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ABSTRACT 

Dynamics of Generalised Spatia! Interaction Models 

This paper analyses dynamic properties of generalised spatial interaction models, w'rth particular emphasis 

on Alonso's generai theory of movements. Although the application of this theory addressed in the paper 

is a muitiregional demographic stock-flow model, it can easily be shown that the approach can be 

generalised to all types of spatial interaction phenomena. 

After an introduction to the Alonso model, it is demonstrated that various classes of spatia! interaction 

models (e.g., gravity and entropy models; doubly constrained trip distribution models) are specific cases of 

the generalised Alonso model. Next, the equilibrium and siability conditions of the spatial distribution 

resulting from the stock-flow model are further analysed. Although an analytical expression for the 

so-cailed systemic variables of the model is only possible under very restrlctive conditions, it is yet possible 

to study equilibrium and stability conditions more profoundiy by rewriting the generalised spatial interaction 

model as a general non-linear dynamic Volterra-Lotka model, so that stabie and unstable time trajectories 

can be examined. Furthermore, it appears to be possible to formulate more precise conditions that ensure 

Iocal stability in particular cases. 

In order to obtain more insight into the Iocal and global stability of the generalised spatial interaction model, 

simulation experiments are carried out with a muitiregional demographic stock-flow model for New Zealand. 

Various results are presented and discussed in the light of the above mentioned analysis. 
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I INTRODUCTION 

The development of a system of regions (or cities) is characterised by a state of flux, both absolute and 

relative to each other. The time trajectory of a region is not only the result of its internal ecology and 

exogenous forces, but it is also affected by the interaction of the region with other regions. This 

interaction is multi-faceted and involves interregional flows of production factors and commodities, 

diffusion of technological advances and knowledge, external spillover effects and political conflict in 

supraregional decision making. 

Such interaction may impede or promote regional development. Yet our understanding of the 

development process is unbalanced in that research in the past has ernphasised the determinants of 

spatial interaction, whereas the consequences of interregional interdependencies have received far less 

attention. Unfortunately this meant that studies of spatial interaction generally adopted a static (or at best a 

comparative static) approach. This paper is a contribution to redressing the baiance in favour of a 

systematic study of the consequences of spatial interaction for regional development. In the paper we 

investigate the regional dynamics implied by a general class of spatial interaction models, which follow f ram 

a theory of movements formulated by Alonso (1978). 

The paper is structured in the foliowing manner. The next section presents a dynamic formulation of the 

Alonso model. In section 3 the model is applied to migration in a multiregional demographic stock-flow 

system. Ciearly, human migration is only one aspect of spatial interaction, but the methodology can be 

applied in principle to other types of spatial interaction, such as interregional commodity trade or 

commuting, provided appropriate functional forms for the consequences of the flows for the state of the 

system can be defined. Section 4 outiines the conditions under which an equilibrium population 

distribution is feasible in the presence of spatial interaction in a multiregional system. Although the 

Identification of equilibrium conditions is interesting in itself, it is far more important to establish whether 

small perturbations generate equilibrating forces, since in a real-world spatial system a static equilibrium 

would be an exception rather than a rule. Thus a study of the stability of the system is warranted and this is 

also carried out in section 4. It should already be noted that because the most general formulation of 

Alonso's theory involves systemic variables which cannot be expressed in an analytically closed form, 

Standard procedures to test local and global stability cannot be applied to the general case. It is 

nevertheless possible to formulate conditions which ensure local stability in specific cases, some of which 

are elaborated in the paper. An altemative approach is to test the model's dynamic propeities by means of 

simulation. The results of some simulalion experiments are reported in the penultimate section. The last 

section summarises the paper and suggests directions for further research. 
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II A DYNAMIC VERSION OF ALONSO'S GENERAL THEORY OF MOVEMENT 

Alonso's (1978) paper proposes a theory of movement which is scientifically appealing and powerful due 

to its generality: it provides a systemic approach to movement of any type. The most common application 

is human migration, but other examples are international trade, shopping trips and sales of different brands 

of a product in different regions. Alonso's theory defines a class of spatial interaction models which can be 

shown to encompass many existing models of this type. The theory can be seen in particular as a 

generalisation of Wilson's family of spatial interaction models of the entropy type (Wilson, 1971; 1980). 

Theoretical reformulations and extensions can be found in Anselin and Isard (1979), Hua (1980) and 

Ledent (1981). Alonso's theory has been applied empirically to population migration in the United States 

(Porell and Hua, 1981; Porell, 1982), in Canada (Ledent, 1980; Fisch, 1981; Anselin, 1982) and in Japan 

(Tabuchi, 1984). An application of the theory to inter-urban labour migration in New Zealand is contained 

in Poot (1984b). A structurally identical model has been developed through a theory of supply and 

demand interaction in spatially separated markets (De Vos and Bikker, 1982; Bikker, 1982). The latter 

model, called the 3-Component model, has been applied to international trade flows and f lows of patients 

to hospitals. 

Alonso's theory, general as it may be, also contains some restrictive assumptions. First, the Alonso mode! 

pertains to a closed system, hence external forces (e.g., supraregional economie, politica!, social) are a 

datum. Secondly, there is no room in the model for a feedback loop in which the state of a region is itself 

affected by the interaction with other regions. Thirdly, the theory implies short-run equilibrium: when the 

model is seen as a supply and demand system, Alonso's definition of the systemic variables as balancing 

factors guarantees market clearance. In the model formulation that follows, the first and second 

assumption are relaxed, while the third remains to preserve internal consistency. This generalised Alonso 

model is stated in terms of migration, but an appropriate terminology may be substituted for other forms of 

interaction between regions. 

It is assumed that migration takes place between a set of n regions over a certain predefined period. 

Although the theory does not require that each origin is aiso a destinaticn, or even that origins and 

destinations are of the same type (compare with flows of patients to hospitals), this assumption is 

introduced for simplicity. Hance the flows of migrants can be represented by a square matrix M (t) in which 

Mj;(t) is the flow from i to j (ij = 1,2,...,n) during period (t, t+1). The main diagonal of M is ignored because 

of the difficulty in defining the spatial friction in intraregional flows relative to interregional flows. 
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The supply of migrants leaving region i during (t, t+1), or total out-migration Mj (t) is assumed to satisfy 

ML(t) = 5j(t) Oj(t) Rj(t)Vj i = i,2 n (1) 

with 

K 

q ( t ) = n XikflOi i = 1,2 n (2) 

k=i 

This spatial interaction system can be interpreted as follows: out-migration is a result of intemal 

unattractiveness, external pull forces and relative internal repulsiveness. Equation (2) shows that the 

push effect Oj(t) has essentially a Cobb-Douglas specification of intrinsic unattractive characteristics of 

region i, Xj^ (t) (k = 1,2,...,K). In the case of a heterogeneous population, Oj(t) may also incorporate 

composition effects resulting from differences in migration propensities between socio-economic groups. 

Since Mj (t) is a flow and most variables Xj^ (t) would be stocks, we need to assume that the levels of these 

variables do not change sianificantly within the period (t, t+1). Next, variable 8j (t) represents the influence 

of external effects; for example, 8j (t) could reflect the propensity to emigrate resulting from the pull from 

outside the system of regions. Finally, Rj (t) is the internal pull by the system as seen from origin i, i.e. the 

relative "repulsiveness" of i. Hence, R; (t) is the opportunity cost remaining in i, with Vj being the eiasticity of 

the supply of migrants from i with respect to the demand for migrants generated by the system. 

In-migration into region j is defined similarly: 

M.j(t)=£j(t) Dj(t) Aj(t)Mj H.2 n (3) 

with 

L 

EJ<1)- nYj,(t)ft j=1,2 n (4) 

1=1 

Here D;(t) represents the aggregate effect of intrinsic attractive characteristics of region j , Yj| (t) (j=1,2 L). 

External forces are affecting in-migration through £.-. (t). A, (t) is the attractiveness of destinaticns j relative to 
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all internal potential destinations, with uj being the elasticity of the demand for migrants in j with respect to 

the total supply of migrants generated by the system. 

Following Anselin and Isard (1979), the total push out of region i is defined as 

^(t)0,(t)Ri(t)M 

Ö|(t) i=1,2 n (5) 

Riffi 

and, in the same way, the total pull into j is equal to 

^(t)Dj(t)^(t)Mj 

5j(t) j=1,2 n (6) 

Ajtf) 

To measure the faciiity (or ease) of undertaking a migration between i and j , an index Fy (t) is used. This 

index is inversely related to the transportation cost, psychic cost and search cost involved in a migration 

process and thus ref lects the distance between regions. However, note that the F matrix with entries Fy (t) 

is not necessarily symmetrie. 

Central to the theory of movement is tiiat the flow of migrants between i and j is assumeti to satisfy a aravitv 

law: migration is proportional to the total pull, total push and the faciiity of moves. Hence 

i ^ (t) = c(t) Oj (t) Dj (t) Fy (t) i j = 1,2 n (7) 

M 
with c (t) being a cross-section proportionaiity constant. It is well known that the gravity formulation satisfies 

a number of optimality principles (Niedercom and Bechdolt, 19S9; Nijkamp, 1975; Colwell, 1982). 

To close the model, the systemic variables Rj (t) and Aj (t) need to be defined in a way which guarantees 

internal consistency in that the adding-up conditions 

n 

S Mjj(t) = ML(t) i-1,2 n , (8) 

H.H 
and 

n 

2 Mjj(t) = Mj(t) j=1,2 n (9) 

•=1. M 
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are satisfied. Using (1), (3) and (5) - (9), it is straightforward to derive that 

n 

Rj (t) -cWLDjt f ) F y (t) 1-1,2 n j * (10) 

H 
and 

n 

Aj(t) = c(t) SÖi(t) Fjj(t) j=1,2 n H (11) 

M 

Hence Rj (t) and Aj (t) are weighted averages of total pull and push respectively. Since D, (t) is a function of 

Aj (t) and Oj (t) of Rj (t), (10) and (11) need to be solved recursively. It can be easily shown that a unique 

solution exists when a scaling condition is introduced, that is I I Rj (t) = 17. Aj (t) = 1, and that finding the 

systemic variables is equivalent to the biproportional adjustment problem of finding the matrix M with given 

marginal totals, which is biproportional to the matrix F. The systemic variables are therefore also called 

balancing factors. 

A number of serious statistical complications are involved in estimating the parameters of the Alonso 

model. These will not be discussed here, but are elaborated in Porell and Hua (1981) and De Vos and 

Bikker (1982). A major condition, for instance, in order to estimate the pseudo-elasticity of out-migration 

and in-migration with respect to the system's pull and push respectively is that we would normally need to 

introducé the cross-section restriction that VJ = v and fij = u. for all i and j . This restriction is assumed to hold 

in the remainder of this paper. 

Even when v and u. are assumed constant over regions, the Alonso model still encompasses a large class 

of spatial interaction models of which most existing models can be shown to be special cases. There are a 

number of methodological, theoretical, logical, and practical criteria which one may use to judge specific 

models within this general class (Van Lierop and Nijkamp, 1980) and these criteria may be helpful to 

choose the most suitable specific model for a certain application. 

The dynamic properties of the general class of spatial interaction models are dependent on the actual 

specification. It is therefore useful to review some specifications which have been particularly popular in 

empirica! applications. First, when v=n=1, the wellknown simplesingle-equation gravity model results. 
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Using (5), (6) and (7), the mode! is 

^ ( t ) =c(t) 8j (t) ^(t) Oj (t) Dj (t) Fy (t) (12) 

This migrant allocation model has been calibrated extensively with cross-section data in various countries, 

for exampie: United States, Greenwood (1969); Canada, Vanderkamp (1971); England and Wales, 

Langley (1974); Australia, Langley (1977); Japan, Inoki and Suruga (1981); New Zealand, Hampton and 

Giles (1976). The product c(t) Sj (t) e: (t) is in cross-section studies the proportionality constant of the gravity 

model, which shows that in such studies the external effects are assumed identical across origins and 

destinations. 

The least plausible consequence of the simple gravity model is that any specific (i,j) flow is independent of 

the characteristics of the n-2 other regions. When, for exampie, a large industrial project commences in a 

certain region, this will increase direct labour demand and may have a regional multiplier effect which 

induces furtner demand for labour. This would attract more workers from other regions but at the same 

time reduce some of the flows between these regions, which now have become relatively less attractive, 

ceteris paribus. 

A specific model in which changes in the characteristics of a certain region induce a substitution effect, 

while leaving the total in-migration and out-migration of other regions unaffected, is the doubly constrained 

trip distribution model (Wilson, 1980). This model results when v=u.=0. It has the unattractive property that 

the drop in migration to a region with declining opportunities is fully compensated by an increase in 

migration to alternative destinations, so that the propensity to migrate remains unchanged. 

A model which we would expect to exhibit more realism is the production-constrained or 

supply-determined model in which u.=1, but which has no restriction on v. In this case 

!^-(t) £j- <t) Dj (t) Fy (t) 

= , (13) 

l\(\) s ej<t) Dj(t) Fjj(t) 
j 

which follows from (5) - (7) and (10). The left-hand side of (13) may be redefined as TCJJ (t), the probability 

that a migrant from i chooses destination j , and (13) shows that this probability is a function of tiie relative 

attractiveness of j . 
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Although the Alonso model pertains to aggregate flows, equation (13) also foliows from a behavioural 

theory of spatial choice in which the pull factors and the facility of migration are arguments of a stochastic 

disaggregate utility function such as the one in McFadden's (1974) conditional logit model. It can be 

demonstrated that there exists a close formal relationship between the multinomial logit model and the 

gravity-type model (see Van Lierop and Nijkamp, 1979). in addition, it has recently been shown by 

Heekman (1981) and Leonardi (1985) that dynamic disaggregate choice theory and dynamic spatial 

interaction models may emerge from the same class of utility theories. A treatment of stochastic spatial 

interaction models can also be found in Leonardi (1983). 

Of particular empirical interest is the time trajectory of the probabilities TTJJ (t). The following decomposition 

provides further insight: 

Mjj(t)~ *jjfl) _MLW . (14) 

Pj(t) Pj(t) 

where Pj (t) is the popuiation of region i at the beginning of period (t,t+1). The left-hand side of (14) is the 

transition probabiiity that a resident from i moves to j . The conditions that, (i), the TI matrix is constant over 

time, and (ii), the emission of migrants is proportional to the size of the popuiation are sufficiënt, although 

not necessary, to describe the migration and popuiation redistribution process by means of a Markov 

chain with stationary transition probabilities. When this transition matrix is called R and when natural 

increase and external migration rates are assumed not to vary over regions, the following equation 

describes the dynamics of popuiation distribution 

p(t+1)= R p(t) (15) 

with p' (t) = (p-j (t), p2 (t) pn (t)) and p; (t) = Pj (t) / E Pu (t). The dynamic properties of (15) are well known: 
K 

when the R matrix is irreducible, the process converges to a steady state distribution. Computation of this 

steady state distribution has little practical value, because the speed of convergence implied by the R 

matrix is usually so slow that some of the strong assumptions underlying the model are likely to be violated 

(Poot, 1984a, chapter 4). Moreover, extrapolation with (15) exaggerates the motion in the system by 

ignoring duration of stay effects (Brown, 1970). However, these weaknesses do not render the Markov 

model uselcss. Sophisticated multigroup mullistate matrix models, essentially based on generalisations of 

(15) have been successfully developed and applied (Rogers 1966, 1968, 1980). Nevertheless, recent 

research in the Netherlands has demonstrated that, while the n matrix defined above is remarkably stable 

over time, the propensity to migrate from regions exhibits considerable variation (Van der Knaap and 
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Sleegers, 1982). This suggests that a simple Markov model such as (15) would yield inaccurated 

predictions even in the short-run. 

Which type of the spatial interaction models reviewed in this section is appropriate in a particular situation, 

is naturally an empirical matter. The choice of a specific model out of Alonso's general class depends on 

the elasticities of the systemic variables. Since these elasticities depend on the level of aggregation, the 

estimation technique, the type of migration, the observation period and the structural determinants 

incorporated in the model, we would expect a range of values of elasticities in empirical applications. The 

recent study by Tabuchi (1984) confirms this. In this context, Anselin (1984) suggested specification tests 

to discriminate between spatial interaction models for a specific set of empiricai observations. 

After this brief discussion of Alonso's general theory of movement, its extensions, and a set of various 

specific attributes of this model, we shall now turn in section III to a dynamic multiregional model that 

includes the above mentioned migration model as a particular component In this way, the dynamics of an -

interwoven spatial system may bestudied in a more appropriate manner: . - . • • • • 

III REGIONAL DEVELOPMENT AND INTERACTION 

The deveiopment of a region (or a set of regions) may be described by a set of state variables, -eaoh v/ith - -

theif own time trajectory. The domain of the state variables could be either a discrete or a contlnuous state. 

space. The former type defines qualitative episodes in the event-history of a region (e.g., a period of 

industrialisation), whereas the latter measures quantitative phenomena (e.g., population, regiona! product, 

pollution). Over a short period we may assume that regional dynamics is part of one single episode and 

that quantitative transitions are smooth, but in the long run certain events may induce large perturbations 

(Johansson and Nijkamp, 1984). 

Spatial interaction is normally assumed to take place in an environment of smooth transitions. Interregional 

flows are in empirical studies a function of systemic effects and intrinsic characteristics of regions, but 

these conditions are assumed unaffected by the flows they generate. Even when feedback effects are 

taken into account, the quantitative impact of such effects is usually inferred from cross-section infcrmatioh 

so that true dynamics cannot be identified (examples in the migration literature can be found in Greenwood 

(1981) and Mead (1982)). The reason for this deficiency of empirical research on regional dynamics and 

interregional interaction is that such research requires a corr.prehensive dynamic inpul-output framework 

(or a comparable interrelated system), which is generally -difficuü to operationalise due to data limitations. 
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However, theoretical research on regionai dynamics has progressed much further and a variety of models 

has been posited (Gordon and Ledent, (1980); Carlberg, (1981); Smith and Papageorgiou, (1982); and 

severa! papers in Grifiith and MacKinnon (1981) and Griffith and Lea (1983)). The dynamics of regionai 

product growth and production factor movements may be formalised by means of catastrophy theory and 

differentiai equation analysis (Casetti, 1981; Dendrinos, 1982). A differential equation model which has 

been particularly popular in ecology and demography is the Lotka-Volterra model, which was originally 

formulated to describe the biological association of species through food webs (see also Pimm, 1982). 

The study of the dynamics of a system involves both the identification of equilibria and the formulation of 

conditions under which the system is locally, or globally, stable. However, unless a nurnber of strong 

assumptions are introduced which simplify the structure of the model, the dynamic properties are often not 

analytically tractable. It is particularly common in studies of spatial interaction to limit the model to the 

competiiion between two regions (e.g., Sonis and Dendrinos, 1984) or between a metropolis and its 

hinterland (e.g., Hudson, 1970). When such assumptions are considered undesirable, simulation can be 

used to investigate a ümited number of cases. 

Working with a simple dynamic structure by no means implies that the model would not be capable of 

reproducing the turbulent behaviour we may observe in the real world. First, stochastic elements may be 

introduced. Secondly, even the simplest determimstic nonlinear difference equation can exhibit a 

remarkable spectrum of dynamic behaviour, from stable equilibrium , to stable oscillations through to a 

chaotic pattern (May, 1974; Li and Yorke, 1975). Although such difference equations require a discrete 

measurement of time which may not be appropriate for biological populations (unless generations are 

non-overlapping), they are very common in applications involving both observations on stocks and fiows 

(e.g. Samuelson's multiplier- accelerator model). 

The difference equation approach is adopted here aiso, because calibration of the Alonso class of spatial 

interaction models involves the choice of a certain period (usually one or five years) as a unit of 

measurement for migration. For the sake of simplicity we shall focus on population size as a single 

quantitative state variable, although migration affects of course the region in many ways, for example 

through labour supply, housing demand, local government revenue, congestion, cultural pluralism. 

The time trajectory of population size is given by the following fundamental growth equation: 

Pj (t+1) = [1+gj (t) ] Pi (t) + M ;i (t) - ML (t) (16) 

in which gj (t) is the rate of natura! increase over the period ('t,t+1), although external migration may be 
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incorporated in the growth rate gj (t) in an open system. The substitution of total in-migration and 

out-migration as defined by (1) and (3) into (16) yields, assuming cross-section equality of the coefficients 

of the systemic variables: 

Pi(t+1)-[1 +9i(t)]Pj(t) + 8,(t) Dj(t) Aj(t)H - 8,(t) Oj(t) Rj(t)v (17) 

where Aj (t) and Rj (t) are endogenous and defined in (10) and (11). What remains is to specify the intrinsic 

push and pull characteristics of region i. The behavioura! theory of migration suggests that migration is 

both an adjustment of location-specific amenities and an investment in human capital for labour force 

participants. Hence there are many economie and other factors that may have an impact on migration 

flows, but often population size itself is taken as a proxy for such factors and dominates the explanatory 

variables in empirical models of spatial interaction (Anselin, 1984). Moreover, when combined with 

systemic effects, the fit of the pure gravity mode! to observed migration matrices is often reasonable. 

Hence, we assume that 

q(t) = Pi(t)« 1-1,2 n (18) 

and 

Dj (t) - Pj <t) P [-1,2 n (19) 

Substitution of (18) and (19), and the expressions for the systemic variables, into (17) results in 

Pi (t+1) =[1+gi(t)]Pj(t) 

+ cfflH 8j (t) Pj (t)P {Z^(D Pk(t)« Rk(t)V-1 Ftó (t)} H 
k 

- C(t)V 5j (t) P j(t)«{2ek(t) Pk(t)P A ^ t p l Fjk(t)>v 

k 

1-1,2 n kri (20) 

Equation (20) is a complex system of n nonlinear first order difference equations in the variables P-j(t), 

?2 (t) Pn(t). The first requirement to solve the system would be to eliminate the systemic variables R|< 

and Afc, but these variables cannot be analytically expressed in terms of population sizes and the factors 

Fjt. The only exception is the case that n=2, a "degenerate" model which is worked through in an appendix 
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to this paper. This appendix shows that even in this simple situation the resulting system of difference 

equations is rather cumbersome. Thus, in the remainder of this paper we shall proceed by studying 

specific cases of spatiai dynamics both analytically, where possible, and through simulation. 

IV EQUILIBRIUM AND STABILITY ANALYSIS 

Equilibrium is defined as the configuration in which the distribution of population over regions is staiionary. 

Such a steady state distribution impiies that all regions grow at the same rate. Naturally, zero population 

growth (ZPG) with APj = P; (t+1) - Pj (t) = 0 for all i, is a special case. The objective of this section is to 

identify the conditions under which the general spatiai interaction model is compatibie with a globally stable 

equilibrium. 

It is obvious that the difference equation system (20) can display a wealth of dynamic behaviour, 

dependent on the natura! growth rates, external influences and the values of the parameters. With 

respect to internal migration, population redistribution is a "zero-sum game", but thp impact of net 

migration on a region's reiative share of population may be reduced or amplified arbitrarily by natural 

increase. Hence it is only interesting to identify equilibrium under specific assumption about natural 

increase. 

The simplest assumption possible with respect to natural increase (and external migration) is that the 

growth rates gj(t) are constant over time. However, if the growth rates of regions are no't identical, it is 

always possible to choose the parameters of the spatiai interaction component such that natural increase 

dominates migration and, consequently, population distribution would be unstable. The reiative share of 

the region with the largest growth rate would be monotonically increasing. Hence it is more realistic to 

assume that there are limits to growth in a region, due to resource and technological constraints, 

externalities, etc. The most well known growth process with a ceiling (or a saturation level) is logistic 

growth, with the growth rate defined by 

si (t) = n M - P i ( t ) / C j ] (21) 

In (21), Cj is the carrying capacity of region i and q is the tuning parameter which determines the speed of 

adjustment. In the absence of spatiai interaction, (21) results in a stable population distribution vector % 

with elements %: = Cj / Z Cj (i.e. 0 < %: < 1, with Z %-. = 1) when 0 < q < 2 for all i, provided all initial populations 
i i 

are within the range (0, Cj (1+1/rj)). When q > 2, the system may display cyclical or chaotic behaviour (May, 

1974; 1976). 
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Even when natura! growth is compatible with convergence to a stable equilibrium, a region's exposure to 

migration disturbs the growth path in genera! and hence instabiiity may result. The easiest way to 

demonstrate this is through substitution of (21) into (20) and by assuming that the coefficients of the 

balancing factors, u. and v, are equal to zero, i.e. a doubly constrained spatial interaction model. This yields 

Pj (t+1) = Pj (t) [ 1 + H (1 - Pj (t) / Cj ) ] + Ej (t) P| (t) P - 8-, (t) Pi (t)« i=1,2 n (22) 

Note that in this case the growth paths of regions appear to be independent but in fact they are not: the 

external influences cannot be chosen arbitrarily but must satisfy the conservation condition that total 

in-migration in the system equals total out-migration. Underthis condition, the doubly constrained spatial 

interaction model is characterised by absence of association in the sense of the Lotka-Volterra model. 

Equation (22) may or may not be compatible with equilibrium and when equilibrium exists this may or may 

not be at the leve! Cj. Assuming that equilibrium does exist with distribution vector %, this distribution is 

only stable when aü regions with a population greater than their equilibrium level loose through migration 

and aü regions with a population less than their equilibrium level gain through migration. It is not difficuit to 

show that (22) may generate both stable and unstable time trajectories for a specific region. For exampie, 

when for a given region k e^ (t) = &(, (t) f or ail t; p = 2 and cc = 1, it can easüy be shown that P^ = (fy - ê ) C^ / 

( r ^ - e ^ C k ) is an, at least locally, stable equilibrium when |1-rj< 4-ê l < 1. When a = 2 andp = 1the 

same result holds with e^ replaced by -e^. 

When the population distribution resulting from natura! increase and migration is in a steady state, the 

equilibrium distribution vector % is such that net migration is zero in aü regions. Hence we need to search 

for conditions under which the migration matrix M as a function of Pj (i=1,2,...n) is symmetrie. In (22) this is 

achieved by the appropriate choice of the external effects Ej (t) and 8j (t). 

More specific results about equilibrium can be derived for the simple unconstrained gravity model, i.e. the 

case that v = u. = 1 (equation (12)). It is easy to verify that for this model the following conditions are 

sufficiënt for the existence of an equilibrium: 

(i) External effects are identical for all regions 

(ii) The facility of migration matrix , F, is symmetrie 

(iii) Either the distribution of populations over regions is homogenous, 

ox the elasticities cc and p are equal. 
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When the elasticities a and p are unequal, equilibrium can on!y be stable when the carrying capacity Cj of 

each region is the same, say C*. In the remainder of this section we shail assume that the tuning parameter 

of the intrinsic natural growth rate, rj ,is zero for regions and that the total population is given by P < n C*. 

In this situation, migration is an efficiënt orowth regulator when conditions (i) and (ii) are satisfied and cc > p: 

an initial non-homogeneous distribution would, through migration, tend to a homogeneous distribution 

with Pj = P / n for all i = 1,2,...,n. Under condition (i), the unconstrained gravity model is 

M-:j (t) = c(t) 5(t) e(t) Pj (t)« Pj (t)P Fy (t) (23) 

For simplicity, this may be written as 

M j j ^ P j a P j P F j j (24) 

with a, p and <$> > 0. Without loss of generality, let us assume an initial distribution with P-j < P / n as the 

smallest population and Pn > P / n as the largest. Without natural increase, 

n n 

APj= E Mjj - £ M|j (25) 

j=1,H H . H 

Using (24) and assumption (ii), 

ZPjPFJi 

APj>(<)0 «PjP-a < (>) (H) (26) 

y p. OC p. 

it is not difficult to show that when p > a, then A P-| < 0 and APn > 0 and, conversely, that when p < a, 

A P-| > 0 and A Pn < 0. Whether the intermediate regions ?2 to Pn_i gain or loose population depends on 

their size relative to the interaction factors FJ;, but in general, when p > a, large regions would gain 

population and srr.all regions would loose; and vice versa when p < a. The case cc = p is trivial and implies 

global stability for any arbitrary population distribution. 
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The general conclusion is that under the conditions of the unconstrained gravity model with a symmetrie 

matrix F, the homogeneous distribution vector %, with x-, = 1/n for all i, is locally stable when cc> p but results 

in competitive exclusion (Hardin, 1960) when cc < p with the largest region absorbing all population. 

However, note that cc and B may not be chosen arbitrarily, for when cc +B is very large, it is possible to 

generate an illogical situation in which population size becomes negative. 

What can be said about equilibrium in the general Alonso model? Equilibrium may emerge when net 

migration is zero for all regions. Using (20) and assuming ZPG in the system, the equilibrium populations Pj 

would need to satisfy 

e i {ZS k P k aR k ^F i< i }H 

P|P-o- d*-v • i=1.2 n (27) 

for all i. However, in contrast with the unconstrained gravity model, there may be no solution to equation 

(27). Moreover, even when equilibrium exists it is unlikely to be characterised by a homogeneous 

population distribution. The oniy obvious steady state situation with Pj = P / n for all i occurs when the F 

matrix is symmetrie, cc = p, v = u. and the external effects (ej, 5J) are pairwise identical, for in this case the 

systemic variables (Rjj A;) are also pairwise identical. 

Stability analysis is even more difficult than identifying an equilibrium. A simple result that oc >p is sufficiënt 

for stabiiity no longer holds. As the simulations of the next section show, cc > p may stiil cause competitive 

exclusion when v > u,. 

For given parameters, we may proceed as follows. The non-linear system (27) may be solved numerically, 

for exampie by means of the Newton-Raphson method. This yields an equilibrium population distribution, 

say Cl - (D.-\, Q2.-.&n)> w n ' c n 's conditional on gj = 0 for all i. Next, the Jacobian of system (20) may be 

derived through differentiation and evaluated at Cl. Call this matrix Z, i.e. 

(28) 

p=a 

z = 

a p-j (i+i) a P-I (t+i) 

3Pl(t) 3Pn(t) 

9Pn(t+1) 3Pn(t+1) 

3Pl(t) 3Pn(t) 
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Denoting the equilibrium levels of in-migration and out-migration by Mj_ and M\ respectively, M j = Mj 

for ail i. it is straightforward to show that the Jacobian satisfies 

Zjj= 1+(p-a) Mj /Qj i =1,2,...,n (29) 

and 

Zjj - (a n Sj ^ a " 1 Rf"1 Aj-1 Fjj -j3v ej C f 1 ffr-1 Rf1 Fy) ML' m (30) 

The equilibrium values of the baiancing factors Rj, Aj may be computed from (10) and (11) , and the Z 

matrix can be evaluated subsequently. The presence or absence of local stability is determined by the 

eigenvalues of Z: A-| , ?v2,,., Xn. Since Z is generally non-symmetric, the eigenvalues can have imaginary 

parts. The condition for stability is that 

(ReXj)2 +(lmAj)2 <1 (31) 

for all eigenvalues, aithough it is possible to have stability when one or more roots are equal to one. A 

simple example of this is the unconstrained gravity model of the interaction between two regions (n = 2). 

Using model (24) and equations (29) and (30), the Jacobian is 

Z = 

1+(p-oc) M IQ. (a-p) M /Q 

( a - p ) M / Q 1 + ( p - a ) M / Ö 

(32) 

with M-] = M2. = M and Q i = Q 2 = - = i V The matrix Z has two distinct eigenvalues when a*p: X-j = 1 and 

A2 = 1 + 2 (P-ct) M* / Q. Hence, the unconstrained gravity model is certainly unstable when p > a. Stability 

requires that a < p and that the difference between cc and p is less than the reciprocal of twice the average 

propensity to migrate in the system. The latter condition is generally fulfilled when the system is not in an 

extreme state of flux with large proportions of the population migrating. 
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V SOME SiMULATION EXPERIMENTS 

Since the Alonso model is analytically difficult to deal with, we tested the sensitivity of the outcomes of the 

Aionso model to the choice of parameters by means of a number of simulation experiments. The objective 

of this exercise is to demonstrate that parameter values which are obtained from a cross-section calibration 

of the model may or may not produce dynamic patterns which are plausible in the light of observed trends. 

The parameters are chosen on theoretical grounds in all but one of the simulations, but we start with an 

empirical case study. Poot (1984b) estimated the parameters of the Alonso model with 1971-76 

cross-section census data on the inter-urban migration of male workers in New Zealand. The model was 

statistically satisfactory and a number of economie and quality-of-life determinants of migration were 

identified. These resuits confirmed that the migration of workers can be seen as both an investment in 

human capita! and an adjustment of location-specific amenities. A simple demographic specification of the 

Alonso model, in which the intrinsic push and pull factors were just population size, was statistically less 

adequate, but nevertheless allccated 79 percent of migrants correctly in the migration matrix. This 

specification is taken here as the starting point. The parameter values are: oc = 0.7, p= 0.6, v = 0.6, and 

u. = 0.9. For comparison, Ledent (1980) found for a similar model of 1971-76 interprovincial migration in 

Canada: a = 0.9, p= 0.8, v = 0.5 and u. = 0.2. Hence the most significant difference between the two case 

studies is the coëfficiënt of the systemic variable Aj. The New Zealand resuits are compatible with a 

production-constrained migration process, whereas the Canadian example suggests a 

demand-constrained process. 

Before simulation, the interaction factors FK need to be computed. These factors represent, as discussed 

earlier, the ease with which migration between i and j can take place, and are, as such, inversely reiated to 

the generaüsed cost of migration. It is common to take some measure of distance as a proxy for these 

costs, although there may be other variables affecting migration costs. For example, the New Zealand 

case study showed that migration between the four main centres was less costly than inter-urban migration 

in general, ceteris paribus. For simplicity, we ignore such additional variables here and asume that Fy = D\& 

where Djj is the time it takes to travel comfortably by car between i and j . The New Zealand data suggested 

that £ = -0.7 (Ledent found -0.9 for Canada). 

The predictions of the spatial interaction model should be seen in the context of the long term process of 

population redistribution that takes place in New Zealand, a country consisting of two large and a few small 

islands. North-South flows dominate East-West flows due to the country's relatively linear shape. Since 

about the turn of the century there has been a significant population drift North, to the Auckland province 
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with a large urban core and surrounding fertüe regions in which primaty production is the principal source of 

income. The Auckiand metropolitan area may be considered a growth pole, with a population which 

recently exceeded the total population of the South Isiand. The southern half of the North Isiand hosts 

one large city, New Zealand's capital Wellington, a "transit" city which has had a net internal migration loss 

for some decades. Net migration to the South Isiand is also negative. When the country is considered as 

consisting of three regions, Auckiand, the rest of the North Isiand and the South Isiand, recent population 

redistribution due to migration over a five year period may be typified by a Markov transition matrix T and a 

distance matrix D: 

T = 

0.9512 0.0320 0.0168 

0.0686 0.9045 0.0269 

0.0285 0.0293 0.9422 

D = 

0 675 1230 

675 0 555 

1230 555 0 

For example, the probability to migrate from Auckiand to the rest of the North Isiand (an average distance 

of 675 minutes) is 3.2 percent over a five year period (excluding return migration). The population with 

which the simulations started is 3.1 million with distribution vector % ' = ( 0.45 0.27 0.28). Simulation is 

based on the system described in equation (20). The parameters ej and 5j (i = 1,2,3) were computed from 

levels of in-migration and out-migration resulting from the transition matrix T and by assuming that the 

balancing factors Rj(t) and Aj(t) are initialiy equal to one. After initialisation, the balancing factors and the 

proportionality factor c(t) are computed with the RAS method and new levels of in-migration and 

out-migration are computed. This yieids a new population distribution and the process is repeated. The 

results are reported in Table 1. 

Case 0 in Table 1 shows the population redistribution process resulting from the elasticities as estimated 

from the 1971-76 migration data. Natural increase was assumed zero in order to concentrate on the spatial 

interaction component of population growth. Of more interest than the reported percentages in the table 

are the trends that can be observed: Case 0 shows a gradual increase in the share of the largest region 

(Auckiand) with both other regions declining. This is plausible in the light of observed historica! trends and 

we may tentatively conclude that in the absence of negative externalities, affecting the carrying capacity of 

the region, the estimated cross-section elasticities produce likely time series results. 

Cases I to XII report the predictions of theoretical situations with empirically possible but reiatively more 

extreme parameter values than case 0. In case I, cc > p and in the unconstrained gravity model this would 

resuit in convergence to a homogeneous distribution. Instead, case I is close to a production-constrained 

gravity model (v is near zero and u. is near one) and this results in almost immediate stability at the initial 
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distribution. The balancing factors are such that after three periods net migration is zero in all three 

regions. However, the demand constrained model with v = 0.95 and u. - 0.05 (case II) produces a gradual 

dominance of the largest region, despite a being greater than p. It seems that such a trend "contrary to 

expectations" requires v and u. to be unequal. When v = u,, the relation between a and p determines the 

outcome: convergence to a stable distribution when oc> (3 (cases lil, IV and IX) and a trend towards 

competitive exclusion when a < p (cases VII, VIII and X). Case V shows that, when v * u. and a < p the 

initially largest region does not necessarily gradually absorb the others: in case V with v < u. the whole 

population is eventually concentrated in the third region (the South Island). When v > u. and a < p, as in 

case VI, the systemic effect and the gravity effect reinforce each other and this results in a rapid tendency 

toward competitive exclusion by the initially largest region. 

The last two cases, XI and XII, reflect a situation in which natural increase follows a logistic growth path. The 

parameter r\ is taken equai to 0.5 (i = 1,2,3) and the carrying capacity of each region is considered equal to 

a population of two million. Under these circumstances, logistic natural growth dominates spatiai 

interaction even when the latter is by itself unstable ( oc < p) and a stable population distribution results. 

This may be explained by the choice of the level of external effects 8j and £j which were given realistic 

values and corresponded with an average propensity to migrate of no more than 10 percent. By an 

appropriate choice of parameters it is straightforward to simulate oscillating distributions which converge 

either to competitive exclusion or to a non-absorbing equilibrium. In this way, disequilibrium trajectories 

discussed in section 4 may be generated. 

VI CONCLUSIONS 

This study of the dynamic properties of the generaiised spatiai interaction model has led to various 

important results concerning the strength and the weakness of the Alonso model. 

The strength of the Alonso model is that it provides a general analysis framework and classification 

scheme, which turns out to be extremely useful in identifying the properties of various specific families of 

existing spatiai interaction models. 

The weakness of the original Alonso model is that it is only a static ailocation model which pays no attention 

to multiregional dynamic spiilover effects, while it is also difficult to derive this model from an integrated 

equilibrating behavioural demand-supply theory (although probabilistic choice theory may provide at least 

some micro-behavioural choice foundation). In this context, we may assume that the systemic variables act 
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as some sort of pseudo-shadow prices ensuring a certain market clearance. 

Various empirical analyses based on the Alonso model have demonstrated its practical usefulness in a 

static context, but so far little attention has been paid to spatio-temporal feedback mechanisms and 

statistical-econometric problems emergingfrom spatio-temporal auto- and cross-correlation. In a dynamic 

framework, the use of LISREL-models on autoregressive and/or autocorrelation schemes may also 

provide new ways of treating the generalised spatial interaction model. 

Unless a large number of, fairly restrictive, assumptions is introduced, it is in general impossible to derive 

anaiytical expressions for the parameter values to be estimated, so that it is hardly possible to study the 

time trajectory of the generalised spatial interaction model in an anaiytical sense. Consequentiy, simulation 

experiments are in general necessary. 

The formal specification of the generalised spatial interaction model implies that it is not a priori evident that 

a spatial (economie or demographic) system is tending toward an equilibrium pattern. On the contrary, 

disequilibrating tendencies in these models are quite possible and also plausible from a real-world 

viewpoint. In this respect, the generalised spatial interaction model provides a new angle for studying 

structural changes in a complex dynamic spatial system. 



22 

APPENDIX 

The reduced form of the two-reqion Alonso model 

The generai structural form of the Alonso model cannot be transformed into a reduced form because the 

equations for the systemic variables Rj (t) and A; (t) cannot be solved analytically. However, when oniy two 

regions are considered, the reduced form can be derived. Although this simple solution is a degenerate 

case of the Alonso model, the resuiting expressions are nevertheless compiicated and demonstrate the 

intricate relationship between the characteristics of regions, the systemic variables and the interaction 

factors in the generai model. 

When the variable time is deleted, the two-region Alonso mode! is as follows: 

M-,2 = 81 P ^ R-|v = ^ P2P A2V (A.1) 

M21 = 82 P2a ^2V = ^1 P 1 P A ^ (A.2) 

R-| = c M-)2 A2"^ F-J2 (A.3) 

R2 = c M21 A^ F21 (A.4) 

A! = c M2 1 R2-
1 F21 (A.5) 

A2 = C M-|2 Rl"1 F-12 (A.6) 

R! - R2-
1 (A.7) 

A1 = A2 '1 (A.8) 

It is easy to see from (A.3) and (A.4) or, alternatively, from (A.5) and (A.6) that c is the reciprocal of the 

product of the geometrie average of M and F: 

c = ( M 1 2 M 2 1 ) - 0 - 5 ( F 1 2 F21)-°-5 (A-9) 

Substituting this back into (A.3), and using (A.8), yields 

. ( • IHM12/M21) 0 - 5 (F 1 2 / F 2 1 ) 0 -5 Ai (A.10) 

and 

A 1 = ( M 2 1 / M 1 2 ) 0 - 5 (F 2 1 / F 1 2 ) 0 -5 R l (A.11) 
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Next, we may rewr'rte (A.1) and (A.2) as follows 

R l - ( 8 2 Pfc'P/Si P-ia)1 /v A-i "M'v 

and also 

Ai = (52 ?2 alt\ Pi P ) 1 ^ Rl ~v/^ 

• f * 

By equating (A.10) to (A.12) and (A.11) to (A.13) we solve for Ai and P»i respectively: 

Ai 1+MA»=ei
0-5 e2

1/v_0-5 ^AN P-f0^ ?z^ (F21/F12)0-5 

and 

R l l +v /u^O.S 521/u-0.5 e^1/\ip^/\ip2aJv (F12 /F2 i )0-5 

Equations (A.14) and (A.15) may be simplified as 

• A-, -k-, ( P2P/ P-,«) 1Av+u) (A.16) 

and 

R-) = k2 ( P 2 «/ P-( P) 1/(V+M-) (A.17) 

with k-j and k2 being constants determined by the parameters. Note that when a region grows, both 

systemic variables have declining values as expected. The systemic variables can be substituted in (A.1) 

and (A.2). This results in a rather cumbersome reduced form expression for M-|2 and M2-| when k-j and k2 

are expressed in terms of parameters. Hence, even in the simple two-region model the dynamics of 

population redistribution would need to be analysed, for general parameter values, by means of simuiation 

experiments. 

(A.12) 

(A.13) 

(A.14) 

(A.15) 
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