
VU Research Portal

R & D policy in space and time

Nijkamp, P.; Poot, J.; Rouwendal, J.

1988

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Nijkamp, P., Poot, J., & Rouwendal, J. (1988). R & D policy in space and time. (Serie Research Memoranda; No.
1988-30). Faculty of Economics and Business Administration, Vrije Universiteit Amsterdam.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303688293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/d0b8d4ea-f29e-4a20-8c2e-96de72982dd4


ET 5ö 

05348 

l<jêi 
SERIE RE5ERREH mEmORlMDn 

R & D POLICY IN SPACE AND TIME 

A Nonlinear Evolutionary Growth Model 

P. Nijkamp 

J. Poot 

J. Rouwendal 

Researchmemorandum 1988-30 augustus 1988 

VRIJE UNIVERSITEIT 

FACULTEIT DER ECONOMISCHE WETENSCHAPPEN 

EN ECONOMETRIE 

A M S T E R D A M 





1 

1. Introduction 

In the recent past much attention has been devoted to the economie 

foundations and impacts of technological innovations (cf. Stoneman, 

1983). Various behavioural paradigms have been proposed in this context, 

such as the depression trigger hypothesis, the demand pull hypothesis 

and the technology push hypothesis. In each of these paradigms, research 

and development (R&D) plays a crucial role in enhancing the efficiency 

and the competitive position of firms or regions. However, R&D expendi-

tures generate, like investment in capital goods, an intertemporal 

allocation problem: more R&D may lead to a higher long-run productivity 

and profitability, but requires lower short-run consumption, and vice 

versa. This issue has been considered for capital accumulation in 

general extensively in traditional growth theory, both for economies on 

a steady state growth path ('golden rule of accumulation') and as an 

intertemporal welfare optimisation problem (optimal control theory); see 

e.g; Jories (1975) and Rasmanathan (1982). With respect to R&D expendi-

ture, two interesting questions emerge. The first question is what the 

behaviour of the growth path of the economy would be in an integrated 

consumption, production, investment and R&D system, in particular when 

the system is facing capacity limits in terms of congestion, other dis-

economies of scale, or depletion of exhaustible resources. Secondly, the 

introduction of spatial considerations generates a non-trivial dimension 

in that new technology in any region may be obtained by R&D internally, 

or by acquisition from external sources. In the latter case, the boost 

to productivity may be delayed and less effective since the adopted 

technology is not likely to be 'custom-made'. The question arises there-

fore what the optimal balance should be between adopting technology from 

external technology-leaders, and generating technology by means of own 

R&D expenditure. 

In this paper we shall explore these questions by means of a multi-

regional dynamic (discrete-time) model. It will be shown that the system 

can generate a wide range of dynamic behaviour, including - for certain 

parameters - the dynamic evolutions occurring in models of population 

biology (notably the so-called May type of models, see e.g. May (1976)). 

The May model is a particular type of model generating chaotic behaviour 

in dynamic systems. The theory of chaos as such has gained increasing 

interest in economies (see among others Benhabib and Day, 1981, 1982, 

Pohjola, 1981, or Stutzer, 1980). It is well-known that the periodic or 

chaotic behaviour of a May model is the result of specification of the 
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model in difference equation form (see e.g. Barentsen and Nijkamp, 

1988), but it will be shown that the model developed here generates 

bounded non-linear dynamics even in differential equation form. Finally, 

the steering possibilities of the system (e.g. by means op optimized 

control) will be touched upon. 

2. A Prototype Model for Economie Dynamics 

In this section a simple prototype model for economie deveiopment 

will be formulated and presented stepwise. We commence with the assump-

tion that each of the regional economies under consideration is 

operating under the following production function regime (in difference 

equation form): 

Y t=f t(K t) , (2.1) 

where Y is actual production (or output) during the period (t, t+1), K 

the installed capital stock at the beginning of period t, and f a time-

dependent (i.e., varying in parameters) production function. 

For the sake of simplicity, we will for the moment assume a simple 

production technology, i.e., 

Y t = e t K t , (2.2) 

where e is a technological coëfficiënt representing average capital 

productivity during the period (t-l,t). However, this assumption is not 

as restrictive as it seems, since in a sense we may consider (2.2) an 

identity in which e includes all factors which influence capital 

productivity. Thus, rather than making the a priori assumption that the 

elasticity of substitution between capital and other production factors 

is zero, we shall show below that the time trajectory of e can incor-

porate both movements along the production frontier as well as shifts in 

this frontier. 

With respect to capital accumulation, the following equation holds: 

Kt +1= tt"*)
 K t + I t (2-3) 

where I stands for gross investment during period (t,t+l) and .5 is the 
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rate of physical depreciation of the capital stock. We assume the fol-

lowing simple investment function for capital expansion (or widening): 

It = a1 Yt , (2.4) 

where er.. is the fixed average savings rate. Clearly, this relationship 

takes for granted the existence of equilibrium bet-ween savings and capi

tal increase. Assuming a given savings behaviour, it is evident that er, 

acts as one of the driving forces or key parameters of our dynamic sys-

tem. 

It is now easily seen from (2.2) that if any growth rate is ex-
x Y 

pressed as: g = (X ,-X )/X , the growth rate of income (i.e., g ) is 

(approximately) equal to the sum of the growth rate of capital (i.e., 

g ) and the growth rate of capital productivity (i.e., g ): 

£ - s t + <4 (2-5) 

and that - by means of (2.3) and (2.4) - we find that 

g^ = < a l V « ) + g ^ (2.6) 

The latter relationship implies the obvious result that - in case of a 

negligible change in the production technology in period (t,t+l), i.e. 
e Y 

g =0 - the growth in income g would be equal to the savings rate o, 

times the capital coëfficiënt e (i.e. Harrod's conventional warranted 

growth rate) minus the rate of capital depreciation. 

Since we have taken for granted period-by-period macroeconomic equi

librium with respect to investment and savings, it follows that 

Y t = C t + I t , (2.7) 

and we can easily derive that consumption C is equal to: 

Ct = (l-ax) Yt , (2.8) 

so that consumption, investment and income all follow the same growth 

path, i.e. 

g " = g ' = g t = C T l e t " 5 (2-9) 
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Naturally, the case of a variable propensity to save violates (2.9); 

this will be considered later in Annex A, where the savings rate will be 

regarded as a control variable in an optimal control model. 

Having presented now the basic elements of a simple growth model, we 

will introducé in the next section in a more detailed way the causes and 

consequences of changes in capital productivity. 

3. Variable Capital Productivity 

Here we assume that the production efficiency can be enhanced by 

means of R&D efforts embodied in the production technology. 

Consequently, the production function has to be adjusted,.as R&D invest-

ments will imply a growth in efficiency due to a change in the capital 

coëfficiënt (see Baumol and Wolff, 1984; Mansfield, 1980; Nelson, 1981). 

Therefore, we may assume that - in order to develop a new 'technological 

regime' (cf. Nelson and Winter, 1982) - R&D expenditures will exert a 

positive impact on the production efficiency parameter e . Thus the 

productivity of capital can be improved through capital deepening, which 

is in general a function of R&D. The effect may be represented by the 

variable v , which measures the impact on productivity of a unit of 

expenditure in R&D. Hence 

A e t = e t + 1 " e t = ' t R t <3-X> 

where R represents the R&D investments per capita during period (t,t+l) 

amd v the R&D impact parameter for the capital coëfficiënt for the same 

period. We introducé the following equation for R , which defines the 

savings rate for R&D investments in a way analogous to (2.4): 

R t = * 2 Y t (3.2) 

Thus consumption is now equal to: 

Ct " (1-«V"2) Yt ' (3-3) 

while substitution of (3.2) into (3.1) leads to the following result: 

A e t = » t o 2 Y t (3.4) 

Using (3.4), (2.2) and (2.6) it can be easily seen that 
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Y , 
•gf = <°'-'e r t-5) + ^ a ^ (3.5) 

The latter equation suggests that, if v would be constant over 

time, capital accumulation generates ever-increasing growth in output 

and capital productivity. This unrealistic outcome suggests that it is 

plausible to assume that v becomes less when output increases, which 

simply implies that the marginal efficiency of R&D expenditure declines 

when output grows. Under a given 'technological regime', ultimately a 

'saturation' level of output may exist at which further R&D expenditure 

has no longer an impact on productivity. Such a saturation level may 

arise from capacity limits (technological, social, economie) and 

reflects - for a given production technology - a 'limits to growth' 

phenomenon, stemming from congestion, lack of natural resources or 

labour input. 
c c 

Calling this level of output Y , it follows that v =0 when Y > Y . 

Naturally, the limits to growth themselves may be shifting, so that Y 

will increase with time and, as bottlenecks are overcome, further R&D 

expenditure may again have a positive effect on productivity. We may 

therefore assume the following ' specification for an adjusted (i.e., 

time-dependent) R&D impact parameter: 

i/t = max [v (1-Yt/Yp, 0} (3.6) 

This relationship is depicted in Figure 1. It is clear that an analogous 

result might be reached by imposing a saturation level for e . 

In our case, it is easily seen that not only would R&D expenditure 

Figure 1. Decreasing marginal benefits of R&D expenditures. 



become ineffective if output expands beyond Y , but it may also be ex-

pected that congestion and other external diseconomies set in which 

reduce capital productivity. In a broader framework, it may also be 

plausible to assume that the notion of a limited system capacity also 

refers to increasing labour scarcity along the growth path, which would 

tend to lead to substitution of capital for labour in response to higher 

real wages. Capital accumulation would therefore proceed, resulting in 

an increase in capital intensity (or a reduction in capital 

productivity). 

The previous remarks suggest that we may replace (3.1) by the following 

simple relationship: 

A < t " t R t - M t Y t (3.1') 

in which fj, measures the congestion etc. effects ' on productivity when 
Q. 

output exceeds Y and, thus: 

Mt = max (/ (YtA° " D , 0) (3.7) 

Substituting (3.7) and (3.6) into (3.1) and recalling (2.2) and (2.3), 

the motion in the system can be described by the following set of non-

linear difference equations: 

K t + 1 - d-5) Kt + ffl , t K t (3.8) 

£
t + i = e t + c - 2

/ m a x ^-YtK'0)-
(3.9) 

H max (YtAt " L
0)] e

t
 K

t 

Yt+1 -
 et+l

 Kt+1 <3'10) 

y ^ + 1 - f (Yc
t) (3 .11) 

From (3.11) it can be seen that the time-trajectory of Y is considered 

exogenous to the system under consideration. However, instead of an 

autonomous trajectory of Y (e.g., based on a fixed technological 

progress leading to a permanent upward shift of the system's 

bottlenecks), it might also be possible to relate this upward shift of 
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Y^ to the average change in the production efficiency parameter in pre-

vious periods. The linkages between the variables in the stock-flow 

system are depicted graphically in Figure 2. 

Figure 2. A representation of the simple growth model. 

It is obvious that for any given initialisation (K ,G , Y Q , Y Q ) , the 

system (3.8)-(3.11) can exhibit a wide range of time trajectories de-

pendent on parameter values. It is therefore useful to consider some 

special cases. 

Firstly, if the capacity of the system Y is constant over time, 

i.e. if YC = YC for all t, a non-trivial zero growth economy exists, 

which satisfies (3.8)-(3-10) and for which Y = YC, 7 = 5/^ and K = 

a1Y
C/S (this trivial solution has zero capital and output). 

Is this stationary state stable? The answer depends on the values of 

the parameters in the equation for capital productivity. It can be 

easily seen that this equation can be written as: 



e t + 1 - €t + [a2v* max (1-etKt/Y
C,0)+ 

(3.12) 

+ / min (l-etKt/Y
C,0)] ^ Kfc 

If the depreciation of capital 5 and/or the savings ratio a. 

can vary over time and they are such that net investment is zero, (3.9) 
•k * 

reduces to a well-known non-linear difference equation when o-v =/x . In 

this case: 
et+l = et + ^ * (1-etK/Y°) ct (3.13) 

Equation (3.13) is the Standard May type model (from population 

dynamics), which may generate any type of dynamic behaviour ranging from 

stable growth to chaotic f luctuations, depending on the value of JJ, K 

(see for further details among others Brouwer and Nijkamp, 1985; Goh and 

Jennings, 1977; Jeffries, 1979; Parker, 1975 and Pimm, 1982). In par-

ticular, if p. K > 2.57, such a May-type of model may exhibit wild 

fluctuations (May, 1974). For further discussions on the May model in 

the context of chaos theory, the reader is referred to Nijkamp and 

Reggiani (1988b). 

Nonetheless,- e=Y /K is locally stable when n K<2. Moreover, if we 

replace the 'non-overlapping generations' approach of the above men-

tioned difference equation by the corresponding differential equation, 

it can be easily derived that the general solution is 

e ( t ) - = ±-z j (3.14) 
K . _J^ K -p. Kt 
^c + { e(0)" ̂ c ; e 

which represents the well known logistic growth with a globally stable 

solution e - Y /K, since p. K>0 always. 

More generally, when a„u ^ n and both S and a-, are constant so 

that the capital stock can vary over time, inspection of the local 

stability of the system is complicated by the fact that (3.12) is not 
—c — 

differentiable with respect to e in the neighbourhood of Y /K. 

Moreover, it is obvious that the system (3.8)-(3.11) is a generalisation 

of the May-type of model and may generate unpredictable behaviour. 
^ "k 

However, for empirically plausible'values of v and p. such that for Y 

not far from Y , the change in productivity would remain bounded (i.e. 6 

would remain non-negative), we would expect the system to converge to 



the zero growth state, with (e, K) = (S/u, , er-, Y /&) being a node type 

of singular point (e.g., Gandolfo, 1980, pp. 428-459). Further exposi-

tions on the existence of such steady state points in an optimal control 

framework can be found in Figure Al in Annex A. 

Moreover, simulation experiments show that when Y is no longer 

constant, but increases at a constant rate n per period, this growth 

rate becomes the 'natural' growth rate of the system. In this case, 

average capital productivity settles at a value of (n+6)/cr, and output 

and capital will grow at rate n, with Y being identical to Y . Starting 

with Y <Y , the time it takes to reach the capacity constraint decreases o o r J 

when either the investment ratio (CT1 ) , or the R&D propensity (cO , or 

the R&D effectiveness {u ) increases, but increases when the growth rate 

of Y is larger. Naturally, when output exceeds the capacity of the 

system, productivity will decrease the faster, the stronger the conges-

tion effect /j . 

These results are illustrated by means of Figures 3-5. Figure 3 is 

based on the assumption that K =1000 and the capital-output ratio equals 

5, so that e =0.2 and Y =200. The saving ratio is 20 percent, 2 percent 
o o 

of the capital stock becomes obsolete each period and 2 percent of in-

come is spent on R&D. Hence, o-,=0.20 and 8=o„=Q.02. The sustainable 
c * 

output capacity Y =1000 and grows at 1 percent p.a. Moreover, p, =0.0001 
and v =0.001. Since 5a2v =n , the productivity response is five times as 

c c 

elastic when Y >Y than when Y <Y , and of opposite sign. Clearly, the 

evolution of Y might in principle differ for each region. 

Figure 3 shows that growth in the system is under these conditions 

initially accelerating, but the growth rate of capital productivity 

reaches a maximum at t=25 and subsequently declines until Y reaches the 

capacity level Y at t=37. At this point, the growth rate of capital 

accumulation reaches a maximum. Beyond t=37, Y will remain above Y but 

will converge to the latter. Consequently, capital productivity becomes 

constant at a rate of (n+5)/a-.=0.15 and capital and output grow at a 

steady state rate of 1 percent. 
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25.000 50.000 
Time 

75.000 100.000 

Figure 3. Growth converging to a steady state. 

Legend: 1 : growth in capital productivity 

2 : capital -growth rate 

3 : income growth rate 

In figure 4 all parameters are the same as in Figure 1, but p. has 

been increased to five times its former value. Consequently, the conges-

tion and other diseconomics effects are now sufficiently strong to push 

Yfc at times below Y so that growth cvcles are generated with a varlabIe 

periodicity but with decreasing amplitude. The system eventually con-

verges again to a steady-state growth of 1 percent. 

It must be emphasized that the cyclical behaviour in Figure 4 is 

entirely due to the difference equation specification of system (3.8). 

When this system is written in differential equation form and the solu-

tion is computed by means of the efficiënt Runge-Kutta integration 

method, Figure 5 results for parameters identical to those in Figure 4. 

Hence growth rates adjust relatively smoothly to the steady-state 

levels. 
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% 

10.000 

5.000 -
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-5.000 

-10.000 
100 XXX) 

Time 

Figure 4. Growth cycles generated by strong external 

diseconomies. 

Thus far we have focussed exclusiveiy on the dynamic properties of 

an economie growth system in isolation. In the next section we shall 

consider the consequences of allowing for spatial interaction in the 

form of diffusion and adoption of new technology generated by R&D in a 

multiregional system. It will be shown that such a system can generate 

growth patterns which have no tendency to converge to a steady state, 

even if the parameters are chosen such that the regions in isolation 

would do so. 
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100.000 

Figure 5. Simulation with a differential equation structure. 
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4. A Multiregional Dvnamic Model 

In a system of regions, technology transfers from any one region 

would exert an impact on the R&D efficiency of other regions (see also 

Kamien and Schwartz, 1982, Nijkamp, 1985, and Scherer, 1980). Such in-

terregional spill-over phenomena may be taken into account by 

introducing a certain spatial R&D transfer function, which incorporates 

spill-over effects from R&D investments in other regions upon the 

regional production efficiency. However, as in the single region case, 

the effect of R&D on productivity would depend on how close the level of 

production is to the capacity level at which applications of the new 

technology have been exhausted and bottlenecks and other constraints 

prevent further increases in productivity. When capital accumulation 

generates output beyond this capacity level, productivity declines as a 

result of diminishing returns, congestion and other diseconomies ef

fects .' 

Denoting regions by an index r (r=l,2,...,R), the process of spatial 

diffusion and adoption of technology described by 

el+1 = el + S , i r max (l-Y^/Y^, 0) af Y ^ 
1=1 

- M
r max (YJl/Y^- 1,0) Y* (4.1) 

r=l,2,...,R 

ir in which v represents the marginal efficiency of R&D expenditure in 

region i when the technology is adopted by region r. It is obvious that 

the dynamic behaviour of the system depends crucially on the R&D diffu

sion and adoption matrix: 

N = 

11 IR 
v . . . i/ 

•Rl RR v . . . v 

(4.2) 

Naturally, the model discussed in the previous section is a special 

case in which N is a diagonal matrix and spatial linkages are absent. 

Generally, we would expect the off-diagonal elements of N to be non-

negative with larger values for transmission between contiguous rather 
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than non-contiguous regions. This may be reflected by a distance decay 

function 

-cd. 
ir rr ir 

v =1/ e (4.3) 

in which c is a constant and d. measures the distance (or cost) of 

diffusion of technology from i to r. 

Using that Yfc = e K for r = 1,2,...,R, equation (4.1) can be writ-

ten in matrix form as 

't+1 

't+1 
R 

max (I-ÉIKÏ/Y^.O) 0-
t V t 

0 

•0 max (l-eV/Y^.O) t t t 

1 1„1 
a2 et Kt 

R R VR 
a2 et Kt 

/ m a x ( ^ K ^
1 - l , 0 ) , ^ 

R , R ,,R ~rcR -. _. 1„1 
M max(6t Kt/Yt -1,0)6^ 

(4.4) 

Qualitatively, the spatial interaction between regions in system 

(4.4) is characterised by a positive feedback loop: R&D expenditure in 

any one region leads to higher growth in other regions, which - in turn 

- boost R&D expenditure in those regions, giving a further impulse to 

growth in the original region. Thus, given a 'pooling' model for inter-

regional technology transfer, a new evolutionary pattern of regional 

growth may emerge. However, the presence of capacity constraints implies 

that the system can again exhibit the great many types of dynamic be-

haviour of the May model. 

—r It can be easily verified that (e , K ) - ((5 +n )/CT, , CT, YCr/5r) 
er is, as in the single region case, a singular point, when Y grows at a 

rate of n (r=l,2. ,R). 
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However, stability of this steady state is extremely unlikely", in par-

ticular when the system consists of a mixture of large and small 

regions, with varying capacity growth rates n . In that case, explosive 

time trajectories would be common. 

These results can again be illustrated by means of simulation. We 

shall consider here one case-study of three regions with one 'large' 

region (^=2000) and two 'small' ones (K2= K3 - 500). In all other ° s o o o 

respects (initial technology, savings propensities etc.) the regions are 

identical. The technology adoption matrix N is given by: 

N = 

Hence region 3 does not adopt technology from region 1, while region 
er 2 readily adopts this technology. It is also assumed that Y = 1000 for 

r = 1,2,3 and grows at 1 percent per period. For simulation, (4.4) was 

replaced by its differential equation equivalent and the Runge-Kutta 

method was used for integration. Figure 6 shows that under these condi-

tions regions 1 and 2 converge to a steady-state growth process, in 

which capital productivity is constant and output (and capital) grows at 

the 'natural' rate of 1 percent. In contrast, region 3 remains behind in 

production efficiency until t=25, but subsequently 'overtakes' both 

other regions. Moreover, while there is a tendency for productivity to 

come close to its steady-state value, at that stage persistlng cycles 

emerge. 

Differences in the growth paths between the three regions suggest 

that even if consumption per capita would be Identical initially, this 

would not remain so due to differences in R&D expenditure and Investment 

between regions. This can be seen from figure 7. It has been assumed 

that populations are such that initially consumption per capita is equal 

across regions. Population growth in all regions is assumed to be 1 

percent per period. Consumption per capita in regions 1 and 2 settles 

down at steady-state values (but at a much higher level for the latter). 

However, consumption per capita reaches an even higher level in region 

3, but this level cannot be sustained. 
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Figure 6. Capital productivity growth in a multiregional 

system with technology transfers 

Legend: 1: region 1 

2: region 2 

3: region 3 
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Figure 7. Consumption per capita in a multiregional 

system with technology transfers 

In terms of the trade-off between consumption and investment dis-

cussed in section 1, the question arises whether region 2 would be able 

to reach the same (or even higher) leveIs of welfare with solely import-

ing new technology rather, than developing such technology itself (i.e. 
2 

o^O). The answer is, for the parameter values chosen here, affirmative. 

This can be seen from Figure 8. 

Comparing Figures 7 and 8, several conclusions emerge. First, the 

absence of any R&D expenditure in region 2 has - as expected - no impact 

on region 1, which is the 'technology' leader which reaches the capacity 

constraint the fastest. Secondly, without its own R&D expenditure, 

region 2 takes longer to maximize consumption per capita, but its 

steady-state level of consumption per capita is ultimately somewhat 

higher. 
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Figure 8. Consumption per capita in a multi-regional 

system with one technology-follower 

Thirdly, the absence of R&D expenditure in region 2 has a detrimental 

effect on the time-trajectory of consumption per capita in region 3, but 

it does enable region 3 to reach a stable steady-state situation. 

While the simulation results appear plausible for the given 

parameter values, it must be emphasised that different parameter values 

may generate quantitatively and qualitatively different time trajec-

tories. Thus can be illustrated by using the same data as for Figure 8, 

with one exception, viz. a difference in output capacities YCr. It we 

assume Y cl 2000, Y c2 500 and Y' c3 L0 ~ ^^^^' Q̂ " J W U d U U 1Q = 500, a different pattern emerges 

(see Figures 9 and 10). Then the highest capital productivity is reached 

in region 1, while all regions converge to a steady state growth path 

with capital productivity equal to 0.15. Furthermore, it is interesting 

that - despite differences in output capacity -, consumption per capita 

in all regions tends toward 500. 
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Figure 9. Capital productivity in a multiregional 

system with interregional differentials 

in output capacity 

2000.000 -r 

1500.000 - f 

1000.000 

500.000 -•• 

0.0 

- -f- . 4 . . z^szzzz^z^z. . . 4 - ...... . . 4 . . . 4 . . .*.. ..+.—-*....,*..„,*.. 

h'i"" 

4....U 

- . . . . 4 . . .4--
. ........... ..... . . . . . . . . . 

i _ i - _ _ _ _ _ ^ — . . . . . . . . 
. . 4 - .4 - -..i. . 4 - ..+.. 4„4..4...4.. .............. .... 

; : 1 

-4~—4>—< 

- ,....*" ..+.. -~H f-—• . . 4 - -.+.. ..+.. „ 4 " ..-i- .4.....4.„..i—+.. *- •+ - "4 +"-•l 

• .„.f. ..A.-...........................................—.................. .4.. ..*. ..*.. . . i - ,. 4 . . • ••* - •. .4 -.—*•• ........—... .... - i — i ™ i 

• , . . . 4 - . . 4 . . ...—.............4..... .—............. ...>.-- . 4 . ...J.. ..->.-..+,. ..4...,.+..„4.—.4.. .... ~ 4 — • • 4 " " * 

- f -.4. 

_....i........i...i....l„..^_......L.....i...i....i..„.. 
-.+.. -+. -.+.- . . 4 _ 44-f-f-............. " 4 « « 4 < 

• ,...->.. . . 4 . _.4„......u.4.—j—44- ...>.. . . 4 . . . 4 . . -.+.-..+.. 4444 «4--«4~—« 

• . . . . .4 . 

. . 4 . 

. . 4 . 

. . 4 . 

.......L.......i.......i_^t2--^4-i:?i, 
. . 4 -

12 
. -4« . . 4 . . ..+.. 

4-1.234-~123-
i 
4 -H—j 

. . . . .4 . 

. . 4 . 

. . 4 . 

. . 4 . 

i i ! i ! I ! I i i i i : 
. . 4 . . . 4 . ..*. 4 ! 

. . . . .4 . 

. . 4 . 

. . 4 . 

. . 4 . 

i i ! i ! I ! I i i i i : 
. . 4 . . . 4 . ..*. 4 

" ' i i • i • j ' i • ' l i • i • j 

Tirne 

Figure 10. Convergence of consumption per capita 

in a multiregional system with inter

regional differences in output capacity. 
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5. Concluding Remarks 

Several extensions of the multiregional system described above can 

be suggested which enhance the realism of the system. For example, the 

spatial interaction considered hitherto has consisted solely of a posi-

tive feedback loop through the diffusion of technological advances 

generated by means of R&D. Other forms of spatial interaction could be 

postulated, such as capital mobility in response to spatial differen-

tials in capital productivity or negative spillover effects. In the 

presence of negative feedback loops between the growth path of one 

region and others, Lotka-Volterra type dynamics, possibly with stable 

cycles, may be generated.' Other extensions would include a varying 

savings rate for R&D investments which would respond to change in 

economie conditions over time (depression trigger hypothesis) or to 

spatial differentials in economie well-being (space trigger hypothesis). 

The model discussed above was a descriptive dynamic model. Given a 

set of parameters and of initial conditions, the model was able to gen-

erate a trajectory of the multiregional system concerned, given its 

structure as reflected in the specified equations. If one would regard 

this model as a policy model, it would be necessary to introducé a cer-

tain objective (or welfare) function encompassing a trade-off between 

relevant welfare arguments. A dynamic programming or optimal control 

formulation may then be desirable (see Kendrick, 1981, and Nijkamp and 

Reggiani, 1988a, 1988b). Such a constfained dynamic optimization might 

then in principle prevent the variety of chaotic fluctuations inherent 

in the nonlinear dynamics of an interdependent multiregional growth 

system. The formal treatment of such an optimal control model is given 

in Annex A, in which the assumption is made that each region tries to 

maximize (the net present value of) an overall welfare function by means 

of a proper choice of the savings rates for both capital investments and 

R&D investments. 
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Capital Accumulation, Endogenous Technical Change and Optima! Control. 

In this Annex we will analyze the implications of introducing the 

savings rates o- and <?„ as control parameter in an adjusted optimal 

control version of the model from sections 3 and 4. 

Let capital accumulation be given by: 

K - I .- CTK (Al) 

where I is gross investment and o is the rate of depreciation. The in-

vestment function is again equal to: 

I - <r Y (A2) 

with Y being output; R&D expenditure is also proportioned to output, 

i.e. : 

R = a2 Y (A3) 

The effect of R on capital productivity e = Y/K 

is given by: 

é = i/*R + E , (A4) 

where E measures the adoption of externally generated innovations. 

However, u is not constant. The closer Y = eK gets to a capacity level 
c c 

Y , the lower the marginal efficiency of R&D expenditure. When Y > Y , 

capital productivity can even decrease as a result of congestion and 

other external diseconomies effects. We assume here the following simple 

relationship: 

v* = v (1 - YA C) (A5) 

Combining (1) - (5), we get the equations of motion for e and K: 

è = o0 v (1 - — ) eK (A6a) 
C yC 
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K = CT, £K 5K (A6b) 

It is relatively straightforward to see that, for a given Y , (e, K) 

= (5/CT.J , cr̂ Y /§) is a locally stable equilibrium. This can be il-

lustrated by means of the phase plane below: 

6 
o" 

V -e 

~ - £ 
K 

Figure Al. The time trajectory of e and K for a fixed 

system capacity Y 

At any point in time, the level of consumption is given by 

C - Y R = {I-o, °2) Y (A7) 

Hence, here the classical Ramsey-type optimal control problem arises 

which o. and CT are to be ch< 

fare of the system is maximized. 

in which o, and CT are to be chosen such that the present value of wel 



- 23 

Let p be the proper discount rate and U(.) an appropriate welfare 

function. This function is assumed quasi-concave, as usual, to ensure 

that the second-order conditions are fulfilled. 

The optimal control problem can now be formulated as follows: 

Max I [ e ,K,cr, , CT„ \ U [(l-CT1-a2)£K] e'pt dt (A8) 

0 

and subject to (A6a) and (A6b), with e, K being state variables and a^ 

an being controls. The initial values are K(0) = K and e(0) = e . 
2 ° o o 

Moreover, p, 5, E, v and Y are constants. 

The Hamiltonian related to (A8) is (see e.g. Miller (1979, p.104): 

H (t,e,K)o-1,a2,A1,A2) -

U [(1-CT1-<T2)CK] e p t + 

X1 {a^y (1 - -^) eK + E} + A2 (c^eK-SK) (A9) 

The f i r s t - o r d e r c o n d i t i o n s a re 

P - U . ( l - c r 1 - a 0 ) K . e " p t + A,CT0VK 
O € C 1 Z 1 Z 

K2 

- A-, an v 2e — + A„ a, K = -A, 
1 l „ e 2 1 i 

2 
| | = U c ( l - a 1 - a 2 ) e e p t 4- A ^ e - X^^l K ^ 

+ A„CT^ e - X~8 =• -A„ 

(AIO) 

( A l l ) 

P - = U . - e K . e " p t + A0eK = 0 (A12) 
da, c 2 

P - - U . - e K . e " p t + A.i/eK = 0 (A13) 
3CT„ c l 

| S - - a 0 v ( 1 - — ) eK + E = e (A14) 

P - = a n eK - SK - K (A15) 
öA n 1 
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It follows immediately from (A12) that A„ = U e (i.e., the discounted 

marginal utility at time t) . From (A12) and (A13) we see that A-. = \~/v 

(i.e. the discounted marginal utility at time t per unit of the respon-

siveness of productivity to R&D expenditure). 

Following Dorfman (1969), equation (All) shows that the loss to 

society that would be incurred if the acquisition of a unit of capital 

were postponed for a short time, is equal to the sum of the contribu-

tions of that unit of capital to, firstly, the present value of welfare; 

secondly,. the change in productivity, and, thirdly, the change in the 

capital stock itself. Similarly, the loss to society of postponing 

productivity, growth for a short time is equal to the sum of the con-

tributions of such an increment in productivity to the present value of 

welfare, the change in productivity itself and the effect on capital 

accumulation. 

In the very simple case in which U(c) •== C, we find U - 1 and A„ = 
i- -t-

e , while A1 = e /v. If, in addition, we restrict ourselves to the 

steady-state growth path with K and Y growing at rate n, we recall that 

e = (n+S)/cr.. . Equations (AIO) and (All) now become: 

,i N al "Pt ̂  -pt YC -pt . 2 YC ̂  

o 

-pt 2 YC pe"pt ..... 

and 

,-, . (n+5) -pt , -pt (n+5) -pt 0
 glg2 ,n+5. ^ (l-a,-o-0) e + e a0 -

}i - e 2 — j — ( ) + 
1 2 o, 2 a , b a ' 

e'pt (n+5) - Se'pt = pe'pt (A17) 

Equations (A16) and (A17) are two non-linear equations in the two 

variables CT. and o~ . Since both equations can be divided by e , the 

solution is independent of the choice of a discount rate p. However, 

the solution would depend on the value of Y . Hence, the values of c. 

and ar. would tend to vary over time (see also Nijkamp and Reggiani, 

1988a). In the general case, the solution to the differential equation 

system (A10-A15) in the variables e, K, a-., cr„, A-, and A„ would not 

appear analytically tractable. Then simulation runs would have to be 

made to examine the possibility of stable trajectories. 
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