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PREFACE 

This book deals with statistical Inference of nonlinear 

regression models from two opposite points of view, namely the 

case where the functlonal form of thé model Is completely 

specified as a known function of regressors and unknown para

meters, and the opposite case where the functlonal form of the 

model is completely unknown. First it is assumed that the res

ponse function of the regression model under review belongs to 

a certain well-specified parametrlc family of functlonal forms, 

by which estimation of the model merely amounts to estlmatlon 

of the unknown parameters. For this class of models we review 

the asymptotic properties of the nonlinear least squares 

estlmator for independent data as well as for time series. 

In practice assumptions on the functlonal form are often 

made on the basis of computatlonal convenience rather than on 

the basis of precise a priori knowledge of the empirical 

phenomenon under review. Therefore the linear regression model 

is still the most popular model speciflcation in applied 

research. Hówever, even if the speciflcation of the functlonal 

form is based on sound theoretical considerations there is 

quite often a large range of functlonal forms that are theore-

tically admissible, so that there is no guarantee that the 

actually chosen functlonal form is true. Functlonal specifica-

tion of a parametrlc nonlinear regression model should there

fore always be verified by conducting model misspecification 

tests. Various model misspecification tests will therefore be 

discussed, in particular consistent tests which have asymptotic 

power 1 against all deviations from the null hypothesis that 

the model is correct. 

The opposite case of parametrlc regression is nonparame-

tric regression. Nonparametric regression analysis is concerned 

with estimation of a regression model without specifying in 

advance its functlonal form. Thus the only source of Infor

mation about the functlonal form of the model is the data set 

itself. In this book we shall review various nonparametric 

regression approaches, with special emphasis on the kernel 

method, under various distrlbutional assumptions. 

This book is divided into threé parts. In the first part 

we review the elements of abstract probablllty theory we need 

in part 2. Part 2 is devoted to the asymptotic theory of para-
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5. TESTS FOR MODEL MISSPECIFICATION 

In the literature on model specification testing two 

trends can be distinguished. One trend consists of tests using 

one or more well-specified nonnested alternative specifica-

tions. See Cox (1961, 1962), Atkinson (1969, 1970), Quandt 

(1974), Pereira (1977, 1978), Pesaran and Deaton (1978), 

Davidson and MacKinnon (1981), among others. The other trend 

consists of tests of the orthogonality condition, i.e. the 

condition that the conditional expectation of the error 

relative to the regressors equals zero a.s., without employing 

a well-specified alternative. Notable work on this problem has 

been done by Ramsey (1969, 1970), Hausman (1978), White (1981), 

Holly (1982), Bierens (1982) and Newey (1985), among others. 

A pair of models is called nonnested if it is not 

possible to construct one model out of the other by fixing some 

parameters. The nonnested models considered in the literature 

usually have different vectors of regressors, for testing non

nested models with common regressors makes no sense. In the 

latter case one may simply choose the model with the minimum 

estimated error varianca, and this choice will be consistemt in 

the sense that the probability that we piek the wrong model 

converges to zero. A serious point overlooked by virtually all 

authors is that nonnssted models with different sets of 

regressors may be all cjrrect. This is obvious if the dependent 

variable and the all rjgressors involved are jointly normally 

distributed and the nonnested models are all linear, for con

ditional expectations on the basis of jointly normally 

distributed random vari ibles are always linear functions of the 

conditioning variables. Moreover, in each model involved the 

errors are independent of the regressors. In particular, in 

this case the tests of Davidson and MacKinnon (1981) will 

likely reject each of these true models, as these tests are 

based on combining linearly the nonnested models into a 

compound regression model. Since other tests of nonnested 

hypotheses are basically in the same spirit one may expect; this 

flaw to be a pervasive phenomenon. Thus, these tests are only 

valid if either the null or only one of the alternatives is 

true. Moreover, tests of nonnested hypotheses may have low 

power against nonspec'fied alternatives, as pointed out by 

Bierens (1982). There.-ore we shall not review these tests 

further. 

In this chapter *e only consider tests of the orthogo-
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nality condition, without employing a specific alternative. 

First we discuss White s version of Hausman's test in section 

5.1 and then, in section 5.2, the more general M-test of Newey. 

In section 5.3 we modify the M-test to a consistent test and in 

section 5.4 we consider a further elaboration of Bierens' 

integrated M-test. 

5.1 White's version of Hausman's test 
In an influential paper, Hausman (1978) proposed to test 

for model misspecification by comparing an efficiënt estimator 

with a consistent but inefficiënt estimator. Under the null 

hypothesis that the modal is correctly specified the difference 

of these estimators times the square root of the sample size, 

will converge in distribution to the normal with zero mean, 

whereas under the alternative that the model is misspecified it 

is likely that these two estimators have different probability 

limits. White (1981) has extended Hausman's test to nonlinear 

models, using the nonlinear least squares estimator as the 

efficiënt estimator ai d a weighted nonlinear least squares 

estimator as the nonefficient consistent estimator. 

The null hypothesis to be tested is that assumption 

4.1.1. holds: 

H0: E(Yj|Xj) = f(Xj,0o) a.s. for some 80 e 6, 

where f(x,0) is a given Borel measurable real function on Rkx6 

which for each x e Rk is continuous on the compact Borel set 

9 c Rm. 

The weighted nonlinear least squares estimator is a mea

surable solution 8* of: 

e* e 0 a.s., (f(3*) = infeeBtf(e), 

where 

Q*(8) = (l/n)2^1[Yj-f(Xj,ö)]
2w(xj), 

with w(.) a positive Bjrel measurable real weight function on 

Rk . Following White (1981), we shall now set forth condi.tions 

such that under the null hypothesis, 
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Jxi{6-6*) - Nm[0,fi] i n d i s t r . , 

A 

with 6 the nonlinear least squares estimator, whereas if H0 is 

false, 

A A t -

plimn_>00ö * pl im n-> c oö x . 

A 

Given a consistent estimator f2 of the asymptotic variance 

matrix Q the test statistic of White's version of Hausman's 

test is now 

A A 

w* = n(£-ê*)'n_1(ö-£*), 

which is asymptoticall> Xm distributed under H0 and converges 

in probability to infinity if H0 is false. 

Let us now list the maintained hypotheses which are 

assumed to hold regardless whether or not the model is correct-

ly specified. 

Assumption 5.1.1. Assumption 4.3.1 holds and E Y2w(X, ) < «. 

Assumption 5.1.2. Assumption 4.3.2 holds and 

E supöeQ
f(Xi,^)2w(X1) < «. 

Assumption 5.1.3. There a r e un ique v e c t o r s ö_u and 6 i n 0 such 
t h a t 

E tECYjXi ) - f ( X : . ^ ) ] 2 = i n f ^ e E I E C Y j X i ) - f ( X 1 ; 0 ) ] 2 

and 

EIECYxIXi) - f ( X 1 , e _ ) ] 2 w ( X 1 ) 

= i n f ^ Q E t E C Y j X i ) - f ( X 1 , f f ) ] 2 w ( X 1 ) . 

I f H0 i s f a l s e t h e n d^ * 8^. 
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Assumption 5.1.4. The parameter space 6 is convex and f(x,0) is 

for each x e Rk twice continuously differentiable on 8. If H0 
is true then ff0 is an interior point of 0. 

Assumption 5.1.5. Let assumption 4.3.5 hold. Moreover, let for 

i'ii > i-2" 1 ra> 

E suptfeet(a/3tfi)f<X1,ö)]
2w(X1) < », 

E supeGe[(a/aöii)(a/aöi2)f(x1>e)]
2w(x1) < ». 

Assumption 5.1.6. The matrices 

n2 - E[(.a/8tf')f(xiI^)][(a/3fl)f(x1,flA)], 

fi* - E w(x1)[(5/a^)f(x1,^)][(a/3ö)f(x1,^)] 

are nonsingular. 

Assumption 5.1.7. Let assumption 4.3.7 hold and let for x1,i-z 

=1,...,m, 

E suVgeQ[Yl -f (Xj. , ö) ]2w(X! ) 2 | (3/30^ )f (Xi ,6)\ 

x\(d/d8±2)£(X1,e)\ < -. 

Finally, denoting 

^ - E[Y1-f(X1,^;]
2[(3/aö')f(X1,^u)][(3/aö)f(X1>^)], 

O* - EtY1-f(X1)^)]
2w(X1)[(3/3r)f(X1,^J][(3/3e)f(X1,6^)]) 

0** - E[Y1-f(X1)^)]
2w(X1)

2[(3/3ö')f(X1,e%J][(3/35)f(X1)^)]> 

- (o*)" 1"*^ 1 + (n*)"lni:*(f22)"1 

we assume: 
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Assumption 5.1.8. The matrix Q is nonsingular. 

Now observe that under assumptions 5.1.1 and 5.1.2, 

A 

Q(0) = Q(0) a.s. uniformly on 6 

A 

Q*(0) -» Q*(0) a.s. uniformly on G, 

A 

where Q(0) and Q(0) are defined in (4.1.9) and (4.3.3), res-

pectively, and 

Q*(0) - E[Yi - f(X1,ö)]
2w(X1). 

Together with assumption 5.1.3. these results now imply: 

Theorem 5.1.1. Under assumptions 5.1.1-5.1.3, 

6 •* «, a.s,. and 6* -* 9 , , a.s. 

(cf. Theorem 4.2.1). Moreover, if H0 is true then clearly 

e * = 6 * * = eo • 

Now assume that H3 is true, and denote 

Uj - Yj-fCXj.ff,,). 

Then it follows from assumptions 5.1.1-5.1.8, similarly to 

(4.2.12) 

viimIt+eaiMo-o0') • «21(i/yn)2^ = 1u j(a/aö')f(x j ,e0)) - o 
(5 .1 .1) 

p l im n ^ o {yn(ê*-e 0 ) - ( ^ ) - 1 ( l / y n ) S ^ = 1 U j w ( X j ) ( a / a r ) f ( X j ,90)} - 0 

(5 .1 .2) 

hence, 

pl imn-^Uyn (0 -0 c . ) ' , yn (9* - * „ ) ' ) ' - ( l A A O S ^ Z j } = 0, 

where 
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Zj -\Ji[tr2
1(d/d6)£(.xi,80), (nt)-1w(xi)(d/dd)f(.xiJ0))'. 

Moreover, from the central limit theorem it follows 

( l / y r O S J . j Z j - N 2 m [ 0 , A ] , 

where 

A - E ZjZd = [ A i i i 2 ] , i i . i a - l ^ , 

i s a 2mx2m m a t r i x w i t h mxm b l o c k s . 

**i -i s= **9 1 2 ' 12 == 2 1 \ ? / 

A21 " (fi?)_1"l' « 2 1 . A22 " ( f i * ) " 1 ^ * * ^ * ) - 1 

From these results it easily follows now: 

Theorem 5.1.2. Under H0 and the assumption 5.1.1-5.1.8, 

Jn(8-ï)*) •* Nra(0,Q) in distr. 

A cons i s t en t est imator of Q can be constructed as fol
lows. Let 

A 

O j 1 ' = (l/n)^alw(Xó)
i[Yi-f(Xó ,8)]2 

x[(d/dS')f(Xj,h][(d/d6)£(Xó,h] 

A 

Q(
2
n = (i/n)^.1w(Xj)i[(a/aö')fcxj,?)n(a/5tf)f<xj>?)] 

A A A A A A 

iii = nj ° >, n* = n{l), of* = n[2', 
A A A . A 

^ 2 ~ *^2 * ^2 = ^2 

A 

and define 0 analogously to Q. Then 

Theorem 5.1.3. Under assumptions 5.1.1 - 5.1.7, 

A 

O -* Q a.s. 

regardless whether or not the null is true. 



Combining theorems 5.1.1-5.1.3 we now have 

Theorem 5.I.A. Under assumptions 5.1.1-5.1.8, 

A 

W* -+ Xm if H0 is true and 

A 

W*/ri -* (9^9.,)'n~l (9,.-8.,..J > 0 a . s . i f H0 i s f a l s e . 

A 

The latter implies, of course, that p 1 im^ooW* = ». 

The power of this test heavily depends on the condition 

that under misspecif ication 6, ^ 6 , , , and for that the choice 
r -A- -k-k 

of t h e we igh t f u n c t i o n w ( . ) i s c r u c i a l . Take fo r example t h e 
t r u e model 

Yd = X u + X 2 j + X a j X 2 j + Uj 

where t h e X 1 ; j ' s , X 2 j ' s and Uj ' s a r e i ndependen t N(0 ,1 ) d i s -
t r i b u t e d , and l e t f ( x , 0 ) = 61x1 + # 2 x 2 , w(x) — xf + x | . 

Then 

E [ Y j - f C X i , * ) ] 2 - ( l - ^ ) 2 + ( l - 0 2 ) 2 + 2 ( 5 . 1 . 3 ) 

and 

E [Yi-fCX^Ö)]2 w(X!) - 4(1-01)
2 + 4(l-02)

2 + 8, (5.1.4) 

hence 0 — 6 = (1,1)' . Moreover, in this case we still have 

A 

W* - xl in distr. , (5.1.5) 

although the model is misspecified. Thus Hausman's test is not 

consistent against all alternatives, a result also confirmed by 

Holly (1982). 
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Exercises: 
1. Prove (5.1.2) 

2. Prove theorem 5.1.2 

3. Prove theorem 5.1.3 

4. Prove (5.1.3) and (5.1.4), using the fact that the fourth 

moment of a Standard normally distributed random variable 

equals 3. 

5. Prove (5.1.5). 

5.2 Newey's M-test 
5.2.1 Introduction 

Newey (1985) argues that testing model correctness usual-

ly amounts to testing a null hypothesis of the form 

H0: E M(Yd ,Xj ,60) - 0, (5.2.1) 

where M(y,x,0) = (M1(y,x,ö) Mp(y,x,0))' is a vector-valued 

function on RxRkx0 (with Borel measurable components) . A speci-

fication test can then be based on the sample moment vector 

M(0) = (l/iOZ^MCYj.XjJ), (5.2.2) 

A 

where 6 is, under H0, a consistent and asymptotically normally 

distributed estimator of 90 . 
We show now that the Hausman-White test is indeed asymp

totically equivalent under H0 with a particular M-test. Let 

M(y,x,0) = (y-f(x,0))(3/30')f(x,0)w(x) (5.2.3) 

A 

and let 8 be the nonlinear leas£ squares estimator. Under H0 we 
have for the i-th component of M(ö), 

ynM±(0) = (l/7n)2^1[Yj-f(Xj ,ö)](3/a^)f(Xj,ö)w(Xj) 

= ( ï /yros^UjCa/aö^fcXj ,fl)w(Xj) 

- (l/yn)2^=1[f(Xj,ö) - £(Xi,60)](d/d6i)£(Xi,hw(Xi). 

Using the mean value theorem we see that there exists a mean 

value 0(i> satisfying \&(i)-6Q\ ^ \&-S0\ a.s. such that 
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ynMi(Ö) =v/nMi(50) + [ (8/86)11, (ê(* ' ) ]7n(0-0o ) . 

We leave it as an exercise (cf. exercise 1) to show that under 

the conditions of theorïm 5.1.2, 

piimn^00[(5/ar)M1(5
(1)),..1(a/aö')Mm(ö

Crn))]' = n*. 

hence 

plimn^lVn M(0) - ( l / V n ) ^ ^ (8/86 ' )f (X., ,^0)w(Xj) 

+ aj7n(ê-ö0)} - 0. (5.2.4) 

Comparing this result with (5.1.2) we now see that 

, A A , A , A 

plimn-Katyn M(0) - n^yn^-ö)} = 0, 

hence 

(n*)'Vn M(*) 

has the same asymptotic normal distribution as 
A A . 

This result demonstrates the asymptotic equivalence under H0 of 

this special case of the M-test and the Hausman-White test. 

Next, consider the case that H0 is false. Under the con

ditions of theorem 5.1.4 we have 

A A 

plimri-+coM(0) 

= E[E(Y1|X1) - f(Xl,6^](d/d&')£(X1,6^)w(X1) (5.2.5) 

as is not hard to verify. Cf. exercise 2. Now assume that the 

function 

[E(Y1|X1) - f(X1,?)]
2w(X1) 

has no local extremum at 8 = 6,.. This condition is o:nly a 

slight augmentation of assumption 5.1.3. Then the right hand 
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side of (5.2.5) is unequal to the zero vector, i.e., 

plimn_>coM(ö) * 0. 

This establishes the asymptotic power of the M-test under 

review. However, also the M-test is not generally watertight. 

It is not hard to verify that for the example at the end of 

section 5.1 this version of the M-test has also low power. 

Another example of an M-test is the Wald test in section 

4.5, with M(y,x,0) =v(8). Also, Ramsey's (1969, 1970) RESET 

test may be considered as a special case of the M-test. 

5.2.2 The conditional M-test 
In regression analysis, where we deal with conditional 

expectations, model correctness usually corresponds to a null 

hypothesis of the form 

H0: E[r(Yj ,Xj ,ö)]Xj] = 0 a.s. if and only if 8 - 80 . (5.2.6) 

For example in the regression case considered in section 4.3 an 

obvious candidate for r.his function r is r(y,x,0) = y-f(x,0). 

Also, we may choose for r(Yj ,X,,8) the j-th term of 

-h{d/dd')Q_{8) , 

A 

where Q(0) is defined in (4.1.9), i.e., 

r(y,x,<?) = [y-f(x,<?)](3/30')f(x,0). (5.2.7) 

Clearly, 

E [ r ( Y j ) X j , e ) | X j ] = [E(Yj | x J ) - f ( X j ) Ö ) ] ( a / a e ' ) f ( X j , ^ ) - O a . s . 
i f and o n l y i f E(Yj |Xj) - f ( X j ) ö 0 ) a . s . and 8 = 80 . ( 5 . 2 . 8 ) 

A 

Furthermore, observe that in the case (5.2.7) the estimator 8 

of 80 is such that 

P{(l/n)2^1r(YJ,X11*).- 0} - 1. (5.2.9) 

Cf. (4.2.7). This is t rue even if the model is misspecified, 
A 

provided that 9 converges in probability to an interior point 
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of the parameter space 0. Consequently we cannot choose r=M, 

for then 

P(M(0)=O) - 1 

A 
A 

anyhow and thus any test based on M(Ö) will have no power at 

all. What we need is a weight function, similarly to (5.2.3), 

i.e., let ri(y,x,ö) be the i-th component of the vector 

r(y,x,#), and let wi(x,ö) be a weight function. Then 

MiCy.x,^) - r1(y,.*,ö)w1(x,tf), i-1,2 m. (5.2.10) 

Note that in the case (5.2.3), 

Wi(x,0) « w(x), r^y.x.ö) - (y-f(x,6)(d/d8i)f(x,8), 

i-1,2 k. 

In view of the above argument, we can now state the basic 

ingredients of the conditional M-test. First, let us assume 

that the data generating process is i.i.d.: 

Assumption 5.2.1. The data generating process {(Yj.Xj)} with 

Yj e R, Xj e Rk is i.i.d. 

The model is implicitly specified by the functions ri(y,x,ö): 

Assumption 5.2.2. For i=l,2,...m the functions ri(y,x,ö) are 

Borel measurable real functions on RxRkx0, where 0 is compact 

Borel subset of Rm, such that 

E supfleelr^Yj ,Xj ,8)\ < ». 

Moreover, for each (y,x) e RxRk the functions ri(y,x,ö) are 

continuously differentiable on 0. Let 

r(y,x,0) - (r^y.x,*), rm (y,x, 8))' . 

There exists a unique interior point 80 of © such that 

E r(Yj,XJ,^0) = 0 (e R m). 
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Note that the latter condition does not say anything about 

model correctness. For example in the case of the regression 

model in section 4.3 this condition merely says that the 

function 

E[Yj - fCXj,*)]2 » E[YJ-E(YJ|X;1)]
2 + E[E(Yj [Xd ) -f (Xj , 6) ] 2 

has a unique extremum on 0 at an interior point 80 of 6, 

without saying that 

EfECYjIxp-fCXj,*,,)]2 - 0. 

Next, we considtr an estimator 9n of 80 , sati£;fying 

(5.2.9): 

Assumption 5.2.3. Let (0n) be a sequence of random vectors: in 8 

such that 

linn^oP{(l/n)5^.1r(YjIXj>ön) = 0} = 1. 

We may think of 0n as an estimator obtained by minimizing an 

objective function of the form 

Dn(0) = Id/^S^.^CYj.Xj.ö)! (5.2.11) 

over 6, where |.| is the Euclidean norm. Then under assumptions 

5.2.1-5.2.3, 

Dn(0) -+ D(0) = |E r(Y1,X1,ö)| a.s., uniformly on 0. (5.2.12) 

Cf. exercise 3. This result, together with assumption 5.2.3, 

implies 0n -* 6Q in prob., i.e., 

Theorem 5.2.1. Under assumptions 5.2.1-5.2.3, plimn̂ .ooön — Ö0 . 

Proof: We have 

0 < D(0n) = D(0n)-D(0o) = D(0n)-Dn(0n) + Dn(0n) 

< supfle6|Dn(i?)-D(ö)| + Dn(ffn) ->0in prob. (5.2.13) 
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by ( 5 . 2 . 1 2 ) and assumpt ion 5 . 2 . 3 , hence 

p l i m i r t c o D ( 0 n ) - D(0 o) - 0 . ( 5 . 2 . 1 4 ) 

The theorem follows now similarly to the proof of theorem 

4.2.1. O.E.D. 

Also asymptotic normality applies. By the mean value 

theorem we have 

(l/y^SJ.ir^Yj.Xj,^) - (lA/iOS^r^Yj.Xj,*,,) 

+ [(l/n)SJ.1(a/aff')ri(Yj,XJ,^
i,)]'yn(»n-fl0), (5.2.15) 

where 8^1
l) is a mean value satisfying |^ 1 }-Ö 0| < |ön-f0|. 

Now assume 

Assumption 5.2.4. For i,i=l,2,..,m, let 

E supeee|(5/aöi)ri(Y1,X1,6)\ < » 

Then by theorem 2.7.5, 

(1/11)2^.! (3/35')^ (Yj ,Xj ,6) - E(a/afl')ri(Y1,X1,fl) a.s. 

(5.2.16) 

uniformly on 6, hence by theorem 2.6.1 and the fact that by 

theorem 5.2.1, 

plimn-*»^1' = S0 , 

p l i m n - ^ d / n ) ^ (3/30')ri(Yj . X ^ 1 5 ) 

- E(d/86,)rL(Y1,X1,90) 

Denoting 

r* - -[(ï/^sj.^a/aor^Yj.Xj,^15) 

(l/iOZ^ O/a* ' )rm (Yj ,Xj , 6^>) ] ' 

and 
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r - [EO/30')r1(Y1,Xll0o)I...,E(a/30')rin(Y1,X1,*o)]' (5.2.17) 

we thus have 

A 

plimn-KoT* - P (5.2.18) 

Next assume: 

Assumption 5.2.5. The (mxm) matrix T is nonsingular. 

Then 

A 

plimn-vcor*"1 - T"1 (5.2.19) 

(Cf. exercise 4), whereas by (5.2.15) and assumption 5.2.3 

A 

plimn^ao{(l/yn)^=ir*-
1r(Yj ,Xj ,0O) + Jn(6n-80)} - 0. 

(5.2.20) 

This result, together with (5.2.19), implies 

plimn^co{(l/yn)S^=ir-
1r(Yj ,Xj ,60) + 7n(0n-0o)} - 0 

(5.2.21) 

provided that 

(l/yn)2"=1r(Yj ,X.,80) converges in distribution. 

Cf. exercise 5. A sufficiënt additional condition for the 

latter is: 

Assumption 5 .2.6. For i=l,2,...,m, E supgeQ[Ti (Yl ,X-y ,6)]2 < °o, 

as then the (mxm) variance matrix 

A = E r(Y1,X1,ö0)r(Y1,X1,tf0)' (5.2.22) 

has finite elements. Since the random vectors r(Y^,X,,60) are 

i.i.d. with zero mean vectors and finite variance matrix A it 

follows now from the central limit theorem 
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(l/yn)S5=1r(Yj ,Xj ,60) - Nm[0,A] in distr. (5.2.23) 

Combining (5.2.21) and (5.2.23) yields: 

Theorem 5.2.2. Under assumptions 5.2.1-5.2.6, 

Jn(6n-60) •+ Nm[0,n] in distr., where 0 - (r)"
1A(r')'1 . 

Note that this result holds regardless whether or not the 
underlying model is correctly specified. A similar result has 
been obtained by White (1980, 1982) for misspecified Iinear 
models and maximum likelihood under misspecification. Moreover, 
if the underlying model is correctly specified, r defined by 
(5.2.7) and if 6n is the nonlinear least squares estimator then 
Ü reduces to (l2~

1QlQz~
l . Cf. theorem 4.3.2 and exercise 6. 

A consistent estimator of Q can be obtained as follows. 
Let 

A 

T = [(1/^2*^(3/30')^^ .Xj,^) 

.....(l/n)E^=1(d/88')rB(Yd ,Xj ,*n)] 

A - (l/n)S^1r(Yj,Xj,0n)r(Yj,Xj,ön)' 
A A A A 

Q = r1A(r')"1 

Then 

Theorem 5.2.3. Under a s sumpt ion 5 . 2 . 1 - 5 . 2 . 6 , plimn-Hofi = O-

Proof: E x e r c i s e 7. 

We now come t o t h e n u l l h y p o t h e s i s t o be t e s t e d . As s a i d 
b e f o r e , t h e n u l l h y p o t h e s i s E(Yj |Xj) = f ( X j , 0 o ) a . s . i s e q u i 
v a l e n t w i t h ( 5 . 2 . 6 ) , where r i s d e f i n e d by ( 5 . 2 . 7 ) . I f H0 i s 
t r u e t h e n f o r i - 1 , 2 m, 

E r 1 ( y d , X j , t f 0 ) w i ( X j f « 0 ) - E { E [ r 1 ( Y j , X j I * 0 ) | X J ] w i ( X i f t f 0 ) } 
- 0 ( 5 . 2 . 2 7 ) 

( 5 . 2 . 2 4 ) 

( 5 . 2 . 2 5 ) 

( 5 . 2 . 2 6 ) 
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for all weight functions wt for which the expectation involved 

is defined. If H0 is false there exist continuous weight func

tions wA for which (5.2.27) does not hold. Cf. theorem 3.1.2. 

Now let us specify these weight functions. 

Assumption 5.2.7. The weight functions wi(x,ö), i=l,2,...,m, 

are Borel measurable real functions on RkxS such that for 

i-1,2 m, 

(I) for each xeRk, wi(x,^) is continuously differentiable on 0; 

(II) E supseB\ri(Yl,X1,ó)\3\vi(X1,8)\ < »; 

(III) E supöee[ri(Y1)X1)e)wi(X1,ö)]
2 < »; 

(IV) for i-1,2,.,m, E supÖG0|(d/8S £)[r i (Yx,XX,0)w±<XX,0)]| < »; 

(V) if H0 is false then E ri (Yx ^ , 80 )wL (Xx , 0O ) * 0 for at 

least one i. 

The conditions (I)-(IV; are regularity conditions. Condition 

(V), however, is the er ix of the conditional M-test, because it 

deterraines the power of the test. It says that the random 

vector function 

A 

M(tf) - (l/n)S^=1M(Yj .Xj ,8) (5.2.28) 

with 

M(Yj,Xj,e) - (r1(YjIXJ>ff)w1(Xjj1tf),...,rm(Yd,XJ,tf)wn(XJ,tf))' 

= (M^Yj.Xj.fl) ^(Yj.Xj.fl))' (5.2.29) 

say, has nonzero mean at 8=>8Q if H0 is false. Thus, we actually 

test the null hypothesis 

A 

Hj : E M(ö0) - 0 (5.2.30) 

against the alternative hypothesis 
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H* : E M(0O) * O (5.2.31) 

However, it may occur that the choice of the weight functions 

is inappropriate in that H^ holds while H0 is false. The choice 

of the weight functions is therefore more or less a matter of 

guesswork, as a watertight choice requires knowledge of the 

true model. In the next section it will be shown how the con-

ditional M-test can be modified to a consistent test. 

We are now going to construct a test statistic on the 
A 

basis of the statistic M(#n). Consider its i-th compoment 
A 

Ki($). By the mean value theorem we have 

A A 

7n M ^ ) - 7n M ^ Ö Q ) 

+ (l/n)2^1(3/a^)Mi(Yj,Xj)^
i))yn(ön-e0) (5.2.32) 

where J ö^± "* - ̂ o I - l^n'^ol- Denoting 

A - (E(a/a«»)r1(Y1,x1,e0)w1(x1Itf0) 

E(a/ae')ra (Y, , x l t e Q ) w m ( x l t e 0 ) } ' (5.2.33) 

it is not hard to show, similarly to (5.2.21), that (5.2.32) 

implies 

A A 

p l i m ^ y n M(*n) - Jn M(0O) - hJn(8n-80)) - 0 (5.2.34) 

Cf. exercise 8. Substitating 

-(l/yn)S^ir
1r(Yj ,Xj ,80) 

for Jn(8n-80) (cf. (5.2.21)) it follows from (5.2.34) and 

(5.2.28), 

A 

pllmn-Hotyn M(0n) - ( l A / i O S ^ Z j } = 0 , ( 5 . 2 . 3 5 ) 

where 

Zj = M(Y j ) X j ,Ö 0 ) - A r 1 r ( Y j , X j , ö 0 ) . 
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If H0 is true then E Z^ = 0 , and moreover it follows from 

assumption 5.2.7 that E ZjZj ' = A,, where 

A^ - E M(Y l JX l,^ 0)M(Y 1,X 1,ö 0)' 

- E M(Y1,X1,tf0)r(Y11X1,fl„)'(r')-
1A' 

- Ar _ 1E r(Yx ,X1,Ö0)M(Y1 ,XX ,80)' +AT'1A(T'y1A', (5.2.36) 

is well-defined. By the central limit theorem and (5.2.35) we 

now have 

A 

7n M(0n) -• N m[0,Aj in distr. under H0 . (5.2.37) 

Moreover, under H1 we have 

plimn^c0M(^n) - E M(Y1,X1,Ö0) * 0. (5.2.38) 

A consistent estimator of A can be obtained as follows. 
A A A '* 

Let T, A and fi be defined in (5.2.23)-(5.2.25), let 

A 

A - [(l/n)2^=1(a/3ö')[r1(Yj ,Xj ,8n)w,(Xj , 6n ) , . . . . 

..... ( l / n ) ^ = 1 (d/88 ' ) [rm (Yj ,Xj , *n )wm (Xd , 8n ) ] ' 

A 

B = (l/n)2^ 1M(Y j,X j^ n)M(Y j,X j l5 n)' 

A 

C - (l/n)2^ 1M(Y j,X j,^)r(Y j,X j lö n)' 

and 
A A A A '\ A A A A A A 

A^ = B - C(r,)"1A' - A r^-C' + A Q A' . (5.2.39) 

Then: 

A 

Theorem 5.2.4-. Under assumption 5.2.1-5.2.7, plim^eoA. — A . 

Proof: Exercise 9. 

Note that this result also holds if H0 is false, although in 

that case A is no longer the asymptotic variance matrix of 
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A 

7n M(0n). 

Finally, assume 

Assumption 5.2.8. The mitrix A_,„ is nonsingular, 

and let 
A A A A 

H = n M(^n)'A;
1M(.'5n) 

be the ultimate test statistic. Then 

Theorem 5.2.5. Under assumptions 5.2.1-5.2.8, 
A 

(I) H -+ Xm ̂  distr. if H0 is true, 
A 

(II) plimn^H/n - E M(YX ,XX , 60 ) 'Aj^E M(Y1,X1,Ö0) > 0 if H0 

is false. 

Exercises: 
1. Prove (5.2.4) 

2. Prove (5.2.5) 

3. Prove (5.2.12) 

4. Why does (5.2.19) follow from (5.2.17)? 

5. Prove (5.2.21) 

6. Prove that fi = n ^ f i ^ 1 under the conditions in section 

4.3. 

7. Prove theorem 5.2.3 

8. Prove (5.2.34) 

9. Prove theorem 5.2.4. In particular, check which parts of 

assumption 5.2.7 have been used here. 

5.3 A consistent conditional N-test 
As mentioned before, the power of the conditional M-test 

heavily depends on the choice of the weight functions. Quoting 

Newey (1985, p.1054): "An important property of specification 

tests based on a finite set of moment conditions is that they 

may not be consistent. This inconsistency has been noted by in 

particular examples by Bierens (1982) and Holly (1982) and is a 
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pervasive phenomeneon". Thus, the solution of the inconsistency 

problem is to use an infinite set of moment conditions. Theorem 

3.3.4 suggests how to do that. Let tji be a bounded Borel measur-
able one-to-one mapping from Rk into Rk , and replace \Ji(x,8) by 

exp[£'V>(x) ] . Then theoiem 3.3.4 says that the null hypothesis 

is false, i.e. , 

Hi: P{E[r(Yj ,Xj , ö.j) |Xj ] = 0} < 1, 

if and only if E r(Y^ ,X,,60)exp(£'^(Xd)) * 0, except on a set S 
with /J(S) — 0, where fi is a probability measure induced by an 
absolutely continuous k-variate distribution. Denoting 

M(y,x,0,O = r(y,x,0)exp[£'^(x)] (5.3.1) 

we thus have 

E M(Yj ,Xj ,e0 ,0 * 0 for all £ £ S if H0 is false (5.3.2) 

whereas clearly 

E M(Yj ,Xj ,$0 ,£) - 0 for all ( e R
k if H0 is true. (5.3.3) 

Next, let 

A 

M(«„,0 - (l/n)S^ = 1M(Yj ,Xó,en,0 (5.3.4) 

A A \ A 

H(£) - n M ( 0 n > O ' V O ^ M t ^ , ! ) , (5.3.5) 
A 

where A^(f) is defined in (5.2.39) with wi(x,^) replaced by 

exp[£'V>(x)], and assume that in particular assumption 5.2.8 

holds for every £ e Rk\{0}. Then we have 

A 

H(£) -• Xm in distr. for every £ e Rk\{0) if H0 is true. 

(5.3.6) 

and 

A 

plimn^oH(e)/n = E .M(Tfx ,XX , 60 ,0 ' A^(£)~ 1E M(Yj .X,. J0 ,£) > 0 

for all £ e Rk\S if h, is false, (5.3.7) 
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where A^(£) is defined in (5.2.35). 

The latter result indicates that this version of the; con-

ditional M-test is 'almost surely' consistent (i.e., has asymp-

totic power 1 against all deviations from the null), as consis-

tency only fails for £ in a null set S of the measure \x. Also, 
note that we actually have imposed an infinite number of moment 

restrictions, namely the restrictions (5.3.3). Furthermore, 

observe that the exclusion of £ = 0 is essential for (5.3.6) 

and (5.3.7), because by assumption 5.2.3, 

A 

P{M(0n,O) = 0} - 1, 

hence 

H(0) -+ 0 in prob. 

regardless whether or not H0 is true. Thus, the set S contains 

at least the origin of Rk. 

One might argue now that the problem of how to choose the 

weight function- w(x,0) has not been solved but merely been 

shifted to the problem of how to choose the vector £ in the 

weight function exp[£'V>(x)]. Admittedly, in the present 

approach one has still to make a choice, but the point is that 

our choice will now be far less crucial for the asymptotic 

power of the test, for the asymptotic power will be equal to 1 

for 'almost' any £ G Rv , namely all £ outside a null set with 

respect to an absoluteiy continuous k-variate distribution. If 

one would piek £ rando.nly from such a distribution then £ will 

be an admissible choice with probability 1. In fact, the asymp

totic properties of the test under H0 will not be affected by 

choosing £ randomly, whereas the asymptotic power will be 1 

without worrying about the null set S: 

Theorem 5.3.1. Let H(f) be the test statistic of the condi-

tional M-test with weight functions wi(x,ö) = exp[£'v'(x) ] , 

where ^ is a bounded Borel measurable one-to-one mapping from 

Rk into Rk . Suppose that the conditions of theorem 5.2.5 hold 

for £ e Rk\{0}, possibly except assumption 5.2.7(V). Let £ be a 

random drawing from an arbitrary absoluteiy continuous k-

variate distribution. Then 

H(£) - xl if H0 is true (5.3.8) 
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and 

plinin-^HCO - « i f H0 i s f a l se (5 .3 .9) 

Proof: F i r s t , assume t n a t H0 i s t r u e , so t h a t for every £ e 
A 

R k \{0} , H(£) -+ x% in d i s t r . Then by theorem 2.3 .6 

E exp[ i - tH(OJ - d - 2 i t ) - m / 2 - <pm(t) (5 .3 .10) 

for every t e R and every fixed £ e Rk\{0} , where <pm (t) is the 

characteristic function of the x^ distribution. (Cf. section 

2.3, exercise 3). Now iet £ be a random drawing from an abso-

lutely continuous k-variate distribution with density h(£). 

Then for every t e R, 

A A 

E e x p [ i - t H ( 0 ] = JE e x p [ i - t H ( 0 ] h(<£)d£ 

- /<Pni(t)h(e)d£ - <pm(t) ( 5 . 3 . H ) 

by bounded convergence (cf. theorem 2.2.2). Theorem 2.3.6 says 

that this result implies that H(£) -+ Xm i-n distr. 
Second, assume that H0 is false. Then there exists a null 

set S of the distributim of £ such that for every £ e Rk\S, 

E M(Y1,X1,Ö0,£) * 0. 

Hence 

A 

plimnWUO/n = E M(Y1,,C1,Ö0,£)'A^(|)-
1E M(Y1,X1,Ö0,£) = T(£) , 

(5.3.12) 

say, where 

T(£) > 0 if £ e R-C\S, T(£) = 0 if £ e S. (5.3.13) 

Again using theorem 2.3 .6 we see t h a t 

A 

H(£)/n - T(£) in i i s t r . (5 .3 .14) 
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and since S is a null s.'.t of the distribution of £ we have 

P(T(0 > 0) = 1 (5.3.15) 

It is not hard to shov; now that (5.3.14) and (5.3.15) imply 

(5.3.9). Q.E.D. 

Next, we have to deal with a practical problem regarding 

the choice of the bounded Borel raeasurable mapping ij). Suppose 
for example that we wou Ld have chosen 

^(x(1),...,x(k)) - (tan"1(x(1)),...,tan"1(x(k)))'. 

This mapping is clearl> admissible. However, if the components 

XLi of Xj are large theu tan"1(Xij) will be close to the upper-

bound hn, hence exp(£ ' V»'Xj )) will be almost constant, i.e., 

exp(C'^<Xj)) « exp(h^ = 1|i) 

and consequently 

M(0n,O « {(l/n)5?-.1r(YjlXj,«n)}exp(hjr2l[.1«i). 

Since the mean between the curled brackets equals the zero 

yector with probability converging to 1 [cf. assumption 5.2.3], 

^(0n,£) will be close to the zero vector and consequently 

H(£) will be close to zero. This will obviously destroy the 

power of the test. A cure for this problem is to standardize 

the Xj ' s in ^(Xj). Thus let XL be the sample mean of the X^'s, 

let SL be the sample Standard deviation of the X^'s 

(i-1,2 k), and let 

A 

Zj = (tan-1[(Xlj-X1)ASJ tan"1 [ (Xk j -Xk )/Sk ])' . (5.3.16) 

Then the proposed weight function is: 

expCÉ'Zj). (5.3.17) 

It can be shown [cf. exercise 3] that using this weight func

tion is asymptotically equivalent with using the weight func

tion 
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exp(e'Zj) (5.3.18) 

where 

Z3 = (tan'
1[(XiJ-E XLó)/Jvar(Xió)], 

,tan"1[(Xkj-E Xkj)/7var(Xkj)])' (5.3.19) 

Exercises: 
1. Check the conditions in section 5.2.2 for the weight 

function exp[|'^(x)], and in particular verify that only 

assumption 5.2.8 is of concern. 

2. Show that (5.3.12) holds uniformly on any compact subset of 

Rk. 

3. Verify that using the weight function (5.3.17) is asymp-

totically equivalent wa th using the weight function (5.3.18), 

provided that for i=l,2,...,k, 

plim^coXi = E X Ü and p l i n ^ ^ =• Jvav(Xil) > 0. 

5.4 The integrated M-test 

A An alternative to plugging a random £ in the test statis-

£ic H(£) defined in (5.3.5) is to take a weighted integral of 

HCO, say 

A A 

b = J"H(£)h(Od£, (5.4.1) 

where h(£) is a k-Vi.riate density function. This is the 

approach in Bierens (1?82) . This idea seems attractive because 

under Hx it is possible to draw a £ for which the function 

TCO = plinin-KoHtO/n 

[cf. (5.3.1.2) ] is close to zero, despite the fact that 

P(T(£) > 0) = 1. 

In that case the small sample power of the test may be réither 
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poor. By integrating over a sufficiënt large domain of T(f) we 

will likely cover the areas for Awhich T(£) is high, hence we 

may expect that a test based on b will in general have higher 

small sample power thé-n the test in section 5.3. A disad-

vantage of this approach, however, is firstly that the 

limiting distribution of bAunder H0 is of an unknown type, and 

secondly that calculating b can be quite laborious. A 

It will be shown that under H0 the test statistic b is 

asymptotically equivalent to an integral of the form 

b* - /[(l/yn)^=1Zj(0]'[(l/yn)S^ = 1Zj(?)]h(C)d|, (5.4.2) 

provided h(£) vanishes outside a compact set, where the Zj(£)'s 

are for each £ e Rk\{0) independent random vectors in Rm with 

zero mean vector and unit variance matrix: 

E Z j ( e ) - 0 , E ZjC^ZjCO' = Im. (5.4.3) 

Although 

[(l/yn)2^1Zj(^)]'[(l/7n)2^1Zj(^)] - j£ in distr. 

for each £ e Rk\{0}, this result does not imply that 

b* -»• Xm i n distr. 

A 

On the other hand, the first moment of b* equals m, hence by 

Chebishev's inequality 

P(b* > m/c) < E b*/(m/c) = c (5.4.4) 

A A 

for every e > 0. Since under H0 , plimn-+co(b - b*) = 0 , we may 

conclude that for every e > 0, 

A 

l imsupn_K aP(b > m/s) < £ under H0 . ( 5 . 4 . 5 ) 
A 

Moreover, i f H0 i s f a l se then plim^ojb = °°, hence 

A 

limn.,00P(b > m/e) = 1 under ^ . (5.4.6) 

These results suggest t.o use m/c as a critical value for tes-
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ting H0 at the £XlOO% significance level, i.e., 

A A 

rejeet H0 if b > m/e and accept H0 if b < m/c. 

Admittedly, the actual type I error will be (much) smaller than 

e, because Chebishev's inequality is not very sharp an in-

equality, but this is the price we have to pay for possible 

gains of small sample power. 

The problem regarding the calculation of the integral 

(5.4.1) can be solved by drawing a sample (̂ 1,...,̂ w ' °^ size 
n 

^n (Nn -* «> as n •+ ») from h(£) and to use 

b - (l/Nn)S^1H(Cp (-V4.7) 

A 

instead of b. This will be asymptotically equivalent, i.e., 

A 

plimn->co(b - b) - 0 under H0 ( 5 . 4 . 8 ) 

and 

p l imn-^b = /T (Oh(Od<£ > 0 under H2 . ( 5 . 4 . 9 ) 

Now l e t us t u r n to t he p roof of t h e a s y m p t o t i c e q u i v a l e n -
A A 

ce of b and b* under H0. Observe that similarly to (5.2.32) 

A A 

yn M ^ . O = 7n KL(e0,o 

+ [(l/n)S^1O/aÖ)M1(YJIXj,^
i)(O,O]yn(ön-ö0), (5.4.10) 

A A 

where Mi(ö,|) is the i-th component of M(0,£) defined in 

(5.3.4) and 0£l}(£) is a mean value satisfying 

^'(O-flol * K-*ol a.s., for all e e Rk. (5.4.11) 

Let S be a compact subset of Rk . Under the conditions of 

theorem 5.3.1 we have 

(ï/iÔ .̂ s/aflOMiCYj.Xj.fl.É) - Eid/de'W^Y^x^e,?) 
(5.4.12) 
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a.s., uniformly on 9xE. Cf. theorem 2.7.5. Denoting 

ai(9,0 - E(a/3ö')Mi(Y1,X1,ö,0 (5.4.13) 

we thus have 

piimn^osup^gsKi^sj.^a/ae^MiCYj.Xj.tf^^o.e) - M'o.Ol 

- plimn.wsup£e3|ai(^
i)(0,0 - a ^ ^ O l 

< plimn-eosup£eSsup ,1*1(0*,O - a ^ ^ O l - 0 , 

lö* "ffo 1^1%-^ I (5.4.14) 

where the last step follows from the continuity of aA (•#,£) on 
the compact set 8xH (hence aL(6,£) is uniformly continuous on 
0xS), and the consistency of 9n . Consequently, denoting 

A ( 0 = [ a ^ . O a m ( < V . O ] \ (5.4.15) 

cf. ( 5 . 2 . 3 3 ) , we have 

A A 

p l i m n - w s u p ^ s i y n M ( 0 n , O - Jn M(0o ,É) + A ( O 7 n ( 0 n - 0 O ) | - 0 . 
( 5 . 4 . 1 6 ) 

Next , l e t 

C j ( 0 - M(YJ ,Xit80,O + A ( ^ ) r 1 r ( Y j ,Xj , ö 0 ) . ( 5 . 4 . 1 7 ) 

Then it follows from (5.2.21) and (5.4.16) that 

pllmn^sup^eglyn M(0n,O - (lT/iOS^c., (O | =0. (5.4.18) 

Moreover, we have shown in section 5.2 that under H0 

E Cj<0 - 0, 

E Cj(Ocj<0' = AA(?). 

'o 

(5.4.19) 

Furthermore, it is not hard to show that the consistent estma-
A 

tor AL.(£) of A^(0 is also uniformly consistent on S, and thus 
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(cf. exercise 1) 

A 

A*(0 _ 1 -* A^CO"1 in prob., uniformly on E. (5.4.20) 

Denoting 

Zj(0 = A ^ O - ^ K ) (5.4.21) 

it is now not too hard to show (cf. exercise 2) that 

A 

plimn^J
,
w|H«)-t(l/yn)2».1ZJ(f)]'t(l/yn)2j.1ZJ(?)3|h«)df - 0. 

(5.4.22) 

Moreover, we leave it as an exercise (cf. exercise 3) to show 
that under ti1, 

A 

p l im n _ 0 0 sup^ G H |H(C) /n - T(£) | = 0 . ( 5 . 4 . 2 3 ) 

Cf. ( 5 . 3 . 1 2 ) . 
Summarizing, we now have shown: 

Theorem 5.4.1. Let the conditions of theorem 5.3.1 hold and let 
h(£) be a k-variate density vanishing outside a compact subset 
E of Rk . 

A A A 

( I ) Under H0 we have plimn_>00(b - b*) - 0, where E b * - m. 

A 

(II) Under Hx we have plim^Jb/n = jT(Oh(Od£ > 0. 

A 

(III) Replacing b by b defined in (5.4.7), the above results go 
through. 

Exercises 
1. Prove (5.4.20) 
2. Prove (5.4.22) 
3. Prove (5.4.23) 
4. Prove part III of theorem 5.4.1. 
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