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Abstract: This paper demonstrates the usefulness of nonparametric regres-

sion analysis for functional specification of household expenditure func-

tions and equivalence scales without restricting' the class of admissible 

functional forms, using a Dutch budget survey. 

1. INTRODUCTION 

Household expenditure patterns differ across households according to 

family size, age composition, educational levels and other household char-

acteristics. In modelling household expenditures one should therefore not 

only relate expenditures to income and commodity prices, but also to these 

household characteristics. These models then form a basis for welfare com-

parison between households and the estimation of the cost of children, 

directly or indirectly via the construction of household equivalence 

scales. 

Research in this area is of considerable practical significance. Know-

ledge of the cost of children is necessary, for example, for judges who 

have to assess alimony and politicians who decide on the level of child and 

family allowances. Most industrial countries have a system of family allow

ances compensating the direct cost of children. These allowances however 

are seldom based on the result of advanced academie studies. In particular 

the econometrie studies appear to have had little or no impact on social 

policy. Only the results of the more traditional methods which are also 

relatively easy to understand seem to have had any influence. These simple 

methods, however, lack in general theoretical foundation and an objective 

*) The comments of Wim Groot and Arie Kapteyn are gratefully acknowledged. 



2 -

base. 

The various econometrie approaches to estimating household expenditure 

functions and household equivalence scales all have one other major draw

back in common, namely that the functional form of the demand equations has 

to be specified in advance, directly or indirectly via the specification of 

the functional form of the utility function. The functional form of the 

model or the utility function is usually chosen on the basis of tractabil-

ity rather than on the basis of a priori knowledge of the true functional 

form. Tractability and reality, however, need not coincide in practice. 

Since there is almost a continuüm of theoretically admissible functional 

forms, the actually chosen functional form is almost surely misspecified. 

This situation is reminiscent of drawing a random variable from a conti-

nuous distribution, i.e., the probability that this random variable equals 

a certain fixed value is equal to zero. 

Misspecification of the functional form of household expenditure func

tions may have serious consequences for the econometrie results. In parti-

cular, functional misspecification usually leads to inconsistent parameter 

estimators, and consequently the estimated equivalence scales are inconsis

tent too. In this paper we are mainly concerned with the functional speci

fication of household expenditure systems. After a review of the literature 

on demand functions and equivalence scales in Section 2 and the functional 

specifications used, we derive in Section 3 the functional form of our 

expenditure functions from nonparametric regression results, using the 1980 

Budget Survey for the Netherlands, in order to avoid model misspecifica

tion. Nonparametric regression analysis is a technique which allows consis

tent estimation of a regression model without specifying in advance its 

functional form. Thus the model is derived directly from the data, without 

restricting its functional form. The only specification that is involved 

concerns the choice of the dependent variable and the independent varia

bles . The relationship between this dependent variable and the independent 

variables is left free, apart from some mild regularity conditions (such as 

continuity). The nonparametric regression results are then translated to 

suitable parametric functional specifications, i.e., we have chosen 

parametric functional forms in accordance with the nonparametric regression 

results. These parametric specifications have been estimated by least 

squares, and various parameter restrictions have been tested in order to 
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simplify the models. 

2. REVIEW OF THE LITERATURE 

The methods of estimating household equivalence scales and the costs of 

children can be divided in: 

a) Income evaluation methods. 

b) Normative or 'minimum basket of commodities' methods. 

c) Budgetary and econometrie methods, on the basis of household expendi-

ture surveys. 

The income evaluation method 

The income evaluation approach for assessing the cost of children is 

based on the answer to the so-called income evaluation question: 

"Please try to indicate what you consider to be an appropriate amount of 

money for each of the following cases? Under my (our) conditions I would 

call an after-tax income per week (month/year) of about very bad, of 

about bad, of about insufficiënt, of about sufficiënt, of 

about good, and of about very good." 

The response is related to the age and socio-economic category of the head 

of the household, his/her past and present income and the household compo-

sition (Kapteyn and Van Praag 1976). However, the method has been criti-

cised on its assumptions, in particular the existence, measurability and 

interpersonal comparability of the individual welfare functions. 

The 'minimum basket' method 

A traditional method to estimate the direct minimum cost is to draw up 

detailed lists with minimum requirements of food, clothing, housing and so 

on for different types of households. The 'minimum basket' was originally 

based on a biological subsistence minimum, but it is now recognised that 

these estimates cannot be absolute and that only normative and relative 

packets for social welfare levels of average households can be established. 

Internationally the studies of Rowntree (1901, 1941) for establishing 

minimum subsistence levels for households of different composition have 
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received much attention. 'Rowntree's first 'minimum basket' was based on 

minimum diet estimates by Atwater (1895) and Atwater and Wood (1896), diets 

without meat and scarcely enough to live on. Yet these estimates were 

higher than most other nutritional scales.*5 Rowntree's findings were used 

by Beveridge (1942). Beveridge' s reconunendations form the basis of the 

since 1948 operative social benefit system in England. Variants of 

Rowntree's approach are those of Oishansky (1965, 1968). He multiplied the 

food packet by an estimated value of the average income-food ratio. 

Econometrie methods 

The budgetary (or econometrie) approaches, i.e. empirical investiga-

tions of the expenditure behavior of households, are usually based on 

consumer theory. The theoretical basis has been improved with the empirical 

progress (see also Muellbauer 1977) but major drawbacks still 'exist. The 

different approaches and different models embody different conceptions of 

child cost and this can lead to quite different measures of the cost of 

children or equivalence scales (see also Deaton and Muellbauer 1986). Costs 

are by definition equal to the value of what is sacrificed. For the daily 

care and upbringing of children not only money is 'sacrificed' for food, 

clothing etcetera (direct costs) or education (party collective costs) but 

also time (cost of care) and immaterial costs (sorrow, worries). Most 

economie literature focus on the direct cost only. The other costs and the 

benefits of children are usually neglected. Traditionally, household 

composition is treated as exogeneous and the utility level of the household 

defined on current consumption. The utility derived from children is untill 

recently (e.g., Blundell and Walker 1982, 1984) ignored. The same applies 

to the forgone (mainly female) time available for work or leisure due to 

the presence of children. Collective costs are neglected in all the 

econometrie studies (to the best of our knowledge) and only total 

*) The Atwater scale belongs to the male-equivalent scale. A 17 year male 
- 100 (female = 80), male 14, 15, 16 = 80 (female 70), child 10, 11, 12, 13 
= 60, child 6, 7, 8, 9 - 50, child 2, 3, 4, 5 = 40 and babies óf 0, 1-30. 
This scale is more or the less identical to the 'König'scale of 1882, but 
higher than other well-known German scales (Nasse 1891 and Kuhna 1894), the 
Denmark scale (1897), the Swedish scale (1908), and the often applied 
Amsterdam scale -(1917) . 
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expenditure out of net household income is considered. Moreover, in general 

specific expenditures are related to total expenditure rather than 

household income, in order to impose the budget constraint. In addition 

most studies neglect life cycle influences and relative income and power 

distribution within the household (an exception is Bojer 1977). 

The founding-father of household expenditure analysis is Engel (1883, 

1895). Engel's equivalence scales are based on the proportion of income 

used for food of Belgium factory workers. The method assumes that the 

welfare of two households is equal if they spend the same proportion of 

their income on food. The equivalent scale m0 depends on household composi-

tion. If Piq̂ . is the household expenditure on good i and x is household 

income then piqi/m0 is a function of x/m0. Following Engel the first appli-

cants of the method used equivalence scales m0 based on nutritional requi-

rements determined by experts [Stone (1954) used the Amsterdam scale of 

1917] and total expenditure instead of household income. Although the 

theory is rather restrictive, as the equivalence scale is the same for each 

commodity, the method has been widely used since the beginning of this cen-

tury all over the world. 

Muellbauer (1977) estimated scales with Engel's method using British 

data from the Family Expenditure Survey under the hypothesis that the equi

valence scales take the form 

m=l+51a1+52a2 , 

where St and 8Z are parameters, a.x is the number 'of children in the age 

group 0-4 and a2 the number of children in the age group 5,-16. 

A specification of the Engel function that frequently fits the data 

well is the Working (1943) - Leser (1963) form, in which the food share wf 

is a linear function of the logarithm of total expenditure. A simple exten-

sion that incorporates demographic effects is chosen by Deaton and Muell

bauer (1986): 

wf = a - p ln(x/n) + I J . ^ ^ + « 

where n̂  is the number of persons in category j (j=l,..-, J) , n is the total 

number of. persons in the household, x is total expenditure, o, /3 and the 
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7j ' s are parameters and e is a random error. For many third world surveys 

Deaton and Muellbauer (1986) found that the ln(x/n) term provides a high 

degree of the .explained variation and that the 7 parameters are rather 

small. 

Sydenstricker and King (1921) were the first to envisage the possibi-

lity of incorporating household composition as a variable in Engel curves 

by weighting the specifie equivalence scales for particular commodities. A 

similar approach, independently discovered from Sydenstricker and King is 

foliowed by Prais (1953) and Prais-Houthakker (1955). The Prais (1953) and 

Prais and Houthakker (1955) model generalises the Engel model by allowing 

different demographic effects for each commodity and assumes Marshallian 

demand functions of the form 

qi/nii -fiCp.x/mo), i=l,2,..,k, 

where q± is the demand of commodity i, p is a k-vector of prices, x is 

total expenditure, mt is the commodity-specifie equivalence scale of commo

dity i and ra0 is the general (income) equivalence scale. The commodity-

specific equivalence scales are functions of household composition only. 

The general or income coefficients can be expressed as a function of the 

specifie commodity scales, because the exhaustive set of Engel curves must 

satisfy the budget restriction. Since the income scale can be expressed in 

terms of the specific scales it appears that only the latter need to be 

estimated. However, it is impossible to estimate the complete set of speci

fic equivalence scales. Prais and Houthakker proposed an iterative proce

dure, but they did not put it into practice. It was left to Forsyth (1960), 

who set out to complete the work, to discover that the specific scales 

cannot be identified. Cramer (1969) summarises the main argument by means 

of a simplified example and concludes "The only way to remedy this situa-

tion is to impose yet another restriction on some or all of the coeffi

cients in order to ensure that the set of equivalent adult scales is deter-

minate. Thus Prais and Houthakker succeed in estimating the specific coef

ficients because they assume at the very outset that the income coeffi

cients are unity for all individuals" (Cramer, 1969, p.168). The authors, 

using semi- and doublé logarithm Engel curves applied to pre-war British 

data, did not seem aware that they would be unable to estimate the specific 
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coefficients without the implied imposed restriction. 

A solution to the problem of indeterminacy is a technique originally 

suggested by Rothbarth (1943) but in general named after one of the first 

applicants: Nicholson (1949). He estimates the income coefficients of 

children by considering commodities for which the child's specific coeffi

cients may be reasonably fixed at zero. Other applicants include Henderson 

(1949), Dublin and Lotha (1974) and Deaton (1981). 

The Engel method calculates the amount of money that would restore the 

previous food share, the Nicholson method the amount to restore the previ-

ous level of expenditures on adult goods. So the Nicholson method assumes 

that households of different sizes enjoy the same Standard of living as 

long as the expenditures on a so-called representative basket of goods, 

which parents only acquire for themselves, per type of household is the 

same. Nicholson selected men's and women's clothing, tobacco and alcoholic 

beverages as commodities for which the specific equivalence scale values 

for children could be expected to be zero., Cramer (1969) argues that this 

approach provides the only justifiable solution to the problem of indeter

minacy, but that unfortunately the empirical results are disappointing, 

largely because the commodities (e.g. alcoholic beverages, tobacco) con-

cerned are liable to larger disturbances as well as observational errors 

than others. Cramer (1969, p.169) borrows the results of Forsyth (1960) for 

doublé logarithmic Engel curves of equal slope but varying intercept, to 

consider the effects of 1, 2 and 3 children on expenditure on alcoholic 

beverages, tobacco and entertainment, with rather disappointing results. 

The Engel and Nicholson methods make different and mutually incompati-

ble assumptions about the nature of the cost of children. Deaton and Muell-

bauer (1986) argue that under mild assumptions the Engel method produces 

estimates that are too large and the Nicholson (Rothbarth) method, though 

more plausible, estimates that are too small. Under more restrictive 

assumptions they derive a system of inequalities linking the two measures 

with more general measures based on Gorman's (1976) extension of the model 

of Barten (1964). The Barten/Gorman costs are in between the Engel and 

Nicholson estimates (Deaton and Muellbauer, 1986). The Prais-Houthakker 

model has not only been criticized by Forsyth (1960) and Cramer (1969) 

regarding the identification of the equivalence scales, but also by Muell

bauer (1980) who argues that if the model is interpre ted in terms of 
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utility theory it is consistent with a Leontief utility function only, 

hence no substitution between conanodities is possible. The Barten/ Gorman 

model can be regarded as a generalisation of the previous models. 

In Barten's (1964) model the Harshallian demand functions take the 

form 

qi/mi = fi(x/(p1m1), . . ,x/(pkmk)), 

where x is total expenditure^ is the price of commodity i and mi is the 

corresponding specific equivalerice scale. Front the form of the Marshallian' 

demand function it is obvious that a change in household composition has 

two effects, a direct effect through mt and an indirect effect through the 

terms x/pin^ (a pseudo price change substitution effect). Barten examined 

the case where the functions have a form which may be regarded as a variant 

of the 'Rotterdam School demand models'. This model is consistent with 

utility theory. However, estimation of Barten's model requires price 

information and hence pooled data, in order to prevent identification pro-

blems. This model has been applied by Blundell (1980), Brown and Deaton 

(1972), Bojer (1977), Deaton and Muellbauer (1980), Gorman (1976), Muell

bauer (1975, 1977), Pollak and Wales (1981) and Ray (1985). 

A disadvantage of Barten's model is that it assumes an excessive sub

stitution effect as a result of changes in the household composition. 

Morover, there are important types of behavior that the model cannot accom-

modate. In particular, if the reference household (without children) does 

not consume the good, neither will the household with children except 

through the operation of substitution effects. This is not consistent with 

the Barton formulation except under extremely farfetched assumptions about 

substitution. See Deaton and Muellbauer (1986). Gorman's (1976) modifica-

tion solves this problem by adding fixed cost of children to the Barten 

cost function. 

Ray's (1983) general equivalence scale m0 relates the cost function c
H 

of household H with z children and utility level u to the cost function cR 

of a reference household with no children: 

cH(u,p,z) - m0(z,p,u)c
R(u,p), 
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where p is the price vector. Choosing as a functional specification for m0 -

and cR: 

. . £-,Z+£7Z
2 „ SVZ AUZ 

m0 (z,p,u) = e
 x A n^Pk K e 

and 

log cR - a0 + Xj=1Q=ilog Pi + H Z^jTijdog Pi) (log pd ) + u^80^Pk -

respectively, yields the (AIDS) cost function and the corresponding 

Marshallian demand system. In Ray (1985) a particular version of Barten's 

model is nested in this framework and tested against Ray's approach, 

resulting in a rejection of this particular Barten model. Ray chooses two 

general f orms of the indirect util-ity functions, both giving rise to demand 

systems which allow non-separable preferences and non-linear Engel curves. 

The first is the Non-Linear Preference System, which Iets (partly) the data 

determine the extent of non-linearity of the Engel curve. The second is the 

Almost Ideal Demand System (AIDS), poposed by Deaton and Muellbauer (1980), 

with children included as proposed in Ray (1983). 

A new approach to the problem of demographic specification is suggest-

ed by Blundell and Walker (1984). Their approach borrows the household 

production framework from the neoclassical fertility literature where 

children might yield utility, but as in the traditional demand literature, 

children are assumed to be predetermined or rationed in the observed data. 

Thus a given demographic structure requires the input of market goods and 

time to maintain it at its given level. The household's problem is 

described as minimising the full expenditure required to attain a given 

level of utility u subject to the full income constraint and the household 

production function. The household's full expenditure function is defined 

by 

C(p,z,ü) - CjCp.z.ü) + C2(p,z), (2.1) 

where C1 is the cost function associated to household demand of consumption 

goods and C2 the cost function associated to household demand of goods used 

in household production to maintain the given demographic structure z, with 

p a vector of given prices (and wages) and z the momber of children. Demo-
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graphic variables have two effects, an income effect via C2(p,z) and a sub-

stitution effect via C1(p,z,u). Blundell and ¥alker use the nonseparable 

Gorman Polar Form as a specification of the households's consumption expen

diture function: 

qCp.z.ü) - A(p) + B(p,z)ü (2.2) 

where 

A(P) - LIjaijPi qj . a n d B(P.Z) - niPi . i,j-l,...,n. 

The specification employed for the cost function Cz(p,z) corresponding to 

the household production function is the Generalised Leontief due to 

Diewert (1971): 

C2(p,z) - liliJij(z)vïvï, (2.3) 

where 7Aj (z) is a linear function of z under constant returns and 7^ (z)=*0 

for î j corresponds to fixed coefficients. Adding (2.2) to (2.3) yields the 

full expenditure function (2.1), whose expenditure share equations can be 

written as 

*i - Zj[«ia+7ij(Z)]r?r^^i(z){l-LIj[aij+7lj(Z)]r|r^ (2.4) 

where wi=riqi, ^—pj/y and y is (full) expenditure. Adding up requires that 

Xi^i(z)—1 and symmetry requires that aij=aji, all i-j. Since (2.4) is a 

nonseparable generalisation of the LES they refer to it as NLES. Data from 

UK Family Expenditure Surveys for 1968 to 1981 were used for estimation. 

Three categories of expenditures are analysed: food, clothing and energy. 

Main purpose of Blundell and Walker's (1982) earlier article is test

ing the commonly assumed restriction on the household's preferences of 

(weak) separability between goods and leisure. This restriction has been 

rejected. They introducé demographic variables to capture the effect of 

household composition not only on commodity demands but also on labour 

supply. The method used is an extension of the translation approach of 

Pollak and Wales (1978) to the leisure goods model, explored in more detail 
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in Blundell (1980). 

3. SPEGIFYING HOUSEHOLD EXPENDITURE FUNCTIONS BY NONPARAMETRIC REGRESSION 

3.1. Introduction 

A serious problem in all econometrie approaches is the arbitrariness of 

the functional specification of the equivalence scales and the demand or 

cost functions. Although utility theory imposes certain restrictions on the 

functional specification of demand and cost functions, the class of theo-

retically admissible functional forms is almost uncountably large. Usually 

the functional form is chosen as to facilitate estimation rather than to 

approximate reality, so that all the models considered in the literature 

are likely misspecified. 

Actually, all approaches ultimately amount to direct or indirect func

tional specification of the Marshallian demand functions as known functions 

of prices p, income or total expenditure x, household composition z and 

unknown parameters. Thus, denoting qt = g^pjX.z), i=l,..,k, the Marshal

lian demand functions, the various methods distinguish themselves by dif

ferent recipes for the specification of the functions ĝ^ . 

In this paper we follow a different approach by estimating these func

tions gt directly from the data, without specifying in advance any func

tional form at all, by using nonparametric regression analysis. The non-

parametric regression results are then used for appropriate functional 

specification of these functions gt . Our data set, however, does not allow 

to take price effects into account. Recall, however, that price Information 

was necessary to avoid Identification problems. In our approach identifica

tion problems do not occur, as (in the first instance) no parametric func

tional form is specified. 

The household expenditure functions we shall work with relate expendi-

tures of household j on a certain group of commodities to net income 

(including children's allowance) of household j, the number of children in 

the age group 0-15 and the number of children in the age group 16 or over 

in household j. The latter only concerns children living with their parents 



- 12 -

and having no income themselves. 

In the econometrie literature specific household expenditures are 

usually related to total expenditure, in order to impose the usual budget 

restriction and to interprete the model•in terms of utility theory. A dis-

advantage of this approach is that the impact of demographic factors on 

total expenditure is ignored. It is conceivable that this impact is impor

tant, i.e., large households may spend a much larger fraction of their 

income on consumption (and thus save a much lower fraction of their income) 

than small households. By working with net income we therefore also take 

the effect of demographic fact'ors on saving (or borrowing) into account, 

which gives a completer picture of the actual direct cost of children. 

Since this study merely aims to be a pilot study of the applicability 

of nonparametric regression analysis in the empirical area under review, we 

keep the analysis here as simple as possible by distinguishing only two 

expenditure categories, namely 

yXj = expenditures of food, clothing and foot-wear, 

y2j — other expenditures 

of household j . For the very same reason we only distinguish two age 

groups. The explanatory variables are now: 

xXj — net income, 

x 2 j = number of children in the age group 0-15, 

x 3 j = number of children in the age group 16 or over 

of household j. The expenditure functions involved are: 

Yl j " Si (Xl j >X2 j -X3 j ) + Ul j . 72j - §2 (Xl j >X2 j 'X3 j ) + U2 j . 

where the response functions (or regression functions) gt and g2 are com-

pletely unknown, apart from the condition that gx and g2 are continuously 

differentiable in x X j . The disturbance terms u-^ and u 2 j satisfy the usual 

condition that their conditional expectations relative to the regressors 

xij > x2j an<* x3j eclual zero with probability 1: 
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E[Ulj lXlj >X2j 'X3j] = ° a n d EtU2j lXlj >X2j>X3j] - ° W i t h Prob. 1. 

These conditions are no restrictions at all. They simply define the res

ponse functions gx and g2 as conditional expectation functions, i.e., 

EIyij lxij .x2j >x3j] - Si(xij .x2j .x3j) with prob. 1, 
EIy2j l

xij -x2j -x3j ] ~ §2 (xu >x2j .x3 j) with prob. 1. 

Note that these functions gx and g2 are unique (with prob. 1), given the 

i.i.d. data generating process,' in the sense that if there exists other 

functions fx and f2, respectively, with the above properties then 

P[ g i( X l j ,x2j ,x3j) = fjCxu ,x2J ,x3j)] = 1, i-1,2. 

Moreover, the existence of gx and g2 is guaranteed by the following mild 

conditions: 

E|yijl < -, E|y2j| < « 

Cf. Chung (1974, Theorem 9.1.1). Of course the uniqueness of gx and g2 only 

applies to cross-section data: the expenditure system will likely change 

over time due to changes in pref erences and prices. Moreover, we recall 

that no assumptions about the functional form of gx and gz will be made. We 

only assume that the variable xXj , net income, is continuously distributed 

and that g1(x1,x2,x3) and g2(x1,x2,x3) are for each pair (x2,x3) continu

ously differentiable in xx. 

The procedure we advocate is the following. First we estimate gx and 

g2 by nonparametric regression. The basic principles of the nonparametric 

regression approach and the results will be discussed in Section 3.3. Then 

we specify a parametric functional form in accordance with the 

nonparametric regression results, and this parametric model is estimated 

and tested in the usual way. This is the topic of Section 3.4. In Section 

3.5 we discuss the estimation results. Finally, in Section 4 we consider 

the technical aspects of the nonparametric regression approach used in this 

paper. 
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3.2 The data 

The data set we work with is the 1980 Budget Survey held by the Dutch 

Central Bureau of Statistics. This survey consists of an independent sample 

of 2859 households. For technical reasons we have split this sample in two 

subsamples of sizes 2000 and 859, respectively. The smaller subsample has 

been used for experiments with the nonparametric regression method, in 

order the improve the fit. Cf.. Section 4. The larger subsample has been 

used for the actual nonparametric and parametric estimation of our expen

diture functions. 

A typical feature of the budget survey involved is that total expen-

ditures may exceed net income, especially in the low income range. This is 

due to the fact that expenditures on durables are completely attributed to 

the year of purchase. Thus, if a household buys say new furniture in a 

certain year, the total amount of the purchase involved is considered as an 

expenditure in that year, even if the purchase has been financed by a loan. 

The same applies to clothing and foot-wear: although a suit or a pair of 

shoes may last longer than a year the total amount of the purchase is 

considered as expenditures in the year of the purchase. As a consequence, 

adding up (i.e., yXJ + y2j — xXJ) does not apply. 

Since the 1980 Budget Survey is a representative survey, it also 

contains households with only one parent and households of elderly. These 

households have been excluded from our analyses (after splitting the sample 

in two subsamples). However, the remaining data subsets of sizes 1130 and 

552, respectively, are then no longer random samples, a situation not 

accounted for in the theory of nonparametric estimation. As will be shown 

in Section 4 a simple modification of the nonparametric regression approach 

will correct for that. 

Finally we note that the further subsample of size 1130 contains five 

households with expenditures on food, clothing and foot-wear exceeding net 

income, 86 households with other expenditures exceeding net income and 424 

households with total expenditure exceeding net income. For the further 

subsample of size 552 these numbers are 1, 48 and 226, respectively. This 

is mainly due to the typical way expenditures are measured in the budget 

survey under review-, although we do not exclude that also occasional mea-
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surement errors in net income may contribute to this phenomenon (despite 

the assurance of CBS that in the survey under review income is accurately 

measured). 

3.3 Nonparametric regression: basic principles and results 

In this subsection we discuss in a non-technical manner the non

parametric regression approach and the nonparametric regression results for 

the expenditure functions under review. The technical details will be given 

in Section 4. 

As said before, nonparametric regression is a statistical technique by 

which we can substract information from the data about the functional form 

of a regression model without restricting this functional form to a parti-

cular parametric family of functional forms. Given a sample 

{(yx ,xx) , . . , (yn JXJ,) } from a k+1-variate distribution, where ŷ  is the 

dependent variable and x̂  is a k-vector of regressors, the usual approach 

is to specify in advance a parametric family f(x,/?) of regression functions 

such that for some particular parameter value fi0 , 

E[yj|xj] = f(Xj,/30) with prob. 1. 

The parametric regression model then takes the form 

Vj - f(Xj ,/30) + uj ; E[Uj |xj ] = 0 with prob. 1. 

In practice the most popular specification of this parametric family of 

functional forms is the linear family: 

f(x,/3) = x'/3 (without constant term) 

or 

f(x,£) = (l,x')/3 (with constant term). 
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Given the choice of the parametric family f(x,/3) of functional forms, the 

estimatiön of the model now merely amounts to estimation of the unknown 

parameter vector /?0 . 

In nonparametric regression analysis we do not assume a parametric 

family of functional forms. The response function g(x) of the regression 

model 

yj - g(xj) + Uj ; E[UJ:|XJ] = 0 (with prob. 1) 

is completely unknown and has to be estimated entirely from the data. There 

are various techniques to do that. Here we have used the kernel regression 

approach. The basic idea of kernel regression analysis is to form a weight-

ed sum of the y^'s, where the weights depend on the distance between x̂  and 

some fixed x. There is quite a variety of admissible choices for this 

weight function, but this need not concern us at the present stage. What is 

important now is to know that it is possible to specify a sequence 

{w"nj (.,.)} of weight functions depending on the sample size n and the 

observation index j such that the random function 

A 

g(x) - Ej_1yjWa j<x,.Xj) 

is a consistent estimator of the unknown response function g(x). One may 

consider this weight function as a sort of inverse measure of the distance 

between x and Xj , i.e., the closer x̂  is to x, the larger Wnj(x,Xj) will be 

and thus the more weight is put on the corresponding ŷ  . As we shall see in 

Section 4, the construction of the weight function Wnj(.,.) does not 

involve any explicit knowledge of the true response function g(x). 

In order to illustrate the.basic idea behind nonparametric regression, 

assume for the moment that the regressors x̂  are discretely distributed. In 

particular, assume that x̂  takes with probability i values in a finite set 

X. Moreover, let x e X. Specifying Wnj(.,.) such that 

wnj(x-xj) " Kxj-x) / I ^ K ^ e -x), 

where I(.) is the indicator function, i.e. 
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I(Xj=x) = 1 if x » Xj , 

= 0 if x ^ Xj , 

the estimator g(x) is then just the mean of the ŷ  's corresponding to the 

Xj 's equal to x. It is well-known that in this case g(x) is a consistent 

estimator of g(x). Thus in the purely discrete case nonparametric regres-

sion amounts to classifying the y, ' s into a number of cells, each corres

ponding to one of the possible outcomes of x.j , and to use the mean of the 

y, ' s in each cell as an estimate of the conditional expectation of y. rela-

tive to the event that x^ belongs to the cell involved. 

In general regression problems where some or all of the regressors are 

continuously distributed things are not so simple as above. Nevertheless 

also then it is possible to specify suitable weight functions such that 

g(x) is pointwise or uniformly consistent and even asymptotically normally 

distributed. The latter result is of the form 

A 

rn[g(x) - g(x)] ->• N[0,oj(x)] in dis.tr., 

where the rate of convergence rn satisfies rn -* « as n -*• <*>. More generally, 

for distinct non-random points x( 1', x(2},...,x(M) we have 

g(x ( 1 )) - g(x(1)) 

^ g(x ( M )) - g(x(M)) J 

NM[-0,2^] in distr. 

where 2^ is a diagonal matrix with diagonal elements 

<Kx{1).) af(x(M)). 

Thus the random variables 

rn[g(x<
x> )-g(x<x>)], rn[g(x<"> )-g(xln> )] 

are asymptotically independent. 

The rate of convergence in distribution, rn, depends on the nature of 

the distribution of the components of x^ (discrete versus continuous, or 

http://dis.tr
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mixed) and on the specification of the weight functions Wnj (.,.). In the 

case under review where Xj =* (xx^ ,x2j ,x3j ) ' with xXj continuously distri-

buted and x2J and x3j discretely distributed this rate is rn - n
8/17 (cf. 

Section 4), which is slightly slower than the rate Jn which applies to the 

convergence in distribution of parameter estimators. 

It is possible to construct a consistent estimator az (x) of the 

variatiee az (x). This allows us to construct 95% confidence intervals on s 
the basis of the result 

rn[g(x) - g(x)]/as(x) - N(0,1) indistr., 

namely the interval 

A A A A 

[g(x) - 1.96crg(x)/rn , g(x) + 1.96ag (x)/rn ] . 

The nonparametric regression results for the expenditure functions 

under review are displayed in Figures 1 to 16. The first 8 figures show the 

kernel regression estimator g(x1,x2,x3) (the solid line) for expenditures 

on food, clothing and foot-wear, where xx (net income) runs from 16,000 to 

65,000 guilders. In some cases the income range is smaller, due to lack of 

observations in the low and high income range. The scale of the figures is 

linear on both axes. Each figure corresponds to a household type (x2,x3), 

where x2 is the number of children in the age group 0-15 and x3 is the 

number of children in the age group 16 or over. We only show the non

parametric results for households with 0 < x2 < 3 and 0 < x3 < 1, as other 

households are too rare. The dotted lines are the 95% confidence bands. 

Observe that the 95% confidence band becomes wider in the low and high 

income range, due to lack of observations. The other 8 figures show the 

nonparametric results for other expenditures. In the next section we shall 

interprete these nonparametric regression results. In particular we shall 

pay attention to the question how-to translate these results to parametric 

specifications. 
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Figure 3 EXPENDITURES ON FOOD. CLOTHING AND FOOT-WEAR 
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Figure 7 EXPENDITURES ON FOOD, CLOTHING AND FOOT-WEAR 
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Figure 9 OTHER EXPENDITURES OF HOUSEHOLD TYPE (0,0) 

tn 
W 

a z w 

LEGEND 
KERNEL ESTIMATOR 
9 5 PERCENT CONFIDENCE BANDS 

,..-'--

NET INCOME 
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Figure 11 OTHER EXPENDITURES OF HOUSEHOLD TYPE (2,0) 
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Figure 15 OTHER EXPENDITURES OF HOUSEHOLD TYPE (2,1) 
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3.4 Parametrisation of the nonparametric regression results 

The nonparametric regression results for expenditures on food, clothing 

and fo'ot-wear indicate that the income-expenditure relationships involved 

are almost linear: for each household type it is possible to draw a 

straight line almost entirely inside the 95% confidence band. The estimated 

Engel curves are only bending in the low and high income ranges. These 

curved parts, however, need not be significantly different from a straight 

line, as indicated by the 95% confidence bands, as in nonparametric 

regression analyses estimation errors manifest themselves in the form of 

bumps on the estimated regression curve. Thus the nonparametric regression 

results indicate that over the income range 16,000-65,000 the Engel curves 

involved are linear. The same applies to other expenditures. Nevertheless 

we have specified these Engel curves as third-order polynomials in net 

income, in order to catch the bending parts as well and to test whether the 

actual Engel curves are indeed linear. 

In order to check this specification we have approximated the kernel 

regression function estimators for each household type by third-order poly

nomials in net income, by regressing the kernel estimator on Xĵ  , xx
2 and 

xx
3 for grid points in the interval 16,000-65,000. It appears that for each 

household type this polynomial approximation fits in the 95% confidence 

band, which indicates that a third-order polynomial is a suitable func-

tional form for the expenditure functions under review. The third-order 

polynomial approximations are in fact so close that they hardly can be dis-

tinguished from the corresponding kernel estimators on the income range 

16,000-65,000. Therefore we cannot show them in the figures. 

The parameters of the third-order polynomials can be made dependent of 

the number of children in the household by using the following dummy varia

bles . 

d,nj= 1 if x2j - m, 

= 0 if x2J * m, m=l,2,3, 

d4j = X3j ( *3j * 1 ) . 

The parametrisation of the nonparametric regression results then becomes: 
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yLi- ai0 + Pi0xxi + 5 i 0 x u
2 + «^„x^ 3 

+Zm=1(aimdmj + ^inAjXlj + «inAjXlj2 + £inA j xl j 3 > 

+ utJ , i-1,2. 

We have used a further subsample of the subsample of size 2000 to 

estimate the parameters involved. This further subsample consists of all 

households of the type (x2,x3) with x2 < 3 and x3 < 1, net income xt in the 

range 16,000-65,000, and two parents both younger than 65. The size of this 

further subsample is 1010. The OLS results are given in Table 1. 

The test of the linearity hypothesis amounts to testing the null hypo-

Table 1. OLS results for the third-order polynomial 

Food,clothing & foot-wear Other expenditures 

OLS estimates t-values OLS estimates t-values 

a0 1508. 0.2592 19590. 1.276 
ai 4639. 0.5478 -613.6 -0.0255 
a2 5169. 0.6001 -22330. -1.087 
a3 10440. 0.6694 12350. 0.3290 
a4 -8817. -0.9187 -18630. -0.6248 

/3n 0.3659 0.7723 -0.7216 -0.5542 

h -0.3715 -0.5457 0.1205 0.06028 

P? -0.2454 -0.3528 1.629 0.9433 
^ -0.5299 -0.4449 -0.6945 -0.2387 

^ 0.9577 1.226 2.122 0.8807 

5n -0.5506E-5 -0.4455 0.3428E-4 0.9759 

«! 0.1102E-4 0.6295 -0.2394E-5 -0.0455 
S? 0.4840E-5 0.2686 -0.3800E-4 -0.8217 
5, 0.1065E-4 0.3647 0.9124E-5 0.1254 
8, -0.2532E-4 -1.261 -0.6889E-4 -1.119 
£n 0.3458E-10 0.3319 -0.3055E-9 -1.007 
£i -0.1030E-9 -0.7176 0.1177E-10 0.0268 
£, -0.2521E-10 -0.1683 0.3025E-9 0.7671 
£3 -0.6848E-10 -0.2961 -0.1315E-11 -0.0022 
£4 0.2066E-9 1.264 0.6634E-9 1.319 

R2 0.1722 0.3227 
SE 3354. 8099. 
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thesis 

Ho : 5im=£im=° for 111=0,1,2,3,4. 

The test statistics of the Wald test involved are 6.394 for expenditures on 

food, clothing and foot-wear and 7.820 for other expenditures. Under the 

null hypothesis these test statistics are asymptotically xfo distributed, 

hence the linearity hypothesis cannot be rejected at any reasonable 

significance level. 

Next we have tested whether the linearity hypothesis holds with 

constant slope. Thus the null hypothesis to be tested is now: 

H0: /3im=0 for m=l,2,3,4; 5ia-eim-0 for m-0 ,1, 2 , 3 ,4. 

The test statistics of the Wald test are 9.568 for expenditures on food, 

clothing and foot-wear and 13.23 for other expenditures. Under H0 these 

test statistics are asymptotically xfi, distributed, and consequently also 

this null hypothesis cannot be rejected. Thus the model reduces to: 

Y i j " a i 0 + a i l d l j + a i 2 d 2 j + a i 3 d 3 j + a i 4 d 4 j + / 3 i 0 X l j + u i j . i - 1 , 2 . 

Furthermore, we have tested whether this model can be written as a linear 

regression model with explanatory variables xXj , x2j and x3j . This simpli-

fication corresponds to the following hypothesis: 

H0 : ai2=-2aiX; 0^3=30:^; )8im-0 for m=l,2,3,4; 

5im=£im=° f o r m-0,1,2,3,4. 

The Wald statistics involved are 10.97 for food, clothing and foot-wear and 

16.15 for other expenditures. Under the null these statistics are asymp

totically x?8 distributed and therefore we cannot rejeet the null hypo

thesis. 

Finally we have tested whether the Engel curves are linear and inde

pendent of the household size. This hypothesis corresponds to: 
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H0: <2iin=/3im=0 for m=l,2,3,4; Sira-£im=0 for m-0,1,2,3,4. 

The Wald statistics are 119.5 for food, clothing and foot-wear and 16.33 

for other expenditures. Since P['Xis > 119.5] cannot be distinguished from 

zero we have to reject this null hypothesis for expenditures on food, 

clothing and food-wear, while the hypothesis involved cannot be rejected 

for other expenditures. 

Table 2 summarizes the test results. Note that the tests involved are 

not independent. From a formal point of view we should therefore not re-

estimate the model after each test as otherwise the type I errors may 

accumulate. Nonetheless we have checked the final conclusions by conducting 

a similar sequence of tests starting from the linear model with slope and 

intercept depending on the family size, and the linear model with constant 

slope and intercept depending on family size, respectively. These tests 

lead to the same conclusion as before, namely that the expenditure function 

for expenditures on food, clothing and foot-wear is a linear function in 

net income ^ ), the number of children in the age group 0-15 (x2) and the 

number of children in the age group 16 or over (x3), while the expenditure 

Table 2: Test results 

Degr. 
of 
free-
dom 

Food,clothing & 
foot-wear 

Other expenditures 

H0: 

Degr. 
of 
free-
dom Wald stat. 

(-W) 
P[Xi2> W] Wald stat. 

(-W) 
P[Xi2> W] 

5 i m = = £ i m = 0 > m = 0 ' • • > 4 10 6.394 0.78 7.820 0.65 

/3im=0, m-1,2,3,4 
Sim=£im»0,m»0,..,4 

14 9.568 0.79 13.23 0.51 

a i 2 = 2 Q : i l ' « i S ^ 3 " ! ! > 

j8ln-0.f m-1, 2, 3,4 
5 i m ~ £ i m = 0 > m = 0 > - - ' 4 

16 10.97 0.81 16.15 0.44 

aim»£im=«0,m-l, • • >
4 

*ln-flB-0,m-0,_. . ,4 
18 119.5 0.0 16.33 0.57 
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function for other expenditures is a linear function in net income only. 

3.5 Conclusions 

The simplification of the polynomial model suggested by the test 

results in Section 3.4 now lead to the following models: 

Food, clothing and foot-wear: 

y1 = 5407. +0.09937 xx + 775.1 x2 +2106. x3 (3.1) 

(14.5) (9.868) (7.185) (6.819) 

R2 = 0.1667; SE = 3338. 

Other expenditures: 

y2 - 5671. +0.5163 xx (3 .2 ) 

(5 .921) (19 .11) 

R2 - 0 .3110; SE - 8095. 

Note that model (3.1) can be written as 

y1/m(x2,x3) = 2703.5 + 0.09937 x1/m(x2,x3) (3.3) 

where 

m(x2,x3) = 2 + 0.2867 x2 + 0.7790 x3 (3.4) 

is the adult equivalence scale. It should be noted, however, that in the 

literature equivalence scales are usually derived from expenditure systems 

relating expenditures on groups of commodities to total expenditure rather 

than income. The above equivalence scale is therefore not quite compatible 

with the equivalence scales found in the literature, although its 

interpretation is the same. Thus, as far as food, clothing and foot-wear is 

concerned a child under 16 counts for 28,67% of an adult and a dependent 

child of 16 or over counts for 77.9% of an adult, in a household with two 
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parents and net income in the range 16,000-65,000. Moreover, an additional 

child under 16 induces additional expenditures on food, clothing and foot-

wear to the amount of about 775 guilders per year, whereas an additional 

child of 16 or over induces an additional amount of 2106 guilders. 

It should be stressed that the lack of impact of household size on the 

other expenditures does not imply that there is no impact at all. It is 

likely that the extra expenditures due to children will be covered by sub-

stitution within the same expenditure category. For example the extra 

expenditures on housing may be counterbaianced by cheaper vacations, a 

second hand car rather than a new one, etc. 

The subsample of size 1010 on which the final estimation results were 

based contains one household with yx > xx , 73 households with y2 > xx and 

380 households with y!+y2 > xx. The model indicates that the latter occurs 

if xx < 28,824 + 2,017. x2 + 5,480. x3 . 

As said before, the expenditure functions considered in the literature 

usually relate expenditures on various commodities to total expenditure 

rather than to income, in order to impose the budget contraint and to 

interprete the models in terms of utility theory. We can put the above 

models in this form by solving equation (3.2) to xx and substituting the 

result for xx in equation (3.2). This yields, after some elementary calcu-

lations: 

yx - 3619 + 0.1614 y + 650 x2 + 1766 x3 (3.5) 

where y = yx + y2. This model can also be written as 

y1/m(x2,x3) - 1809.5 + 0.1614 y/m(x2,x3) (3.6) 

with 

m(x2,x3) = 2 + 0.3592 x2 + 0.976 x3 (3.7) 

the corresponding equivalence scale. 

It should be noted that model (3.5) relates E(yx|xx,x2,x3) to 

E(y1+y2|xx,x2,x3) rather than y1 to yi+y2. The equivalence scale (3.7) is 

therefore still not fully compatible with the scales found in the liter-
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ature, although more compatible than (3.4). From (3.7) it follows that, as 

far as expenditures on food, clothing and foot-wear are concerned, a child 

under 16 counts for about 36% of an adult, and a child of 16 or over counts 

for 98% of an adult. 

One may object against our approach and our results that there is no 

relationship at all with economie theory (in particular utility theory) and 

that the above results cannot be interpreted in terms of utility theory. 

Indeed, we actually have worked the other way around, i.e., we started with 

analysing the data in order to determine a model rather than setting up 

first the model in order to analyse the data. One should be'ar in mind, 

however, that the classical econometrie approach reviewed in Section 2 

assumes very restrietive household behavior, in particular the implicit 

assumption that all households are faced with exactly the same utility 

function. This will unlikely be the case in reality. Our concern merely is 

to determine actual household behavior, regardless whether or not this 

behavior is rational. Furthermore, to the best of our knowledge none of the 

authors of the econometrie papers mentioned in Section 2 have properly 

tested the functional form of their models against misspecification, so 

their conclusions regarding the cost of' children might be biased. 

4. THE KERNEL REGRESSION APPROACH 

4.1. The modified kernel regression estimator 

for the i.i.d. mixed continuous-discrete case 

In this section we summarize Bierens' (1987) modified kernel regression 

function estimation approach for the case of mixed continuous-discrete 

expanatory variables and an i.i.d. data generating process. We start with 

the description of the data generating process. 

Assumption 1. Let (yl,xx),..,(yn,xn) be i.i.d. random vectors, where the 

y^'s are the dependent variables and the Xj ' s are k- component vectors of 

regressors. Moreover, 
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E|y |4 + <s <• and E| |XJ'| |4 + <S < » for some 5 > 0. 

The moment conditions in Assumption 1 are needed for various reasons, cf. 

Bierens (1987). In particular, since Assumption 1 implies E|y^ | < « the 

conditional expectation of Vj relative to x̂  is well-defined as a (Borel 

measurable) real function g of Xj : 

ECyJxj) = g(xd)f 

Cf. Chung (1974, Theorems 9.1.1 and 9.1.2). Denoting 

«j - yj - s(xj). 

we then get the regression model 

Yi " S(Xj) + -ujf 

where by construction the error term Uj satisfies the usual condition that 

its conditional expectation relative to the vector of regressors equals 

zero with probability 1 (w.p.1), i.e. 

E(Uj |xj) - 0 w.p.1. 

The model is therefore purely tautological in that its set up is merely a 

matter of definition. Since this definition of Uj does not imply inde-

pendence of û  and x̂  , the errors u, are in general conditionally hetero-

scedastic, i.e. 

P[E(u2|Xj) - Eu?] < 1. 

We assume no explicit functional form for g(.), hence the model does 

not contain parameters in the usual sense. In fact the function g(.) itself 

is the unknown "parameter" to be estimated from the data. 

The next assumption describes the mixed continuous-discrete character 
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of the vector of regressors. 

Assumption 2. Let x̂  = (Xj c x } * x ^ ( 2 5 ) ' e X1xX2 , where Xx is a kx-dimensio-

nal real space and X2 is a countable subset of a k2-dimensional real space. 

(Thus kx+k2-k). The set X2 is such that-

(I) x ( 2 ) e X2 implies p(x
(2>)=P(Xj(2}=x(2>) > 0; 

(II) £ p(xc2)) = 1, where the summation is over all x( 2 5 e X2 ; 

(III) there exists a p. > 0 such that zx € X2 , z2 e X2 , zx ^ z2 implies 

Ilzi * z2lI > M-

(IV) For each x( 2 ) e X2 the distribution of x^
X) relative to the event 

Xj2)=x<2) is absolutely continuous with conditional density function 

h(x(1> |x ( 2 ) ) . 

The conditions (I), (II) and (IV) speak for themselves, but condition (III) 

may need some explanation. It is slightly stronger than the corresponding 

condition in Bierens (1987, Assumption 3.2.1). Nevertheless it is satisfied 

for the empirical application under review. It says that distinct discrete 

regressors have a non-zero minimum distance, so that limit points in X2 are 

excluded. 

Although we do not assume an explicit functional fonn for g(xcx},x(2}) 

and h(x(lr) |x(2)) we do need some regularity conditions. These regularity 

conditions employ the following definition. 

Definition 1. Let D, be the class of all continuous real functions f on 
K , m 

Rk such that the derivatives 

(d/3z1)
llO/3z2)

l2....(3/dzk)
Lk f(z1,...,zk), ij > 0 ,j=l,..,k, 

are continuous and uniformly bounded for 0 < i^i^. .+ik < m. 
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Denote for c > 0 and x - (x c l )',x ( 2 )')' e XxxX2, 

a£(x) - a«(x{1),x<2)) = EtlujlMCxj^x^'-Cx^»,^2»)], 

Assumption 3. For each fixed x(2) € X2 we have: 

(I) The functions h(x(1)|x(2)) and g(x(1},x{2})h(x(X)|x(2>) belong to the 

class D̂- m for some m > 2. 

(II) The function ak (x(x> ,xC2))h(xcl)|x(2)) is uniformly bounded on Xx. 

(III) The function g(x(1',x(2))2h(x(1)|x(2') has continuous and bounded 

second derivatives with respect to the components of x(x5 . 

(IV) The matrix V - E x ^ ' - (EXj) (EXj )' is non-singular. 

These are all the assumptions we need. 

A kemel estimator of g(x) is now a random function of the form 

I^/jKUx-xp/AJ 
g(x) = _L_ . 

£?=1K((x-Xj)/An) 

where K is a real function on XxxX2 called the kemel, and (An) is a se-

quence of window width parameters converging to zero. For certain specifi-

cations of K and An the kemel regression estimator is consistent and 

pointwise asymptotically normally distributed. For example, if K is speci-

fied as the density of the kx+k2-variate normal distribution with zero mean 

vector and nonsingular variance matrix and An is such that 

then under Assumptions 1-3, 
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7(nAn
kl)[g(x) - g(x)] - N[b(x),(a2(x)/h(x))Jx K(Zl)0)

2dZl] in distr., 

[cf. Bierens (1987)], where b(x) is the asymptotic bias and 

h(x) - h(x(1'|x(2))p(xC2)). 

Moreover, in this case the rate of convergence is maximal for 

A n-c.n-
1^ 4 + kx ), 

where c > 0 is a constant. This rate of convergence can be further 

increased by choosing a more general class of kernels. 

Bierens (1987) proposes a modification of the kernel regression method 

in order to get rid of the asymptotic bias, to make the kernel regression 

approach invariant for linear transformations of the data and to get a rate 

of convergence in distribution arbitrarily close to Jn. First, Bierens 

advocate the following data dependent kernel. Let for m-2,4,6,.. 

Km 00 = I^^iexp(-hx'v"
1xAi

2)/{(y(27r))ki|Cri|
kVdet((V(1))-1)} (4.1) 

where 

V - (l/n)^=1(xj-x)(xJ-x)' with x - (1/iOX^Xj, 

A(l) A-l 

V is the upper-left k ^ ^ submatrix of V 

and the 8X and aL are such that 

ïtl9^* - Hf i - o, 

= 0 for 1 = 1,2,..,(m/2)-l. 

In the empirical application under review we have chosen: 
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rt - Ji, (i=l,2, . .) ; m -

Next, let for A > 0 and c > 0, 

&(x|A) - £jL1yJKB<(*-xJ)/A) / ^ ^ ( ( x - x p / A ) , 

glm(xlc) " &n(xlc-n 1 )> 

" . I , A* , -0.5/<2nH-k1)N 

g 2m(
xl c) - Sm( xl c- n X )• 

(4.2) 

Then the modified kernel regression function estimator of g(x) as proposed 

by Bierens (1987) takes the form 

A / I N ,A / I N -0.5m/(2m+k1)
 A . • .. . M -0.5m/(2m+kx) g^xjc) = {glm(x|c)-n

 1/.g2m(x|c)} / {1-n
 1J 

(4.3) 

Denoting 

^(x) = plim^K^x) 

we now have: 

Theorem 1. Let Assumptions 1-3 hold. 

(I) For each x e XxxX2 with h(x) > 0 and each constant c > 0, 

nm/(2m+kl)[gm(x|c) - g(x)] - N[0,a|,m(x|c)] indistr. 

where 

cr|,m(x|c) - c"
kMa2(x)/h(x)}Jx KB(zll0)

2dz1. 

(II) Let x£ , . .,x^ be distinct points in XxxX2 for which h(x*) > 0. Then 

n 
m/(2m+k1) 

Sm(xi |c)-g(x1) 

lgm(X
Ml

C)-g(XM)J 

NM[0,2^(c)] in distr. 

where ^(c) is an MxM diagonal matrix with diagonal elements 
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^i.mCXi |c) , ., . .af.mCXjJc) . 

This implies that the components of the random M-vector involved are 

asymptotically independent. 

Proof: Bierens (1987). 

A consistent estimator of the asymptotic variance a^ m(x|c) is 

c"ki (l/n)£? (7j -^ (x| c) )2KB [ (x-Xj )/An (c) ]*/\n (c)k* 
<i,«(x|c) = i _ (4.4) 

((Vn)Z^1Km[(x-xj)/An(c)]/An(c)
kM2 

where 

An(c) - c.n-
1'<2mfki) 

Thus: 

Theorem 2. Under Assumptions 1-3, 

plim al m(x c) - al m(x c) . 

Proof: Similarly to Bierens (1987, form. (5.3.3)). 

Combining Theorems 1 and 2 we now see that the asymptotic 95% confidence 

interval for g(x) is given by 

[g(x) - 1.96agm(x|c)/n-
5m/(2m+k1)j g ( x) + i.96a (x|c)/n-5mA2m+ki>] 
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4.2 Sample selection 

We recall that the data set on which the nonparametric regression 

results were based is a further subsample of size 1130 from a subsample of 

size 2000. The latter subsample is a random sample, but the former is 

obtained by deleting the households with only one parent or adult and the 

households with one or two persons in the age group 65 or over, and is 

therefore not a random sample. In this subsection we show now how to 

account for this sample selection. 

Let the original random sample be 

l(y1,x1,zl),.. ,(yN,xN,zN}, 

where y-j is the dependent variable, x̂  is a k-vector of regressors and 

2^ is a dummy variable taking the values 0 or 1. In the empirical 

application under review we have N = 2000, y, is one of the two 

expenditure categories, Xj — (xaj,x2,,x3j)' with 

xXj — net income, 

x,, - number of children in the age group 0-15, 

x3j - number of children in the age group 16 or over 

and 

Zj = 0 for households with only one adult (parent) or with one or 

two persons in the age group 65 or over, 

5j = 1 for other households. 

We now assume: 

Assumption 4. Assumptions 1-3 hold for this random sample (reading Vj=y^ , 

Xj-(Sj ,2^)' , k=k+l, n=N). 

We are interested in estimating the conditional expectation 
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g(x) = ECy-j |Xj = x, zi = 1) . 

Now let { (yx ,xx ) , . . , (yn .XJJ ) } be a fu-rther subsample of size n corresponding 

to the data points (y-j.Xj) for which z^—l. Calculate the modified 

kernel regression estimator ^(xlc) and the variance estimator 

az
 m(x|c) as if this further subsample would obey assumptions 1-3. Then 

the results in Theorems 1-2 go through, except that the rate of convergence 

in distribution now depends on N rather than on n. Thus: 

Theorem 3. Let Assumption 4 hold. Let h(x(15 |x(2 )) be the conditional den-

sity of xj15 e Xx relative to the event 

(^2),2j) = (x<2>,l) e X2x{0,l}. 

Moreover, let 

p(x<2)) = P{xj2)=x(2),2^-1}, h(x)=h(x(1)|x(2))p(x(2)). 

I) For every x with h(x) > 0 and each constant c > 0, 

Nm/(2m+k1)[g(n(x|c) . g ( x ) ] _ N{0,tf2 m (x|c) ] in distr. , 

where 

a2
m(x|c) - p l i n ^ ^ ^ ^ x j e ) . 

II) Let xx , '. . ,xM be distict points for which h ^ ) > 0. Then 

Nm/(2m+k1) (*! lC) " S(Xl) 

ISm^lc) ' §(XM) 

NM[0,2^(c)] in distr. 

where ^(c) is the diagonal matrix in Theorem 1(11). 

Proof: Let K,,, (x) be the kernel calculated on the basis of the subsample of 

size n. Cf. (4.1). Define 
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K£(x,z) - Km(x).I(z = 0), 

where I(.) is the indicator function, and let 

l!L1yJK»[<x-5j)/A,<z-Zj)/A] 

&, (x,z|A) - . (cf.(4.2)) 

Moreover, define 

g^(x,z|c) and <^*m(x,z|c) 

similarly to (4.3) and (4.4), respectively. Then it is not hard to show 

along the lines in Bierens (1987) that the results in Theorems 1 and 3 go 

through. The theorem now follows from the fact that 

A A* A A* o 
Sm<xlc) - &,(x,l|c)f a||m(x|c) - <7gim(x,l|c). 

4.3 Choosing the constant c 

In Bierens (1987) it is advocated to choose the constant c of the 

window width by cross-validation. In the cross-validation approach each ŷ  

in the sample of size n is predicted by the kernel regression estimator 

based on the remaining n-1 observations. Thus let ĝ  (xlc) D e the 

kernel regression estimator based in the sample with the ü-th observation 

left out. Then c is determined by minimizing 

over an interval [c-^Cg], 0 < cx < c2 < <». A drawback of this approach is 

that the resulting estimated constant c, say, depends on the same sample 

as the kernel regression function estimator. Consequently, gm(x|c) with c 
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fixed is not independent of c and hence the asymptotic normality results 

for ^(xlc) need not hold for g^xlc). Therefore we have used the 

smaller random subsample of size 859 for estimating c by cross-validation. 

Then c is independent of the kernel regression estimator ^(xjc) based in 

the random subsample of size 2000 and therefore all the asymptotic 

normality results carry over to gm(x|c). 

The resulting cross-validated c, however, appeared to be too large, 

by which the the kernel regression estimator became almost constant. 

Therefore we have conducted various experiments with alternative values of 

c, still confining the analysis to the smaller subsample. It appeared that 

the best choice for c was c — 2; best in the sense that for this c the 

kernel regression estimate was sufficiently smooth without being flat. 

Using c = 2 the nonparametric regression analysis has been further 

conducted on the basis of the larger subsample of size 2000. 
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