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In this paper we consider stochastic systems with finite state space and count-

ing process output. In particular we adress the question whether a given sys-

tem has a minimal representation, where roughly speaking minimality means 

minimality of the size of the state space. We show that minimality is connected 

to a suitably defined notion of observability. Finally we present an algorithm 

that enables us, starting from a given representation, to construct a minimal 

representation for the same system. 

Key Words: stochastic system, counting process system, reducibility, minimal­
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INTRODUCTION 

In this paper we treat some problems for counting process systems with a 

finite state space. The main problem we adress is the characterization of 

minimality of a system, which means minimality of the state space. The rea-

son why this topic is important lies partly in identification problems for such 

systems in the situation where the state process cannot directly be observed. It 

is known for instance in deterministic linear system theory that a state space, 

which is too large for explaining the behaviour of the output process, contains 

unobservable components. This implies among other things that if one wants 

to perform output-based parameter estimation one will not be able to identify 

the true parameter values that govern the behaviour of the state process in an 

unobservable part of the state space. For counting process systems to be 

treated in the next section a similar reasoning holds. If for instance one wants 

to identify transition rates of the state process (which turns out to be a Mar-

kov process) and if two different states yield the same behaviour of the 

observed counting process, then one is clearly not able to distinguish whether 

the state process assumes one of these two values, let alone that one is able to 

draw reliable conclusions about rates that govern a transition from one of 

these states to the other one. The lesson of these considerations, as is well 

known, is that one should always work with minimal representation of a sto-

chastic system. 

1 Counting process systems 

Counting process systems form a subclass of what is known as stochastic sys­

tems. Roughly speaking a stochastic system without input consists of two sto­

chastic processes X and Z where X is called the state process and Z the output 

process. As in deterministic system theory the state process at time t should 

summarize all the relevant information about the past of the system in order to 

describe the future output. Contrary to what can be done in deterministic sys­

tem theory the state process at time / cannot exactly predict the values of Zs 
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for s>t. It can only describe the probabilistic behaviour of the output pro-

cess. These notions are made precise in definition 1.1 that in abstract terms 

describes what a stochastic system without inputs is. This definition is fol­

iowed by a more detailed treatment of stochastic systems where the output 

process is a counting process. First we have to introducé some notation. Let 

a complete probability space (S,f,.P) be given together with a filtration F. Let 

X and Z be F-adapted stochastic processes. Then <5?=o{Xs,s'*it} and 
l3?=o{Zs,s*it} are the a-algebras generated by the past of the procesesses X 

and Z. Similarly ff+ = o{Xs,s>*} contains the information of the future of X 

after t. We also use the o-algebra that describes the future increments of the 

output process Z, ^fz+ = a{Zs-Z„s^t}. 

If fi.fï and § are sigma algebras contained in % then we say that fi and f2 

are conditionally independent given •§, if for all integrable fi -measurable func-

tions X\ the following relation holds 

£[*, | f 2vë] = E\XX\%\ 

We will use the notation (%^2\§)&CI. 

DEFINITION 1.1: [5]: A continuous time stochastic system is a multiple 

(0,S;J,,7',F,X;Z,9£»1l) such that 

(i) (Q,f, P) is a complete probability space 

(ii) TCR,Tan interval. 

(üi) F = {%},eT a filtration on (Q,<$,P) 

(iv) X and Z are F-adapted processes with values in the measurable spaces % 

and *% respectively. 

(v) (ff+ Vff24" ,<$t\o(X,))eCI for all t>0. 

Formally speaking each of the components of the multiple in definition 1.1 is 

part of the definition. However if no confusion can arise we will often write 

(X,Z) for a stochastic system. The crucial property in the definition of a sto­

chastic system is (v), which says that given a whole past % it is sufficiënt to use 
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only X, for the prediction of the future values of X and the future increments 

of Z. Observe that 1.1 (v) implies that X is a Markov process with respect to 

the filtration F. Finally it is noticed that usually % = ̂ fV»f and 

T=(- oo.oo) or 7"=[0,oo). 

Clearly the above definition is too abstract for practical purposes. In particu-

lar cases one has to specify the distribution of the state and output process. 

One way to do this is to pose stochastic differential equations that X and Z 

satisfy. In this paper we treat stochastic systems where the output process is a 

counting process and X a finite state process. 

DEFINITION 1.2: A counting process system is a stochastic system where the out­

put Z is a counting process. We write in this case N for the output process 

instead of Z. The shorthand notation is then (X,N) for a counting process 

system with state process X. 

We will treat in more detail the class of conditionally Poisson systems. 

DEFINITION 1.3 [1]: Let A^QXtO.oo)-»!^! be a counting process, F-adapted 

with Doob-Meyer decomposition w.r.t. F: dNt=X,dt+dmt. Let 

^o=a{\„t'>0}. fol is called a conditionally Poisson process, or a doubly sto­

chastic Poisson process, iff for all t, h S*0, UER 

t + h 

E[exp(iu(Nt+h -N,))^,VS&] = exp((e'" - 1 ) ƒ Xsds) (1) 

r 

So conditioned upon 5F,V§ ,̂ Nl+h—N, has a Poisson distribution with mean 

S',+h\ds 

PROPOSITION 1.4: N is a conditionally Poisson process iff m as given in 1.3 is a 

martingale w.r.t. F = {%}t>o, where % -% VS^. 

PROOF: If N is conditionally Poisson, then 
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E[mt+h-mt\%] = E[Nl+h-N,\%]-E[ ƒ Xsds\%] 
i 

t+h t+h 

= ƒ \ds- j \sds = 0. 
r t 

Conversely assume that m is a martingale w.r.t. F. Apply the stochastic cal-

culus rule to exp(iuNt) to obtain 

t+h 

exp(iuNl+h) = expQuN,) + (e '"- l ) ƒ cxp(iuNs-)dNs 
i 

t+h 

= expQuN,) + (eiu-l) ƒ cxp(iuNs„)(ksds + dms) 
t 

Take conditional expectation w.r.t. % and get 

(+A 

E[cxp(iuNl+h)&] = exp(iuNt) + (e '"- l ) ƒ ^ e x p C ^ ^ S F , ] ^ 

Define g(r +h,t)=E[exp(iu(Nt+h -N,)){%,]. Then we get 
t + h 

g(t+h,t) = 1 + (e ' " - l ) ƒ gfc *)*,<&, 

r+A 

from which we find g(t +h,t)=exp((e'"-1) ƒ \sds). D 
t 

Next we present a method for the construction of a counting process system. 

Let a probabüity space (Q,%P0) be given together with a Standard Poisson 

process iV" and a Markov process X (with state space 9Q deflned on it such that 

N and X are independent processes. Notice that such a probability space 

always exists. We assume that X has cadlag paths. Consider the following 

filtrations: F", F*,F = {^VSf }/s,0.F = {Sf W £ } , > 0 . The following obser-

vation is important. Let m, = N, — t. By definition m is an F^-martingale. 

However because of the independence assumption m is also an F- and F-

martingale. Similarly X is also Markov with respect to the filtration F. Let 
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X:[0,oo)X9Cr-»(0, oo) be a measurable function such that 

E0J'oHs,Xs)ds«x>, V/. Write X,=X(/,Z(_). Then {X,} is clearly both F and 

F-predictable. Then M defined by Mt = j(Xs — Y)dms is an F-martingale and 
o 

letA,=S(Mr). Then 

i t 

A, - exp( ƒ JogMV, - ƒ (X, - 1 ) ^ ) 
o o 

and A is an F- and F-local martingale. We make the following assumption: 

E0A,= 1, Vf >0. We can now define a new measure P on •(Q,9r
00)=(Q,€r

00) as 

follows. If A B% then by definition P(A)=E0[lAA,]. The extension to S^ 

follows by Caratheodory's theorem. Observe that the restriction of P to % is 

absolutely continuous with respect to the restriction of P to % with A, as 

Radon-Nikodym derivative and that A,>0 P0 as. Observe also that the res-

trictions of P and P 0 to 1?£ coincide. 

PROPOSITION 1.5: Under the new measure P 
t 

(i) mt=N,— (Xsds defines a martingale with respect to F and F. 
o 

(ii) X is a Markov process with respect to F. 

PROOF: The first assertion follows from Girsanov's theorem [6]. So here we 

prove only (ii). Let ƒ be a bounded measurable function on % and h >0. 

dP\% 
Then because A, is the Radon-Nikodym derivative 

dP0\% 

Elf(Xl+h)\$,] = 0UV / ; ; " = Ea\f(Xt+h)\%] = E0[f(Xt+h)\o(X,)] 

In the second equality we have used the fact A, is ^-measurable and in the 

third one that Xis F-Markov under P0. O. 
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THEOREM 1.6: Under the new measure P the pair (X,N) forms a stochastic sys­

tem. 

PROOF: From part (i) of Proposition 1.5 and Proposition 1.4 we obtain that N 

is conditionally Poisson. Notice that we even have 

t + h 
£[expO-«(Ar,+A-^))|#;] = exp((e '»-l) ƒ \sds). 

t 

Hence 

E[cxV(iu{Nl+h-Nl))\§lV<§f + ] = E[exp(iu(Nl+h-Nt))ffi
 + ] 

which shows that 

(&N+,9l\'S? + )eCI, Vt>0. 

The fact that Xis F-Markov yields 

(<$ï + ,%\o(Xt))eCI, Vt>0. 

Now we can use the following result which is obvious. Let FX,F2, G be a-

algebras. Then (FUF2\G)<ECI and (F1,F3\GVF2)eCI is equivalent with 

{F,,F2VF3\G)*CI. 

In our case we take G=o(X,\ F2=<&?+, F^ = % and F3=<SfN+ and we 

obtain {%9?+ V S f + \a(Xt))eC7. D 

Thus we have constructed a stochastic system where (as always) X is a Markov 

process and the output process is a conditional Poisson process. Notice that 

so far we have used an evolution equation for N whereas for X we only have 

the Markov property. The next objective is to describe the evolution of X in 

terms of a stochastic differential equation. Throughout the rest of this chapter 

the following assumption will be in force. 

ASSUMPTION 1.7: The state process X takes its values in the finite set 
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%={xi,...,x„), where the JC, are different. Moreover for all i and 

t>Q:P(Xt=Xi)>0. 

Define y:QX[0,oo)-»{0,l}" by its components Yit: = \^x,=x,} Denote by ®(t,s) 

the matrix of transition probabilities of X. That is for t >s, with the notation 

z + = z ~~' 1 (r5é0} and the understanding — = 0 

*„•(*,*) = P(Xt = xt\Xs = xj) = {EYp)
+E{YjsYit). 

Then we have the following well known f acts. Semigroup property: 

0(r,$)—*(*,M)*(M,.S) for ï>u>>s. Assume that for all t>Q the following limit 

exists 

A(t): = Iim-p[*(ï +*,/) - / ] 
A|0 h 

A (t) will be called the generator of X at time t. So A (t) has nonpositive diag-

onal elements, the other entries are nonnegative and the column sums are zero. 

Proposition 1.8 gives a representaüon of Markov processes in terms of a linear 

stochastic differential equation driven by a martingale. 

PROPOSITION 1.8: Let A":ÖX[0,oo)-»9C be a stochastic process, F-adapted, and 

let Y be associated with X as before. Assume that Y satisfies 

dY,=A(t)Ytdt+dmJ (2) 

Here A :[0, oo)-»R"x" is a Lebesgue measurable function (deterministic !) and 

tnY an F -adapted martingale. Then X and Y are ¥-Markov processes, with gen­

erator A(f). Conversefy, if X is F-Markov with generator A(t), then Y satisfies 

(2). 

PROOF: [4]. 
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Next we give a result on Markov solutions of stochastic differential equations 

(see also [3] for related problems). 

PROPOSITION 1.9: Let X be the solution of the stochastic differential equation 

dX, = g(t,X,)dt + dmf, X0 (3) 

where mx is an f-martingale and g:[0,oo)X9Cr-»R. Assume that thejump meas-

ure n of X admits a compensator v (with respect to F and P) such that 

p(dt, dy, w) =p (f, X, (w), dy)dt. Then X is an F -Markov process. 

PROOF: We show that for the indicator process Y the representation of Propo­

sition 1.8 holds. From (3) we get from the stochastic calculus rule for all 

k>0: 

dXk = kXkIldXt + f{(X,-+yt-Xk„-kXkIxy]i>,(dt,dy) 
"X 

= kXk -'(giUX,) + j[(Xt +y)k -XÏ-kX*- ly]p(t,X„dy))dt 
X 

+ dmf (4) 

Here dm, summarizes all the martingale terms in (4). In a more compact 

notation we can write (4) as 

dXk = g«\t,X,)dt + dmf (5) 

where ^w:[0,oo)X!)C^R. Now we can write X* as [x\,...,xk]Yt and g(k)(t,Xt) 

as GikHt)Y, where Gw(t) = \g(fc\t,xl),-,g
ik)(t,x„)]. Introducé the following 

notation. V is the ( « X B ) matrix with k-ih row equal to [xk~l,...,xk~1] 

(k = ï n). G(t) is the («Xn) matrix with Jt-th row G(*_1)(f) (k = l,...,«). 
- - (/t) 

M, is the martingale with components m, . If we consider (5) as a systein of 

equations for k —0,...,n — \ we can summarize it (with G(t) and V as defined 

above) as 



9 

VdY, = G(t)Ytdt + dMt (6) 

Observe that V is a Vandermonde matrix, that is nonsingular because all the x, 

are different. Let A(t) = V~JG(t) and Mj =V~lM, then (6) becomes 

dYt = A(t)Ytdt + dMj (7) 

Because M is an F-martingale and A (t) is nonrandom, we obtain from (7) by 

applying Proposition 1.8 that X is F-Markov, with generator A (t). D 

If we collect the above results we get the following 

THEOREM 1.10: Let the process X and the counting process N satisfy thefollowing 

equation 

dX, = g(f,X,)dt + dm?, X0 

dNt = \(t,Xt)dt + dm„ N0=0 

Here X and g are measurable functions from [0, oo) X9C to R and R + respectively 

and mx and m are ¥-martingales. Assume moreover that m is a martingale with 

respect to f = {Sf V 5 ^ } and that thejump measure fiofX admits a compensator 

v oftheform p(dt,dy,oï)=p(t,Xt(u>),dy)dt. Then the pair (X,N) is a counting pro­

cess system. 

2 Minimality of conditionalfy Poisson systems 

In this section we will confine ourselves to stationary systems. This means that 

the functions A,g and X in Theorem 1.10 are not explicitly dependent on t. So 

we use the representations 

dYt = AYtdt + dMj, Yü (8a) 

dN = CY,dt + dm„ N0 = 0 (8b) 

Here C is a row vector in R" with elements C,=A(JC,). 
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Equation (8) is called the forward representation of the system (X,N). It is also 

possible to give a backward representation. The starting point of this section is 

the system of equation (8). The word minimality in the title refers to the 

minimality of size of the state space % in a way to be made precise below. 

The external behaviour of the system (X,N) is the process N. We call (X,N) 

minimal if we cannot find a system (X,N) where X has a smaller state space 

than X. Observe that the external behaviours (X,N) and (X,N) are both given 

by the same process N. For (X,N) we use the equation (8) with Y,A and C 

replaced with Y,C,A. 

DEFINITION 2.1: The forward representation (8) of the system (X,N) is called 

strongly reducible if there exists a set % of lower cardinality than % and a func-

tion ƒ :9C-->!)C such that with X,=f(Xt), the pair (X,N) is a stochastic system 

with a forward representation of the form (8) and such that CY, = CY,. In this 

case (X,N) is called strongly forwardty reducible. If (X,N) is not strongly for-

wardly reducible, it is called strongly forwardty minimal. 

Some remarks are appropriate. 

1. If (X,N) is strongly reducible then the "new" state process X is again Mar-

kov. 

2. The adverb strongly in definition 2.1 can be thought of as opposed to 

weakly. One may call a system weakly reducible if there exists a counting pro­

cess system (X,N) on some possibly different probability space (Q,%P) such 

that the state space of X has stricüy smaller cardinality than that of X and 

such that N is equal to JV in distribution. One can also define strong reducibil-

ity for the backward representation of (X,N). We will not treat weak prob­

lems and problems for the backward representation. For this reason we will 

speak of mimimality and reducibility throughout this section when we mean 

strong forward minimality and strong forward reducibility. 
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The problem that we want to treat is the characterization of minimal count-

ing process systems. In view of remark 1 above we first focus our attention on 

functions of a Markov process. 

From the equivalence of F-Markov processes and solutions of certain linear 

stochastic differential equations (Propositions 1.7 and 1.8) it is easy to see 

when functions of a Markov chain again yield a Markov chain. A similar 

result also holds for non stationary chains f4]. 

To be specific let as before I b e a F-Markov chain with state space %. Let H 

be another set and ƒ :9^-»/7 a function. Clearly ƒ (X) is again Markov if ƒ is 

injective. To avoid trivialities let us assume that H—{h\,...,hm}, m<n and 

that ƒ is onto. Write Z, =f(Xt). Associate with Z the indicator process W as 

usual: 

Define FeW"*" by * / / = l {/(*,)=*,}• Notice that 1 ^ J F = 1 J , where lm is a 

column vector with as elements + 1. Then Wt=FYt. Notice that because ƒ is 

onto, F has rank m, i.e. it has full row rank. Let KeU"x("~m) be a fixed 

matrix such that it columns span Ker F. Let as before A be the matrix of tran­

sition intensities of X. We have the following theorem, similar to a result in 

discrete time [2, p. 126]. 

THEOREM 2.2: Let X be ¥-Markov with finite state space 9C Let f-J^^H. Then 

f(X) is again f-Markov iffFAK = 0 where the columns of K span Ker F and F is 

related to f as indicated above. If this condition is satisfied, then the matrix B of 

transition intensities off{X) is given by B—FAF, where F is any right inverse of 

F. 

PROOF: [4] 

We will work with a special right inverse of F, the Moore-Penrose inverse 

which is defined as F+ =FT(FFT)~l Because of the prominent role that 
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matrices F as defined before play, we wül refer to these as reduction matrices. 

Observe that the only invertible transformations of the state space % are per-

mutations, which correspond to special reduction matrices F, the permutation 

matrices, that also have the property F\ = 1. 

PROPOSITION 2.3: The pair (X,N) is reducible iff there exists a reduction matrix 

F such that with A=FAF+,C = CF+ the equalities FA =AF and C = CF hold. 

Moreover for the reduced system (X,N) the generator of X is A and the intensity 

ofN is given by CY,. In this case one says that F reduces (X,N). 

PROOF: Obvious in view of remark 1 af ter definition 2.1. 

REMARK: Observe that from purely algebraic considerations FA =AF implies 

that indeed A is a generating matrix of some Markov process. Indeed, let 

k —k{j) be the unique integer such that Fkj = \. Then 

Aik = ^FaA/j = ^FiiAy + FijAjj. 

Now if i' =k, then Aik — "2}lkjFuAij-\-Ajj<2.i^jAij+Ajj = 0. And if i^k, then 

Aik = l.,¥;jFiiAlj>0. Furthermore 1TA=0. Observe also that FA =AF is 

equivalent with F$(t)=$(t)F, where &(t) = exp(At) and <&(t)=exp(At). 

Since the stochastic nature of the pair (X,N) is determined by the pair 04,C) 

in view of eq. (8), we wül of ten speak of minimality or reducibility of (A,C) 

instead of (X,N). 

Observe that the reduction procedure is transitive, which means the follow-

ing. Suppose F] reduces (X,N) into a new system (XX,N) and suppose that 

F2 reduces (XltN). Then F2FX reduces the original system (X,N). Indeed if 

F , reduces (X,N) then F^A-AXFX for Al=FlAFf and C = CXFX for 

C\ = CFi . If then also F 2 reduces {XX,N), then we can write F2Ai=A2F2 

and CX-C2F2. But then F2FXA=F2AXFX=A2F2FX and 
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C = C\F\ = C2F2FX which is what we have to prove. Notice however that 

given a reduction matrix F that reduces (X,N) one cannot always decompose F 

as F=F2Fi, where F j reduces (X,N) and F2 reduces (Xi,N). A simple 

example is the following. Suppose that X has generator 

A = 

-2 1 2 
1 - 3 2 
1 2 - 4 

and N has constant intensity X=\lTYt. Then clearly F = [\ 11] reduces (X,N) 

but no reduction matrix i r e R 2 x 3 reduces (X,N) as can easily be checked. 

DEFINITION 2.4: Let the row vector C e R " be given. Then D is defined to be 

the diagonal matrix diag(C) which has as the y'-th diagonal element Cj. For 

ueR,D(u) = (.eiu-\)D. 

LEMMA 2.5: Let F be a reduction matrix, with right inverse F+ and let K be a 

matrix whose columns spanKerF. Let C = CF+ and D = FDF+. Thefollowing 

statements are equivalent 

(i) C = CF 

(ii) FDK=0 

(iii) FD=DF 

PROOF: (i) =s> (ii): 

(FDK)jj = 1.kFikckKkj = 1kjFikciFikKkj. 

Because of the special form of the matrix F, there is only one nonzero element 

in each column. Hence a product FikFlk equals zero if /=£/. Therefore the last 

summation can be written as 

HjFikCfFikKkj — ci2iFikKkj — Cj^FfcKkj=0. 
k k k 

(ii)=>(iii): FDK=0 means that FD is contained in the left kernel of K which 
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is F. Hence there is a matrix L such that FD —LF. But then by postmultiply-

ing with F+ we obtain L =FDF+ =D. 

(iii)=Ki): FD=DF implies that 1TFD = 1TDF or \TD-\TDF. However 

1TD = C andl 7D = C. O 

REMARK: Assume that FD=DF for some reduction matrix F. Then D is 

necessarily diagonal. Indeed we have from this assumption: 

FijCj=:DikFkj
Jt'S,i^jDjiFij. Assume that i*£k and multiply this equation with 

Fkj. Then, since FjjFkj = 0 for i=£k we have 0=DikFkj, and hence Dik2,jFkj=0. 

Since the summation Syi^ £? 1 for all k, we have Dik = 0. 

LEMMA 2.6: Lef F arni Kbe as in Lemma 2.5 and let et be the i-th basis vector of 

R". Let {X,N) be a stochastic system as in (8). Assume that FAK=0. Then F 

reduces (X,N) ifC is such that Fek=Fej for some k and j implies ck = Cj. 

PROOF: We only have to prove that we can write C = CF, where C = CF+. 

Observe first that 

k k 

where 8,-,- is the Kronecker symbol. In particular (FF)Ji = '2.kFik Observe furth-

ermore that for all i,j,k ckFikFjj = CjFikFjj because of the assumption on C. 

Now we calculate (CF)J=(kCFT(FFT)-lF)J = 

i.k.l i,k 

cj ^FljiFFT)^i'2Ffk = CJJFU = CJ. 
i k i 

So CF=C. D 

REMARK: From Proposition 2.3 it follows that a necessary condition for 
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reduction of (X,N) (or (A,CJ) is that some of the c, are identical. However 

this condition is not sufficiënt, since also the transformed process f(X) has to 

be Markov. See the example that follows after Proposition 2.3. 

However if F reduces a pair (A,C), then, as follows from Lemma 2.6, at the 

same time it reduces any other pair (A,C), where C = CF for some C. Observe 

that here all the c, may be different, which is not necessarily the case for the ?,. 

This means that if F reduces (A,C\ it also reduces any other pair 

(A,C) = (A,CF), if there exists a map g such that g(c,-)'=Cf. Or, equivalently, if 

there exists a map g such that g(c,-)=c,-. Indeed this equivalence holds, because 

g(c<)=g(2jCjFjd = ^jg(^j)Fji = ^jêjFji ~ ci-

To see whether a system (X,N) is reducible one may check whether the criteria 

of Proposition 2.3 hold for a reduction matrix F. If the state space % is very 

large this is of course quite a task. So we are looking for more easily verifiable 

criteria. It turns out, as can be expected, that a definition of stochastic obser-

vability offers an alternative approach to find a possible reduction. Before 

defining this concept, we have to introducé some notation and we also need 

some properties that are satisfied by the objects that play a role in the follow-

ing definition. 

DEFINITION 2.7: Let for each integer k>\, Uk be the set of bounded left con-

tinuous functions from R+ to R*. Write U=Ul and if u<=Uk, then u(t) will 

be written as a row vector. Define for ueU, veUm, a reduction matrix 
F e Rmx„ a n d T>t^Q 

T T 

gV(t,T) = E[cxp(iju(s)dNs + ijv(s)FYsds)\<$t}. (9) 
t t 

Because (X,N) is a stochastic system, we may replace the conditioning a-

algebra in (9) by o(X,). Hence there exists a deterministic hy(t,T)eClXn, such 

thztgy(t,T) = hy(t,T)Yl. 
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The following proposition gives a representation for h%"(t,T) as defined above. 

We use the foËowing notation throughout the rest of this section. Let x b e a 

row or column vector in R". Then diag (pc) is the n Xn diagonal matrix with i-

th diagonal element equal to xt. Note that gf"(t,T) can be interpreted as a 

conditional characteristic function of part of the future behaviour of the sys-

tem, given its entire past. 

PROPOSITION 2.8: Let hf{t,T) be as in Definition 2.7. Then it satisfies the 

integral equation: 

T 

hf(t,T) = 1T + fhY(s,T)(idiag(v(s)F) + D(u(s)))$(s -t)ds (10) 

In thepoints where ht^"(-,Tr) is differentiable, we have 

jjhf'if,T)= - hV(t,T) (i diag(v(t)F) + D(u(t)) + A) (11) 

PROOF: We suppress in this proof the dependence on u,v and JF. 

T T 

Let f(r)=exp(z' ju(s)dNs + i jv(s)FYsds). Then from the stochastic calculus 
o o 

rule we obtain 

T T 

g{T)=\ + jg(s -) (e^ - i)dNs + jg(s)iv(s)FYsds. (12) 
o o 

Now we take conditional expectations in (12) w.r.t. %=% V 9^. Because CY 

is also the F-intensity of N, we get 

T 

E]g(T)\k] = 1(0 + E[fg(sW»V-\)CYsds\%] + 
t 

T 

+ E[fg(s)iv(s)FYsds&] 
i 

T 

= g«) + fE\g(s)\%](e"<V-l)CYsds + 
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T 

+ fE\g(s)&]'v(s)FYsds. (13) 
t 

Dcfmcg(t,T)=E\g(tr'g(T)\%)=g(tr1E\g(T)\^]- Then 03) yields 

T 

g(t,T) = I + jg{t,sW^-\)CYs + iv(s)FYs)ds. 
t 

T 

So, g(t,T)=cxp(j ((eiu{s)-l)C + iv(s)F)Ysds). From this expression we also 

obtain a "backward" integral equation: 

T 

g{t,T) = 1 + jg(S,T)((eiu(s)-l)C + iv{s)F)Ysds. (14) 
i 

Define now g{t,T)=E\g{t,T)\%\ and observe that this is indeed the quantity 

in Definition 2.7. So we can writeg(t,T)=h(t,T)Yt. Then from (14) 

T 

g(t, T)=l+ E[fE\g(fi,T)\9Meh'V - 1)C + iv(s)DYsds\€t] 
i 

T 

= l+E[jg(s,meiuis)-1)C+ iv(s)F)Ysds\<5t] 
i 

T 

= 1 + £[ƒ*(*, r ) y , ( ( e * « - 1)C + iv(s)F)Ysds\%] 
t 

T 

= 1 + E[fh(s,T)(p(u{S)) + idiag(y{s)F))Ysds\%] 
i 

T 

= 1 + fh(s,T)(D(u(.s)) + idiag(y(s)F))$(s -t)dsY, (15) 
t 

Or, since 1TY, = \,g(t,T)=h(t,T)Yt and (15) has to hold for all possible out-

comes of Y„ we get h(t,T) = lT+ƒ h(s,T)(D(u(s)) + idiag(v(s)F) $(s -i)ds. 

This proves (10). 

Furthermore, if differentiation w.r.t. t is allowed, (10) yields 
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^(t,T) = - h{t,T)(p(u(t)) + i diag(p(t)F) 

T 

- jh(s,T)(D(u(s)) + i diag(v(s)F)®(s-i)Ads 
t 

= -h{t,T)(D{u(t)) + i diag(y(t)F)) + (lT-h(t,T))A 

= -h(t,T)(D(u(t)) + i diag{v{f)F) + A), 

because \TA = 0 . Hence (11) holds . D 

In several cases an explicit expression for hy(t,T) is available. We need the 

following notation. Let M\,...,Mk be square matrices of the same order. Then 

we denote by IIf=i*M, the ordered product MkMk~i....M\. 

COROLLARY 2.9: Let t = t0<:ti<....<tk = T. Let for j = \,...,k, «7eR and 

Vj<=Rm and define u(s)=^=1Ujl{tj_ulj](s), v(s) = tf=lVjlitj_litj](?). Then with 

this choice of the functions u and v we have 

hV(t, T) = \T n *exp((/ diagivjF) + D(tij) + A)(tj - tj _ ,))• (16) 

PROOF: Follows directly from equation (11). 

The usefulness of the hf(t, T) is parüy the content of the next lemma. 

LEMMA 2.10: Assume that F reduces (X,N). Let %=KerF and K be a matrix 

whose columns span % Then hj>v(t,T)K=Q, and hence there exists afactorization 

hy(t,T)=h"'\t,T)F. 

PROOF: Observe first that, always, F diag(y(s)F)=diag(y(s))F. From the f act 

that F reduces (A,C), we have FAK=FDK=Ö. Hence there exist matrices 

NuNi(t) and N2 such that AK=KNU $(t)K=KNi(t), DK=KN2. Therefore, 
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with suppression of the dependence on u,v and F: 

T 

h(t,T)K = \TK + jh(s, T)(i diag(v(s)F) + D(u(s)))$(s -t)Kds = 
t 

T 

= 0 + fh(s,T)K(iN(s) + (e / u ( j )- l)N2)Nl(s -t)ds. (17) 
r 

Since h(t,T)K=0 is a solution of (17), and since solutions are unique, the 

proof is finished. • 

Apparenüy, for stepfunctions u and v as in corollaty 2.9, only the differences 

tj — tj-i are important. Therefore we introducé functions hf*k(t) as follows. 

Let {tj}f=i OR +,{UJ}]°=Ï CR, {Vj}JLi CRm and define hf%(t) as in (16) with 

the differences tj—tj-\ replaced by tj. Let H be the cone 

{(t,T)<BR2:T>t>0). Clearly for all ueU,vBUm and (t,T)eH,hy{t,T) 

induces a linear map from R" into C. So we can introducé 

hF^Un,Cuxv"XH) by hF(u,v,(t,T))=hy(t,T)eQ(R",C). Denote by 3 ^ the 

kernel of hF. 

In a similar way we can introducé operators hFk, by considering the functions 

hf\if), and their kernels %Fik- Now we can prove the following. 

THEOREM 2.11: Let %F be Ker hF and %Fk = Ker hF>k. Then 

(i) 3Cjr,, D %Ft 2 3.... and f] %FJ = %F 
j = \ 

(ii) Iffor some j %FJ=%FJ + u then %Fj is D,A and diag(yF) invariant, for all 

veR"1 and%F=%Fj 

(iii) %FCKerF 

(iv) Ifmoreover hF factorizes as hF = hF, then %F=Ker F 

PROOF: Since we work with flxed F, we suppress the dependence on F. For 

notational convenience we also suppress dependence on u and v. 



(i) Let tj=tj + \,j>ï. Let vi=v, ux = u. 

Then A/ + 1(ï)=A;(7) exp((/ diag(yF)+D(u)+A )*,). (18) 

Now hj + -[(t)%/ +1=0. So in particular for *i=0, we get /i7(r)9C, + 1 =0, 

which shows that %J + 1C%J. 

Certainly %CXj, for all;', so 3CC nj°=13fy. But since any weï/ and veï/m 

are pointwise limits of stepfunctions, also the reversed inequality holds. 

(ii) Assume %f=%f + \. Differentiation of (18) with respect to 11 gives 

0==-£-hj+1<fyX, = hJ + l(t) (i diagiyF) + D(u)+A)%j. (19) 

Now take in (19) t x=0, u=0 and v = 0. Then 

0=hj(t)A%j 

which yields %j to be ^4-invariant. With this information we take in (19) 

f i =0 and H = 0 but we allow v to be free. This yields %j is also diagiyF) 

invariant for all v. Similariy 3C, is also D(u) invariant for all u, hence D 

invariant. Hence 3C= n f= l%,=%j. 

(üi) From (ii) we know that % is diagiyF) invariant (for all v). Hence 

Fdiag(vF)%=0 or diag{v)F%=Q =>F%=0. 

(iv) Obvious in view of (üi). 

PROPOSITION 2.12: The following statements are equivalent. 

(i) hYit,T) = h"\t,T)F 

(ii) h satisfies the integral equation 

_ T_ _ _ 

h"'"(t,T) = 1T + jh"\s,T)iidiagivis)) + Z)(«is)))$is -t)ds (20) 
t 

where FD = DF, F$it) = Ö>it)F 

PROOF: (i) =* (ii): From Theorem 2.11, we know that KerF=KerhF is a D,A 
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and diag(y(s)F) invariant subspace of R". So there exist matrices D and A 

such that FD=DF, FA—AF, and as always we have 

F diag(y(s)F)—diag(y(s))F. Hence 

T_ 

h"/(t,T)F = 1T + jh"'\s,T)F(i diag(y{s)F) + D(u(s)))$(s -t)ds 
t 

T_ _ _ 

= 1T + jh"'\s,T) (i diag(p(s)) + D(u(s)))$(s-t)dsF 
t 

After postmultiplication with F+, the claim follows. 

(ii) =* (i): Postmultiply (20) by F, then we see that h ' (t,T)F satisfies the same 

integral equation as hy{t,T). Because h"'\T,T)F=lTF= \T=hY(T,T), the 

claim follows. D 

The following proposition, that summarizes some of the preceding results 

forms the basis of Definition 2.14 below and makes it understandable if one 

keeps the interpretation of gf{t, 7) as a conditional characteristic function in 

mind. 

PROPOSITION 2.13: Let Xt=f(Xt), Yt=FYt, where the reduction matrix F is 

associated with f as usual. There is equivalence between 

(i) E[gV(t, T)\o(xt)]=gr(t,T) for all u,v and t<T. 

(ü) (X,N) is a stochastic system and gïv(t,T) = E[gf(t>T)ffiV<3?] for all u,v 

andt<T. 
~-~u,v 

(iii) There exists a factorization hY(t,T)=h (t,T)F. 

PROOF: (i) => (iii): There exists a matrix Q, such that E[Y,\a(Xt)]= Q,Yt. 

(i) then implies hy(t,T)Yt=hy(t,T)QJt=hy(t,T)QtFYt. So take 

hu'\t,T)=hy{t,T)Qt 

(iii) -• (i): £[g?.,'(/,r)|a(^)]=JE[r,'(/,r)JFr,|0(z/)]=^"'y(ï,r)y,Kz,)] 
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= hu,\t,T)Yt = hV(t,T)Y, 

(üi) => (ü): £Igï 'ftD|S*V9f ] = £[£[#'(*, r)|S?VS?]|S?VS? ] 

= £[*?'(<, r>r,|9fvsf] = *[*£'(*, r>y,|sf vs*] = ^'(/,7> 

Tbis, together with Proposition 2.12 also shows that (X,N) is a stochastic sys-

tem. 

(Ü) =* (üi): *r(r,r)r,=£feï'(/,r)|^vsf]=£ig?'ftT)|o(^)] 
=/i^ (/, T)Y, for some deterministic /J^ (t, T) since the last conditional expecta-

tion is a function of X,. Because Y,=FY, the result now follows. D 

DEFINITION 2.14: The w-th order system (X,N) is said to be strongly stochasti-

cally observation equivalent with some m-th order system (m <ri) if there exists 

a reduction matrix i reRm X n such that a factorization hf=hF holds. If any 

such factorization implies that F is a permutation matrix, then (XtN) will be 

called strongly stochastically observable. 

Some comments are appropriate. Let (X,N) be described by equation (8). If 

(X,N) is strongly stochastically observation equivalent with some m-th order 

system, then from Propositions 2.12 and 2.13 it follows that this one is 

described via matrices A and C by an equation like (8). Therefore we will also 

say that (A,C) is strongly stochastically observation equivalent with (A,C). 

The interpretation is as follows. If we condition the distribution of the 

future of the bivariate stochastic process (f(X),N) on the entire past of (X,N), 

or equivalently just on the current state X„ then this determines f(Xt) only, 

instead of X, itself. We also know from Proposition 2.13 that (f(X),N) is again 

a stochastic system. 

Suppose now that (X,N) is strongly stochastically observable and that F is a 

mXn reduction matrix (/«<«). Then a factorization hF=hG always exists for 

another reduction matrix G, which may be the identity (or a permutation 

matrix). However, because then KerGCKerhfCKerF (see Theorem 2.11 
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(iii)), where the last inclusion is strict, it follows that there exists yet another 

reduction matrix H such that HG=F. Hence the conditioning of the distribu-

tion of (f(X),N) on X, determines strictly more then f(X,). Stated otherwise, 

f (X,) is not sufficiënt to predict the future distribution of (f(X),N). Note also 

that in this case (X,N) can only be strongly stochastically observation 

equivalent with another n-th order system. 

We also mention that this definition differs from the current definition of 

stochastic observability in the literature [5, p. 490] for linear Gaussian systems, 

where the future evolution of the state proeesses is disregarded. However the 

Gaussian analogue of our definition is equivalent with what can be found in 

the literature. The reason behind our alternative is that we now force the 

transformed process f(X) to be Markov, which is automatically the case in the 

linear Gaussian situation. Therefore a slightly different terminology appears to 

be advisable. The idea behind strong stochastical observation equivalence, is 

that it should provide us with a link to (strong forward) reducibility. More-

over it should give us information about what reductions of the original sys­

tems are possible. This is the content of the next result which, although obvi-

ous, brings the eoncepts minimality and observability together. 

THEOREM 2.15: Let (X,N) be given by equation (8). Let F be a reductioin matrix 

and define A=FAF+ andC = CF + . 

(i) F reduces (A,C) if and only if (A,C) is strongly stochastically observation 

equivalent with (A, C). 

(ii) (A,C) is (strongly forwardly) minimal if and only if(A,C) strongly stochasti­

cally observable. 

PROOF: Direct consequence of Definition 2.14, Theorem 2.11 and Proposition 

2.12. D 

At first glance this theorem seems to be not very helpful, if one is looking for 
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possible reduction of (A,C), since also Definition 2.14 involves the unknown F 

that describes the reduction. But it turns out that it is a useful step to the 

finding of the F (if any) that reduces (A,C). We first introducé some new nota-

tion and an auxiliary result. Take in the definition of hf(t, T) the function v 

to be identically zero and write instead h"(t,T). Observe that this quantity 

does not depend on the specific F anymore. By taking w to be a stepfunction 

we can again, parallel to what we did after Lemma 2.10, construct h%(t)eC 

and from these the operators h and kk. Some of the properties of the hf(t,T) 

and hj?*k(t) carry over to h"(t,T) and the h%(t). There are however some 

differences. The precise result is the following. 

PROPOSITION 2.16: Let %—Kerh, %j=Kerhj. Then 

(i) 3C, 0%2. = ) • • • , and p | °°=,9C,- = 9C 

(ii) Iffor some j 3^=9C, + 1, then %=%j and%=%j is D and A invariant. 

(iii) If F reduces (A,C), then KerF<Z% hence there exists a factonzation h =hF. 

(iv) If a factonzation h—hF exists such that Kerh=KerF for a reduction 

matrix F, then F reduces (A,C). 

(v) There is equivalence between 

(a) h"{t, T)=h"(t, T)G and Ker h = Ker G for some matrix G and 

(b) h (t, T) satisfies the integral equation 

Vit,T)=1T+ jh\s,T)D(u(s))Ö>{s -t)ds 

where DG = GD, D(u (s)) = (eiu(-s) - 1JD and $(t)G = G*(ï). 

PROOF: (i) and (ii) are proved in the same way as (i), (ii) of Theorem 2.11, (iii) 

follows in the same way as Lemma 2.10, (iv) follows from (ii) and (v) can be 

proved as Proposition 2.12. D 

REMARK: The most striking difference between h and hF is the following. Sup-

pose that 9C= KerA^{0}. Then we have a factorization h—hG for some G 

which is such that Ker h=Ker G. It may happen that it is impossible to choose 
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G to be a reduction matrix. See Examples 2.23 and 2.24. Notice also that we 

imposed in (v) of Proposition 2.16 that Kerh—KerG, whereas for the analo-

gous statement of Proposition 2.12 the equality KerhF=KerF automatically 

holds. The next proposition implicitely offers a way to compute the %j and %. 

PROPOSITION 2.17: There exist a sequence of matrices Wj, as indicated in the 

f roof, such that Kerhj=Ker Wjfor all y'> 1. 

PROOF: Letz = e ' " - 1 and let (with a little abuse of notation) h\(f)=h\(t). Let 

Wx(z) be the n Xn matrix with >th row equal to (•^-)>h\(0) = \T(.zD+Ayr_1 

at 
(use equation (11) with v =0). By the Caley-Hamilton theorem for k~s*n one 

ft 
has (—)kh\(0) = '2'!=oak]l

T(zD+Ay for some real numbers ak<. Hence 
at J 

Ker h j = 9C if and only if Wt(z)%= {0} for all z. Next we form the matrix JV} 

in the following way. Each row lT(zD+Ay~l of Wi(z) can be written as 

%{l=bzkfïkj, where the fikj are row vectors in R". Wx is now the matrix 

obtained by stacking all the fiy in a large matrix with n columns. It is evident 

that Kerh\=KerW\. In an analogous way we can also construct matrices 

Wj(z) via the partial derivatives of hj(t) with respect to the vector t evaluated 

at t =0 . And as above by grouping the equal powers of z that appear in the 

rows of Wj(z), we obtain a matrix Wj. Hence the %j appearing in Proposition 

2.16 are the same as the kernels of the matrices Wj. D 

Some additional properties of h are described by the following lemma. 

LEMMA 2.18: 

(i) For all ueU the function h"(-,T) is left differentiable at t=T and 

4~h *(T, T)=- (e1*™ - 1)C. 
at 

(ii) Let V be the nXn Vandermonde matrix with j-th row equal to lTDi~l. 

Then Ker h CKer V. 
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(üi) Assume that there exists a reduction matrix F such hu(t,T)=h (t,T)F. 

Then C can be written as CF. Ifmoreover all the elements of C are different 

from each other, then %—Kerh=KerF. 

(iv) Ifall the c, are different then Ker h — {0}. 

PROOF: (i). Immediately follows from eq. (11) since h(T,T)=lT and \TA =0 . 

(ii) From Proposition 2.16 we know that Kerh is D invariant and since 

\TKer h=h(T, T), Ker h = {0} we have 1TDJ ~1Kerh = \TKer A = {0}. 

(iii) We have to prove that %=Kerh = {0}. Because of (i) and Lemma 2.5 

there exists a diagonal matrix D such that FD=DF. Now %=F%. Hence 

D%=DF%=FD'Xc.F%=°K> So 3C is D invariant. If V is the Vander-

monde matrix with j-xh row equal \TDJ then we have as in (ii) 

%CKer V. The latter is zero, since all the elements of C are assumed to 

be different. 

(iv) Follows from (iii). 

The role that the h"(t,T) play in the finding of a matrix F that reduces (X,N) 

is revealed by the following theorem. 

THEOREM 2.19: There is equivalence between 

(i) (A,C) is strongly stochastically observation equivalent with (A,C). 

(ii) There exists a reduction matrix F such that hu(t,T) = h"(t,T)F for all t<T 

and all ueU and a similar factorization holds for any other pair (A,C) 

where C = CF. So if h is related to (A,C) as h is to (A,C), then: 

h\t,T)=h"(t,T)Ffor all t<T and all ueU. 

PROOF: 

(i) =» (ii). From Theorem 2.15 we know that there exists a reduction matrix F 

such that FA =AF and C = CF. But then in view of the remark after Lemma 

2.6 F also reduces any (A,C) where C can be written as CF. Hence from 
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Proposition 2.16 we have both the factorization h"(t,T)=^h (t,T)F and 

h\t,T)=h\t,T)F. 

(ii) => (i). Since the assumption holds for any C = CF, we may take all the ele-

ments of C to be different. Then from Lemma 2.18 (iii) Kerh — KerF and from 

Proposition 2.16 KerF is A invariant, so FA=AF, with A=FAF+. By 

assumption and from Lemma 2.5 FD=DF. Hence F is a matrix that reduces 

(A,C). The result now follows from Theorem 2.15 (i). 

The following result is closely related to Theorem 2.19. 

PROPOSITION 2.20: Let (X,N) satisfy equation (8) and let (X,N) be another sto-

chastic system that satisfies an equation like (8) with C = [c\,...,cn] replaced with 

C = [c\,...,c„] and let %=Kerh and %=Kerh. Asswne that there exists a map g 

such that Cj-g(Cj). Then%C% 

PROOF: % is a D and A invariant subspace of R", where D =diag(C). (Proposi­

tion 2.16.) We claim that % is also D invariant. If the claim holds, then it 

immediately follows from equation (10) with v=0, that h"(t,T)%={0}, since 
.A. •* * A. 

1 %= {0}. Since % is D invariant, it is spanned by some eigenvectors of D. So 

let k e'9C be such that Dk = Cjk, for one of the eigenvalues c, of D. Hence for 

aliy we have Cjkj = Cjkj if k = [ki,...,k„]T. If kj = 0 then certainly Cjkj = c,kj. If 

kjf^O then Cj — ch but then also Cj = q. So again we have Cjkj = Cjkj. Hence k 

is an eigenvector of D with eigenvalue c,-=g(c,-), which shows that % is also D 

invariant. 

All results so far obtained form the basis of Algorithm 2.21 below, that 

yields for a stochastic system (X,N) a minimal representation. 

ALGORITHM 2.21: 

1. Compute Ker h and frnd a reduction matrix F such that h"(t,T)=h"(t,T)F 
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and such that h {t,T) cannot be factorized further by means of some 

other reduction matrix. 

2. If Kerh=KerF, then the algorithm produces F as its outcome. Else we 

go to step 3. 

3. Let C=CF, where all the c, are different from each other. Form h (t,T) 

(which is related to (A,C) as was hu(t,T) to (A,C)). 

4. Apply step 1 to h "(t, T) in lieu of h u(t, T). 

Before proving that the matrix F produced by the algorithm, induces a 

minimal pair (A,C) defined by A =FAF+ ,C=CF+, we discuss the way it 

works. The finding of F in step 1 is relatively simple. Compute Kerh by using 

the matrices Wk of Proposition 2.9 as far as needed. This results in a factoriza-

tion hu(t,T)=h"(t,T)G, where G is such that KerG = Kerh. Next one inspects 

the columns of G. If any two of them are identical, then the same holds for 

the corresponding columns of F, which determines F up to a permutation of 

its columns. An alternative way is to inspect the elements of the h%(t) for all k 

as far as needed. If two columns of F are identical then the same holds for the 

corresponding elements of all the hu
k(t) and vice versa. If the algorithm stops 

at step 2, then it follows from Proposition 2.16 that F reduces (A,C). If instead 

Ker hy^Ker F and step 3 is performed then we know from Lemma 2.18 that 

some of the elements of C (which is such that C = CF) are identical. Hence it 

makes sense to construct C as prescribed. Then from Proposition 2.20 we 

obtain that Kerh CKerh and moreover that this inclusion in strict, since also 

Kerh CKerF in view of Lemma 2.18 (ii), applied to the Vandermonde matrix 
T * j — ï 

with rows 1 D , which has kernel equal to Ker F. Hence the algorithm con-

structs a strictly decreasing sequence of kernels, until it terminates which hap­

pens af ter finitely many iterations. 

THEOREM 2.22: Let F be the final result of Algorithm 2.21. Then F reduces 

(A,C). Hence there exist A,C with FA =AF,C = CF. Moreover (A,C) is minimal. 
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PROOF: The resulting F has the property that in the final iteration a factoriza-

tion of the form h (t,T)=h (t,T)F holds, where h (t,T) corresponds to some 

pair (A,C) and where Kerh=KerF. So KerF is D and A invariant (Proposi­

tion 2.16) and also D invariant (see the proof of Proposition 2.20). Hence F 

reduces (A,C). Now let F\ be a matrix that gives a maximal reduction of 

(A,C). So with A=FxAFt and C^CF? we have that (A,C) is a minimal 

pair. F\ is determined up to a permutation of its columns. Then in step 1 of 

the algorithm we have a factorization (as follows from Proposition 2.16) 

hu(t,T)=h (t,T)F2Fi, where possibly another reduction matrix is involved. 

Suppose that step 2 is skipped, otherwise the proof is complete. So we con­

struct C — CF2F\. Then of course (Lemma 2.5) KerFx is D invariant and 

therefore h (t,T) factorizes as h (t,T)FiFi, with possibly again another reduc­

tion matrix F3, which has the property that KerF3CKerF2, because 

Ker (F3Fi)CKerh CKer V=Ker (F2F{), where F i s the Vandermonde matrix 

withy-th row equal to \TD . (Use also Lemma 2.18). Hence in each itera­

tion of the algorithm a factorization of functions like h "(t, T) holds, where the 

matrix F\ is always part of the factorization, and where the kernels of the 

F2,F3 etc. are shrinking. Therefore in the final step of the algorithm we have 

a factorization of the form h=hF,Fi. From the first part of the proof we 

know that F,Fi is a matrix that reduces (A,C), but since F\ gives the minimal 

reduction F, has to be a permutation matrix. D 

In the next two examples, we apply Algorithm 2.21. 

EXAMPLE 2.23: Let X takes its values in {1,2,3,4,5} and let 

A = 

- 1 4 1 1 1 1 
1 - 1 4 2 3 1 
9 9 - 7 7 1 
1 1 2 - 1 2 1 
3 3 2 1 - 4 
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Assume that N has the intensity CY, where C = [ l 1112]. 

The matrix Wx of Proposition 2.17 now becomes (use \TA =0): 

lT 

\TD 

\TD2 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1' 
2 
4 

\TDA 3 3 2 1 - 4 
\TD3 1 1 1 1 8 
ÏT(D2A +DAD) — 12 12 8 4 - 2 0 

1TDA2 - 3 2 - 3 2 - 1 1 10 25 

1TD4 1 1 1 1 16 

1T(D3A + D2AD+DAD2) 33 33 22 11 - 6 8 

1T(D 2A 2 + DADA +DA2D) 

1TDA3 

- 1 7 2 
402 

- 1 7 2 
402 

- 6 3 
51 

46 
- 3 0 0 

166 
165 

Now Kerhx = Ker Wx is spanned by [1 -1000] 7 " and [ 0 1 - 2 1 0 ] r . Observe 

that these two vectors are eigenvectors of both D and A. So Kerhx=Kerh. 

The reduction matrix F in step 1 of Algorithm 2.21 is easily seen to be 

1 1 0 0 0' 
0 0 1 0 0 
0 0 0 1 0 ' 
0 0 0 0 1 

since the first two columns of Wx are identical. Clearly Ker F^Ker h. So step 

3 of the algorithm applies. Let C = [1342], C~[\ 1342]. Of course one can 

now construct a matrix Wx. Then Ker Wx (ZKerF (Lemma 2.18 (ii)), which is 

spanned by [1 — 1000] r . Since, as observed above, [1 — 1000] r is A and D 

invariant, we see that KerWx =Ker F and also, as above, Ker h =Ker Wx. 

Hence the outcome of the algorithm is 

1 1 0 0 0" 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 
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The next (partially worked) example is apart from an ülustration of Algorithm 

2.21 also interesting in the light of the remark that foliowed Proposition 2.16. 

EXAMPLE 2.24: Change the matrix A in the preceding example into 

4 1 1 2 1 
1 - 5 4 2 2 
1 3 - 8 1 3 
1 0 1 - 8 4 
1 1 2 3 - 1 0 

A = 

but let C be the same. If one again computes the matrix W^ than it turns out 

that its kernel %i is again spanned by k\ = [1 — 1 0 0 0 ] r and 

k% = [0 1 - 2 10] r . Let K=[klk2]. A calculation shows that 

AK = K 
1 

10 and DK=K 

Hence Ker h is spanned by k^ and k2, since already %x is a D and A invariant 

subspace. The matrix F in step 1 of Algorithm 2.21 is the same as in the 

preceding example. Take again C = [ l l 342]. The matrix W^ contains one row 

equal to \TDA=[61 - \ \ - 1 9 8 ] . Since Kerh belongs to both KerWx and 

Ker F as explained in the discussion after the description of the algorithm, we 

see that Kerh = {0}. The F resulting from the algorithm is therefore the iden-

tity matrix (or another permuation matrix). The intriguing feature of this 

example is, that in spite of the fact that most of the c, are equal, no reduction 

is possible. 

We close this section with some considerations that indicate ways of future 

research. Let first X, =f(Xt) and let F the reduction matrix associated with ƒ. 

Assume ƒ :{l,...,/i}-»{l,...,iw}. Trivially each entry F^ of F has the following 

interpretation: Fij=P(X,=i\Xt=j). In both the two examples above we can 

factorize h as hG, where 
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G = 

1 1 ^ 0 0' 
0 0 ^ 1 0 
0 0 0 0 1 

Observe that each column of G can be considered as a probability vector. The 

idea is now to extend the interpretation of the F^ as a conditional probability 

to the entries of G. This idea allows us to consider so called probabilistic 

reductions of the system (X,N) be looking at suitably defined random func-

tions of Xt. This new approach seems to be connected with the behaviour of 

the solutions of the filtering problem that is defined by the finding of E[Yt\^]. 

Results in this direction will be reported in another publication. We only men-

tion that in the last example the following identity hold: GA —AG, where 

-2'A 4V2 A'A 
l'A -IV2 5'A 

1 3 - 1 0 

which is indeed the rate matrix of some Markov process, that lives on a state 

space with 3 elements. This already indicates that some reduction, of another 

type than described in this section, should be possible. 
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