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Abstract. In this paper we consider the Mx/G/1 queueing system with batch 

arrivals. We give simple approximations for the waiting-time probabilities 

of individual customers. These approximations are numerically checked and 

found to perform very well for a wide variety of batch-size distributions 

and service-time distributions. 
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0. Introduction. 

Batch-arrival queueing models arise in many practical situations. In 

general it is difficult, if not impossible, to find tractable expressions 

for the waiting-time probabilities of individual customers. It is therefore 

useful to have easily computable approximations for these probabilities. 

The present paper gives such approximations for the single server Mx/G/1 

model. 

' Exact methods for the computation of the waiting-time distribution in 

the Mx/G/1 queue are discussed in Eikeboom and Tijms [1987], cf. also 

Ghaudry. and Templeton[1983], Neuts[1981] and Tijms[1986]. However these 

methods apply only for special service-time distributions and are in 

general not suited for routine calculations in practice. Also a simple 

approximation for the tail probabilities of the waiting time was given in 

Eikeboom and Tijms [1987] by using interpolation of the asymptotic 

expansions for 'the particular cases of deterministic and exponential 

services. This approximative approach uses only the first two moment of the 

service time since the interpolation is based on the squared coëfficiënt of 

variation of the service time. This paper presents an alternative approach 

that uses the actual service-time distribution rather then only its first 

two moments. In Van Ommeren [1988] it is shown that the complementary 

waiting-time probability has an exponentially fast decreasing tail under 

some mild assumptions. By calculating the decay parameter and the amplitude 

factor we get the asymptotic expansion of the waiting-time distribution. 

For nonlight traffic this asymptotic expansion can be used as a first-order 

approximation for the waiting-time probabilities. Next, by incorporating 

exact results for other quantities such as the delay probability and the 

first two moments of the waiting time we are able to give an improved 

second-order approximation. This approximative method performs very well 

for a wide range of values of the traffic intensity and the coefficients of 

variation of the service-time distribution and the batch-size distribution. 

The organization of this paper is as follows. In section 1 the model is 

defined and some preliminaries, including the asymptotic expansion of the 

waiting-time distribution, are given. The second-order approximation is 

given in section 2. In section 3 we give numerical results and discuss the 

performance of the approximations. The appendix deals with the motivation 

of the second-order approximation. 
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1. The model and preliminaries. 

In the Mx/G/1 queue customers arrive in batches and are served 

individually by a single server. The batches arrive according to a Poisson 

process with rate A. The number of customers in the batches are independent 

and identically distributed positive random variables. Denote the number of 

customers in a batch by X and the probability distribution of X by. 

gi:=Pr{X=i}, i—1,2. The generating function of {gt} is denoted by 

G(z):=£?=1g-z
J. The service times of individual customers are independent 

identically distributed random variables. Denote the service time of a 

customer by S and the distribution of S by B(x):=Pr{S<x}. We assume that 

B(0)-0 and B' (0) :-limtl(J B(t)/t exists. We denote the Laplace-Stieltjes 

transform of B(.) by B(s):=J°e~stdB(t). Let Q(s) denote the Laplace-

Stieltjes transform of the total amount of service time required by the 

customers belonging to one batch. It follows that 

Q(s)=G(B(s)). 

The offered load is denoted by p:=-AE(S)Ë(X) and it is assumed that p<l. 

Customers belonging to different batches are served in order of 

arrival, while customers belonging to the same batch are served according 

to their random position in the batch. Let Dn denote the delay in queue of 

the n-th served customer . The limit distribution lim _ Pr{D <x} exists 

only when the batch-size distribution {gt} is aperiodic (i.e. when the 

g.c.d. {j|gj>0}=l), cf. Cohen [1976]. As counter-example, consider a 

constant batch size of 2 in which case Pr{D2k=0}=0 for all k>l and 

limk-,a)Pr{D2k + 1=0} = (l-p) . In Van Ommeren[1988] it is proved that the 

following limit 

1 n 

W (t) := lim - S Pr{ D.<t }, t>0, 
q n-a» n j = i

 J 

always exists. Note that W (t) represents with probability 1 the long-run 

fraction of customers having a waiting time of no more than t. Denote the 

Laplace-Stieltjes transform of Wq(.) by Wq(s):-/"e"
stdWq(t). From 

Cohen[1976] we can easily get the following theorem. 
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Theorem 1.1. The Laplace-Stieltjes transform of the stationary waiting-time 

distribution W_(•) is given by W (s)-W1(s)W2(s) with 

(1-P)s 
Wx(s) = 

s-A(l-Q(s)) 
and 

l-Q(s) 
W2(s) 

E(X)(l-B(s) 

From the Laplace-Stieltjes transform of the stationary waiting-time 

distribution we can easily derive exact results for the delay probability, 

the derivative of W (x) at x=0 and the first two moments of the waiting 

time. These results that will be needed for a second-order approximation to 

W (.) are given by 

(1.1) Wq(0) = lim Wq(s) 
S"*00 

1-p 

t 

E(X) 

(l-p)[(l-gl)B'(0)+A] 
(1.2) Wq(0) - lim s(Wq(s)-Wq(0)) 

E(X) 

(1.3) ƒ (1-Wa(t))dt - -ÏT(0) = -WJ(0)-W^(0) , 

and 

o * q 

(1.4) ƒ t(l-W (t))dt - kWl'(O) + WJ(0)W^(0) + ^W2'(0); 
o 

where the derivatives should be interpreted as the right derivatives in 

t=0. In order to evaluate the right hand sides of (1.3) and (1.4) we have 

to use 1'Hopital's rule repeatedly to obtain 

-AQ"(0) -AQ"'(0) 
W{(0) , Wf(0) = + 2[Wf (0)]* , 

2(l-p)B'(0) 3(l-p) 

Q"(0)-E(X)B"(0) 
W^ (0) , 

2E(X)B'(0) 

and 

2[Q,"(0)B'(0)-Q'(0)B"'(0)]B'(0)-3[Q"(0)B'(0)-Q'(0)B"(0)]B"(0) 

W2'(0) = 
6E(X)(B'(0))3 
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where 

B'(0)=-E(S), B"(0)=E(S2), B"'(0)=-E(S3), 

Q'(0)=-E(S)E(X), Q"(0)=E(X(X-1))E(S)2+E(X)E(S2), 

and 

Q"'(0)=-E(X(X-1)(X-2))E(S)3-3E(X(X-1))E(S)E(S2)-E(X)E(S3). 

Here it is assumed that the service time and the batch size have finite 

third moments. 

To give the asymptotically exponential expansion of the complementary 

waiting-time distribution 1-W (t) for t-*», we need a mild assumption on the 

service-time and batch-size distributions. Roughly speaking the assumption 

requires that these distributions should have no extremely long tails. More 

precisely we make the following assumption. 

Assumption. The power series G(z)-E =̂1g.j z
J has a convergence radius R>1, 

the integral B(s)=J" e"stdB(t) has an abscis of convergence A<0, and 

there exists a T>A with limsiTB(s)<R and lims; [G(B(s))]
_1=0. 

This assumption is satisfied in most cases of practical interest, e.g. when 

the service-time distribution is of the phase type and the batch-size 

distribution has a finite support. Under this assumption the following 

theorem is proved in Van Ommeren[1988]. 

Theorem 1.2. The stationary waiting-time distribution W (.) satisfies 

(1.5) lim e-^Cl-WqCt)) = a , 

where /3 is the smallest positive solution to 

A(Q(-/3)-l)=/J, 

and a is defined by 
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(l-p)/3 
a := - . 

AE(X)(AQ'(-/3)+l)(l-B(-/?)) 

2. Approximations. 

The asymptotic expansion stated in theorem 1.2. suggests the following 

first-order approximation to W (t): 

1-W (t)«ae"^t for t large enough. 

This approximation gives practically useful results already for moderate 

values of x when the traffic load is not low. The performance of this first-

order approximation improves as p gets larger. As a rule of thumb, in terms 

of the p-th percentile of the waiting-time distribution function W (t), the 

first-order approximation can be used also for practical purposes when 

p>l-p(l-W (0)), cf. also the numerical results in section 3. 

A refinement of the first-order approximation for the complementary 

waiting-time distribution 1-W (t) that can be used for all values 

of t, is given by 

(2.1) Wapp(t) - ae-^ + 7e-
5 t + rie'Vt , t>0. 

Here a and /3 are the coefficients of the asymptotic expansion (1.5). A 

motivation of this approximation with three (rather than two) exponential 

terms is as follows. A close look at the derivation of the asymptotic 

expansion reveals that the (complex) poles and the residues at these points 

of the Laplace-Stieltjes transform of the waiting-time distribution 

determine the behaviour of this distribution. The pole with the largest 

negative real part is simple and real and gives a first-order 

approximation. The poles which have the second largest negative real parts 

lead to a second-order approximation. However in general it is difficult to 

find these poles since they no longer have to be real. We therefore try to 

determine 7,5,r/ and cp by matching the exact explicit results for the delay 

probability, the derivative of W (x) at x=0 and the first two moments of 

the stationary waiting time. This yields the relations 
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(2.2) Wapp(0) - 1-Wq(0), 

(2.3) W^pp(0) = -Wq(0), 

(2.4) JS Wapp(t)dt - ft d-Wq(t))dt, 

and 

(2.5) Jo tWapp(t)dt -ƒ» t(l-Wq(t))dt. 

Here it is in principle allowed that the numbers 7,5,JJ and cp are complex. 

In case they are not real, they should be complex conjugates ( i.e. S=<p 

and 7=?f ) and we get a cosinus term in (2.1). Furthermore we require that 

both Re(5)>/3 and Re(cp)>/3 hold, since otherwise the asymptotically exponential 

expansion would be violated for t large. In view of the fact that the poles 

may be complex it is preferable to approximate 1-W (t) by three exponential 

terms rather than by two exponential terms. Indeed the numerical investigations 

indicate that for smaller values of t the three-term approximation to 1-W (t) 

performs usually much better than the two-term approximation. 

In support to the approximation (2.1) we make the following observations. 

It follows from results in Van Ommeren [1988] that the approximation is 

exact when the service time has a K2-distribution and the batch size is 

geometrically distributed. If the service time has a K3-distribution and 

the batch size is geometrically distributed the approximation is also exact 

when the function A(Q(-s)-l)-s has no doublé zero as is usually the case. 

In order to give closed forms expressions for y,S,ri and cp, we define 

the constants 

.(2.6) C1: = (l-W(ï(0))-aI C2 :=-Wq (0) -a/3, 

C3:=J^
1-Vt))dt:-a/'9' C4:=;»

t(l-Wq(t))dt-a/JS2j 

and 

A: = (G1 G3 -C^CjZ-MCf-C.q) (Cf -C2C3). 

Note that the Ĉ s represents the deviations of the "moments" of 1-W (x) 

and the "moments" of the first-order approximation ae We can give a 



- 7 -

simple scheme for computation of the numbers y,S,ri and cp. For clarity of 

presentation we give here only the approximation and refer to the appendix 

for a motivation of these results. Let £0 denote some constant with fia>fi, 

e.g. /30=2/3. We have to distinguish between the following cases: 

case i) C!=»C2=C3=C4=0. In thls case the first-order approximation matches 

already the four proposed condition (2.2) to (2.5), and we set 

7=?7=0 and 5=<p=j80 . 

case ii) C3sO, C!/C3>/3, Cf=C2C3 and Cf-C]^ . In this case we only need 

two exponential terms in the approximation (2.1) and we set 7=01 , 

5=C1/C3 , n=0 and <p=p0 . 

case iii) C f ^ C ^ , (C1G3 -C2C4 )/2(C| - C ^ )>£ and 

0<A<[(C1C3-C2C4)-2(01-04 0!)fi]z . We then get three exponential terms in 

the approximation (2.1) where the numbers -y,S,r} and cp are all real and 

are given by 

C 1 C 3 - C 2 C 4 + J A 1 CiCg-CjjC* - J A 1 

0 = , <p= , 

2(02-040!) 2(02-040^ 

C2-<pCx C2-SCX 

S-(p cp-S 

case iv) C f ^ C ^ , (C1C3 -C2C4 )/2(C§ -Z^^p and A<0. In this case the 

numbers 7,5,»? and cp are complex and -y-rf and S=<p. This gives the 

following representation for the approximation (2.1): 

Wa (t) = a e ^ + 7*cos(<p*t+V>*)e-5*t, 

where 5*=Re(5), <p*=»Im(S) and 7* are given by. 

^1^*3 "'-'2̂ 4 •i ~& 
<P 

2(02-04 0!) 2(C2-C4C!) 

7 = | C2 + ((C2-5*C1)/1p*)2 , 

and ip* is defined by cos(^*)=C!/7* and sin(̂ >* ) = (5*C! -C2 )/7*<P* 
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Remark 2.1. In most applications the constants Cx ,C2,C3 and C4 match one of 

these four cases. In case they do not, we propose to try the approximation 

(2.1) with two exponential terms (i.e. »?=0), where the approximation 

matches the exact results for the delay probability and the first moment of 

the waiting time. This approximation is given by 

W (t)=ae-£t + C le"
( Ci / C 3 ) t 

and should of course satisfy the requirement that C3^0 and y8<C1/C3. If this 

requirement is also not satisfied we propose to use the asymptotically 

exponential expansion. However, in our numerical investigations we never 

found that the approximation with two exponential terms did not work when 

the approximation with three exponential terms could not be used. 

Remark 2.2. For the Mx/D/1 queue with deteministic services it may be 

hazardous to use the above approximations, in particular when the traffie 

load is low. Due to batches that arrive in an empty system the waiting-time 

distribution has a positive mass at nD when 2£=n+iSi;^0. The effect of this 

phenomenon is considerable when the" traffic load is low but becomes less 

important for high traffic when most batches arrive in a non-empty system. 

It was shown in Eikeboom and Tijms[1987] that the total mass of the waiting 

time distribution at the discrete points nD with n>l equals (1-p)(1-1/E(X)). 

Since the approximations given in this paper are all continuous, it cannot 

be expected that they perform well in the case of deterministic services 

and low traffic. In this particular case we therefore suggest to use the 

approximative method for system with constant service times which is given 

in Eikeboom and Tijms[1987]. Next assume that the service-time distribution 

has a similar shape as the constant distribution, i.e. there is a large 

probability that the service time is within a relatively narrow interval, 

for instance a distribution with a small coëfficiënt of variation. For 

these systems we have the same effect as in the case that the service times 

are constant: when p is small the waiting-time distribution shall have 

"most" of its mass in narrow intervals. This explains the fact that our 

approximation performs slightly less for the E10-distribution and p=0.2 

(see section 3). 
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3. Numerical results. 

In this section we present numerical results for various models. We 

consider four different batch-size distributions: i) the constant batch 

size (C|=0), ii) the uniformly distributed batch size (C|=E(X-1)/3E(X)), 

iii) the geometrically distributed batch size (C^-E(X-1)/E(X)) and iv) a 

batch size with a mixed-geometrie distribution with balanced means, where 

C| is taken equal to 2. A batch-size distribution {bn,n>l} is said to be a 

mixed-geometrie distribution with balanced means when bn=qpx(l-px)
n+ 

(l-q)p2 (l-p2)
n , n>l, with q/P]_=- (l-q)/p2 . Here Ĉ  denotes the squared 

coëfficiënt of variation of the batch size X (i.e. the ratio of the 

variance to the squared mean). For the service time S of a customer we 

consider the Erlang-10 distribution (C|=l/10), the Erlang-2 distribution 

(C|=l/2) and the hyper-exponential distribution of order 2 with balanced 

means where C|-2 is taken for the latter distribution. In all cases we 

have taken E(S)=1. 

The numerical results are displayed by using the waiting-time 

percentiles. Here it is convenient to use the percentile f(p) of the 

conditional waiting-time distribution of the delayed customer rather than 

the percentiles £(p) of the unconditional waiting-time distribution W (.). 

since the former percentiles are defined for all 0<p<l. Note that i/(p) is 

determined by (1-(W (i/(p))/(l-W (0))-l-p and thus ?(p0)=^(px) when 

p0=l-(l-p1)(1-W(0)). The numerical investigations reveal that for nonlight 

traffic the first-order approximation can be used already for relatively 

small values of t. In terms of the conditional waiting-time percentile 

i/(p), the first-order approximation (l//3)ln(a/(l-p)/9) to f(p) can be used 

for practical purposes when p>l-p. This rule of thumb reflects the fact 

that the performance of the first-order approximation improves as p gets 

larger. The numerical results show the excellent performance of the second-

order approximation to W (t) for all values of t. Therefore this 

approximation is well-suited for practical purposes because it combines 

accuracy with ease of computation. 
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Table 3.1. Conditional waiting-time percentiles when E(X)=2. 

2 
CX 

2 
E10.CS-0.1 

0.00 0.17 0.50 2.00 

2 
E2,CS=0.5 

0.00 0.17 0.50 2.00 

2 
H2•CS-2 

0.00 0.17 0.50 2.00 

p=0.2 p=0.2 asy 

app 

exa 

p=0.5 asy 

app 

exa 

p=0.8 asy 

app 

exa 

p=0.9 asy 

app 

exa 

0.56 0.80 0.85 0.52 

0.70 0.82 0.88 1.18 

0.75 0.83 0.90 1.11 

0.94 1.28 1.73 3.34 

1.07 1.35 1.73 3.35 

1.07 1.35 1.74 3.38 

1.71 2.22 3.46 8.85 

1.64 2.24 3.46 8.85 

1.63 2.27 3.46 8.85 

2.28 2.94 4.76 13.01 

2.23 2.92 4.76 13.01 

2.27 2.88 4.76 13.01 

0.41 0.68 0.75 0.38 

0.48 0.61 0.72 1.06 

0.48 0.60 0.72 1.06 

0.95 1.31 1.76 3.32 

1.04 1.34 1.76 3.41 

1.04 1.34 1.76 3.41 

2.01 2.54 3.73 9.03 

2.04 2.58 3.73 9.03 

2.04 2.58 3.73 9.03 

2.81 3.48 5.21 13.36 

2.82 3.50 5.21 13.36 

2.81 3.49 5.21 13.36 

0.00 0.00 0.00 0.00 

0.24 0.33 0.46 0.81 

0.24 0.34 0.46 0.82 

0.00 0.05 0.97 2.98 

0.84 1.12 1.57 3.38 

0.84 1.12 1.57 3.37 

2.15 2.85 4.25 9.64 

2.53 3.13 4.35 9.70 

2.52 3.11 4.35 9.70 

4.18 4.97 6.73 14.67 

4.31 5.04 6.75 14.68 

4.30 5.05 6.75 14.69 

/>=0.5 p*0.2 asy 

app 

exa 

p=0.5 asy 

app 

exa 

p=0.8 asy 

app 

exa 

p=0.9 asy 

app 

exa 

0.72 0.92 1.04 0.86 

0.83 0.97 1.05 1.41 

0.85 0.95 1.05 1.33 

1.52 1.88 2.47 4.68 

1.50 1.89 2.47 4.68 

1.48 1.92 2.47 4.70 

3.08 3.76 5.26 12.14 

3.09 3.76 5.26 12.14 

3.09 3.76 5.26 12.14 

4.27 5.18 7.37 17.78 

4.27 5.18 7.37 17.78 

4.27 5.18 7.37 17.78 

0.63 0.84 0.99 0.83 

0.67 0.83 0.98 1.39 

0.67 0.83 0.98 1.39 

1.65 2.02 2.62 4.82 

1.66 2.03 2.62 4.86 

1.66 2.04 2.62 4.86 

3.65 4.32 5.79 12.59 

3.65 4.32 5.79 12.59 

3.65 4.32 5.79 12.59 

5.16 6.06 8.19 18.48 

5.16 6.06 8.19 18.48 

5.16 6.06 8.19 18.48 

0.00 0.00 0.21 0.53 

0.47 0.61 0.79 1.32 

0.47 0.62 0.79 1.32 

1.50 1.95 2.74 5.21 

1.83 2.21 2.88 5.40 

1.83 2.21 2.88 5.40 

5.50 6.20 7.68 14.34 

5.52 6.21 7.68 14.36 

5.52 6.21 7.68 14.36 

8.52 9.42 11.41 21.25 

8.53 9.42 11.41 21.25 

8.53 9.42 11.41 21.25 

p=0.8 p=0.2 asy 

app 

exa 

p=0.5 asy 

app 

exa 

p=0.8 asy 

app 

exa 

p=0.9 asy 

app 

exa 

1.40 1.68 2.02 2.95 

1.39 1.69 2.02 3.06 

1.38 1.70 2.03 3.05 

3.71 4.38 5.64 10.98 

3.71 4.38 5.64 10.98 

3.71 4.38 5.64 10.98 

8.21 9.66 12.69 26.65 

8.21 9.66 12.69 26.65 

8.21 9.66 12.69 26.65 

11.61 13.65 18.03 38.50 

11.61 13.65 18.03 38.50 

11.61 13.65 18.03 38.50 

1.47 1.74 2.12 3.12 

1.47 1.75 2.12 3.27 

1.47 1.75 2.12 3.27 

4.27 4.95 6.22 11.59 

4.27 4.95 6.22 11.59 

4.27 4.95 6.22 11.59 

9.75 11.20 14.20 28.09 

9.75 11.20 14.20 28.09 

9.75 11.20 14.20 28.09 

13.90 15.92 20.24 40.57 

13.90 15.92 20.24 40.57 

13.90 15.92 20.24 40.57 

1.32 1.65 2.18 3.58 

1.55 1.84 2.29 3.77 

1.53 1.83 2.29 3.77 

6.16 6.86 8.21 13.77 

6.16 6.86 8.21 13.78 

6.16 6.86 8.21 13.78 

15.58 17.02 19.96 33.63 

15.58 17.02 19.96 33.63 

15.58 17.02 19.96 33.63 

22.72 24.70 28.86 48.65 

22.72 24.70 28.86 48.65 

22.72 24.70 28.86 48.65 
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Table 3.2. Conditional waiting-time percentiles when E(X)-5. 

2 
CX 

2 
E 1 0 , C S = 0 . 1 

0 . 0 0 0 . 2 7 0 . 8 0 2 . 0 0 

E 2 , C s - 0 . 5 

0 . 0 0 0 . 2 7 0 . 8 0 2 . 0 0 

2 
H 2 ' C S - 2 

0 . 0 0 0 . 2 7 0 . 8 0 2 . 0 0 

p = 0 . 2 p = 0 . 2 a sy 

app 

exa 

p = 0 . 5 a sy 

app 

exa 

p = 0 . 8 a s y 

app 

exa 

p = 0 . 9 a s y 

app 

exa 

1 .64 2 . 2 9 1 . 7 1 0 . 0 0 

1 . 5 3 1 .70 1 . 7 1 1 .94 

1 . 4 1 1 . 5 6 1 . 7 2 1 .89 

2 . 5 6 3 . 5 6 4 . 3 7 4 . 1 0 

2 . 6 9 3 . 4 5 4 . 3 7 5 . 7 8 

2 . 8 4 3 . 5 1 4 . 3 7 5 . 7 8 

4 . 3 6 6 . 0 3 9 . 5 7 1 6 . 9 7 

4 . 4 4 6 . 1 5 9 . 5 7 1 7 . 0 5 

4 . 3 3 6 . 2 6 9 . 5 7 1 7 . 0 5 

5 . 7 1 7 . 8 9 1 3 . 5 0 2 6 . 7 1 

5 . 7 2 8 . 0 2 1 3 . 5 0 2 6 . 7 1 

5 . 5 4 7 . 8 6 1 3 . 5 0 2 6 . 7 1 

1 .53 2 . 1 8 1 . 5 8 0 . 0 0 

1 .27 1 . 6 1 1 . 5 8 1 . 7 8 

1 .23 1 .40 1 . 5 8 1 . 7 8 

2 . 6 0 3 . 5 9 4 . 3 6 4 . 0 2 

2 . 6 2 3 . 3 7 4 . 3 6 5 . 8 2 

2 . 7 0 3 . 4 4 4 . 3 6 5 . 8 2 

4 . 6 8 6 . 3 4 9 . 7 9 1 7 . 1 0 

4 . 7 7 6 . 2 9 9 . 7 9 1 7 . 2 1 

4 . 7 4 6 . 4 9 9 . 7 9 1 7 . 2 1 

6 . 2 5 8 . 4 2 1 3 . 9 0 2 7 . 0 0 

6 . 3 1 8 . 4 0 1 3 . 9 0 2 7 . 0 1 

6 . 2 3 8 . 4 7 1 3 . 9 0 2 7 . 0 1 

0 . 0 0 0 . 9 3 0 . 7 3 0 . 0 0 

0 . 7 8 0 . 9 8 1 . 1 6 1 . 3 8 

0 . 8 0 0 . 9 7 1 . 1 6 1 .38 

1 .77 3 . 0 2 4 . 0 4 3 . 6 1 

2 . 2 9 3 . 0 5 4 . 1 1 5 . 7 9 

2 . 2 8 3 . 0 6 4 . 1 1 5 . 7 9 

5 . 2 8 7 . 1 0 1 0 . 4 9 1 7 . 5 4 

5 . 3 9 7 . 1 1 1 0 . 4 9 1 7 . 8 4 

5 . 3 7 7 . 1 0 1 0 . 4 9 1 7 . 8 4 

7 . 9 4 1 0 . 1 8 1 5 . 3 8 2 8 . 0 8 

7 . 9 6 1 0 . 1 9 1 5 . 3 8 2 8 . 1 3 

7 . 9 7 1 0 . 1 9 1 5 . 3 8 2 8 . 1 3 

p=0 .5 p = 0 . 2 a sy 

app 

exa 

p = 0 . 5 a s y 

app 

exa 

p = 0 . 8 a sy 

app 

exa 

p = 0 . 9 a sy 

app 

exa 

1 .88 2 . 4 4 2 . 4 4 0 . 0 0 

1 .94 2 . 2 5 2 . 4 4 2 . 8 2 

1 .93 2 . 1 7 2 . 4 4 2 . 7 8 

3 . 8 1 4 . 9 8 6 . 7 1 8 . 9 8 

3 . 8 5 5 . 0 0 6 . 7 1 9 . 5 6 

3 . 8 7 5 . 1 0 6 . 7 1 9 . 5 7 

7 . 5 6 9 . 9 3 1 5 . 0 3 2 6 . 5 8 

7 . 5 6 9 . 9 5 1 5 . 0 3 2 6 . 5 9 

7 . 5 9 9 . 9 0 1 5 . 0 3 2 6 . 5 9 

1 0 . 4 0 1 3 . 6 7 2 1 . 3 3 3 9 . 9 0 

1 0 . 4 0 1 3 . 6 8 2 1 . 3 3 3 9 . 9 0 

1 0 . 3 9 1 3 . 6 8 2 1 . 3 3 3 9 . 9 0 

1 . 7 6 2 . 3 2 2 . 3 6 0 . 0 0 

1 .73 2 . 1 2 2 . 3 6 2 . 7 4 

1 .74 2 . 0 4 2 . 3 6 2 . 7 4 

3 . 9 1 5 . 0 8 6 . 8 1 9 . 0 8 

3 . 9 4 5 . 0 5 6 . 8 1 9 . 7 2 

3 . 9 6 5 . 1 4 6 . 8 1 9 . 7 2 

8 . 0 9 1 0 . 4 5 1 5 . 5 1 2 7 . 0 0 

8 . 0 9 1 0 . 4 5 1 5 . 5 1 2 7 . 0 1 

8 . 0 9 1 0 . 4 3 1 5 . 5 1 2 7 . 0 1 

1 1 . 2 5 1 4 . 5 1 2 2 . 0 8 4 0 . 5 5 

1 1 . 2 5 1 4 . 5 1 2 2 . 0 8 4 0 . 5 6 

1 1 . 2 5 1 4 . 5 1 2 2 . 0 8 4 0 . 5 6 

0 . 7 8 1 . 4 8 1 .79 0 . 0 0 

1 .29 1 . 6 2 1 .98 2 . 4 4 

1 .30 1 .63 1 .98 2 . 4 4 

3 . 8 7 5 . 1 4 7 . 0 3 9 . 3 7 

4 . 0 0 5 . 1 8 7 . 0 4 1 0 . 2 0 

3 . 9 8 5 . 1 7 7 . 0 4 1 0 . 2 0 

9 . 8 9 1 2 . 2 6 1 7 . 2 5 2 8 . 5 6 

9 . 8 9 1 2 . 2 7 1 7 . 2 5 2 8 . 6 1 

9 . 8 9 1 2 . 2 7 1 7 . 2 5 2 8 . 6 1 

1 4 . 4 4 1 7 . 6 5 2 4 . 9 8 4 3 . 0 8 

1 4 . 4 4 1 7 . 6 5 2 4 . 9 8 4 3 . 0 9 

1 4 . 4 4 1 7 . 6 5 2 4 . 9 8 4 3 . 0 9 

p=0 .8 p = 0 . 2 asy 

app 

exa 

p = 0 . 5 a s y 

app 

exa 

p = 0 . 8 a sy 

app 

exa 

p = 0 . 9 a sy 

app 

exa 

3 . 4 9 . 4 . 3 9 5 . 4 7 6 . 2 2 

3 . 5 2 4 . 3 9 5 . 4 7 7 . 0 0 

3 . 5 7 4 . 4 5 5 . 4 7 7 . 0 0 

9 . 0 7 1 1 . 5 4 1 6 . 1 5 2 5 . 6 3 

9 . 0 7 1 1 . 5 4 1 6 . 1 5 2 5 . 6 4 

9 . 0 6 1 1 . 5 4 1 6 . 1 5 2 5 . 6 4 

1 9 . 9 5 2 5 . 4 8 3 6 . 9 8 6 3 . 4 7 

1 9 . 9 5 2 5 . 4 8 3 6 . 9 8 6 3 . 4 7 

1 9 . 9 5 2 5 . 4 8 3 6 . 9 8 6 3 . 4 7 

2 8 . 1 8 3 6 . 0 3 5 2 . 7 4 9 2 . 0 9 

2 8 . 1 8 3 6 . 0 3 5 2 . 7 4 9 2 . 0 9 

2 8 . 1 8 3 6 . 0 3 5 2 . 7 4 9 2 . 0 9 

3 . 5 0 4 . 4 1 5 . 5 2 6 . 3 4 

3 . 5 2 4 . 3 9 5 . 5 2 7 . 1 3 

3 . 5 4 4 . 4 3 5 . 5 2 7 . 1 3 

9 . 5 8 1 2 . 0 5 1 6 . 6 8 2 6 . 1 8 

9 . 5 8 1 2 . 0 5 1 6 . 6 8 2 6 . 2 0 

9 . 5 8 1 2 . 0 5 1 6 . 6 8 2 6 . 2 0 

2 1 . 4 4 2 6 . 9 6 3 8 . 4 3 6 4 . 8 7 

2 1 . 4 4 2 6 . 9 6 3 8 . 4 3 6 4 . 8 7 

2 1 . 4 4 2 6 . 9 6 3 8 . 4 3 6 4 . 8 7 

3 0 . 4 0 3 8 . 2 4 5 4 . 8 8 9 4 . 1 4 

3 0 . 4 0 3 8 . 2 4 5 4 . 8 8 9 4 . 1 4 

3 0 . 4 0 3 8 . 2 4 5 4 . 8 8 9 4 . 1 4 

3 . 3 0 4 . 2 8 5 . 5 7 6 . 6 7 

3 . 4 1 4 . 3 2 5 . 5 9 7 . 4 6 

3 . 3 9 4 . 3 2 5 . 5 9 7 . 4 6 

1 1 . 3 5 1 3 . 8 6 1 8 . 5 7 2 8 . 2 0 

1 1 . 3 5 1 3 . 8 6 1 8 . 5 7 2 8 . 2 3 

1 1 . 3 5 1 3 . 8 6 1 8 . 5 7 2 8 . 2 3 

2 7 . 0 3 3 2 . 5 3 4 3 . 9 0 7 0 . 1 7 

2 7 . 0 3 3 2 . 5 3 4 3 . 9 0 7 0 . 1 7 

2 7 . 0 3 3 2 . 5 3 4 3 . 9 0 7 0 . 1 7 

3 8 . 9 0 4 6 . 6 6 6 3 . 0 6 1 0 1 . 9 

3 8 . 9 0 4 6 . 6 6 6 3 . 0 6 1 0 1 . 9 

3 8 . 9 0 4 6 . 6 6 6 3 . 0 6 1 0 1 . 9 
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Appendix. The derivation of the second-order approximation. 

In this appendix we will motivate the approximation given in section 2. 

The proposed conditions (2.2) to (2.6) for the determination of the numbers 

y,S,ri and cp in the approximation (2.1) lead to the following equations for 

these numbers: 

(A.l) C^j+n, C2=yS+w, C3 =7/5+»?/«P> and C4=7/5
2+»7/<p2 , 

(see (2.6) for the definition of the C[s). In these four nonlinear 

equations we restrict the feasible (complex) numbers as follows: for 75O we 

require-that Re(5)>/? and for r/^0 we require that Re(cp)>0. Note from (2.1) 

to (2.6) that when 7-O the number S is not determined by (A.l).and hence 

can be taken as any real ( or complex ) number with Re(5)>£. The same 

applies for cp when r)—0. Also it will be used below that the roles of 7 and 

5 in (A.l) are interchangeable with the roles of rj and cp respectively. In 

the following let 0O denote some real constant with fio>0, e.g. /30=2£, and 

let A:-(C1C3-C2C4)
2-4(C|-G4C1)(C?-C2C3). 

Theorem A.l. The four nonlinear equations in (A.l) have a solution 

if and only if one of the following four (exclusive) cases applies: 

i) q-Ca-Cg-C^-O; 

i i ) C35O, C ^ / C a ^ , Cf=C2C3 and C|=-C1CA ; 

i i i ) C%*QxQk, ( C 1 C 3 - C 2 G 4 ) / 2 ( C | - C 1 C 4 ) > ^ and 0<A<[ (C^Cg -C2C4 ) -2(C§ - C ^ )$]z ; 

i v ) CgVCiC*. (GjCa-CaC^ ) / 2 ( C 2 - C X C 4 ) > £ , A<0. 

For t h e r e s p e c t i v e c a s e s we have as s o l u t i o n s : 

i ) 

(A.2) 7=77=0 and 5=<p=p0 ; 

ü ) 

(A.3) 1=C1, fi-Ci/Cg, r?=0 a n d r f t : 

i i i ) and i v ) 

C 1 C 3 -C 2 C 4 +JA 1 C X C 3 - C 2 C 4 + J T I 

( A . 4 ) 8 , cp : , 
2(C 2 -C 4 C X ) 2 ( 0 1 - 0 , 0 ! ) 
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C2-(pCx CZ-SC-L 

S-cp cp-8 

Proof. 

(a) Suppose ii,S,r],cp) is a solution to (A.1) satisfying the restriction 

stated below (A.1). First consider the case of 7»j=0. Since the roles of 

7 and r) are interchangeable it is no restriction to assume r)=0. Then the 

set of equations (A.1) reduces to 

(A.1.1) Cj-7, C2=75. C3-7/5, andC4-7/5
2-

If C-,̂ 0 it follows from (A.1.1) that all C/s are zero and so 7=77=0 and 

S=*cp=p0 is a solution (case i) . If C-,̂ 0, then 75O and so by the convention 

made below (A.1) 8>{1 which implies 8*0. Hence C^O implies that all Ĉ s are 

unequal to zero and so 8~°G2/C1=C1/C3='C3/Git implying the results for case 

ii) . Secondly consider the case that yij^O and S-cp. By our convention 5^0. 

The set of equations (A.1) reduces to 

(A.1.2) C^j+r,, C2 = (7+»;)5, C3 = (7+»?)/5, and Clt~(f+v)/62 . 

This set of equations is identical to (A.1.1) with y'=-f+rj and 8'=8 and thus 

again one of the cases i) or ii) applies. Next we can replace the 

solution (7,S,r7,<p) by a solution as in (A.2) or (A.3). Finally consider the 

left case of 7*73̂0 and 8*<p. Since yr)(8-<p)^0 it is easily derived from (A.1) 

that (SCl-C2) , (SC2-C1) and (5C4-C3) are all unequal to zero and that <p is 

equal to both (SC-L -G2 )/(5C3 -Cx ) and (5C3-C1)/(5C4-C3 ) . Thus 5 must satisfy 

the relation 

(A. 6) (C| -0^4 )52 - (CXC3 -C2C4 )<S+(Cf -G2C3 )=0. 

By the interchangeability of the roles of 8 and cp the same relation applies 

to cp, i. e. 

(A.7) (Cf. -G^, )<p2 - ( C ^ -C2CA )<p+{C\ -C2C3 )=0. 

Hence, since 8^p and C§-^^4=777(l/S-l/cp)2?0, it follows from (A.6) and 

(A.7) that 8 and cp can be taken as in (A.4). From the condition that 
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Re(6)>£ and Re(p)>/3 it easily follows that ((̂ Cg -C2C4 )/2(C| -CXCA )>£ and 

A<[(C1C3-C2C4)-2(C§-C1C4)^]
2 . We also must have A^O since otherwise S-<p. 

Next using (A.1) we find the equations 7=»(ipC1 -C2 )/(<p-5) and 

^(SC^ -C2 )/(S-(p) . Note that rj and 7 are unequal to zero since (SC1-C2) and 

(ipCĵ -Cg) are unequal to zero. Hence 7^0 and S^cp imply the conditions of 

case iii) or case iv). 

(b) By the construction of the solutions given in (a) it follows that under 

the conditions stated in case i) to iv) the corresponding solutions satisfy 

the nonlinear equations (A.1) with restrictions. 

Remark A.1. Note that in case iv) of the previous theorem A<0, which implies 

that the numbers 7,6,77 and cp are not real. In this case we have that 7=»)" 

and 8=<p and therefore we also have that »;e"<Pt is the complex conjugate of 

7e"°t. In the remaining analysis we use the relations e^-x=cos(x)+isin(x) 

and 0cos(x)+wsin(x) = (02+w2)^cos(x+y) with 02+o2>O and y such that 

cos(y)~9/(92+u2)h and sin(y)—w/^+w2)^- After some algebra we find that 

7e"°t+j?e"<ic't= 7*cos(ip*t+^*)e"* c where 5*=Re(5), (p*=»Im(S) and 7* are given by 

CiC3-C2C4 ^ J^A1 

5* , <p* = 
2(C2-C4C1) 2(C2-C4CX) 

7 - C2 + ((C2-6*C1)/¥>*)
2 

and -ij)* is defined by cos(V>* )~C1/7* and sin(ip* )=(S*C1 -C2 )/y*<p* . 

Acknowledgement. I would like to thank Prof.Dr. H.C. Tijms for his many 

suggestions to improve this paper. 
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