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ABSTRACT
Dynamics of Generalised Spatial Interaction Models

This paper analyses dynamic properties of generalised spatial interaction modsls, with particular emphasis
on Alonso's general theory of movements. Although the application of this theory addressed in the paper
is a multiregional demographic stock-flow model, it can easily be shown that the approach can be
generalised to all types of spatial interaction phenomena.

Alter an introduction to the Alonso model, it is demonstrated that various classes of spatial interaction
models (e.g., gravity and entropy models; doubly constrained trip distribution models} are specific cases of
the generalised Alonso model. Next, the equilibrium and stability conditions of the spatial distribution
resulting from the stock-fiow model are further analysed. ARhough an analytical expression for the
so-called systemic variables of the model is only possible under very restrictive conditions, it is yet possible
to study equilibriurn and stability conditions more profoundly by rewriting the generalised spatial interaction
model as a general non-linear dyrnamic Volterra-Lotka model, so that stable and unstable time trajeciories

can be examined. Furthermore, it appears to be possible 1o formulate more precise conditions that ensure
local stability in particular cases.

In order to obiain more insight into the local and global stability of the generalised spatial interaction madel,
simulation experiments are carried out with a multiregionat demographic stock-flow model for New Zealand.
Various results are presented and discussed in the {ight of the above mentioned analysis.



I INTRODUCTION

The development of a system of regions (or cities) is characierised by a state of flux, both absolute and
relative to each other. The time trajectory of a region is not only the result of its internal ecology and
excgenous farces, but #t is also affected by the interaction of the region with other regions. This
interaction is multi-faceted and involves interregional flows of production factors and commaodities,
diffusion of technological advances and knowledge, external spillover effects and political conflict in
supraregional decision making.

Such inferaction may impede or promote regional development. Yet our understanding of the

development process is unbalanced in that research in the past has emphas-ised the determinants of
spatial interaction, whereas the consequences of interregional interdependencies have received far less
attention. Unfortunately this meant that studies of spatial interaction genecrally adopted a static {or at best a
comparative static) approach. This paper is a contribttion to redressing the balance in favour of a
systematic study of the consequences of spatial interaction far regional development. In the paper we
investigate the regional dynamics implied by a general class of spatial interaction models, which follow from
a theory of movements formulated by Alonso (1978).

The paper is structured in the feliowing manner. The next section presents a dynamic formulation of the
Alonso model. In section 3 the model is applied to migration in a multiregional demographic stock-flow
system. Clearly, human migration is only one aspect of spatial interaction, but the methodology can be
applied in principle to other types of spatial interaction, such as interregional commoditly trade or
commuting, provided appropriate functional forms for the consequences of the flows for the state of the
system can be defined. Section 4 outlines the conditions under which an equilibrium population
distribution is feasible in the presence of spatial interaction in a multiregional system. Although the
identification of equilibrium conditions is interesting in itself, it is far more important to establish whether
smali perturbations generate equilibrating forces, since in a real-world spatial system a static equilibrium
would be an exception rather than a rule. Thus a study of the stability of the system is warranted and this is
also carried out in section 4. It should already be noted that because the most general formulation of
Alongo's theory involves systamic variables which cannot be expressed in an analytically closed form,
standard procedures to lest local and global stability cannot be applied to the general case. It is
nevertheless possible to formulate conditions which ensure focal stability in specific cases, some of which
are elaborated in the paper. An alternative approach is to test the model's dynamic properties by means of
simulation. The resulls of some simulalion experiments are reported in the penultimate section. The last
section summarises the paper and suggests directions for further research.



i A DYNAMIC VERSION OF ALONSO'S GENERAL THEQORY OF MOVEMENT

Alonso’s (1978) paper proposes a theory of movement which is scientifically appealing and powerful due
to its generality: it provides a systemic approach to movement of any typs. The most common application
is human migration, but other examples are international trade, shopping trips and sales of different brands
of a product in ditferent regions. Alonso's theory defines a class of spatial interaction models which can be
shown to encompass many existing models of this type. The theory can be seen in particular as a
generalisation of Wilson's family of spatial interaction models of the entropy type (Wilson, 1371; 1980).
Theoretical reformulations and extensions can be found in Anselin and fsard {1979), Hua (1980) and
Ledent (1981). Alonso's theory has been applied empirically to population migration in the United States
(Porell and Hua, 1981; Porell, 1882), in Canada (Ledent, 1980; Fisch, 1981; Anselin, 1982) and in Japan
{Tabuchi, 1984). An application of the theory to inter-urban labour migration in New Zealand is contained
in Poot (1984b). A structurally identical model has been developed through a theory of supply and
demand interaction in spatiaily separated matkets (De Vos and Bikker, 1982; Bikker, 1982). The latter

modei, calied the 3-Component model, has been applied to international trade tlows and flows of patients
to hospitals.

Alonso's theory, general as it may be, also contains some restrictive assumptions. First, the Alonso modsl
pertains o a closed system, hence external forces (e.g., supraregional economic, political, social} are a
datum. Secondly, there is no room in the model for a feedback loop in which the state of a region is itself
affected by the interaction with other regions. Thirdly, the theory implies short-run equilibrium: when the
model is seen as a supply and demand system, Alonso's definition of the systemic variables as balancing
factors guarantees market clearange. In the mode! formulation that follows, the first and second
assurmption are relaxed, while the third remains to preserve internal consistency. This generalised Alonso
model is stated in terms of migration, but an appropriate terminology may be substituted for other forms of
interaction between regions.

It is assumed that migration takes place between a set of n regions over a certain predefined period,
Although the theory does not require that each origin is also a destination, or even that origins and
destinations are of the same type (compare with flows of patients to hospitals), this assumption is
introduced for simplicity. Hence the flows of migrants can be represented by a square matrix M {t} in which
Mii(t) is the flow fromitoj (i,j = 1,2,...,n} during period {t, t+1). The main diagonal of M is ignored because

of the difficulty in defining the spatial friction in intraregional flows relative to interregional flows.
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The supply of migrants leaving region i during (t, t+1), or total out-migration M;_{1) is assumed to satisfy

M Q=50 O R (t)‘*i_ i=12,.n (1)
with
K
Q =11 Xg{ n %4 i=12,..0 . (2)
k=1

This spatial interaction system can be interpreted as follows: out-migration is a result of internal
unaftractiveness, external pull forces and relative internal repulsiveness. Equation (2) shows that the

push effect O;{t) has essentially a Cobb-Douglas specification of intrinsic unattractive characteristics of
region i, Xk () {(k =1,2,...K). In the case of a heterogeneous population, O;(t) may also incorporate

composition effects resulting from differences in migration propensities between sacio-economic groups.

Since M;_(1) is a flow and most variables Xj {t) would be stocks, we nead to assume that the levels of these
variébles do net change significantly mminthe period (1, t+1). Next, variable §; (1) represents the influence
of external effects; for example, §; {1) could reflect the propensity to emigrate resulting from the pull from
outside the system of regions. Finally, R; (1} is the internal puli by the system as seen from origin i, i.e. the
relative "repulsiveness” of i. Hence, R; (1) is the opportunity cost remaining in i, with v; being the elasticity of

the supply of migrants from i with respect to the demand for migrants generated by the system.

in-migration into region j is defined similarly:

Mj=5® OO AN H j=1.2,..n (3)
with
L
Do)=Y 0 h 12,0 (4)
k1

Here Dj(t) represents the aggregate etfect of intrinsic atiractive characteristics of region j, Yi' 1 (j=1,2,...L}

External forces are affecting in-migration through g (). A; (0 is the attractiveness of destinations j relative to
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all internal potential destinations, with H b'eing the elasticity of the dernand for migrants in j with respect to

the total supply of migrants generated by the system,

Following Anselin and isard (1979), the total push out of region i is defined as

- {0 G /Y
o= =120 ‘ {5)
Ri®)
and, in the same way, the total pull info j is equal to
50 D) A0H
B = =120 -- ©
A

To measure the facility {or ease) of undertaking a migration between i and j, an index F ij (O is usad. This
index is inversely related to the transportation cost, psychic cost and search cost invoived in 2 migration
process and thus reflects the distance between regions. However, note that the F matrix with entries Fi] t

is not necessarily symmetric.

Central to the theory of movement is that the flow of migrants between | and j is assumed to satisfy a gravity
law: migration is proportional to the total pul!, total push and the faciiity of moves. Hence

MW =clh) S0 Dy Fy®@  ij=12..0 7)
i#
with ¢ (f) belng a cross-section propertionality constant. 1t is well known that the gravity formulation satisfies
a number of optimality principles (Niedercorn and Bechdolt, 1989; Nijkamp, 1875; Cohwell, 1882).

To close the model, the systemic variables R; () and Ai {t) need to be defined in a way which guarantees

internal consistency in that the adding-up conditions

n
I Mo=MO 12,0 . (8)
=154
and
n
I Myo=M;® i=1.2,..n )

=1,



are satisfied. Using (1}, (3) and (5} - (9), it is straightforward to derive that
n
R=cHED; 0 Fj@ =120 p | (10)
1
and
n
A=cl) 2T Fj@ j=1.2,..0 i (11)
=1
Hence R; (1) and AI' (t) are weighted averages of total pull and push respectively. Since 51 {t} is afunction of
Aj (1) and 'G'i {t) of Rj (1), (10} and {11) need to be solved recursively. 1t can be easily shown that a unique
solution exists when a scaling condition is introduced, thatisTIR;(ty =TI Aj(t) = 1, and that finding the

systemic variables is equivalent to the biproportional adjustment problem of finding the matrix M with given
marginal totals, which is biproportional to the matrix F. The systemic variables are therefore also called
batancing factors.

A rumber of serious statistical complications are invalved in estimating the parameters of the Alonso
model. These wili not be discussed here, but are elaborated in Porell and Hua (1981) and De Vos and
Bikker (1982}. A mejor condition, for instance, in order to estimate the pseudo-elasticity of out-migration
ana in-migration with respect to the system's pull and push respectively is that we would normally need to
introduce the cross-section restriction that v; = v and W= wforalliand]. This restriction is assumed to hold

in the remainder of this paper.

Evenwhen v and p are assumed constant over regions, the Alonso model still encompasses a large class
of spatial interaction models of which most existing models can be shown to be special cases. There are a
number of methodological, theoretical, fegical, and practical criteria which one may use to judge specific
models within this general class (Van Lierop and Nijkamp, 1980) and ihese criteria may be helpful to
choose the most suitable specific model for a certain application.

The dynamic properties of the general class of spatial interaction models are dependent on the actual
specification. !t is therefore useful to review some specifications which have been particularly popular in

empirical applications. First, when v=ji=1, the well known simple single-equation gravity model results.



Using (5}, {6} and (7), the modsl is

O=ct) O 50 OO OO KO | (12)
! Ij\0

-

This migrant allocation model has been calibrated extensively with cross-saction data in various countries,
for example: United States, Greenwood (1969); Canada, Vanderkamp (1971); England and Wales,
Langley (1974); Australia, Langley {(1977); Japan, Inoki and Suruga (1281); New Zealand, Hampton and
Giles (1976). The product ¢{t) §; (1) g (1} is in cross-section studies the proportionality constant of the gravity

model, which shows that in such studies the external effects are assumed identical across origins and
destinations.

The least plausible consequence of the simple gravity model is that any specific (i,j) flow is independent of

* the characteristics of the n-2 other regions. When, for example, a large industrial project commences in a
certaint region, this will increase direct labour demand and may have a regional multiplier effect which
induces further demand for labour. This would attract more workers from other regions but at the same
fime. reduce some of the flows between these regions, which now have become relatively less attractive,
ceteris paribus.

A specific mode! in which changes in the gharacteristics of a certain region induce a substilution effect,
while leaving the total in-migration and out-migration of other regions unatiected, is the doubly constrained

trip distribution mode! (Wilson, 1980}. This model results whenv=u=0. it has the unattractive property that

the drop in migration to a region with declining oppertunities is fully compensated by an increase in
migration to alternative destinations, so that the propensily to migrate remains unchanged.

A model which we would expect to exhibit more realism is the production-constrained or

supply-determined model in which p=1, but which has no restriction on v. Inthis case
M g D¢ F
= : (13)
M0 z 50 OO Fo
which follows from (5'}| - (7) and (30). The left-hand side of (13) may be redefined as %jj {t), the probability

that a migrant from i chooses destination j, and (13) shows that this probabilily is a function of the relative
attractiveness of |. :
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Although the Alonso model pertains 10 aggregate flows, equation (13} also foliows from a behavioural
theory of spatial cholce in which the pull factors and the facility of migration are arguments of a stochastic
disaggregate utility function such as the one in McFadden's (1974) conditional Jogit model. 1t ¢can be
demonstrated that there exists a close formal relationship between the multinomial logit mode! and the
gravity-type model (see Van Lierop and Nijkamp, 1979). In addition, it has recently been shown by
Heckman (1981) and Leonardi (1985) that dynamic disaggregate choice theory and dynamic spatial
interaction models may emerge from the same class of utility theories. A treatment of stachastic spatial
interaction models can also be found in Leonardi {1983).

Of particular empirical interest is the time trajectory of the probabilitias i (. The following decomposition

provides further insight:

M = = M. ® , C(14)
B B

where P; (t) is the population of region i at the beginning of period (t,t+1). The left-hand side of (14) is the
transition probability that a resident frem i moves to j. The conditions that, (i}, the [T matrix is constant over
time, and {ii}, the emission of migrants is proportional to the size of the population are sufficient, althaugh
not necessary, to describe the migration and population redistribution process by means of a Markov
chain with stationary transition probabilities. When this transition matrix is called R and when natural

increase and external migration rales are assumed not to vary over regions, the following equation
describes the dynamics of population distribution

peN)= R p(y {15

withp' () = (pq O, P2 (), . pp MY andp (=P (h) / };,; Py (1). The dynamic properties of (15} are well known:
when the R matrix is irreducible, the process converges to a steady state distribution. Computation of this
steady state distribution has little practical value, because the speed of convergence implied by the R
matrix is usually so slow that some of the strong assumptions underlying the model are likely 1o be viclated
(Poot, 19844, chapter 4). Moreover, extrapolation with (15} exaggerates the motion in the system by
ignoring duration of stay effects {Brown, 1970). However, these weaknesses do not render the Markov
model useless. Sophisticated multigroup multistate matrix models, essentially based on generalisations of
(15) have been successfully developed and applied (Rogers 1966, 1968, 1980). Nevertheless, recent
research in the Netherlands has demonstrated that, while the [T matrix detined above is remarkably stable
over time, the propensily to migrate from regions exhibits considerable variation (Van der Knaap and
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Sleegers, 1982). This suggests that a simple Markov model such as {15) would yield Inaccurated
predictions even in the short-run.

Which type of the spatial interaction models reviewed in this section is appropriate in a particular situation,
is naturally an ampirical matter. The choice of a specific mode! out of Alonso's general class depends on
the elasticities of the systemic variables. Since these elasticities depend on the level of aggregation, the
estimation technique, the type of migration, the cbservation period and the struciural determinants
incorporated in the model, we would expect a range of values of elasticities in empirical applications. The
recent study by Tabuchi (1984) confirms this. in this context, Anselin {(1984) suggested spacification tests
to discriminate between spatial interaction models for a specific set of empirical observations,

After thi‘s brief discussion of Alonso's general theory of movement, its extensions, and a set of various
specific attributes of this model, we shall now turn in section il to a dynamic multiregional model that

includes the above mentioned migration model as a particular component. fn this way, the dynamics of an -

interwoven spatial system may be studied in a more appropriate manner, - . RN

Il "REGIONAL DEVELOPMENT AND INTERACTION

‘The development of a Tegion {or a set of regions} may be described by a sef of state variables, gach with

iheir own time {rajectory. The domain of the state variables could be either a discrete or a continuous state..
space. The former type defines qualitative episodes in the event-history of a region {e.g., a period of -

industrialisation), whereas the latter measures quantitative phanomena (e.g., population, regional product,
pollution). Qver a short period we may assume that regional dynamics is pan of one single episode and
that quantitative transitions are smooth, but in the long run certain events may induce large perturbations
{Johansson and Nijkamp, 1984).

Spatial interaction is normally assumed to take place in an environment of smooth transitions. Interregional
{lows are in empirical studies a functicn of systemic effects and intrinsic characteristics of regions, but
these conditions are assumed unaffected by the fiows they generate. Even when feedback effects are
taken into account, the quantitative impact of such sffects is usually inferred from cross-section information
so that true dynamics cannct be identilied {(examples in the migration literature ¢an be found in Greenwood
{1981} and Maad (1982)). The reason for this deficiency of empirica! research on regicnal dynamics and
interregloral interaction is that such research requires a comprehensive dynamic input-output framework
{or a comparable interrclated system), wiiich is generally difficult to operationalise due to data imitations.

!
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However, lhegretical research on regional dynamics has progressed much further and a variety of models
has been posited (Gordon and Ledent, (1980}; Carlberg, {1981); Smith and Papageorgiou, (1982); and
several papers in Griffith and MacKinnon (1981) and Griffith and Lea (1983)). The dynamics of regional
product growth and production factor movements may be formalised by means of catastrophy theory and
differential equation analysis (Casetii, 1981; Dendrinos, 1882). A differential equation modet which has
been particularly popular in ecology and demography is the Lotka-Volterra model, which was originafly
formulated to describe the biological association of species through food webs (see also Pimm, 1982).

The study of the dynarmics of a sysiem involves both the identification of equilibria and the formulation of
conditions under which the system is locally, or globally, stable. However, unless a number of strong
assumptions are introduced which simpfify the structure of the model, the dynamic properiies are often not
analytically tractable. It is particularly common in studies of spatial inleraction to limit the model to the
competition belween two regions (é.g., Sonis and Dendrinos, 1984) or between a metropolis and iis
hinterland (e.g., Hudson, 1870). When such assumptions are considered undesivable, simulation ¢an be
used fo investigate a limited number of cases.

Working with a simple dynamic structure by no means implies that the model would not be capable of
reproducing the turbulent behaviour we may observe in the real world. First, stochastic elements may be
introduced. Secendly, even the simplest determimistic nonfinear difference eguation ¢an exhibit a
remarkable spectrum of dynamic beshaviour, from stable equilibrium |, 10 stable oscillations through to a
chaotic pattern {May, 1974; Li and Yorke, 1975). Although such difference equations require a discrete
measurement of time which may not be appropriate for biological populations (unfess ganerations are
non-overlapping), they are very common in applications invoiving both cbservations on stocks and flows
{e.q. Samuelson's multiplier- accelerator model).

The difference egquation approach is adopted here also, because calibration of the Alenso ¢lass of spatial
interaction models involves the choice of a certain period (usually one or five years) as a unit of
measurement for migration. For the sake of simplicity we shall focus on population size as a single
quantitative state variable, afthcugh migration affects of course the region in many ways, for example
through labour supply, housing demand, local government revenue, congestion, cultural plurafism.

The time trajectory of pepulation size is given by the following fundamental growth equation:

P (t+1) =140 (3 1 P () + M5 (1) - M (1) (16}

in which g; (1) is the rate of natural increase over the period (t,t+1), although external migration may be
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incorporated in the growth rate g; (t) in an open system. The substitution of total in-rriigration and

out-migration as defined by (1) and {3) into (16) vields, assuming cross-section equality of the coetficients
of the systemic variables:

Pits)=[1+giOIR M + 50 DO AOR - 5O GO ROV (17

where A; (t} and R; (f) are endogenous and defined in (10) and (11). What remains is to specify the intrinsic

push and pull characteristics of region i. The behavioural theory of migration suggests that migration is
- both an adjustment of location-specific amenities and an investment in human capital for labour force
participants. Hence there are many economic and other factors that may have an impact on migration
flows, but often population size itself is taken as a proxy for such factors and dominates the explanatory
variables in empirical modeis of spatial interaction (Anselin, 1984}. Moreover, when combined with

systemic effects, the fit of the pure gravity mode! to observed migration matrices is often reasonable.
Hence, we assume that '

_OO=RO®  i=12.n 8

and
BO=POE  i=12.n “9)

Substitution of {18) and (18), and the expressions for the systernic variables, inlo (17) resulis in

Pi{t+1) = [4g (1P ()

+ o g (0 PB (S8 ) Pl RV Fg )}
k

- otV &b P {Zg 0 PP AMT Fi )Y
k

=120 ke 20)

Equation (20) is a complex system of n nonlinear first order dilference equations in the variables P4{t},
P2 (1), ..., Pa{t). The first requirement {o solve the system would be to eliminate the systemic variables Ry
and Ay, but these variables cannot be analytically expressed in terms of population sizes and the factors

Fii- The only exception is ihe case that n=2, a "degenerate” mode! which is worked through in an appendix
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to this paper. This appendix shows that even in this simple situation the resulting system of difference
equations is rather cumbersome, Thus, in the remainder of this paper we shall proceed by studying
specitic cases of spatial dynamics both analytically, where possible, and through simulation.

iV EQUILIBRIUM AND STABILITY ANALYSIS

Equilibrium is defined as the configuration in which the distribution of population over regions is stationary.
Such a steady state distribution implies that all regions grow at the same rate. Naturally, zero population

growth (ZPG) with  AP; = P; (t+1) - P{ {) = O for all i, is a special case. The objective of this section is to

identify the conditions under which the general spatial interaction mode! is compatibie with a globally stable
equilibrium,

It is obvious that the difference equation system {20) can display a wealth of dynamic behaviour,
dependent on the natural growth rates, external influences and the values of the parameters. With
respect to internal migration, population redistribution is a "zero-sum game”, but tha impact of net
migration on a region's relative share of population may be reduced or amplified arbitfarily by natural
increase. Hence it is only interesting to identify equilibrium under specific assumptidn about natural
increase.

The simplest assumption possible with respect to natural increase (and external migration) is that the
growth rates gi(1) are constant over time. However, if the growth rates of regions are not identical, it is

always possible to choose the parameters of the spatial interaction component such that natural increase
dominates migration and, consequently, population distribution would be unstable. The relative share of
the region with the largest growth rate would be monotonically increasing. Hence it is more realistic to
assume that there are limits to growth in a region, due 1o resource and technological constraints,
externalities, ¢fc. The most well known growih process with a ceiling (or a saturation level } is logistic
growth, with the growth rate defined by

gl=5[1-FO/G] (21)

In {21), G; is the carrying capacity of region I and rj is the tuning parameter which determines the speed of
adjustment. In the absence of spatial interaction, {21) results in a stable population distribution vector %
with elements x; = G/ ? Cj {ie. 0 <y < 1, with }i:xi =1} when 0 < 1 < 2 for all i, provided all initial populations
are within the range (0, C; (1+1/r})). When 1; > 2, the system may display cyclical or chaotic behaviour (May,
1974; 1978).
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Even when natural growth is compatible with convergence to a stable equilibrium, a region's exposure to
migration disturbs the growth path in general and hence instability may result. The easiest way to
demonstrate this is through substitution of {21} into (20) and by assuming that the coefficients of the

balancing factors, s and v, are equal to zero, i.e. a doubly consirained spatial interaction model. This yields
Pit) = Py 11+ (1-Pi@/Ci )1+ Pt B-si(t) P& i=1,2,....n (22)

Note that in this case the growth paths of regions appear to be independent but in fact they are not: the
external influences cannot be chosen arbitrarily but must satisfy the conservation condition that total
in-migration in the system equals total out-migration. Under this condition, the doubly constrained spatial
interaction model is characterised by absence of association in the sense of the Lotka-Volterra model.
Equation {22) may or may not be compatible with equilibrium and when equilibrium exists this may or may
not be at the levei C;. Assuming that equilibrium does exist with distribution vector x, this distribution is
only stable when all regions with a population greater than their equilibrium level loose througl; migre{tion
and all regions with a popuiation less than their equilibrium level gain through migration. 1t is not difficull to
show that {22) may generate both stabie and unstable time trajectories for a specific region. For example,

when for a given regionk g (1) = & (D forall ;B=2and =1, it can easily be shownthat Py = (rk - g Ck/ -
(re- e Cx) is an, at least locally, stable equilibriumwhen |1-n +g,]<1. When a=2 andB=1the

same result holds with g replaced by -

When the population distribution resulting from natural increase and migration is in 2 steady state, the
equilibrium distribution vector y is such that net migration is zero in gll regions. Hence we need to search

for conditions under which the migration matrix M as a function of P {i=1,2,...n} is symmetric. In (22)this is

achieved by the appropriate choice of the external effects g; (1) and & (t).

More specific results about equilibrium can be derived for the simple unconstrained gravity model, i.e. the
case that v=p = 1 (equation {12)}. 1t is easy to verify that for this modei the following conditions are
sufficient for the existence of an equilibrium:

() Extemal effects are identical for all regions

{iiy The facility of migration matrix , F, is symmetric

{iti) Either the distribution of popuiations aver regions is homogencus,

or the elasticities o and B are equal.
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When the elasticities o and § are unequal, equilibrium can only be stable when the carrying capacity C; of
each region is the same, say C*. In the remainder of this section we shall assume that the tuning parameter

of the intrinsic: natural growth rate, r; ,is zero for regions and that the total population is given by P < n G*.

In this situation, migration is an efficient growih requiator when conditions (i} and {ii) are satisfied and o > §:
an initial non-homogeneous distribution would, through migration, tend to a homogeneous distribution

with P; =P/ n foralli=1,2...,n. Under condition (i}, the unconstrained gravity model is

Mj© = o) & &) Po% Py of F (23)
For simplicity, this may be written as

M; = ¢ P PP Fy (24)

with o, B and ¢ > 0. Without loss of generality, let us assume an initial distribution with Py < P/ n as the
smaliest population and P, > P/ n as the largest. Without natural increase,
n n
AP= L Mji - Mﬁ (25)
1L =1

Using (24) and assumption {ii),

PPy
APS(QO0 POy — () (26)
o
= A%h
it is not difficult to show that when B > o, then A P4 < 0 and AP, > 0 and, conversely, that when B < a,
&4 P4 >0anda Py < 0. Whether the intermediate regions Pp 1o Pp_q gain or loose popuiation depends on

their size relative {o the interaction {actors Fij’ but in general, when B > «, large regions would gain

population and small regions would loose; and vice versa when B < c. The case a = § is trivial and implies

global stahility for any abitrary peputation distribution.
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The general conclusion is that under the conditions of the unconstrained gravity model with a symmetric

matrix F, the homogeneous distribution vector x, with x; = 1/n for all j, is locally stable when a > B but results

in competitive exclusion (Hardin, 1960) when o < with the largest region ahsorbing alt population.
However, note that « and B may not be chosen arbitraﬁly, for when o +B is very large, it is possible to
generate an #logical situation in which population size becomes negative.

What cari be said about equilibrium in the general Alonso model? Equilibrium may emerge when net
migration is zero for all regions. Using (20) and assuming ZPG in the system, the equilibrium populations P;
would need to satisfy
g {Z§ R R R |
PiB'a = ci-V i=1,2,..,0 (27)
| § (Zg RS AR RV
for all i. However, in contrast with the unconstrained gravity model, there may te no solution to equation

{27). Moreover, even when equilibrium exists it is unlikely to be characterised by a homogeneous
population distribution. The only obvious steady siate situation with P; = P/ n for all i occurs when the F

matrix is symmetric, o = B, v = it and the external effects (¢, 5} are pairwise identical, for in this case the

systemic variables (R; Aj)) are also pairwise identical.

Stability analysis is even more difficult than identifying an equilibrium. A simple result that o >J Is sufficient
for stabiiity no ionger holds. As the simulations of the next section show, o > B may still cause competitive

exclusion when v > .

Fer given parameters, we may proceed as follows. The non-lingar system (27) may be solved numerically,
for example by means of the Newton-Raphson method. This yields an equilibrium popuiation distribution,
say Q = (Qq, Q2....Q2p), which is conditional on gj = € for all i. Next, the Jacobian of system (20} may be

derived through differentiation and evaluated at Q. Call this matrix Z, i.e.

AP 2Py (+1) |
P10 oPn ()
= (28)
3P, (t+1) 3P ()
aP4) .k | Pe0
L -
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Dencting the equilibrium levels of in-migration and out-migration by M;_' and M ;" respectively, M ; "= M_i_'

for all i, Itis straightforward to show that the Jacobian satisfies

zi=1+B-0) M /9 i 21,20 i (29)

Zj=(o 1§ QCTRVI AR -Bv g ot ANLRTRY M b (30)

The equilibrium values of the balancing factors R;, Ai may be computed from (10) and (i1) , and the Z
tnatrix can be evaluated subsequently. The presence or absence of local stability is determined by the
eigenvalues of Z: hq, hy,.... k. Since Zis generally non-symmetric, the eigenvalues can have imaginary

parts. The condition for stability is that
ReX)2 +(mX)2 <1 (31)

for all eigenvalues, although it is possible to have stability when one or more roots are equal to one. A
simple example ot this is the unconstrained gravity mode! of the interaction between two regions {(n=2).
Using model (24} and equations (23) and (30), the Jacobian is

1+(Bo)M/Q (ap)M'/Q
Z-= : (32)

(a-B)M/Q  1+(BFa)M/Q
- -

with My " = Mo "= M" and ©4=Qp=...=Q. The matrix Z has two distinct eigenvalues when ox: A4 = 1 and
Ao =142 (B-a) M” 7 Q. Hence, the unconstrained gravity model is certainly unstable when B > o. Stability

requires that a < p and that the ditference between « and B is less than the reciprocal of twice the average
propensily 1o migrate in the system. The latter condition is generally {ulfilled when the system is not ia an
extreme state of fiux with large proportions of the population migrating.
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V  SOME SIMULATION EXPERIMENTS

Since the Alonso model is analytically difficult to deal with, we tested the sensitivity of the outcomes of the
Alonso model to the choice of parameters by means of a number of simulation experiments. The objective
of this exercise is to demonstrate that parameter values which are obtained from a cross-section calibration
of the model may or may not produce dynamic patterns which are plausible in the light of observed trends.

The parameters are chosen on theoretical grounds in all but one of the simulations, but we start with an
empirical case study. Poot (1984b) estimated the parameters of the Alonso model with 1971-76
cross-section census data on the inter-urban migration of male workers in New Zealand. The mode! was
statistically satisfactory and a number of economic and quality-of-life determinants of migration were
identified. These results confirmed that the migration of workers can be seen as both an investment in
human capital and an adjustment of location-specific amenities. A simple demographic specification of the
Alonso model, in which the intrinsic push and pull factors were just population size, was statistically less
adequate, but nevertheless allccated 79 percent of migrants correctly in the migration matrix. This
specification is taken here as the starting point. The parameter values are: =07, = 0.6,v= 0.6, and
i =0.8. Forcomparison, Ledent (1980} found for a similar model of 1871-76 interprovincial migration in
Canada: o = 0.2, B= 0.8, v=10.5 and 11 = 0.2. Hence the most significant difference between the two case
studies is the coelficient of the systemic variable A;. The New Zealand results are compatible with a

production-constrained migration process, whereas the Canadian example suggesis a
demand-constrained process.

Before simulation, the interaction factors Fjj need to be computed. These factors represent, as discussed

earlier, the ease with which migration between i and j can take place, and are, as such, inversely related to
the generalised cost of migration. It is common to take some measure of distance as a proxy for these
costs, although thers may be other variables'aifecting migration costs. For exampls, the New Zealand
case study showed that migration between the four main centres was less costly than inter-urban migration
in general, ceteris paribus. For simplicity, we ignore such additional variables here and asume that Fij = Diif.r

where Dy is the time it takes to travel comfortably by car betweeniand j. The New Zealand data suggested

that &£ = -0.7 (Ledent found -0.9 for Canaday.

The predictions of the spatial interaction model should be seen in the context of the Jong term process of
population redistribution that takes place in New Zealand, a country consisting of two large and a few small
islands. North-South flows dominate East-West flows due to the country's refatively linear shape. Since
about the turn of the century there has been a significant population drift North, to the Auckland province
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with a large urban core and surrounding fertile regions in which primary production is the principal source of
income. The Auckland metropolitan area may be considered a growth pole, with a population which
recently exceeded the total popuiation of the South Island. The southern hali of the North island hosts
one large city, New Zealand's capital Wellington, a “transit” city which has had a net internal migeation loss
for some decades. Net migration to the South Istand is also negatlive. When the country is considetred as
consisting of three regions, Auckiand, the rest of the North Island and the South island, recent populatien
redistribution due to migration over a five year period may be typified by a Markov transition matrix T and a
distance matrix D:

08512 00320 00168 ]- 0 675 1230
T =} 0.0686 09045 0.0269 |; D=1675 0 865 |
00285 00293 09422 1230 555 0]

For example, the probability to migrate from Auckland to the rest of the North Island (an average distance
of 675 minutes) is 3.2 percent over a five year period (excluding return migration). The population with
which the simulations started is 3.1 million with distribution vector v ' = { 0.45 0.27 0.28). Simulation is

based on the system described in equation {20}, The parameters g and §; {i = 1,2,3) were computed from

levels of in-migration and cut-migration resulting from the transition matrix T and by assuming that the
balancing factors R;(t) and Aj(t) are initially equal to ons. After initialisation, the balancing factars and the
propoitionality factor c(t) are computed with the RAS method and new levels of in-migration and

out-migration are computed. This yields a new population distribution and the process is repeated. The
results are reported in Table t.

Case 0 in Table 1 shows the population redistribution process resuliing from the elasticities as estimated
from the 1971-76 migration data. Natural increase was assumed zero in order to concentrate on the spatial
interaction component of population growth. Cf more interest than the reported percentages in the table
are the trends that can be observed: Case 0 shows a gradual increase in the share of the largest region
(Auckland) with both other regions declining. This is plausible in the light of chserved historical trends and
we may tentatively conclude that in the absence of neqative externalities, affecting the carrying capacity of
the region, the estimated cross-section elasticities produce likely time series results.

Cases [ to XII report the predictions of theoretical situations with empirically possible but relatively more
extreme parameter values than case 0. Incase I, o> §§ and in the unconstrained gravity model this would
result in convergence to a homogeneous distribution. Instead, case | is close to a production-constrained

gravity model (v is near zero and p is near one) and this results in almost immediate stability at the initial
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distribution. The balancing factors are such that after three periods net migration is zero in all three
regions. However, the demand constrained model with v = .95 and p = 0.05 (case Il) produces a gradual
dominance of the largest region, despife o being greater than . It seems that such a trend "contrary to
expectations” requires v and 1 to be unequal. When v = 4, the refation between ¢ and B determines the

outcome: convergence 1o a stable distribution when o > B (cases Ili, IV and 1X) and a trend towards
competitive exclusion when o < j (cases VI, Vil and X). Case V shows that, whenv ==t and o < B the

initially largest region does not nscessarily gradually absorb the others: in case V with v <1 the whole
population is eventually concentrated in the third region {the South island). Whenv>p anda <, asin

case VI, the systemic effect and the gravity effect reinforce each other and this results in a rapid tendency
toward competitive exclusion by the initiatly largest region.

The last two cases, X! and X!, reflect a situation in which natural increase follows a logistic growth path. The
parameter r; is taken equal to 0.5 {i = 1,2,3) and the carrying capacity of each region is considered equal to
a population of two million, Under these circumstances, legistic natural growth dominates spatial
interaction even when the latter is by itself unstable { @ < B} and a stable population distribution results.
This may be explained by the choice of the I'evel of external effects §; and g; which were given realistic
values and corresponded with an average propensity to migrate of no more than 10 perceni. By an
appropriate choice of parameters it is straightiorward to simutate oscillating distributions which converge

either to competitive exclusion or to @ non-absorbing equilibrium. In this way, disequilibrium trajectories
discussed in saction 4 may be generated.

VI CONCLUSIONS

This study of the dynamic properties of the generalised spatial interaction model has led 1o various
important results concerning the strength and the weakness of the Alonso model.

The gtrength of the Alonso model is that it provides a general analysis framework and classification
scheme, which turns out to be extremely useful in identifying the properties of various specific families of
existing spatial interaction models.

The weakness of the original Alonso medel is that it is only & static ailocation model which pays no attention
to multiregional dynamic spillover effects, while it is also difficult to derive this mode! from an integrated
equilibrating behavioural demand-supply theory (although probabilistic choice theory may provide at least
some micro-behavioural choice foundation). In this context, we may assurne that the systemic variables act
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as some sort of pseudo-shadow prices ensuring a certain market clearance.

Various empirical analyses based on the Alonso model have demonstrated iis practical usefulness in a
static context, but so far little aitention has been paid to spatio-temporal feedback mechanisms and
statistical-economeatric problems emerging from spatio-temporal aufe- and cross-correlation. In .a dynamic
framework, the use of LISREL-models on autoregressive and/or autocorrelation schemes may also
provide new ways of treating the generalised spatial interaction model,

Unless a large number of, fairly restrictive, assumptions is introduced, it is in general impossible to derive.
analyvtical expressions for the paramster values to be estimated, so that it is hardly possible to study the
time trajectory of the generalised spatial interaction model in an analytical sense. Consequently, simulation
experiments are in general necessary. )

The formal specification of the generalised spatial interaction model implies that it is not a priori evident that
a spatial {economic or demographic) system is tending toward an equilibrium pattern. On the contrary,-
disequilibrating tendencies in these models are quite possible and also- plausible from a real-world
viewpoint. In this respect, the generalised spatial interaction model provides a new angle for studying
struciural changes in a complex dynamic spatial system.
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APPENDIX
There form of the twg-redi lon

The general structural form of the Alonso model cannot be transformed into a reduced form because the
equations for the systemic variables R; () and AI' (1) cannot be solved analytically. However, when only fwo
regions are considered, the reduced form can be derived. Although this simple solution is a degenerate
case of the Alenso model, the resulting expressions are nevertheless complicated and demonstrate the

intricate relationship between the characteristics of regions, the systemic variables and the interaction
factors in the general model.

When the variable time is deleted, the two-region Alonso model is as follows:

Mz = 8 P{® RV = ¢ PoB Al ' (A1)
My = 85 PO RoV = g Py AR (A.2)
Ry = ¢ Mg Azt Fy | (A.3)
Ro = ¢ My Ayl Fpy : (A.4)
Aq = ¢ May Rg! Fa (A.5)
Az = ¢ Myp Ryl Fp (A.6)
Ry = Ry (A7)
Ar = Al (A.8)

It is easy to see from (A.3) and {A.4) or, alternatively, from {A.5) and (A.B) that ¢ is the reciprocal of the
product of the geometric average of M and F;

c=(Mqp My} 05 (Fyp Fpy) 05 (A.9)
Subslituting this back into {A.3), and using {A.8}, yields

(i = (Mq2/ Mgy ) 05 (Fyp/Faq) 05 Ay (A.10)
and
A1=(M21;"M12)0'5 (F21IF12)0-5 Rq (A1)
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Next, we may rewrite {A.1) and (A.2) as follows

Ry=(gp PaBrs, Pyoyiv A v (A12)
and also
Aq=(8y Po%/gy Py Byl Ry ViR ‘ (A.13)

i

By equating (A.10) to (A.12) and (A.11) to (A.13) we solve for Aq and R4 respectively:

Ay 1HIVZ £,05 g IN05 §-1W pyrov Py Bl (Fpy/F19)0-5 (A.14)
and _
Ry 1#¥/H= 5,05 5,11-0.5 ¢, -1 p,‘-ﬁlp,.pg.mfv (Fyp/F21)05 | {A.15)

Equations (A.14} and (A.15) may be simplified as

Aq=kq( PzB{ P4 Vv (A.186)
and | " _
Ry =ka { P2 & Py By 1/(v+it) (A7)

with ky and k» being constants determined by the parameters. Note that when a region grows, both
systemic variables have declining values as expected. The systemic variables can be substituted in (A.1)
and (A.2). This resultsina rathe'rcumbersome reduced form expression for Mo and Moq when kq and ko
are expressed in terms of parameters. Hence, even in the simple two-region model the dynamics of

population redistribution would need to be analysed, for general parameter values, by means of simufation
experiments.
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