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NEW MULTICRITERIA METHODS FOR PHYSICAL PLANNING 

BY MEANS OF MULTIDIMENSIONAL SCALING TECHNIQUES 

Peter Nijkamp 

Department of Economics, Free University, Amsterdam 

Henk Voogd 

Department of Physical Planning, Technical University, Delft 

Abstract. This article aims at providing an integrated and operational frame-
work for evaluating the quantitative and qualitative aspects of alternative 
projects or plans. After a brief survey of modern multidimensional methods, 
special attention is paid to evaluation problems characterized by qualitative 
and ordinal information. Next, multidimensional (geometrie) scaling methods 
are introduced as an important analytical tooi to treat soft information. A 
new geometrie scaling ;algorithm for mixed ordinal-cardinal input data will be 
developed. This approach will be illustrated by means of an empirical appli-
cation to plans to construct an artificial industrial island in the North Sea. 

Keywords. Decision theory; plan evaluation; multivariable systems; multidi
mensional scaling; water.resources. 

INTRODUCTION identify correlations among sets of vari
ables, see Dhrymes, 1970). 

• interdependence analysis (to select re-
presentative subsets of variables from a 
multidimensional data structure; see 
Nijkamp, 1978). 

• partial least squares (to assess the de-
gree of mutual impacts among a series of 
niulti-attribute subprofiles; see Wold, 
1977). 

During the last decade a great deal of scien-
tific attention has been paid to the multidi
mensional nature of many phenomena. Multidi
mensional analyses are based orr the fact that 
many objects (for example, urban renewal plans, 
water resource systems and public facilities) 
cannot be characterized and represented in.a 
meaningful way by means of single (unidimen-
sional) indicators. Objects are usually char
acterized by multiple attributes, multiple 
components or multiple facets, so that a mul
tidimensional profile is necessary,. to provide 
an adequate representation of all relevant as
pects of the objects concerned; see Lancaster 
(1971) and Paelinck and Nijkamp (1976). 

This multidimensional thinking has been in-
duced among others by the increasing complex-
ity of our present world (cf. Perloff, 1969), 
the strong influences of intangibles, spill-
overs and externalities (of. Nijkamp, 1977), 
and the confliotual diversity and multi-com-
ponent structure of regional, urban and phys
ical planning processes (cf, Faludi, 1973; 
Friend and others, 1974; Isard, 1969; and 
Lichfield and others, 1975). 

At present, the.re is a wide variety of multi
dimensional analytical techniques (see for a 
survey Nijkamp, 1979). These multidimension
al methods may be used for two purposes:' 

- multivariate data analysis aiming at uricov-
ering a systematic structure in a multivari
ate data set. Examples are: 
• correspondence analysis. (to detect similar 
patterns among attributes of objects; see 
Benzécri, 1971). 

• canonical correlation analysis (to 

- multidimensional decision analysis aiming 
at identifying optimal or cempromise Solu
tions for conflictual planning and policy 
problems (see among others the books writ-̂  
ten by Bell and others, 1977; Blair, 1979; 
Cochrane and Zeleny, 1973; Cchon, 1373; var. 
Delft and Nijkamp, 1977; Fandel, 1972; 
Guigou, 1974; Haimes, 1979; Haimes and 
others, 19 75; Hill, 1973; JohnSen, 1968; 
Keeney and Raiffa, 1976; Nijkamp, 1977, 
1979; Starr and Zeleny, 1977; Thiriez and 
Zionts, 1976; Wallenius, 1975,; Wilhelm, 
1975; Zeleny, 1974, 1976). Multidimensional 
decision analysis can be classified among 
others into: 

'• multicriteria evaluation methods aiming at 
identifying the best alternative,from a 
set of distinct alternatives. 

• multiobjective programming methods aiming 
at finding an optimal (compromise) solu-
tion for optimization models with multi
ple conflicting objective functions. 

Multidimensional analyses have led to a sub-
stantial operationalization and enrichment of-
modern policy research, but the applicability 
of these methods is often hampered by the lack 
of reliable metric information. It turns out 
that many phenomena cannot be measured by 
means of the cardinal metric of a geometrie 
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system: many variables and attributes are on-
.ly measured or measurable on an ordinal or 
jqualitative scale, so that then the applica-
|tion of the above-mentioned multidimensional 
decision analysis Is fraught with difficul-
ties and uncertainties. 

The present paper aims at oyercoming the limi-
tations inherent in the availability of ordi
nal or qualitative information for discrete 
evaluation problems by developing adjusted 
multidimensional scaling techniques which are 
appropriate for tackling this type of "soft" 
information. By incorporating such soft Infor
mation, several important aspects of decision 
problems (incommensurables, social consequen-
ces etc.) can be taken into account, so that 
jsai operational framework for integrated inter-
disciplinary policy judgements may be obtained. 
This paper is a follow-up of an earlier pub-
lished paper on ordinal evaluation problems 
(see Nijkamp and Voogd, 1979). After a brief 
introduction to multidimensional scaling anal
ysis, some formal aspects of the related tech
niques will be discussed. Next, a new variant 
of multidimensional scaling techniques will be 
presented, which is capable of dealing with 
soft information about both the preference 
structure and the impact structure of a dis
crete multicriteria evaluation problem. A 
mixed situation with both ordinal and cardi-
nal information will also be dealt with. Some 
attention will also be paid to computer algo-
rithms. The applicability of this new ap-
proach for planning and policy problems will 

* be illustrated by means of an integrated eval
uation of recently developed plans to con
struct an artificial island in the North Sea 
as a main future location for heavy industry 
in the Netherlands. 

.MULTIDIMENSIONAL SCALING ANALYSIS 

As indicated above, many phenomena are char-
acterized by soft (non-metric) information, 
so that ordinal multidimensional profiles are 
associated with these phenomena. In such 
cases, (non-metric) multidimensional scaling 
•(MDS) methods (also called: ordinal geometrie 
scaling methods) provide the tools to assign 
metric (cardinal) values to the attributes or 
aspects of the phenomenon at hand, such that 
these values reflect the differences in the 
attributes or aspects of the phenomenon being 
scaled. In other works, (non-metric) MDS anal
ysis aims at uncovering the metric properties 
and variations of attributes or aspects mea
sured in an ordinal sense. 

i v 

Assume a set of objects; each object can be 
characterized by a K-dimensional ordinal at-
tribute profile. Then each object can only be 
represented as a point in a geometrie (Euclid-
ean) space, if the ordinal data input is trans-
formed into cardinal information with less 
than K dimensions. MDS analysis attempts to 
construct such cardinal information by identi-
fying a geometrie space of minimum dimension-
ality such that the interpoint distances 

between the co-ordinates of the (attributes 
of the) objects reflect the ordinal differ
ences between the attributes of the succes-
sive objects. The number of attributes is 
rather flexible, but the number Of dimensions 
of the resulting geometrie space has to be 
specified by the analyst, who has also the 
task to interpret each dimension in terms of 
the underlying attributes. 

The appealing feature of (non-metric) MDS 
methods is their capability to infer metric 
information on objects from an underlying or
dinal data structure such that the positions 
of the objects in a Euclidean space reflect a 
maximum correspondence to the ordinal rankings 
of these objects. In other words, the dis
tances between the geometrie points should be 
in agreement (in the sense of a monotone rela-̂  
tionship) with the observed ordinal rankings. 
Despite a wide variety of current MDS methods, 
a common property of all these methods is that 
they aim at recovering the latent metric 
structures in ordinal proximity-type data. 

The basic ideas of MDS techniques were mainly 
developed in mathematical psyehology (see 
among others Torgerson, 1958; Shepard, 1962; 
Coombs, 1964; Kruskal, 1964a, 1964b; Guttman:, 
1968; McGee, 1968; Carroll and Chang, 1970; 
Lingoes and Roskam, 1971; Young, 1972; and 
Roskam, 1975).After several successful at
tempts in the field of psychometrics, MDS 
methods were also introduced into other disc"-
plines such as geography (see Golledge and 
others, 1969; Rushton, 1969a, 1969b; Clark 
and Rushton, 1970; Demko and Briggs, 1970; 
Tobler and others, 1970; and Schwind, 1971), 
economics (see Adelman and Morris, 1974-), 
marketing analysis (see Green and Carif.one, 
1970; Green and Rao, 1972; and Schocker and 
Srinivasan, 1974), spatial planning (see 
Voogd, 1978; Voogd, 1979; and Voogd and Van 
Setten, 1979), regional science (see Nijkamp 
and Van Veenendaal, 1978; Blommestein and 
others, 1979; and Nijkamp, 1979), operations 
research (see Bertier and Bouroche, 1970; and 
Green and others, 1969), and evaluation theory 
(see Nijkamp, 1979; and Nijkamp and Voogd, 
1979). 

MDS techniques can be used for any kind of 
ordinal information. Consequently, both prox-
imity and preference data can be dealt with. 

• Proximity data are' related to ordinal (dis^-
similarities between objects or attributes of 
objects (for example, in the form of a paired 
comparison table or an ordinal effectiveness 
matrix), while preference data reflect ordi
nal priority rankings of judges regarding ob
jects or attributes (for example, a set of 
ordinal weights attached to the criteria of a 
discrete evaluation problem). The capability 
of MDS methods to deal with both kinds of da
ta makes these methods extremely useful in 
the field of plan evaluation problems with 
soft information on both the effectiveness 
scores and the preference scores. 

The extraction of metric inferences from non-
metric multidimensional data is based on a 
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set of cornplicated fitting procedures and 
permissable transformations of ordinal (dis)-
jsimilarities or preferences into the cardinal 
imetric of the normal measurement model. In 
the next section, a brief introduction to MDS 
algorithms will be given, while in a subse-
•(quent section the use of MDS techniques for 
soft (ordinal) plan evaluation problems will 
ibe discussed. 

matrix A , an auxiliary or intermediate vari
able has to be introduced, which has metric 
properties but which is in agreement with the 
ordinal (dis)similarities 6 .. This variable 

nn , 
is named an order-isomorph value or disparity. 
This'variable, denoted by d has to be de-

termined such that it does not contradict the 
ordinal conditions. In other words, there 
should be a monotone relationship between 
d . and 6 , : 

MULTIDIMENSIONAL SCALING ALGORITHMS ' 

The Standard structure of MDS algorithms will 
be exposed here by way of a series of succes-
sive steps. 
,(1) Ordinal input data (A). The ordinal input 
Öata may be paired comparisons data and/or 
ordinal rankings of objects (or attributes) 
reflecting the perceptions or preferences con-
cerning these, objects (or attributes). This 
information may be included in an ordinal in
put matrix A with elements 6 ,(n,n'=l,...,N), 

representing the ordinal differences between 
N objects with regard to a certain attribute. 
(An ordinal number 1 may, for example, indi-
cate the highest agreement among a certain 
pair of objects, while an ordinal number J 
may indicate a maximum discrepancy between a 

configurations X , The co-ordinates 
th of any n point (n=l,...,N) can be represen-

ted by means of a K-dimensional vector 

= (x. nl'" ' n ^ ' 2k 
(3) Interpoint distances (D). The next step 
is' the calculation of the Euclidean distances 
between the N points of the above-mentioned 
tentative configuration X . These metric dis
tances can be included in a NxN matrix D . 

The elements of this matrix (denoted by d ,) 
nn' 

can be calculated as: 

k 
{ T 
k=l 

(x 
hk X V (1) 

<• d , whenever 6 < & (2) 

Such order-isomorph values can be assessed 
among others by means of a monotone regression 
(Kruskal, 1964-a) or a rank-image procedure 
(Guttman, 1968). The initial configuration X 
can bè used to estimate the variables d , . 

nn' 
(5) Badness-of-fit function or stress (tp) 
The badness-of-fit function measures the dis-
agreement between the order-isomorph values 
CD) and the metric distances (D): the closer 
the agreement between 5. and D, the lower the 
badness-of-fit. This function attempts to min-
imize the residual variance between all dis
tances d . and all order-isomorph values 

nn' " 
d ,. This function'may be specified among 

certain pair. The elements 6 , will be called others as: 
(dis)similarities. 
'(2) Initial configuration (X). An initial 
configuration of1 the N objects in a geometrie 
space requires that the dimensionality of ,. . 
this space is fixed a priori (say K). Then 
the N objects may be provisionally depicted 
in this K-dimensional space. This tentative 
jconfiguration of N points can be based inter 
alia on a principal components analysis of A 
such that this NxN matrix is reduced to a 
,KxN matrix. The tentative initial configura
tion serves as a frame of reference for the 
next steps in order to judge the increase in 
consistency between A and subsequent metric 

<P = < ^ (d , - d ,) / I é. ,\ 
{ , , nn' nn' / ,_. nn'J 1 n,n'=l / n,n'-l J 

C) 
where the d . 's are known from step (''). 

nn' 
The unknown variables in (3) are d , (and 

nn' 
ultimately the co-'ordinates x , ; see (1)). 

Therefore, the essential features of ar. MDS 
algorithm can be summarized as follows: 

m m ip 
subject to (1), (2) and (3) 

(4) 

This optimization model can be solved numer-
ically (via a gradiënt procedure, e.g.). The 
solutions of (4) (in terms of co-ordinates 
x , ) can be used to determine a second tenta
nk 
tive configuration X , so that the whole pro

cedure can be repeated again and again, until 

finally a converging equilibrium occurs. 

The above-mentioned method can be used for 
rectangular input matrices (so-called condi-
tional matrices) in an analogous manner. The 
general algorithmic structure of ah MDS meth
od is represented in Fig. 1. 

(4) Order-isomorph values or disparities (D) 
The measurement of correspondence between A 
and D is formally precluded due to the non-
metric nature of A. In order to measure 
whether the geometrie configuration X (and 
its resulting distance matrix D) do not vio-
late the (dis)similarity conditions from the 
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ordinal input rankings A 

t en ta t ive configuration X. 

distance matrix D. 
1 

order-isomorph matrix D. 

:>adness-of-fit s t a t i s t i c X. 
1 

i-i+1 

Fig. 1. Flow chart of MDS algorithm 

MULTIDIMENSIONAL SCALING FOR 
PLAN EVALUATION 

In this section attent ion will b'e paid to an 
MDS method which is appropriate for a judg-
ment of discrete alternatives (plans, proj-
ects, policy proposals etc). The evaluation 
pf alternatives is usually based on a plan 
impact matrix and on a.set of preference 
scores for the evaluation criteria. As exposed 
before, this-is the subject of multicriteria 
analysis. In the case of ordinal information, 
both the matrix of plan impacts (or effective-
ness scores) and the set of weights have an 
ordinal structure. The combination of both 
types of ordinal data leads to complications 
for a traditional MDS procedure. Therefore, a 
new MDS method has to be devised which takes 
account of two different sets of ordinal data 
(viz. effectiveness scores and preference 
.scores) and which is capable of linking the 
preference scores to the effectiveness scores, 
so that the weighted values of alternatives 
can be calculated. In this way, the alterna
tives can be evaluated with regard to their 
relative contribution to the judgement crite
ria concerned. This new approach is called 
ordinal geometrie evaluation. 

It is clear that the final judgement of all 
criteria has to be influenced by all criteria 
which are considered to be relevant. The ex-
tent of their influence is determined by the 
preference scores attached to them. This re-
quires, in the framework of MDS techniques, 
that all alternatives and all criteria are to 
be transformed simultaneously to the same geo
metrie space. The Euclidean distances between 

the alternatives in this geometrie space 
which represent the differences between the 
alternatives, have to be Valued according to 
the weights (preference scores) for the cri
teria. In other words, the distance function 
for the alternatives incorporates the (scaled 
metric) weights as arguments in order to al-
low inferences about weighted differences be
tween alternatives. 

The ordinal geometrie evaluation method has 
several specific features: 
- A so-called overall ideal point (a refer-
ence point for the evaluation) is construc-
ted. This point reflects a (hypothetical) • 
plan that is preferred to all other plans, 
given the information on plan impacts and 
criteria. Given this overall point, all al
ternatives may be ranked in a preference 
order according to their (weighted) geomet
rie distances to the ideal point. 

- A new algorithmic technique is developed 
which starts from a bottom-up procedure by 
trying to'find a satisfactory solution in 
one dimension and, next, to improve the 
goodness-of-fit by taking account of more 
dimensions in a stepwise way. 

,- A new optimization technique is applied 
which combines a first-order gradiënt ap
proach with a single-variable optimization 
method and.which is also extended with a 
more efficiënt method to determine initial 
trial values for the iterative solution 
process. 

This new MDS technique includes 2 stages, viz. 
(1) a geometrie scaling of all alternatives 
and all judgement criteria and (2) the tc.ieu-
lation of a reference point for 'the eva; ua-
tion (overall ideal point). The first stage 
can formally be described as: 

V.Ó) 

min (p = f(D-D 

s . t . 

5 ? R 

D = g(X,Y) 

where: 
D = (unknown) rectangular distance matrix 

with elements d. . (between criterion i 
il 

and alternative j); 
D = (unknown) rectangular order-isomorph ma

trix with elements d. . corresponding to 
the original rankings of the alternatives; 
(known) rectangular effectiveness matrix 
with rankings r..; 

monotonicity relationship, i.e. 
Sij < 3ij* ' w h e n e v e r rij < rij' ; 

(unknown) rectangular matrix with co-or-

R = 

m 

dinates x., for alternative j and dimen-
3k 

sion k; 
Y = (unknown) rectangular matrix with co-or-

dinates y., for criterion i and dimension 
k. l k 

The second stage is concerned with the calcu-
lation of the co-ordinates of the ideal point. 
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This ideal point is calculated as a (hypothet-
Ücal) point with co-ordinates reflecting the 
lideal values of all relevant décision crite
ria. These ideal values,should correspond to 
the most favourable outcomes for a particular 
criterion (and hence léad to a definite 

rchoice in f avour of this ideal alternative, 
ghould this alternative be feasible).. Next, 
bne has to calculate the -weighted geometrie 
distances between all alternatives and the 
ideal point. It is clear that the alternative 
with the minimum distance to the ideal point 
has to be selected as the best alternative. 

In the next sections some technical aspects 
of this ordinal geometrie evaluation method 
wj.11 be dealt with in greater detail. 

SPECIFICATION OF THE 
SCALING MODEL 

Given a finite set of criteria i (i=l,2 1), 
bur aim is to evaluate a finite set of alter
natives j (j=l,2,. . .J). This requires that 
[the alternatives are measured such that each 
choice possibility has one valuation or effec
tiveness score for each criterion. This is de-
noted by a matrix R (of order I x J) with el-
ements r. ., which indicate the degree at which 

a certain criterion has been reached by an 
alternative. Depending on the specific nature 
of the criteria, these elements (or effective-
ness scores) can be measured both on an ordi
nal and a cardinal scale. In this section, it 
will be shown that the geometrie evaluation 
approach is very appropriate to treat both 
types of information simultaneously. In other 
words, geometrie evaluation techniques offer 
interesting possibilities to analyze so-called 
mixed evaluation problems, in which some cri
teria are measured on a cardinal scale, whilst 
others are measured on an ordinal scale. The 
following scaling model can be used for *4:hese 
purposes (see also (5)): 

min lp = Z 
J 

n. I (d. . 
i=l x j=l X3 V 

subject to: 

I 

n. = (l Z (d. . - d.)2) ' 1 
1 . I j=l ^ i ƒ 

d. = Z d. ./ J 
i • i 13 3 = 1 

d.. = f(d.., r..) 
13 13 13 

(6) 

1) (7) 

(8) 

(9) 

(10) 

The definition of the auxiliary function in 
equation (10) provides the key for our mixed 
evaluation procedure. If we have a criterion 
which is measured in a cardinal way, then .the' 
following linear function is used: 

13 
a + B r.. (3 > 0) (11) 

J -. 
min ip. = 

d . . x 

1 3 

Z l d . . • 
j = l ^ " d i 3 ' 

sub jec t t o : 

Relationship (7) is a Minkowski distance met-
ric in which any value of c > 1 may be chosen. 

where a and 8 can be found by means of a^con-
ventional linear regression analysis of D 
upon R. It should be noted, however, that 
for reasons of interpretation of X and Y, it 
is not. permitted to substitute a negative 
gradiënt of the regression line into (11). 
In such cases, the parameter B is assumed to 
be equal to 0. 

It is easy to see that function (110 cannot 
be used, when the criterion concerned is mea
sured on a qualitative scale. For those 
'soft' criteria a monotone regression proce
dure (see Kruskal, 1964a) is used. This pro
cedure implïes a constrained minimization 
problem, written as: 

(12) 

r. . > r. ., -»• d. . > d. ., (V i,j) (13) 
13 13 13 13 

The principle of mixed evaluation of multiple 
c r i t e r i a can be considered. in several way;.;, 
For ins tance, i f a large number of evaludtio. 
c r i t e r i a i s used, the resul t ing effectiv : r"-^ 
matrix R might provide too much informar;c 
to be digested by the decision-makers, so ...•<-
cr i te r ion weights are hard to specify. Und^i 
these circumstances a two-step evaluatio.i 
procedure i s recommended. At f i r s t , a par-
t ioning of the effectiveness matrix into sut-
matr ices . i s carr ied out , each sub-matrix r e -
presenting an effectiveness matrix with re 
spect to a main c r i t e r ion ( e . g . , economics, 
social aspects , environmental qual i ty , e t c ) . 
This main c r i t e r ion includes a l l information 
about the various aspects with regard to that 
pa r t i cu la r "main c r i t e r i o n . Usually i t i s pos-
s ib le to col lec t information about the weights 
attached to these main c r i t e r i a . Secondly, 
the scaling model outlined in (6) - (10), 
can be applied to each sub-matrix, so that-, 
•instead of a sub-matrix, for each main c r i 
ter ion a vector with aggregated metric ef
fectiveness scores can be derived (by assun.-
ing the sub-c r i t e r i a to (be equally important). 
This can be done by means of the same proce
dure via which the overal l ideal point wi l l 
be determined (see the next sec t ion) . Thus, 
the two-step evaluation procedure embodies 
in fact a very complicated mixed evaluation 
s t ra tegy: some sub-matrices might contain 
completely qua l i t a t ive information, while 
others are completely cardinal or mixed cal- . 
d inal -ordinal . The resu l t ing aggregated ef
fectiveness matrix, however, i s ent i re ly car
d ina l , due to the specif ic qua l i t i es of the 
geometrie scaling approach. This enables us 



us to use only re la t ionship (11) in the sec-
jond s t ep . i 
I i , 

The_co-ordinates of the overall point (denoted 
by x, , k-l,...,K) can be considered as a func-

jtion of the co-prdinates of the points y., , 

which reflect the ideal values of criterion i 
|with regard to dimension k, and the weights 
of the evaluation criteria. Let us, for the 
moment, suppose that the relative priorities 
assigned to criterion i are expressed on a 
ratio scale (criterion i may be either a sub-
criterion or a main criterion). This can be 
denoted as: 

&'• :.'"j',"j>/' •», "j) (14) 

where w. (i=l,2,...,1) represents the weight 

attached to criterion i. The co-ordinates of 
the overall ideal point can now be defined 
such that the more important a certain crite
rion is, the smaller the geometrie distance 
between that particular criterion point and 
the overall ideal point should be. Therefore, 
bc, can be regarded as a set of co-ordinates 

which minimizes the following function: 

measured on an ordinal scale. This means that 
there is no sufficiënt information for a pre-
'cise calculation of the x, values. However, 

if we have multiple ordinal weights, there 
are several ways to arrive at a cardinal 
weight vector (14). This is outlined in 
Nijkamp and Voogd (1979). If we have only one 
single (ordinal) ranking of the criteria, the 
only way out is to examine the area in which 
the overall ideal point may be situated. This 
area is defined by the extreme (cardinal) val
ues of the weights, which are in accordance 
with the rankings which reflect the impor-
tance of the criteria. Suppose there are three 
criteria for which the following ranking 
holds: w. > w > w,. Because of condition 

(16), the following extreme weight sets can 
now be distinguished: (1,0,0), (5,5,0) and 
(1/3,1/3,1/3). For each extreme weight vec
tor, we may now próceed analogously to (17) 
and (18). A combined interpretation of the 
results of the various extreme weights will 
provide insight into the preferability of thi 
alternatives (see for similar treatments of 
ordinal weights Nijkamp and Voogd, 1979; 
Paélinck, 1976; Pearman, 1979; Voogd, 1979). 

min 5 = 
I 
X 
i=l 

wi(xk * * > (15) 

If we assume that the criterion weights add 
up to one: 

I 
Z 
i-1 

(16) 

i t follows from (15) and (16) that the co-or
dinates of the overa l l ideal point are equal 
to 

*k 

I 
Z 

i=l 
y i k (17) 

The closer the geometrie distance from a cer
tain alternative to this overall ideal point 
is, the more preferred this alternative is 
with respect to the criteria used. So we are 
now able to specify a preference score s . for 

alternative j as: 

• i s
k 5 1

( , x * - \ , ) 1. c (c >1) (18) 

In fact, equation (18) embodies a conventional 
Minkowski metric. It should be noted that this 
metric must equal the distance metric given 
in equation (7). However, it is clear from 
(18) that alternative j is more preferable, 
the lower s . becomes. 

3 

It is often very difficult to assess the cri
terion weights on a cardinal scale. Prefer-
ences and priorities aan frequently only be 

THE ALGORITHM 

The purpose of model (5 ) is to find a set of 
co-ordinates X and Y such that the ra;!':ngs 
of the geometrie distances d. . between t' •-! 

13 
ideal points of c r i t e r i a i and a l te rna t ives j 
correspond as good as possible to tb«? effec-
tiveness scores e . . . This can be real ized !_, 

13 
means of a multidimensional scaling" approach 
based on several nested optimization proce
dures. This: i s outlined in Fig. 2. 
The f i r s t step i s to choose an i n i t i a l set of 
co-ordinates X and Y in one dimension, The se -
lect ion of adequate s t a r t i ng values i s con
sidered in de ta i l in Nijkamp and Voogd (1979). 
Next, the geometrie ihterpoint dis tarces D 
are calculated, foliowedJby the determination 
of the auxil iary values 5. This step has been 
outlined in the previous sect ion. We are now 
able to assess the loss function $, so that 
we can evaluate the goodness-of-fit of the 
i n i t i a l set of co-ordinates. 

The next step i s to improve the position of 
these points in the geometrie space by find-
i'ng a be t t e r set of co-ordinates. This i s 
done by minimi zing the loss function <(> in 
X and Y. I t i s p rac t ica l ly impossible - due 
to the large number of variables - to use in 
t h i s case advanced numerical optimization 
techniques based on the Hessian matrix of 
second-order p a r t i a l der iva t ives . Therefore, 
gradiënt techniques may be more appropriate. 
Most multidimensional scaling algorithms are 
based on a steepest-descent method (see, for 
instance, Kruskal, 1964a, 1964b, and Guttman, 
1968). However, a well-known cha rac t e r i s t i c 
of th is method i s i t s decreasing efficiency 
as the function § approaches i t s minimum 
value. 
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k=l 
r=0 

Initial co-ordinates X and Y for k 
r r 

Calculation of distances D k=k+l 

Auxiliary matrix D 

Badness-of-fit statistic 

r=r+l 

Calculation optimal, co-ordinates 
X and Y for all k' 
r r 

Input ordinal criterion weights 

yes 

Extreme metric c r i t e r ion 
weight se ts 

Determination co-ordinates 
overal l ideal point _x for 

each se t of extreme weights 

Calculation of 
preference scores 

Fig. 2. Brief flow chart of the 
scal ing algorithm. 

As we can see from Fig. 2, t h i s method i s 
part of a main i t e r a t i on process. Conse-

quently, th is optimization method s t a r t s 'each 
^ime very closely to the minimum value of 
function § for tha t par t i cu la r main i t e r a t i o n . 
For t h i s reason a normal steepest-descent ap-
proach i s not very e f f i c iën t . Therefore, an 
adjusted optimization technique has to be em-
ployed, which i s par t icu la r ly appropriate for 
the minimization of a function with a large . 
number of var iab les . ïn our geometrie evalu-
ation algorithm, we use a technique called 
the modified conjugate-gradient (MCG) method 
(cf. Van Setten and Voogd, 1978, and Voogd 
and Van Setten, 1979). In contrast to the 
conventional steepest-descent method, th is 
technique i s not a one-dimensional optimiza
tion on a l ine defined by the gradiënt , but a 
two-dimensional optimization in a plane giv-
en by the gradiënt and the preceding search 
d i rec t ion . . 

This MCG method can - with respect to the 
scaling model outlined before - formally be 
denoted in the following br ief manner: 

^ «•g i k 
t+1 

+ e.Ay. 

and 

Ax-J a -g jk 
t + 1 

ik 

+ e.Ax.k 

(19) 

(20) 

where g., and g., represent the p a r t i a l derW-

atives of <j> with respect to y.. and x... i-e-
1K JK 

spectively. Each iteration step of . •• op1'-
mization process of this method is denoted 
by the subscript t, while a and B are y.Tv 
meters which can be estimated by using a 
Gauss-Newton related method. The interested 
reader is referred to Van Setten and Vori& 
(1978) for a broader exposition of the prin-
ciples and elements of this method. 

After the calculation of a new set of co-or
dinates X and Y by means of the modified con- ' 
jugate gradiënt method, a new distance matrix 
D is determined. In addition, the matrix D of 
auxiliary values is updated with respect to 
these new distances, after which (19) and 
(20) are again applied. This main iteration 
process proceeds until <j> has reached either 
a satisfactory low value or becomes station-
ary. In the first case, a suitable solution 
for (5.) has been found, whereas in the sec-
ond case an extra dimension (k=k+l) is added 
for which new starting values are calcuiate^ 
and the whole process described above' is re-
peated. 

After the determination of a solution for 
model (5), the next step is to determine the 
extreme metric indicator weights, which are 
in accordance with the observed priority 
structure measured on an ordinal level. An 
"overall ideal point" can now be determined 
for each set of extreme weights. Conse-
quently, the preference scores of the alter-
natives can be assessed with respect to the 
various "overall ideal points". In the next 



seetions an application of this ordinal geo
metrie scaling model will be presented. j 

PLANS FOR QONSTRUCTING AN 
--INDUSTRIAL ISLAND 

'The usefulness of geometrie scaling tech-
niques for ordinal or qualitative evaluation 
problems will now be illustrated by means of 
a big research project undertaken in the 
'Netherlands. This project concerns the ap-
praisal of the proposals to construct an ar-
tificial island in the North Sea. This island 
has been suggested as a favourable location 
~iforfheavy industry, especially since the high 
Ipopuiation density and the high degree of 
iindustrialization in the Netherlands pre-
'cludes a further expansion of heavy industry 
on the mainland (see North Sea Island Group, 
1976). A location of new industry on an ar-
tificial island in the North Sea would pre
vent a further environmental deterioration on 
the mainland and would offer a good opportu-
'nity to combat industrial waste discharges in 
a concentrated way by making use of scale ad-
'vantages in the abatement sector. 

It is clear that a social evaluation of such 
jan ambitious project should take into account 
ia wide variety of relevant physical planning 
iaspects such as the impacts on the labour 
market, the infrastructural repercussions, 
the environmental impacts, etc. 

:Furthermore, a meaningful social judgement of 
the project at hand requires also a careful 
:examination of all other spatial alternatives 
;for locating new industries in the Netherlands 
on existing unoccupied industrial areas. 
:Therefore, instead of a zero-one assessment 
'of this North Sea island it is necessary to 
'take into account also other industrial loca-
tions (see Kutsch Lojenga and Nijkamp, 1977). 

An additional complication is the fact that 
jthere is no reliable information available 
ion the activities to be located on the is-
jland. The majo^part of these activities will 
;be private companies, so that the locational 
jdecisions of these firms cannot be controlled 
jby public de cision-making. These decisions 
will mainly be based on profitability crite- / 
iria, growth targets etc. This implies that 
jthe impacts of the island are overloaded with 
lUncertainty, especially because the project 
'itself will not be complete'd before 1990. 

;Given the above-mentioned elements, it is no 
surprise that most impacts of the alterna
tives on the values of all relevant decision 
criteria can not be assessed on a cardinal 
scale. Therefore, most impacts are only as
sessed via ordinal effectiveness scores. 
Consequently, this planning problem is a 
glaring example of a data analysis for which 
geometrie scaling techniques are useful. 

;The evidence of using geometrie scaling tech
niques is even greater, because also the 

weights attached to the diverse decision cri
teria are a source of much uncèrtainty. In- • 
'stead of assessing only one set of weights, j 
seven different sets of weights are used. 
Each set corresponds, to a certain extent, tb 
a eertain future policy scenario for economie, 
spatial and urban developments in the -
Netherlands (see Ten Brpek, 1979). Each sce
nario also is associated with general judge
ment criteria for future developments. In 
consequence, each scenario provides a set of 
preference scores for these criteria to be 
used for judging the industrial island. The 
main criteria used in our study are: (1) mi
cro-economie costs, (2) macro-economie im
pacts, (3) environmental effects, (4) energy ' 
effects, (5) spatial conditions, (6) social 
conditions, and administration/management. 
The priority scores for the criteria are bi-
nary ordinal numbers, viz. 2 (a high prior
ity and 1 (a normal or neutral priority). 

The scenarios used in our study are: 
1. An entrepreneurial scenario with much em-

phasis on micro-econemic consequenees. 
2. A scenario with a high priority for macro-

economie impacts, energy effects and spa
tial structure. 

3. A scenario with much emphasis on macro-
economie effects and environmental reper
cussions. 

4. A scenario focussing on energy effects and 
spatial aspects. 

5. A scenario associated with micro-ecouoi ie 
costs and spatial elements. 

6. A scenario with much emphasis on micro-
economie costs and environmental aspects. 

7. A scenario related to environmental as
pects, spatial conditions and social/ad-
ministrative aspects. 

The seven sets of priority scores associated 
with these scenarios are represented in 
Table 1. 

TABLE 1. Weights associated with scenarios. 

^scenario • • 

critenóf) 

(1) 2 1 1 1 2 2 1 
(2) 1 2 2 1 1 1 1 
(3) 1 1 2 1 1 2 2 
W 1 2 1 2 1 1 1 

• ( 5 ) 1 2 1 2 2 1 2 
(6) 1 1 1 1 1 1 2 

The following alternatives - size and loca
tion - for future developments of heavy in
dustry in the Netherlands were distinguished 
(Ten Broek, 1979): 

(i)An industrial island in the North Sea, 
located north of Ameland (a small is
land in the Wadden Sea). 

(ii)An industrial island in the North Sea, 
located 40 miles west of Rotterdam. 

(iii)An industrial island in the North Sea, 
. located west of Walcheren (a part of 
the southern province of Zeeland). 



TABLE 3 Meaning of Symbols. 

-a construction costs industrial area 
-b construction costs industrial equipment 
-c wage costs 1 
-d transportation costs 
-e costs public facilities, electricity,etc. 

(2) 
-a T.V.A. from building the area (min. Dfl.) 
-b T.V.A. from building equipment (min Dfl.) 
- c T.V.A. from production act ivi t ies(mln Df]) 
-d wages from building the area (min. Dfl.) 
-e wages from building equipment (min. Dfl.) 
-f wages from production a c t i v i t i e s (min Dfl.) 
,-g impacts on balance of payment (min. Dfl.) 
-h jobs created by building the area 
- i jobs created by constructing equipment 
- j jobs created by production a c t i v i t i e s 
-k regional employment from building the area 
-1 regional employment from building equipment 
-m regional employment from prod. a c t i v i t i e s 
-n d i f ferent ia t ion in demarid for labour 
-o increase in investments 

'-p impact on regional income discrepancies 

,(3) 
-a air pollution 
-b water pollution 
-c thermal pollution 
-d soil pollution 
-e risk for employees 
-f risk during transport 
-g noise annoyance 
-h stench annoyance 
-i visual pollution 
! - j impact on stability of ecosyste'm 

(4) 
.-a energy use from transports 
-b energy saving from complementary activities 
-c link to existing energy infrastructure 

(5) 
-a impact on ef f ic iënt land use 
-b impact on regional policy 
-c impact on physical-natural landscape 
-d impact on exis t ing t rans . infrastructure 

(6) 
-a qual. equilibrium demand-supply labour 
-b quant, equilibrium demand-supply labour 
-c quali ty-of-labour conditions 
-d impact on s t r a t eg i e national safety 

, -e mil i tary means to defend the area 
- f mil i tary means to restore sovereignty 
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(iv) A further industrial land use of the 
Maasvlakte (an artificial peninsula at 
the entrance of the port of Rotterdam 
to the North Sea). 

j (v) A spatial dispersion of future industri
al activities over three existing in dus-

pp trial areas in the Netherlands.' 
,(vi) A spatial dispersion of future industri-

I I al activities over five existing indus-
, trial areas in the Netherlands. 

For all these alternative industrial solu-
I tions a set of effectiveness scores on all 
relevant judgement criteria has been assessed. 
These effectiveness scores were not calcu-
lated for the above-mentioned six main cri
teria, but rather for a large number of sub-
jcriteria related to the main criteria. This 
imatrix of effectiveness scores has a mixed 
jcharacter: both cardinal and ordinal figures 
have been used simultaneously, so that this 
matrix contains the most accurate information 
^available. This matrix is represented in 
jTable 2. The meaning of the criteria is ex-
'plained in Table 3. The elements of Table 2 
are composed of cardinal numbers, ordinal 
inumbers varying between 1 (a bad outcome) and 
|6 (a favourable outcome), and qualitative in
dicators varying from (a very bad out
come) to +++ (a very good outcome), These 
qualitative indicators were also transformed 
:into ordinal numbers. The meaning of an ef-
ifectiveness score 2/3 is that the alternative 
at hand has an undetermined position in the 
!second or third rank order. 

i ' , 

| \ RESULTS OF THE SCALING METHOD 

iThe data included in Tables 1 and 2 have 
been used as ordinal inputs for a geometrie 
scaling procedure for the evaluation problem 
at hand. The results of this mixed evaluation 
problem were obtained in two steps. In the 
first step, 6 times a scaling method was 
used to aggregate the (unweighted) sub-cri-
'teria within the 6 main criteria from Table 
2.to cardinal (matrix) impact scores (see 
Table 'O.The mixed geometrie scaling tech-
nique was used here for aggregating metric 
and noTi-metric outcomes. Thus, a cardinal ef
fectiveness matrix of order 6 x 6 was con-
. structed which formed the basis for the next 
step of the analysis. In the next step, the 

TABLE 4 Aggregate Cardinal Effectiveness ' 
l Matrix. 

sscenario 

criteria», (i) (ii) (iii) (iv) (v) (vi) 

( 1 ) 1.326 .658 1.314 .219 .247 .481 
(2 ) .273 .498 .362 1.289 .725 .698 
(3 ) .682 .4W .685 .726 L.392 1.578 
( t ) 1.227 .645 .649 .145 .397 .385 
(5 ) .477 .989 .761 • .477 .324 .315 
(6 ) .829 .564 .571 .357 .318 .302 

results from Table 4 were combined with the 
ordinal preference scores from Table 1, in 
order to arrive at 7 sets of outcomes, each 
corresponding to a certain scenario. In this 
way, one may examine the sensitivity of the 
rankings of the alternative plans with re
gard to shifts in weights (or preference 
scores). Because the ordinal information on 
the preference scores is rather poor, there 
is not sufficiënt information available to 
identify- a precise location of the 'ideal 
choice possibility', so that the only possi-
ble way to proceed is to identify a feasible 
area in which this ideal point can be posi-
tioned. By calculating for various points 
within this area a preference score, one may 
draw more or less definite inferences con-
cerning the relative preferability of the al-
ternatives, so that one may derive a rank or
der of preferred plans. In this case it is 
sufficiënt to investigate only the edges and 
corner points of the feasible solution area. 
In other words, one has to identify the ex
treme values of the weights corresponding to 
the corner points which are in accordance 
with the rankings of the criteria of this de-
cision problem. The general results of this 
procedure are presented below in Table 5. 

TABLE 5 Results of the Evaluation'Procedure. 

f» : equally important 
> : preferred to 

sce
nar
i o 

1 (vi) Pd (iv) pö (v) > ( i i ) pa ( i ) > ( i i i ) 
2 ( i ) ftf ( i i ) pa ( i i i ) > (iv) > (v) > (v i ) 
3 ( i ) > ( i i ) > ( i i i ) > (iv) pa (vi) > ( / i ) 
4 (iv) > (v) pa (vi) > ( i i ) pa ( i i i ) « ( i ) 
5 (vi) (3 ( iv) fa (v) > ( i i ) pa ( i ) » ( i i i ) 
6 ( iv) ca (v) > (vi) > ( i i ) pa ( i ) >ü: i ) 
7 (v) pa (iv) pa (vi) > ( i i ) ca ( i ) pa( i i i ) 

The conclusions from the last results are 
rather straightforward. The island alterna-
tives have a low ranking compared to the re-
maining plans, so that there is hardly any 
scenario which wóuld favour a choice for the 
island alternatives. There are only two ex-
ceptions, viz. scenario 2 and 3. Scenario 2 
focuses mainly on macro-economie aspects such 
as employment and wages, while scenario 3 im-
plies macro-economie and environmental inter-
ests. For these two scenarios the island 
plans appear to score rather high, although 
one may doubt the feasibility of these sce-
'narios in view of our present economie reces
sion. Therefore, the mainland alternatives 
seem to be more realistic. The particular 
choice in favour of one of these alternatives 
depends clearly on the future policies reflec-
ted by the scenarios 1, 4, 5, 6 and 7. 

Therefore, the final conclusion is that the 
island alternatives are less realistic due to 
the micro-economie costs, the energy reper-
cussions and the spatial distributive impacts 



(see also Stunet, 1979). Only in the case of 
a rapid economie growth with a scarcity of 
kndustrial areas might the plans to build an : 
industrial island become more plausible. 

i 
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