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1. Introduction 

The technique of uniformization, as initiated by results in [3], and 
described for instance in [7], p. 26 or [8], p. 110, is known to be a 
most useful tooi for modelling, simulating or numerically solving 
continuous-time Markov chains. (cf. [8], [9]). This technique is 
essentially based on a Markovian or rather exponential structure. For 
non-exponential structures, however, an equivalent or generalized result 
has not been reported. 

Probably the most famous present-day applications of continuous-time 
Markov chains are stochastic service networks which arise when modelling 
communication, computer or manufacturing systems under exponentiality 
assumptions. These assumptions, however, are rarely met in practice. 
Furthermore, explicit stationary distributions are usually not available 
due to practical phenomena, such as blocking, age dependent routing or 
breakdowns. Simulation or numerical computation is therefore generally 
required. 

To this end, this note is concerned with an extended uniformization 
procedure that applies to non-exponential stochastic service networks. An 
equivalence result is obtained for the stationary distribution of the 
original model with state dependent jump times and a modified model with 
state independent jump times. This result is of practical interest as it 
may enable one to reduce the simulation or numerical computation of a 
non-exponential complex network to that of a Markov chain. 

The result is intuitively appealing and may have been used already by 
practitioners. To the best of knowledge, however, it has not been 
reported or advocated as such in the literature. This note therefore is 
primarily meant to bring it to the attention of practitioners along with 
formal justification. The proof, which appears to be rather simple, is of 
theoretical interest in itself. 

The system under study allows blocking and general state dependent 
characteristics such as modelling blocking and age dependent routing. For 
notational convenience the presentation is restricted to closed 
frameworks but extensions to open formulations are readily concluded. The 
restriction to bounded failure rates can be relaxed. 

The organization is as follows. In section 2 the model descriptions and 
equivalence result are presented. Section 3 provides the formal proof. A 
discussion on extensions and computation concludes the paper. 

2. Model 

Consider a stochastic network with a fixed number of M jobs. A state 
[L,T] with L - (Jl1 , . . . ,iM) and T - (tx t̂ ,) denotes for each job i the 
current job mark i i of job i with £L e S, where S is some countable space 
of possible job marks, and tt the time (age) af ter the last service 
completion of this job. 

For example, in queueing network applications a jobmark 1 can be of the 
form: ü = (r,j,p) with r some type number of the job, j the station at 
which it is present and p the position at this queue that it occupies, 
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while t is the time that the job has already been present at that 
station. 

Original Model. The law of motion is determined by the characteristics: 

F^(.) : distribution functions 

SiCfL.T]) : service rates (speeds) 

pt(2 |[L,T]) : transition probabilities 

as follows. When a job changes its jobmark in 2. it requires a random 
amount of service with distribution function F^. When the system is in 
state [L,T], the service rate i.e. the amount of service per unit of time 
provided to job i is si([L,T]). When the system is in state [L,T] and job 
i completes its service its jobmark is changed in i' with probability 
pt(r |[L,T]). 

Remarks 

1. Note that the service rate for a particular job in a particular state 
can be equal to zero as naturally arising for instance in a queueing 
network with FCFS-service stations as in the example below. 

2. Clearly, the above parametrization could have been combined in one 
service completion rate function. However, the present more detailed 
formulation is preferred as it corresponds more naturally to 
queueing network protocols. 

Example (Queueing Network) Consider a closed queueing network with N 
FCFS-single server service stations and M numbered jobs. A job requires 
random amounts of service at the various stations, say at station j 
according to a distribution function G, . The service rate at station j is 
Sj (n_j ,tj) when n̂  jobs are present while the job in service has received 
already t̂  units of service. (This service rate thus depends stochas-
tically also on the total amount of residual workload at this station). 
Upon service completion at station j a job routes to station j' with 
probability pjj,(n,t) where n = (̂ ,...,1̂ ) and t = (t1 t^) 
denote the population sizes ns and received amounts of service ts at 
station s for all s. (Age and workload dependent routing as well as 
blocking are hereby involved). 

Letting £ - (i,j,p) denote the job-number i, the station number j and the 
position p at this station, where p=l is the head of the queue, and 
reading 1{A} = 1 if an event A is satisfied and 1{A} = 0 if not, the 
above parametrization applies with 

Si([L,T]) - Sidij.tj) l{p-l} 

Pi(i'|[L,T]) - p (n,t) l{i'-(i,j\0)} 
D 

We will now make some assumptions in order to define a related so-called 
uniformized model. 
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Assumptions 

1. For all 2., the function F^(t) is absolute continuous for t e (0,«) 
with density function f^(t). Hence, its failure rate is well-defined 
bY fjg<t)/[l-F<g.(t)] for all t e (0,«). We introducé the notation: 

(1) diüL.T]) = Si([L,T]) f» (t1)/[l-Fi (tl)] 
* i 

2. For some constant B < «> and all [L,T]: 

(2) d([L,T]) = Si d± ([L,T]) < B 

Uniformized model. The law of motion is now defined as follows. At 
exponential times with some parameter Q > B the network is inspected. 
Suppose that directly after an inspection the system is in state [L,T]. 
Then at the next inspection, say after time t, with probability 

(3) diüL.T]) Pi(r|[L,T])/Q 

the s t a t e i s changed in [L ' ,T ' ] with i j= i j and t j - t j + t for j * i but 
£[=&' and t^=0, for a l l i - 1,.. . ,M, while with probabi l i ty 

(4) 1 - d([L,T])/Q 

the state is merely updated, i.e. changed in [L,T'] with t i '""tĵ +t for all 
i-1 M. 

Remarks 

1. Note that (3) is indeed a probability with (3) summed over i and (4) 
together equal to one. 

2. The formulation (3) and (4) reduces to the Standard uniformization 
technique (e.g. [7], p. 26 or [8] p. 110) when all distributions F_g(.) 
are exponential. 

Without restriction of generality, now assume that both the original and 
uniformized model have a unique stationary density function at one and 
the same irreducible set S which we denote by ^(L.T) and TT2(L,T) 

respectively. The following result will then be proven in section 3. 

Theorem 

(5) M L . T ) = *2(L,T) (L,T) e S 

Remark 

Recently, in [6], a new elegant approximation method for continuous-time 
Markov chains has been introduced by actually inspecting the original 
chain at exponential times. Numerical results turned out to be amazingly 
accurate. In contrast, note that the above uniformization by exponential 
inspection concerns a different model but leads to an equality result. 
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3. Proof of the theorem 

We need to verify that the global balance (or more precisely, stationary 
forward Kolmogorov) equations of both models have the same solution, 
where these solutions are assumed to be unique and to be continuously 
differentiable in its argument tL for all i. 

To this end, for a state [L,T] we write [Li,^] + (i',t') for the same 
state with the job-i specification (£i,ti) replaced by (j?',t'). We write 
(L,T-s) for the same state with tt replaced by t̂ -s for all i. Further, a 
symbol 0+ is used to indicate a right hand limit at 0 and o (As) for an 
expression such that o(As)/As -» 0 as As -* 0. 

Let a state [L,T] be fixed. Then, in the Standard manner (e.g. [1], [4]) 
of first considering a point of time r and conditioning upon time r-At, 
these global balance equations (GBE) require: 

GBE for original model 

(6) ^(L.T) = 

TT^L.T-AS) 0 [l-di([L,T-As])As] + o(As) 
i 

provided t±-As > 0 for a l l i , whi le for any i such t h a t t± < As: 

(7) « i ü L i . T J + ( ^ . t i ) ) = 

S ƒ d t ' ( ^ ( [ L i . T J + ( i ' . t ' ) ) x 
£' 0 

As d i d L i . T J + (2' ,f))Vi^i\[^i^i] + ( i \ f ) ) X 

H [ l - d ^ f L i . T J + ( i ' . f ))As]} + o(As) 

GBE for uniformized model. 

(8) w2(L,T) = 

JT2(L,T-AS) [1 - QAs] + 

TT2(L,T-AS) QAs [1 - d([L,T-As]) As] + o(As) 

provided t±-As > 0 for all i, while for any i such that tL < As: 
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(9 ) i r 2 ( [ L l f T t ] + ( i i . t i ) ) -

S i ' (ƒ" ^ ( t k . T i ] + ( i ' . t ' ) ) X 

dt'{QAs d i ü L ^ T J + ( j e ' , t ' ) ) p 1 ( i 1 | [ L t , T 1 ] + ( i ' , t ' ) ) / Q } + o(As) 

Then, by dividing the left and right hand sides of equations (6)-(9) by 
As, letting As tend to 0 and using the continuity and differentiability 
assumptions in LA , one easily concludes tha't both (6) and (8) lead to 

(10) St {£- *p ([L,T]) - jrp <[L,T]) didL.T]).} = 0 

for any [L,T] and p = 1,2, while 

(11) ^([Li.TJ + (tL,0+)) -

S r o r d t ' l i f p d L i . T i ] + ( i ' . t ' ) ) x 

^ ( [ I ^ . T J + ( i ' , t ' ) ) p i ( i i | [ L i , T i ] + ( i ' . f ) ) } - 0 

for any [1^,^], it , i and p=*l,2. As these equations are assumed to have 
a unique solution the proof is hereby completed. 

4. Further remarks 

1. (Discrete phase-type version; limiting approach) 
Clearly, a discrete version of the uniformized model and a corresponding 
equivalence result can be provided also if one assumes the service 
requirements to be mixtures of Erlang distributions. In that case the 
sojourn times tt should be iread as the number of completed exponential 
phases after the last service completion. The present result could then 
be concluded by approximating the given distributions by such mixtures 
(in the sense of weak convergence) and applying weak convergence limiting 
arguments on so-called D-sample path spaces as developed in [2]. The 
technical details of such an approach, however, are known to be 
cumbersome and complex. 

2. (Unbounded failure rates; finite distributions) 
Assumptions Al and A2 can be rather restrictive from a practical point of 
view. For example, both assumptions are violated by deterministic service 
requirements. However, similarly to [11], for the Standard uniformization 
technique in the exponential case, under appropriate conditions one can 
extend the above uniformization to an approximate uniformization for 
situations with unbounded failure rates and finite distributions. 
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3. (Simulation/Computation). 
As continuous distributions are involved, the actual simulation or 
computation of the transition probabilities may still lead to technical 
complications. In simulation, the rejection method (cf. [5] or [7]) may 
come in handy. In computing, a discretization or approximation either by 
exponential phase type distributions as mentioned under 1, or by using 
discrete time grids (cf. [10]) for the service times, seems most natural. 
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