last integral vanishes. But "f{M) = C(M). Similarly 
(ra) = C(M)CT. Hence c(m,M) = 0. Assume finally that m and M are mutu-
ally linearly dependent. Then there exists matrices C\ and Ci as in the first part 
of the theorem. They are of the form as in the first part of the proof. There-
fore we can compute CiC2C1 = l im t_> 0 0(m,M) t(M) t

+(M,m) f(m)+(m,M} i(M)^ = 
lim t_+ 0 0(m,M) t(M) t

+(M) i(M) t
+ = \imt^0O(m,M)t(M)t = d . Here we used in the 

second equality the fact that c(M, m) = 0. Similarly one can prove that C2C1C2 = C2 
and C1C2 = (CiC2)T which shows that C\ and C2 are each others Moore-Penrose 
inverses (Cf [3]). This completes the proof. D 

REMARK: Consider the other extreme case. One always has c(m,M)t < (m) t. 
Here equality holds iff (m,M)t = 0. Indeed, assume that equality hol ds, then 
(m, M)t{M)t = 0, and hence (m, M)tPt = 0 and by lemma 2.4 this implies (m, M)t — 
0. The converse statement is trivial. 

By localization it is possible to formulate a whole string of corollaries, which are 
roughly all of the following type. 

COROLLARY 4.3 Let S be a stopping time and assume that 

c(m,M)sl {S<co} 

Then the stopped martingale ms depends linearly on the stopped martingale Ms. 
Equivalently there exists C such that l{0)S](m — CM) = 0. 

PROOF It holds that c(m,M)s = c(ms,Ms). Hence the assumption in the corollary 
implies lim<_,00 c(ms, Ms)t = 0. So c(ms,Ms)t = 0 Vï > 0, since c(ms,Ms) is non 
decreasing (corollary 3.4). The result now follows from theorem 4.2. • 

EXAMPLE 2: Let W be Brownian motion and e a N(0,1) distributed random 
variable. Assume that W and e are independent. Let fit = Wt + l{t>i}S. Define 

{ : [0,oo) -» R2 hy m l{i}(<) + 
1 

t-1 
l(i,oo)(0 and M = £.//. Let 

Tt = a{Ws,s < t; 1{(>I}£}. Then M is a martingale with respect to the filtration 
F = {ft}t>o and 

{M)t = 
1 0 
0 0 l{i}(*) + 

t \{t - iy 
Ut -1)2 l{t-lf l(l,oo)(0 

for (fi) = t + l(i,oo)C0- Hence rt = rank(M)t = l{i}(0 + 2.1(i)0o)(<)-
Let K : [0,oo) - • R 2 x 2 be given by K(t) = Kll{i}{t) + K2l{lfio)(t), and m = K.M. 
Then (m,M)t = K.{M)t = 

Kl 1 0 
0 0 !{»}(<) + {K1 

1 0 
0 0 + K2 

| ( i - l ) 2 l(t-l? }l(l,oo)W 

A computation shows: 
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(M)t = 
1 O 
O O i{i}M + 

4 
t+3 
- 6 

- 6 
(*-l)(*+3) 

12f 
L (t-ï)(i+3) (t-l)(i+3) J 

ifl.oo)'^) 

Let if1 = [!<}] and # 2 = [KfA. Then 7 i = {m,M)t(M)f 

K1 1 0 
0 0 l{i}(*) + 

(4*?,+(<-!)*?,) „ 2 6 ( A ^ - A ^ ) 
i+3 ^ 1 2 1" (t_l)( i +3) i j , \ 

t+3 -^22 1" (i_l)( i +3) . 

Hence limtji 7* doesn't exist for arbitrary K. 
Assume now that c{m,M) = 0, then from theorem 4.2 we know that 7 is constant 
on ( l ,oo) . So the following equalities have to hold: K\x = K\x and K\x = K%\- Now 
7 becomes 

7* = K1 1 0 
0 0 1 { 1 } (* ) + # 2 1(1 ,OO)(<) 

And in agreement with theorem 4.2 (cf. its proof) we see that m = 71+M. 

EXAMPLE 3: Let e,- be iid N(0,1) random variables. Let Tn = O"{EI, •. •, £n}- Let 
xi ... xn be an orthonormal basis for R n and x, = 0 for i > n + 1. Let furthermore 
Ki : Q, —> Rkxn be ƒ;_! measurable. Defrne Mt = J2i<tx<eii rnt — J2i<t K>AMi. 
Then (M)t = £ 

i<t xixJ> {M)t — 52i<tAn xixJ• A simple calculation shows that 
c(m,M) = 0 and that the matrix C in theorem 4.2 becomes C = ]C:<n KiXjxf, 
which is Tn-\ measurable. 
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