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Simple approxzimations for the batch-arrival MX/Gfl queue.
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Abstract. In this paper we consider the M!/G/l queueing system with batch
arrivals. We give simple approximations for the waiting-time probabilities
of individual customers. These approximations are numerically checked and
found to perform very well for a wide wvariety of batch-size distributions

and service-time distributions.






0. Introduction.

Batch-arrival queueing models arise in many practical situations. In
general it ig diffieult, if not impossible, to find tractable expressions
for the waiting-time probabilities of individual customers. It is therefore
useful to have easily computable approximatioms for these probabilities.
The present paper gives such approximations for the single server M2 /G/1
model.

Exact methods for the computation of the waiting-time distribution in
the ¥*/G/1 queue are discussed in Eikeboom and Tijms {1987}, cf. also
Chaudry and Templéton{l983], Neuts{1981] and Tijms{1986]). However thesge
methods apply only for special service-time distributions and are in
general not suited for routine calculations in practice. Also a gimple
approximation for the tail probabilities of the waiting time was given in
Eikeboom and Tijms [1987] by using interpolation of the asymptotic
expansions for ‘the particular cases of deterministic and exponential
services, This approximative approach uses only the first two moment of the
service time since the interpolation is based on the squared coefficient of
variation of the service time. This paper presents an alternative approach
that uses the actual service-time distribution rather then only its first
two moments. In Van Ommeren [1988] it is shown that the complementary
waiting-time probability has an exponentially fast decreasing tail under
some mild assumptions. By calculating the decay parameter and the amplitude
factor we get the asymptotic expansion of the waiting-time distribution.
For nonlight traffic this asymptotic expansion can be used as a first-order
approximation for the waiting-time probabilities. Next, by incorporating
exact results for other quantities such as the delay probability and the
first two moments of the waiting time we are able to give an improved
second-order approximation, This approximative method performs very well
for a wide range of wvalues of the traffic intensity and the coefficients of
variation of the service-time distribution and the batch-size distribution.

The organization of this paper is as follows. In section 1 the model is
defined and sgome preliminaries, including the asymptotic expansion of the
waiting-time distributlon, are given. The second-oxder approximation is
given in section 2, In section 3 we give numerical results and discuss the
performance of the approximations. The appendlx deals with the metivation

of the second-order approximation.



1, The model and preliminaries.

In the MX/G/1 queue customers arrive in batches and are served
individually by a single server. The batches arrive according to a Poisson
process with rate A. The number of customers in the batches are independent
and identically distributed positive random variables. Denote the number of
customers in a batch by X and the probability distribution of X by
g, =Pr{¥=i}, i=1,2,... . The generating function of {g;} is denoted by
G(z);-ig_lgjzj. The service times of individual customers are independent
identically distributed random variables., Denote the service time of a
customer by S and the distribution of § by B(x):=Pr{S=x}. We assume that
B{0)=0 and B’ (0):=lim , B(t)/t exists. We denote the Laplace-Stieltjes
transform of B(.) by B(s):=[0e **dB(t). Let Q(s) denote the Laplace-
Stieltjes transform of the total amount of service time required by the

customers belonging to one batch. It follows that
Qs)=6(B(s)).

The offered load is denoted by p:=AE(S)E(X) and it is assumed that p<l.
Customers belonging to different batches are served in order of

arrival, while customexs belonging to the same batch are served according

to their random position in the batch. Let D, denote the delay in queue of

the n-th served customer . The limit distribution lim ,_Pr(D =x) exists
only when the batch-size distribution (g, )} is aperiodic (i.e. when the
g.c.d. {j]gj>0}—1), cf. Cohen [1976]. As counter-example, consider a
constant batch size of 2 in which case Pr{D,,=0}=0 for all k=1 and

lim, . Pr(D,,,,=0)}=(1l-p). In Van Ommeren[1988] it is proved that the
folliowing limit

Wo(t) 1= lim =
1 n

ntm

it
= Pr{ D;st }, t=0,
j=1

always exists., Note that Wq(t) represents with probability 1 the long-run
fraction of customers having a waiting time of no more than t. Denote the
Laplace-Stieltjes transform of Wq(.) by T:Iq(s):-f:e"“‘dwq(t)° From
Cohen{1976] we can easily get the following theorem.



Theorem 1.1. The Laplace-Stieltjes transform of the stationary waiting-time
distribution W _(.) is given by W_(s)=W,(s)W,(s) with

(1l-p)s

ﬁl(s) -,
8-2(1-Q(s))

and

) 1-G(s)
Wy(s) = —————
E(X)(1-B(s)

From the Laplace-Stieltjes transform of the stationary waiting-time
distribution we can easily derive exact results for the delay probability,
the derivative of w&(x) at x=0 and the first two moments of the waiting
time. These results that will be needed for a second-order approxlmation to

Hq(.) are given by

- l-p
(1.1) W&(O) = 1im Wq(s) - —,
57w E(X)

R (L-p)[(1-g,)B' (0)+A]
(1.2) W&(O) = lim s(Wq(s)-Wq(O)) -

- Sl ] E(X)

(1.3) [ (10 (e))de = - (0) - - (0)-F5(0)
and
(1.4) [ t(1-W_(t))de = WWT(0) + W) (0)WS(0) + HWE(0);
0 -
where the derivatives should be interpreted as the right derivatives in

t=0. In order to evaluate the right hand sides of (1.3) and (1.4) we have

to use 1’'Hopital’s rule repeatedly to obtain

R -2Q7(0) X BGLEN()! i .
Wi (0) = ————— W(0) = ——— + 2[W](0)] ,
2(1-p)B"(0) 3(1-p)
) Q" (0)-E(X)B"(0)
W;(0) = - :
2E(X)B’ (0)
and
X 2{Q" " (0)B' (0)-Q' (0)B"* (0) }B* (0)-3[Q" (OB’ (0)-Q’ (0)B"(0) B (0)
b3 (0)= ,

6E(X) (B’ (0))3



where

B’ (0)=-E(8), Br(0)=E(S2), B (0)=-E(s%),

Q' (0)=-E(S)E(X), Q" (0)=E(X(X-1))E(S)2+E(X)E(S?%),
and

Q" (0)=-E(X(X-1)(X-2))E(8)3 -3E(X(X-1))E(S)E(S2)-E(X)E(S?%).

Here it is assumed that the service time and the batch size have finite
third moments, ' |

To give the asymptotically exponential expansion of the complementary
waiting-time distribution 1~Wq(t) for t+», we need a mild assumption on the
service-time and batch-size distributions. Roughly speaking the assumption
requires that these distributions should have no extremely long rails. More

precisely we make the following assumption.

Assumption, The power series G(z‘)-z"';'_,lg:].z'j has a convergence radius R>1,
the integral ﬁ(s)-f: e 2*dB(t) has an abscis of convergence A<0, and

there exists a T=zA with 1ims¢TB(s)5R and limslr[G(ﬁ(S))]-1=0-

This assumption is satisfied ip'most cases of practical interest, e.g. when
the service-time distribution is of the phase type and the batch-size
distribution has a finite support. Under this assumption the following

theorem is proved in Van Ommeren{1988].

Theorem 1.2. The stationary waiting-time distribution Wq(.) satisfies

(1.5) 1im eﬂt(l-wq(c)) -a ,

e
where A is the smallest positive solution to
A(Q(-8)-1)=8,

and ¢ is defined by



(1-p)8
AE(X) (AR’ (-B)+1) (1-B(-8))

@ Iw™

2. Approximations.

The asymptotic expansion stated in theorem 1.2. suggests the following
first-order approximation to W&(t):

1-Wq(t)zae‘ﬁt for t large enough.

This approximation gives practically useful results already for moderate
values of x when the traffie lead is not low. The performance of this first-
order approxXimation improves as p gets larger, As a rule of thumb, in terms
of the p-th percentile of the waiting-time distribution function W&(t), the
first-order approximation can be used also for practical purposes when
pzl-p(l-wq(O)), cf. also the numerical results in section 3.

A refinement of the first-order approximation for the complementary
waiting-time distribution 1-W§(t) that can be uged for all values

of £, is given by
(2.1) ﬁ;pp(t) = qe" Bt + 1e'5t + ne~Pt | t=20.

Here o and g are the coefficients of the asymptotic expansion (1.5). A
motivation of this approximation with three (rather than two) exponential
terms is as follows. A close look at the derivation of the asymptotic
expansion reveals that the (complex) poles and the residues at these points
of the Laplace-Stieltjes transform of the waiting-time distribution
determine the behaviour of this distribution. The pole with the largest

. negative real part is simple and real and gives a first-order
approximation. The poles which have the second largest negative real parts
lead to a second-order approximation. However in general it is difficult to
find these poles since they no longer have to be real. We therefore try to
determine -y,5,7 and ¢ by matching the exact explicit results for the delay
probability, the derivative of W, (x) at x=0 and the first two moments of

the stationary waiting time. This yields the relations
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2.2y W

app (0) = 1-W_(0),

(2.3) W, (0) = -W,(0),

(2.4) f3 V,,,(8ydt = f7 (1-¥ (t))de,
and

(2.5) [° tW, (t)dt = [3 t(l-W (t))dc.

2pp
Here it is in principle allowed that the numbers v,6,7n and ¢ are complex,
In case they are not real, they should be complex éonjugates { 1.e. 6=p
and y=r ) and we get a cosinus term in (2.1). Furthermore we require that
both Re(é§)>f and Re(p)>f hold, since otherwise the asymptotically exponential
expansion would be violated for t large. In view of the fact that the poles
may be complex it is preferable to approximate 1-W&(t) by three exponential
terms rather than by two exponential terms. Indeed the numerical investigations
indicate that for smaller wvalues of t the three-term approximation to l-Wq(t)
performs usually much better than the two-term approximation.

In support to the approximation (2.1) we make the following ohservations.
It follows from results in Van Ommeren [1988] that the approximation is
exact when the service time has a K,-distribution and the batch size is
geometrically distributed. If the service time has a K;-distribution and
the batch size is geometrically distributed the approximation is also exact
when the function A(Q(-s)-l)-s has no double zero as is usually the case.

In order to give closed forms expressions for ¥,8,7 and ¢, we define

the constants
L (2.6) Cpim(1-W_(0))-a,  Cpi=-W!(0)-aB,
03:=jg(1-wq(t))d£-a/ﬂ, G, =[5t (1-W_(£))dt-a/p2,
and
8:=(C, Cy-C,C, )% -4(CE-C,C; ) (CE-C,G;) .

Note that the C /s represents the deviations of the "moments" of l-Wq(x)

and the "moments" of the first-order approximation aePC. We can give a



simple scheme for computatien of the numbers v,8,n and . For clarity of
presentation we give here only the approximation and refer to the appendix
for a motivation of these results. Let B, denote some constant with §,>8,

e.g. By=2f. We have to distinguish between the following cases:

cage 1) C,=Cy=Cy3=C, =0, In this case the first-order approximation matches
already the four proposed condition (2.2) to (2.5), and we set
y=n=0 and d=p=g, .

case ii) Gy=0, G, /Cy;>B, C$=C,C; and C4=C,C,. In this case we only need
two exponential terms in the approximation (2.1) and we set y=C,,
§=C,/C3, n=0 and p=f,.

case iii) C%%C,0,, (G;C4-C;G,)/2(C%-C,C.)>8 and
0<A<[(C,C3-C,C,)-2(C%-C,C1)B]%. We then get three exponential terms in
the approximation (2.1) where the numbers v,§,n and ¢ are all real and
are glven by

Gy Cy -C,p Cu+{AT Cy Cy-Cy G, ~JA]
5= + \Zans ’
2(C%-G,Cy) 2(C%-C,Cy)
Cz -9Cy Cz-6C,
Y=—— , and 9=
§-¢ -5

case iv) €§»C,C,, (C,C;-C3C,)/2(C3-C,Cy)>B and A<D. In this case the
numbers v,§,n and ¢ are complex and y=% and §=p., This gives the

following representation for the approximation (2.1):

—_ *
Wapp(t) = ae Bt + 7*cos(m*t+¢*)e‘5 t,

where § =Re(§), ¢ =Im(4) and 4* are given by.

Cl Ca 'CzC& J 'A
6*= e ———t rp‘:- r—_——mer e rre—

!
7*=J C3+((Cy-8"C1) /9™)2%

and %" is defined by cos(¥*)=C,/y" and sin(p")=(6"GC,-C,) /v ¢".



Remark 2.1. In most applications the constants G;,C,,C; and C, match one of
these four cases. In case they do not, we propose to try the approximation
(2.1) with two exponential terms (i.e. 5=0), where the approximation

matches the exact rvesults for the delay probability and the first moment of

the waiting time., This approximation is given by
ﬁapp(t)=ae'ﬁt + Cle-(clfcs)t

and should of course satisfy the requirement that C,=0 and g<C, /C;. If this
requirement is also not satisfied we propose te use the asymptotically
exponential expansion. However, in our numerical investigations we never
found that the approximation with two exponential terms did not work when
the approximation with three exponential terms could not be used. -
Remark 2.2. For the M¥/D/1 queue with deteministic services it may be
hazardous to use the above approximatioms, in particular when the traffic
load is low. Due to batches that arrive in an empty system the waiting-time
distribution has a positive mass at nD when I._,.,8 #0. The effect of this
phenomenon is considerable when thé traffic load is low but becomes less
important for high traffic when most batches arrive in a non-empty system.
It was shown In Eikeboom and Tijms[1987] that the total mass of the waiting
time distribution at the discrete points nD with n>l equals (1-p){(1-1/E(X)).
Since the approximafions given in this paper are all continuous, it cannot
be expected that they perform well in the case of deterministic services
and low traffic. In this particular case we therefore suggest to use the
approximative method for system with constant service times which is given
in Eikeboom and Tijms[1987]. Next assume that the service-time distribution
has a similar shape as the constant distribution, i.e, there is a large
probability that the service time is within a relatively narrow interval,
for instance a distribution with a small coefficient of variation. For
these systems we have the same effect as in the case that the service times
are constant: when p is small the waiting-time distribution shall have
"most® of its mass in narrow interwvals. This explains the fact that our
approximation performs slightly less for the E,,-distribution and p=0.2

(see section 3).



3, Numerical results.

In this section we present numerical results for various models, We
consider four different batch-size distributions: 1) the constant batch
size (CZ=0), ii) the uniformly distributed batch size (CZ~E(X-1)/3E(X)),
iii) the geometrically distributed batch size (G§=E(X-1)/E(X)) and iv) a
batch gize with a mixed-geometric distribution with balanced means, where
C§ is taken equal to 2. A batch-size distribution {b_ ,nzl} is said to be a
mixed-geometric distribution with balanced means when b,=gp, (1-p, )"+
(1-q)py (1-py)®, n=1, with q/p;= (1-q)/p;. Here CZ denotes the squared
coefficient of variation of the bateh size X (i.e. the ratio of the
variance to the squared mean)., For the service time S of a customer we
consider the Erlang-10 distribution (G§-1/10), the Erlang-2 distribution
(C%=1/2) and the hyper-exponential distribution of order 2 with balanced
means where C2=2 is taken for the latter distribution. In all cases we
have taken E(8)=1.

The numerical results are displayed by using the waiting-time
percentiles, Here it is convenient to use the percentile »(p) of the
conditional waiting-time distribution of the delayed customer rather than
the percentiles £{p) of the unconditional waiting-time distribution Wq(.),
since the former percentiles are defined for all O<p<l. Note that v(p) is
determined by (1-(W&(u(p))/(l-wq(O))-l-p and thus £(py)=v(p,;) when
pn-l—(l-pl)(l-wq(O)). The numerical investigations reveal that for nonlight
traffic the first:order approximation can be used already for relatively
small values of t, In terms of the conditional waiting-time percentile
v(p), the first-order approximation (1/8)In(a/(l-p}p)} to v(p) can be used
for practical purposes when pzl-p. This rule of thumb reflects the fact
that the performance of the first-order approximation improves as p gets
larger. The numerical results show the excellent performance of the second-
order approximation to Wq(t) for all values of t, Therefore this
approximation is well-suited for practical purposes because it combines

accuracy with ease of computation.
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Table 3.1. Conditional waiting-time percentiles when E(X)=2.

2 2 . 2
Elﬁ,cs"o.l EZ,CS=D.5 Hz,cS"z
0.00 ©.17 4,50 2.a0 9.00 0.17 0.50 2.0G 0.00 0.17 0.50 2.00

oy

p=0.2 p=0.2 asy 0.56 0.80 0£.85 0.52 0.41 0.68 0.75 0.38 0.00 0.00 Q.00 0.00
app 0.70 0.82 0.88 1.18 0.48 0.81 0.72 1.06 0.26 0.32 0.45 @0.81
axa 0.75 0.83 0.80 1.11 | 0.48 0.60 0.72 1.06 . 0.24 0.34 0,46 0,82

p=0.3 asy 0.94 1.28 1.73 3.3% 0.95 1.31 1.76 3.32 0.00 0.95 0.97 2.98
app 1.07 1.35 1.73 3.35 1.04 1.34 1.76 3.41 0.8 1.12 1.57 3.38
XA 1.07 1.35 1.74 3.38 1.04 1,34 1.76 3.4l .84 1,12 1.57 3.37

p=0.8 asy 1.71 2.22 3.46 B8.83 2.01 2.54 3.73 9,03 2,15 2.85 4.25 9.64
app 1.64 2.2% 3,46 B.85 2.04 2,58 3.73 9.03 %2.53 3.13 4,35 3,70
exa 1.83 2.27 3.48 8.85 2,06 2.38 3,73 9.03 2,52 3.11 4,35 .8.70

p=0.92 asy 2.28 2.9% 4.78 13.01 2.81 3.48 35.21 13.36 4.18 4.97 B5.73 14.87
app 2.23 2.92 4.76 13.01 2,82 3.50 5.21 13.38 4,31 5.04 6.75 14.68
XA 2,27 2,88 4.76 13.01 2.81 3.49 5.21 13.38 4.30 5.03 6,75 14.69

p=0.3 p=0.2 asy 0.72 0.82 1.%4 0.88 0.8 0,84 0.989 0.83 0,00 0.00 0.21 Q.53
app 0.83 0.97 1.95 1.4l 0.67 0.83 0.98 1.39 0.47 0,81 0.79 1.32
exa 0.85 0.95 1.05 1.33 0,67 0D.83 0,98 1.39 0.47 0.62 0.79 1,32

0.3 asy 1.52 1.88 2.47 4.68 1.65 2,02 2,62 &.82 1.50 1.95 2.74 5.21
app 1.50 1.89 2.47 4.68 1.66 2.03 2.B2 4.36 1,83 2.21 2.88 5.40
&xa 1.48 1.92 2.47 4.70 1.86 2.04 2.B2 4.88 1.83 2.21 2.38 5,46

p=0.8 asy 3.08 3.76 5.26 12.14 3.85 &.32 5.79 12.59 5.50 B5.20 7.68 14.34
app 3.08 3.76 5.28 12.14 3.83 4,32 5.79 12.59 5.52 B6.21 7.68 14.36
exa 3.09 3.76 5.26 12.14 3.65 4,32 5,79 12.59 3.52 6.21 7.68 14.36

p=0.8 asy 4.27 5.18 7.37 17.78 5.18 6,06 8,19 18.48 8.352 9.42 11.41 21.25
app 4.27 5.18 7.37 17.78 5.16 6.06 §.19 18.48 8.53 9.42 11.41 21.25
exa 4.27 5.18 7.37 17.78 5,16 5,06 8,19 18.48 8.53 9.42 11.41 21.25

p=0.8 p=0.2 amy 1.40 1.88 2,02 2.95 1.47 1.78 2,12 3.12 1.32 1.65 2.18 3.58
app 1.39 1.69 2.02 23.08 1.47 1.75 2.12 3,27 1.55 1.84 2,29 3.77
sxa 1.38 1.70 2,03 3.03 1.4 1.75 2,12 3.27 1.53 1.83 2.29 3.77

p=0.5 asy 3.71 4.38 5.64 10.98 4.27 4895 5.22 11.59 6.16 6.86. &.21 13.77
app 3,71 4.38 5.64 10.98 4,27 4,85 6,22 11.59 6.16 6.8 8.21 13.78
exa 3.71 4.38 5.64 10.98 4,27 4,95 6.22 11.59 6.16 6.86 &.21 13.78

p=0.8 asy| 6.21 9.66 12.89 26.65 | 9.75 11.20 14.20 28.09 15.58 17.02 19.98 33.83
app 8.21 9.86 12.69 26.63 9.73 11.20 14_.20 28.09 15.58 17.02 19.96 33.63
axa §.21 9.66 12.59 26,65 9.75 11.20 14,20 28.09 15,58 17.02 19.96 33.63

p=0.9 asy| 11.61 13.65 18.03 38.50 13.80 15.92 20.24 40.57 22.72 24,70 28.86 48.85
app| 11.8% 13.85 18.03 38.50 13.90 15.92 20,24 40.57 22.72 24.70 28.86 4B.65
axal 11.61 13.565 13.03 38.50 13,80 15,92 20.24 40,57 22.72 24,70 28.96 48.65
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»

Table 3.2, Conditional waiting-time percentiles when E(X)=5,

2 2 2
Eqq.Cgm0.2 Ey,Cg=0.5 Hy,Cg=2
0.00 0.27 0.80 2.00 | 0.00 ©¢.27 0.80 2.00 | 0.00 0.27 0.8¢ 2.00

o

p=0.2 p=0.,2 asy 1.6 2.32%9 1,71 0.0¢ 1.53 2.18 1.58 #.00 0.00 0.893 0.73 0.00
app 1.53 1,70 1.71 1.94 1.27 1,81 1,38 1.78 0.78 0.88 1,16 1.38
exa 1.41 1,56 1.72 1.89 1.22 1.40 1.58 1.78 0.80 0.97 1.16 1.38

p=0.5 asy 2.56 3.568 4.37 4.10 Z2.60 3.5 4.36 4.02 1.77 3.02 4.04 3.81
app 2.69 3,45 4.37 5.78 2.62 3.37 4,36 5.82 2,29 3.05 4.11 5.79
exa 2.84 3.51 4.37 5.78 2.70 3.4% 4.36 5.82 2.28 3.06 4.11 5.79

p=0.8 asy 4.36 6.03 9,57 16.97 4.BB B.34 9,79 17.18 5,28 7.10 10,49 17.54
app 4. 44 6,15 9.57 17.03 4,77 6.29 9.79 17.21 5.39 7.11 10.49 17.84
exa 4.33 6,26 9.57 17.05 4.74 6£.49 8,79 17.21 S5.37 7.10 10.49 17.84

p=0.2 aasy 5.,7r 7.89 13,50 26,71 6,25 B.42 13,80 27.00 7.94 10.18 15.38 28.08
app 5.72 8.02 13.50 26,71 6,31 B8.40 13.90 27.01 7.96 10.19 15,38 28.13
exa 5.54 7.86 12.50 26.71 8.23 8.47 13.90 27.01 7.97 10.19 15.38 28.13

p=0.5 p=0.2 asy 1.88 2.44% 2,44 0,00 1.76 2.32 2,36 0.00 0.78 1.43 1,79 0.00
app 1.94 2,25 2.44 2.82 1.73 2.12 2.36 2.74 1.28 1.62 1,98 2.44
exXa 1.93 2,17 2.44 2.78 1.746 2,04 2,36 2,74 | 1.30 1.3 1.98 2.44

p=0.53 asy 3.81 4.98 6.71 &8.98 3.91 5,08 £.81 8.08 3.87 5,14 7.03 9.37
a2pp 3.85 5,00 6.71 9.56 3.9 5,05 6.81 9.72 4.00 5,18 7.04 10.20
xR 3.87 5,10 §.71 9.57 3.96 5.14 6,81 9.72 3.98 5.17 7.04 10.20

p=0.8 asy 7.56 9.93 15.03 26.58 8.09 10.45 15.51 27.00 9.89 12.26 17.25 28.58
app| 7.56 9,95 15.03 26.59 8,08 10.45 15.%51 27.01 9.89 12.27 17.25 28.61
“Xa 7.59 9.90 15.03 26.58 8.09 10.43 15.51 27.01 9.89 12.27 17.25 28.61

p=(.9 asy| 10.40 13.67 21.33 39.90 11.25 14,51 22,08 40.55 14 .44 17.65 24.98 43.08
app{ 10.40 13,68 21.33 39.90 11,25 14,51 22.08 40.58 14.44 17.65 24.98 43,09
axa| 10.39 13.68 21.33 39.90 11.25 14,51 22.08 40.56 14,44 17.85 24,98 43,09

p=0.8 p=0.2 asy 3.49 _4.39 35.47 8.22 3.50 &.41 5.32 6.34 3,30 4.2B 5.57 6.67
app 1,52 4.39 3.47 7,00 3.52 4,39 5,52 7.13 3.41 4.32 5.59 7.4
exa] 3.57 4.45 5,47 7.00 3.54 4,43 5.52 7.13 3.39 4.32 35.59 7.48

p=0.5 asy 9.07 11.54 186,15 25.63 9.58 12.05 16,68 26.18 11.35 13.86 18.57 28.20
app 9.07 11.54 16.15 25.54 9.58 12,05 16,68 26.20 11,35 13.88 18,57 28.23
exal 9.06 11.54 18.15 25.84 9.58 12:05 16.68 26.20 11.35 13.856 18.57 28.23

p=0.8 asy| 19.95 25.48 36,98 63.47 21.44 26,968 38,43 64.87 27.03 32.53 43.90 70.17
app{ 19.95 25,48 36.98 63.47 21.44 26.96 38.43 64.87 27.03 32.53 43,90 70.17
exa| 19,95 25.48 36.08 63,47 21.44 25,96 38,43 64.87 27.03 32.53 43.90 70.17

p=0.92 asy| 28.18 36.03 52.74 92.09 30.40 38,24 54.88 94.14 38.90 46.66 63.06 101.9
app| 23,18 36.03 52.74 92.09 30,40 28.24 54,88 94.14 38.90 45.56 §3.06 101.9
exa| 28.18 36,03 52.74 92.09 30.40 38,24 54.88 94.14 38.90 48.66 63,06 101.9
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Appendix. The derivation of the second-order approximation.

In this appendix we will motivate the approximation given in section 2.
The proposed conditions (2.2) to (2.6) for the determination of the numbers
v,8,1 and ¢ in the approximation (2.1) lead to the following equations for

these numbers:

(A.1)  Cy=y+n, Ch=yétnp, Cy=y/6+n/p, and C,=y/624n/0?,

(see (2.6) for the definition of the Cls). In these four nonlinear .
equations we restrict the feasible (complex) numbers as follows: for v=0 we
require.that R§(6)>ﬂ and for n=0 we require that Re(p)>p. Note from (2.1)
to (2.6) that when y=0 the number & is not determined by (A.l).and hence
can be taken as any real { or complex ) number with Re(§)>f. Ths same
applies for ¢ when n=0. Alsc it will be used below that the roles of 4 and
8 in (A.1) are interchangeable with the roles of n and ¢ respectively. In
the following let 8, denote some real constant with 8,>8, e.g. B,=28, and
let A:=(0,C5-C,C,)2-4(C%-C, 0 )(C3-C,0,).

Theorem A.1. The four nonlinear equations in (A.1l) have a solution

if and only if one of the following four (exclusive) cases applies:
1) Cp=C,=~Cy=C,=0;
ii) C4=0, C,/Cy>B, C%=C,C; and C5=C,C,;
iii) C§»C,C,, (CyCs-C,C,)/2(C}-C,C,)>f and O<A<([(C,Cs-CpC,)-2(C%-C,G,)B]%;
iv) C3#C,C,, (C1C3-C,C,)/2(C%-C,C,)>B, a<0.
For the respective cases we have as solutions:
1)
(A.2) y=n=0 and §=p=8, ;
ii)
(A.3) 9=C;, 6=C,/C;, n=0 and o=fF,;
1ii) and 1iv)

CyCq -Cp Gy hfA! €y Cq -G, C, +AT
) o= ,
2(C%-C,Cy) : 2(c§-c“cl)

(A.4) &=
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= , and  np=
6-¢ e-6

Proof,

(a) Suppose (v,8,n,¢) is a solution to (A.l) satisfying the restriction
stated below (A.l). First eonsider the case of vynp«~0. Since the roles of
v and 7 are interchangeable it 1s no restriction to assume n=0. Then the

set of equations (A.l1l) reduces to
(A.1.1) GCy=vy, Cy=v8, Cy3=y/8, and C,=y/6%.

If C,=0 it follows from (A.1l.1) that all G{s are zero and g0 y=f=0 and
b=¢=P, 1s a solution (case i). If G, =0, then y~0 and so by the convention
made below (A.1l) §>f which implies §=0. Hence C;»0 implies that all G{s are
unequal to zero and so §=C,/C,=C, /Cy=C,/C, implying the results for case
ii). Secondly consider the case that yn=0 and é=¢p. By our convention §=0,
The set of equations (A.1l) reduces to

(A.1.2)  Cy=y+q, Cp=(y+n)§, Cy=~(y+n)/§, and C,~(v+n)/62.

Thiz set of equations is identical to (A.1.1) with y'=y+n and §‘=§ and thus
again one of the cases 1) or 1i) applies. Next we can replace the

gsolution (v,8,n,¢} by a solution as in (A.2) or (A.3). Finally consider the
left case of yn=0 and §+p. Since yp(§-@)=0 it is easily derived from (A.1)

that (6C,-C,), (8§C;-Cy) and (8C,-C;) are all unequal to zero and that ¢ is

equal to both (§C,-GC;)/(6C3-C,) and (6C,;-C1)/(6C,-Cy). Thus § must satisfy

the relation

By the interchangeability of the roles of § and ¢ the same relation applies
to ¢, i.e.

(&.7) (C§ -Gy Gy )92 - (61C5 -G, G, Yo+ (CF -C, G5 )=0.

Hence, since é=p and C%-C,C,=yn(1l/6-1/¢)2=0, it follows from (A.6) and
(A.7) that § and p can be taken as in (A.4), From the condition that
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Re(§)>8 and Re(p)>f it easily follows that (€,C,;-C,C.)/2(C%-C,C,)>8 and
A<[(C,;C5-C,C,)-2(C%-C,C,)8]%. We also must have A=0 since otherwise §=¢p.
Next using (A.1) we find the equations y=(pC;-GC;)/(p-5) and
n=(6GC,-C;)/(6-p). Note that n and vy are unequal to zerc since (§C,-C,) and
(9C, -C;) are unequal to zero. Hence yn=0 and §=p imply the conditions of
case 1ii) or case iv).

(b) By the comstruction of the sclutions given in (2) it follows that under
the conditions stated in case 1) to iv) the corresponding solutions satisfy

the nonlinear equations (A.l1) with restrictions.

Remark A.1l. Note that in casze iv) of the previoﬁs theorem A<0, which implies
that the numbers +,§,n and ¢ are not real. In this case we have that y=§
and §=F and therefore we also have that ne ¥t is the complex conjugate of

ve St In the remaining analysis we use the relations ei¥=cos(x)+isin(x)’
and 9cos(x)+wsin(x)-(€z+uﬁ)kcos(x+y) with §2+w2>0 and y such that
cos(y)-=8/(92+w2)}5 and sin(y)_,_w/(gzwz)lz. After some algebra we find that
e O0tine @t 7*cos(¢7t+¢*)e”5*t where §"=Re(§), ¢"=Im(§) and 4" are given by

§ - ——— q?*“ -
2(C%-C,6,) 2(C%-C,Cy)

1
Y= J C2+((Cy-8"Cy) /9™ )2

and »° is defined by cos(¥")=C,;/y" and sin(")=(§C,-C,) /7" ¢".
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