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A note on inner-outer factorization of wide
matrix-valued functions

A.E. Frazho and A.C.M. Ran

Dedicated to our friend and mentor Rien Kaashoek on the occasion of his eightieth
birthday, with gratitude for inspiring and motivating us to work on many interesting

problems.

Abstract. In this paper we expand some of the results of [8, 9, 10]. In
fact, using the techniques of [8, 9, 10], we provide formulas for the full
rank inner-outer factorization of a wide matrix-valued rational function
G with H∞ entries, that is, functions G with more columns than rows.
State space formulas are derived for the inner and outer factor of G.

Mathematics Subject Classification (2010). Primary 47B35, 47A68; Sec-
ondary 30J99 .

Keywords. Inner-outer factorization, matrix-valued function, Toeplitz
operators, state space representation.

1. Introduction

In this note, E , U and Y are finite-dimensional complex vector spaces and
dimY ≤ dimU . We will present a method to compute the inner-outer factor-
ization for certain matrix-valued rational functions G in H∞(U ,Y), defined
on the closure of the unit disc. Computing inner-outer factorizations for the
case when dimU ≤ dimY is well developed and presented in [4, 5, 13] and
elsewhere.

Recall that a function Gi is inner if Gi is a function in H∞(E ,Y) and
Gi(e

iω) is almost everywhere an isometry. (In particular, dim E ≤ dimY.)
Equivalently (see, e.g., [5, 13]), Gi in H∞(E ,Y) is an inner function if and
only if the Toeplitz operator TGi

mapping �2+(E) into �2+(Y) is an isometry.
A function Go is outer if Go is a function in H∞(U , E) and the range of the
Toeplitz operator TGo

is dense in �2+(E).
Let G be a function in H∞(U ,Y). Then G admits a unique inner-outer

factorization of the form G(λ) = Gi(λ)Go(λ) where Gi is an inner function
in H∞(E ,Y) and Go is an outer function in H∞(U , E) for some intermediate
space E . Because Gi(e

iω) is almost everywhere an isometry, dim E ≤ dimY.
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Since Go is outer, Go(e
iω) is almost everywhere onto E , and thus, dim E ≤

dimU . By unique we mean that if G(λ) = Fi(λ)Fo(λ) is another inner-outer
factorization of G where Fi is an inner function in H∞(L,Y) and Fo is an
outer function in H∞(U ,L), then there exists an constant unitary operator Ω
mapping E onto L such that Gi = FiΩ and ΩGo = Fo; see [1, 5, 6, 13, 14, 15]
for further details.

Throughout we assume that U , E and Y are all finite dimensional. We
say that Gi in H∞(E ,Y) is a square inner function if Gi is an inner function
and E and Y have the same dimension, that is, Gi(e

iω) is almost everywhere
a unitary operator, or equivalently, Gi is a two-sided inner function. So if
GiGo is an inner-outer factorization of G where Gi is square, then without
loss of generality we can assume that E = Y.

We say that the inner-outer factorization G = GiGo is full rank if Gi is
a square inner function in H∞(Y,Y) and the range of TGo

equals �2+(Y). An
inner-outer factorization G = GiGo is full rank if and only if Gi is a square
inner function and the range of TG is closed. If G is a rational function, then
G admits a full rank inner-outer factorization if and only if

G(eiω)G(eiω)∗ ≥ εI (for all ω ∈ [0, 2π] and some ε > 0); (1.1)

see Lemma 3.1 below. Finally, if G inH∞(U ,Y) admits a full rank inner-outer
factorization, then dimY ≤ dimU .

Here we are interested in computing the inner-outer factorization for
full rank rational functions G in H∞(U ,Y). So throughout we assume that
dimY ≤ dimU . Computing inner-outer factorizations when G does not admit
a full rank factorization is numerically sensitive. (In this case, our algebraic
Riccati equation may not have a stabilizing solution.) Moreover, if G does not
admit a full rank inner-outer factorization, then a small H∞ perturbation of
G does admit such a factorization. (If G in H∞(U ,Y), does not satisfy (1.1),
then a “small random” rational H∞ perturbation of G will satisfy (1.1).)
First we will present necessary and sufficient conditions to determine when
G admits a full rank inner-outer factorization. Then we will give a state space
algorithm to compute Gi and then Go. Finally, it is emphasized that this note
is devoted to finding inner-outer factorizations for wide rational functions G
in H∞(U ,Y) when dimY ≤ dimU . Finding inner-outer factorizations when
dimU ≤ dimY is well developed and presented in [4, 5] and elsewhere.

2. Preliminaries

Let R =
∑∞

−∞ eiωnRn be the Fourier series expansion for a function R in

L∞(Y,Y). Then TR is the Toeplitz operator on �2+(Y) defined by

TR =

⎡⎢⎢⎢⎣
R0 R−1 R−2 · · ·
R1 R0 R−1 · · ·
R2 R1 R0 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎦ on �2+(Y). (2.2)
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The function R is called the symbol for TR. Recall that the Toeplitz operator
TR is strictly positive if and only if there exists an ε > 0 such that R(eiω) ≥ εI
almost everywhere. The Toeplitz operator TG with symbol G in H∞(U ,Y),
is given by

TG =

⎡⎢⎢⎢⎣
G0 0 0 · · ·
G1 G0 0 · · ·
G2 G1 G0 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎦ : �2+(U) → �2+(Y), (2.3)

whereG(λ) =
∑∞

0 λnGn is the Taylor series expansion forG about the origin.
Moreover, if G is in H∞(U ,Y), then the Hankel operator HG mapping �2+(U)
into �2+(Y) is defined by

HG =

⎡⎢⎢⎢⎣
G1 G2 G3 · · ·
G2 G3 G4 · · ·
G3 G4 G5 · · ·
...

...
...

...

⎤⎥⎥⎥⎦ : �2+(U) → �2+(Y). (2.4)

Finally, for G in H∞(U ,Y) it is well know and easy to verify that

TGT
∗
G = TGG∗ −HGH

∗
G. (2.5)

3. Inner-outer factorization

First a characterization of the existence of a full rank inner-outer factorization
is presented.

Lemma 3.1. Let G be a rational function in H∞(U ,Y) where U and Y are
finite-dimensional spaces satisfying dimY ≤ dimU . Then G admits a full
rank inner-outer factorization if and only if

G(eiω)G(eiω)∗ ≥ εI (for all ω ∈ [0, 2π] and some ε > 0), (3.6)

or equivalently, the Toeplitz operator TGG∗ is strictly positive.

Proof. Let G = GiGo be the inner-outer factorization for G where Gi is an
inner function in H∞(E ,Y) and Go is an outer function in H∞(U , E). Clearly,

G(eiω)G(eiω)∗ = Gi(e
iω)Go(e

iω)Go(e
iω)∗Gi(e

iω)∗. (3.7)

Because Gi is an inner function, G(eiω)G(eiω)∗ and Go(e
iω)Go(e

iω)∗ have
the same nonzero spectrum and rank almost everywhere. The range of TGo

equals �2+(E) if and only if the operator TGoT
∗
Go

is strictly positive. If TGoT
∗
Go

is strictly positive, then TGoG∗
o
= TGo

T ∗
Go

+HGo
H∗

Go
implies that TGoG∗

o
is also

strictly positive. So if the range of TGo equals �2+(E), then Go(e
iω)Go(e

iω)∗ ≥
εIE for some ε > 0.

In addition, if G = GiGo is a full rank inner-outer factorization, then
Gi(e

iω) is a unitary operator. In this case, equation (3.7) shows that (3.6)
holds.
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On the other hand, assume that (3.6) holds, or equivalently, the Toeplitz
operator TGG∗ is strictly positive. Because G is rational, the range of HG is
finite dimensional. Using TGT

∗
G = TGG∗ −HGH

∗
G, we see that TGT

∗
G equals a

strictly positive operator TGG∗ minus a finite rank positive operator HGH
∗
G.

Clearly, TGG∗ is a Fredholm operator with index zero. Since TGT
∗
G is a finite

rank perturbation of TGG∗ , it follows that TGT
∗
G is also a Fredholm operator

with index zero. In particular, the range of TG is closed. Hence the range
of TGo is also closed. Because G(eiω)G(eiω)∗ and Go(e

iω)Go(e
iω)∗ have the

same rank and dim E ≤ dimY, equation (3.7) with (3.6) shows that E and
Y are of the same dimension. In particular, Gi is a square inner function.
Therefore the inner-outer factorization G = GiGo is of full rank. �

Next, we recall some results on the inner-outer factorization in terms of
a stable finite-dimensional realization for a rational function G. To this end,
let {A on X , B, C,D} be a stable realization for G in H∞(U ,Y), that is,

G(λ) = D + λC (I − λA)
−1

B. (3.8)

Here A is a stable operator on a finite-dimensional space X and B maps U
into X while C maps X into Y and D maps U into Y. By stable we mean that
all the eigenvalues for A are inside the open unit disc. Note that {A,B,C,D}
is a realization for G if and only if

G0 = D and Gn = CAn−1B (for n ≥ 1) (3.9)

where G(λ) =
∑∞

0 λnGn is the Taylor series expansion for G. Let Wo be
the observability operator mapping X into �2+(Y) and Wc the controllability
operator mapping �2+(U) into X defined by

Wo =

⎡⎢⎢⎢⎣
C
CA
CA2

...

⎤⎥⎥⎥⎦ : X → �2+(Y),

Wc =
[
B AB A2B · · ·

]
: �2+(U) → X . (3.10)

Let P = WcW
∗
c =

∑∞
0 AnBB∗A∗n be the controllability Gramian for the

pair {A,B}. Then P is the solution to the following Stein equation

P = APA∗ +BB∗. (3.11)

Using (3.9), we see that the Hankel operator HG is equal to

HG = WoWc. (3.12)

In particular, it follows that the Hankel operator HG admits a factorization
of the form HG = WoWc where Wo is an operator mapping X into �2+(Y)
and Wc is an operator mapping �2+(U) into X . Using P = WcW

∗
c with (2.5),

we obtain

HGH
∗
G = WoPW ∗

o and TGT
∗
G = TGG∗ −WoPW ∗

o . (3.13)
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Consider the algebraic Riccati equation

Q = A∗QA+ (C − Γ∗QA)∗(R0 − Γ∗QΓ)−1(C − Γ∗QA)

Γ = BD∗ +APC∗ and R0 = DD∗ + CPC∗. (3.14)

We say that Q is a stabilizing solution to this algebraic Riccati equation if Q
is positive, R0 − Γ∗QΓ is strictly positive, and the following operator Ao on
X is stable:

Ao = A− Γ(R0 − Γ∗QΓ)−1(C − Γ∗QA). (3.15)

Moreover, if the algebraic Riccati equation (3.14) admits a stabilizing solution
Q, then the stabilizing solution Q can be computed by

Q = lim
n→∞Qn (3.16)

Qn+1 = A∗QnA+ (C − Γ∗QnA)∗(R0 − Γ∗QnΓ)
−1(C − Γ∗QnA)

subject to the initial condition Q0 = 0. In particular, if the limit in (3.16)
does not exist or Ao is not stable, then the algebraic Riccati equation (3.14)
does not have a stabilizing solution; see [8, 9] for further details.

If Θ is an inner function in H∞(E ,Y), then H(Θ) is the subspace of
�2+(Y) defined by

H(Θ) = �2+(Y)$ TΘ�
2
+(E) = kerT ∗

Θ. (3.17)

Because TΘ is an isometry, I−TΘT
∗
Θ is the orthogonal projection onto H(Θ).

It is noted that H(Θ) is an invariant subspace for the backward shift S∗
Y on

�2+(Y). According to the Beurling–Lax–Halmos Theorem if H is any invariant
subspace for the backward shift, then there exists a unique inner function Θ in
H∞(E ,Y) such that H = H(Θ). By unique we mean that if H = H(Ψ) where
Ψ is an inner function in H∞(L,Y), then there exists a constant unitary
operator Ω from E onto L such that Θ = ΨΩ; see [5, 11, 12, 13, 14, 15] for
further details. By combining Lemma 3.1 with the results in [9], we obtain
the following result. (For part (v) compare also Lemma 4.1 below.)

Theorem 3.2. Let {A on X , B, C,D} be a minimal realization for a rational
function G in H∞(U ,Y) where dimY ≤ dimU . Let R be the function in
L∞(Y,Y) defined by R(eiω) = G(eiω)G(eiω)∗. Let P the unique solution to
the Stein equation P = APA∗ + BB∗. Then the following statements are
equivalent.

(i) The function G admits a full rank inner-outer factorization;
(ii) the Toeplitz operator TR is invertible;
(iii) there exists a stabilizing solution Q to the algebraic Riccati equation

(3.14).

In this case, Q = W ∗
o T

−1
R Wo and the following holds.

(iv) The eigenvalues of QP are real numbers contained in the interval [0, 1].
(v) If Gi is the inner factor of G, then the dimension of H(Gi) is given by

dimH(Gi) = dimkerT ∗
Gi

= dimkerT ∗
G = dimker(I −QP ). (3.18)
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(vi) The McMillan degree of Gi is given by

δ(Gi) = dimH(Gi) = dimker(I −QP ). (3.19)

In particular, the McMillan degree of Gi is less than or equal to the
McMillan degree of G.

(vii) The operator T−1
R Wo is given by

T−1
R Wo =

⎡⎢⎢⎢⎣
Co

CoAo

CoA
2
o

...

⎤⎥⎥⎥⎦ : X → �2+(Y),

Co = (R0 − Γ∗QΓ)−1(C − Γ∗QA) : X → Y. (3.20)

Finally, because {C,A} is observable, T−1
R Wo is one-to-one and {Co, Ao}

is a stable observable pair.

Let us present the following classical result; see Theorem 7.1 in [7],
Sections 4.2 and 4.3 in [5] and Section XXVIII.7 in [11].

Lemma 3.3. Let Θ be an inner function in H∞(Y,Y) where Y is finite di-
mensional. Then the Hankel operator HΘ is a partial isometry whose range
equals H(Θ), that is,

PH(Θ) = HΘH
∗
Θ (3.21)

where PH(Θ) denotes the orthogonal projection onto H(Θ). Furthermore, the
following holds.

(i) The subspace H(Θ) is finite dimensional if and only if Θ is rational.
(ii) The dimension of H(Θ) equals the McMillan degree of Θ.

Proof. For completeness a proof is given. By replacing G by Θ in (2.5), we
see that

TΘT
∗
Θ = TΘΘ∗ −HΘH

∗
Θ.

Because Θ is a square inner function, Θ(eiω)Θ(eiω)∗ = I almost everywhere
on the unit circle. Hence TΘΘ∗ = I. This readily implies that

HΘH
∗
Θ = I − TΘT

∗
Θ = PH(Θ).

Therefore (3.21) holds and HΘ is a partial isometry whose range equals H(Θ).
It is well know that the range of a Hankel operator HF is finite dimen-

sional if and only if its symbol F is rational. Moreover, the dimension of the
range of the Hankel operator HF equals the McMillan degree of F . Therefore
parts (i) and (ii) follow from the fact that H(Θ) = ranHΘ. �

Let {Ai on Xi, Bi, Ci, Di} be a minimal state space realization for a
rational function Θ in H∞(Y,Y). It is well known (see, e.g., [7], Section
III.7) that Θ is a square inner function if and only if[

A∗
i C∗

i

B∗
i D∗

i

] [
Qi 0
0 I

] [
Ai Bi

Ci Di

]
=

[
Qi 0
0 I

]
(3.22)
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where Qi = A∗
iQiAi + C∗

i Ci. Moreover, in this case,

H(Θ) = ranHΘ = ranWi

where Wi is the observability operator for {Ci, Ai} defined by

Wi =

⎡⎢⎢⎢⎣
Ci

CiAi

CiA
2
i

...

⎤⎥⎥⎥⎦ : Xi → �2+(Y). (3.23)

It is noted that S∗
YWi = WiAi. So the range of Wi is a finite-dimensional

invariant subspace for the backward shift S∗
Y . Finally, Qi = W ∗

i Wi.

On the other hand, if {Ci, Ai on Xi} is a stable observable pair where
Xi is finite dimensional, then there exists operators Bi mapping Y into Xi

and Di on Y such that

Θ(λ) = Di + λCi(I − λAi)
−1Bi (3.24)

is a square inner function in H∞(Y,Y). Moreover, H(Θ) = ranWi and (3.22)
holds. The Beurling–Lax–Halmos Theorem guarantees that the inner function
Θ is unique up to a unitary constant on the right. The operators Bi and Di

are called the complementary operators for the pair {Ci, Ai}. To compute
the complementary operators Bi and Di explicitly, let[

E1

E2

]
: Y →

[
Xi

Y

]
(3.25)

be an isometry from Y onto the kernel of
[
A∗

iQ
1
2
i C∗

i

]
. Then set

Bi = Q
− 1

2
i E1 and Di = E2. (3.26)

Because the pair {Ci, Ai} is observable, the operator Wi defined in (3.23) is
one to one, and the complementary operators Bi and Di together with Ai

and Ci form a minimal realization {Ai, Bi, Ci, Di} for a square inner function
Θ such that ranWi = H(Θ). For further details see Lemma XXVIII7.7 in [11]
and Sections 4.2 and 4.3 in [5].

We are now in a position to present our main result. The proof is given
in Section 5.

Let {A,B,C,D} be a minimal realization for a rational function G in
H∞(U ,Y) where dimY ≤ dimU . To compute a full rank inner-outer factor-
ization G = GiGo for G, let P be the controllability Gramian for the pair
{A,B} (see (3.11)) and Q the stabilizing solution to the algebraic Riccati
equation (3.14). If this algebraic Riccati equation does not admit a stabiliz-
ing solution, then G does not have a full rank inner-outer factorization.

Theorem 3.4. Let {A,B,C,D} be a minimal realization for a rational func-
tion G in H∞(U ,Y) where dimY ≤ dimU . Assume there exists a stabilizing
solution Q to the algebraic Riccati equation (3.14).
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Let Xi be any space isomorphic to the kernel of I − QP . Let U be any
isometry from Xi onto the kernel of I − QP . In particular, U = QPU . Let
Ai on Xi and Ci mapping Xi into Y be the operators computed by

Ai = U∗QAoPU and Ci = CoPU. (3.27)

Then {Ci, Ai} is a stable observable pair. Let Bi and Di be the complementary
operators for {Ci, Ai} as constructed in (3.25) and (3.26). Then the square
inner factor Gi for G is given by

Gi(λ) = Di + λCi(I − λAi)
−1Bi. (3.28)

The outer factor Go for G is given by

Go(λ) = D∗
iD +B∗

i U
∗B + λ (D∗

iC +B∗
i U

∗A) (I − λA)−1B. (3.29)

4. An auxiliary lemma

To prove that the inner-outer factorization of G = GiGo is indeed given by
(3.28) and (3.29), let us begin with the following auxiliary result.

Lemma 4.1. Let T be a strictly positive operator on H and P a strictly
positive operator on X . Let W be an operator mapping X into H and set
Q = W ∗T−1W . Then the following two assertions hold.

(i) Let X and H be the subspaces defined by

X = ker(I −QP ) and H = ker (T −WPW ∗) . (4.1)

Then the operators

Λ1 = W ∗|H : H → X and Λ2 = T−1WP |X : X → H (4.2)

are both well defined and invertible. Moreover, Λ−1
1 = Λ2.

(ii) The operator T −WPW ∗ is positive if and only if P−1 −Q is positive,

or equivalently, P
1
2QP

1
2 is a contraction. In this case, the spectrum of

QP is contained in [0, 1]. In particular, if X is finite dimensional, then
the eigenvalues for QP are contained in [0, 1].

Proof. The proof is based on some ideas involving Schur complements; see
[2] and Section 2.2 in [3]. Consider the operator matrix

M =

[
T W
W ∗ P−1

]
=

[
I WP
0 I

] [
T −WPW ∗ 0

0 P−1

] [
I 0

PW ∗ I

]

=

[
I 0

W ∗T−1 I

] [
T 0
0 P−1 −Q

] [
I T−1W
0 I

]
.

From this we conclude several things: first, by the fact that both T and P are
strictly positive, the congruences above imply that T −W ∗PW is positive if
and only if P−1 −Q is positive, or equivalently, P

1
2QP

1
2 is a contraction. In

particular, if T −W ∗PW is positive, then the spectrum of QP is contained
in the interval [0, 1]. This proves part (ii) of the lemma.
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To prove part (i) observe that we can describe kerM in two different
ways. Based on the first factorization we have

kerM =

{[
h

−PW ∗h

]
| h ∈ ker(T −WPW ∗) = H

}
.

The second factorization yields

kerM =

{[
−T−1Wy

y

]
| y ∈ ker(P−1 −Q) = PX

}
kerM =

{[
T−1WPx

−Px

]
| x ∈ ker(I −QP ) = X

}
.

Together these equalities prove the first assertion in Lemma 4.1. Indeed,

Φ1 =

[
I

−PW ∗

]
: H → kerM

is a one-to-one operator from H onto kerM . Likewise,

Φ2 =

[
T−1WP

−P

]
: X → kerM

is a one-to-one operator from X onto kerM . Because the first component of
Φ1 is the identity operator on H, we see that T−1WP maps X onto H. Since
the second component of Φ2 is −P and P is invertible, W ∗ maps H onto X.
Therefore the operators Λ1 and Λ2 in (4.2) are well defined.

If x is in X, then Φ2x = Φ1h for some unique h in H, that is,[
Λ2x
−Px

]
=

[
T−1WPx

−Px

]
= Φ2x = Φ1h =

[
h

−PW ∗h

]
=

[
Λ2x

−PW ∗Λ2x

]
.

The last equality follows from the fact that h = Λ2x. The second component
of the previous equation shows that x = W ∗Λ2x, and thus, Λ1 = W ∗|H is
the left inverse of Λ2. On the other hand, if h is in H, then Φ1h = Φ2x for
some unique x in X, that is,[

h
−PW ∗h

]
= Φ1h = Φ2x =

[
T−1WPx

−Px

]
=

[
Λ2x
−Px

]
.

By consulting the second component, we have Λ1h = W ∗h = x. Substituting
x = Λ1h into the first component, yields h = Λ2Λ1h. Therefore Λ1 is the
right inverse of Λ2 and Λ−1

1 = Λ2. �

5. Proof of the inner-outer factorization

Proof. Assume that the algebraic Riccati equation (3.14) admits a stabilizing
solution Q. In other words, assume that TR is strictly positive, or equivalently,
G admits a full rank inner-outer factorization G = GiGo. Using P = WcW

∗
c

with HG = WoWc, we have

TGT
∗
G = TR −HGH

∗
G = TR −WoPW ∗

o .
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Recall that the subspace H(Gi) = �2+(Y)$ TGi
�2+(Y). Then

H(Gi) = kerT ∗
Gi

= kerT ∗
G = ker (TR −WoPW ∗

o ) .

It is noted that H(Gi) is an invariant subspace for the backward shift S∗
Y

on �2+(Y). Recall that Q = W ∗
o T

−1
R Wo. Let k = dimker(I − QP ), and put

Xi = Ck. Let U be an isometry from Xi onto ker(I − QP ). According to
Lemma 4.1, the operator

Λ2 = T−1
R WoPU =

⎡⎢⎢⎢⎢⎢⎣
Co

CoAo

CoA
2
o

CoA
3
o

...

⎤⎥⎥⎥⎥⎥⎦PU : Xi → H(Gi)

is invertible, where we also use (3.20). In particular, the dimension of H(Gi)
equals dimXi. Since P is invertible and U is an isometry, the operator PU
from Xi into X is one to one.

Because H(Gi) is an invariant subspace for the backward shift S∗
Y , there

exists an operator Ai on Xi = Ck such that

S∗
YT

−1
R WoPU = T−1

R WoPUAi. (5.1)

Since T−1
R WoPU is one to one and S∗n

Y converges to zero pointwise, Ai is
stable.

Now observe that⎡⎢⎢⎢⎣
Co

CoAo

CoA
2
o

...

⎤⎥⎥⎥⎦AoPU = S∗
YT

−1
R WoPU =

⎡⎢⎢⎢⎣
Co

CoAo

CoA
2
o

...

⎤⎥⎥⎥⎦PUAi.

Since the observability matrix for {Co, Ao} is one to one, AoPU = PUAi.
Because PU is one to one, the spectrum of Ai is contained in the spectrum
of Ao. Multiplying AoPU = PUAi by U∗Q on the left and using QPU = U
shows that

AoPU = PUAi and Ai = U∗QAoPU. (5.2)

Setting Ci = CoPU and using Aj
oPU = PUAj

i for all positive integers j, we
obtain

CoA
j
oPU = CoPUAj

i = CiA
j
i (for all integers j ≥ 0). (5.3)

In particular,

T−1
R WoPU =

⎡⎢⎢⎢⎣
Co

CoAo

CoA
2
o

...

⎤⎥⎥⎥⎦PU =

⎡⎢⎢⎢⎣
Ci

CiAi

CiA
2
i

...

⎤⎥⎥⎥⎦ .

Since T−1
R WoPU is one to one, {Ci, Ai} is a stable observable pair. Let Bi

mapping Y into Xi = Ck andDi on Y be the complementary operators for the
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pair {Ci, Ai}. Since H(Gi) equals the range of T
−1
R WoPU , the inner function

Gi (up to a unitary constant on the right) is given by

Gi(λ) = Di + λCi(I − λAi)
−1Bi.

To find the outer factor Go, first notice that

Q = W ∗
o T

−1
R Wo =

[
C∗

o A∗
oC

∗
o A∗2

o C∗
o · · ·

]
⎡⎢⎢⎢⎣

C
CA
CA2

...

⎤⎥⎥⎥⎦ =
∞∑
j=0

A∗j
o C∗

oCAj .

The second equality follows from (3.20). In other words, Q satisfies the Stein
equation

Q = A∗
oQA+ C∗

oC. (5.4)

Now note that U∗PC∗
oC = C∗

i C, so that C∗
i C = U∗P (Q−A∗

oQA). Moreover,
U∗PA∗

o = A∗
iU

∗P and U∗PQ = U∗. Hence

C∗
i C = U∗ −A∗

iU
∗PQA = U∗ −A∗

iU
∗A. (5.5)

It follows that U∗ =
∑∞

j=0 A
∗j
i C∗

i CAj .

Next observe that TG = TGiGo = TGiTGo . Multiplying by T ∗
Gi

on the
left, with the fact that TGi

is an isometry, we have T ∗
Gi
TG = TGo

. Using this

with U∗ =
∑∞

j=0 A
∗j
i C∗

i CAj , we see that the first column of TGo is given by

T ∗
Gi

⎡⎢⎢⎢⎣
D
CB
CAB

...

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
D∗

i B∗
i C

∗
i B∗

i A
∗
iC

∗
i B∗

i A
∗2
i C∗

i · · ·
0 D∗

i B∗
i C

∗
i B∗

i A
∗
iC

∗
i · · ·

0 0 D∗
i B∗

i C
∗
i · · ·

0 0 0 D∗
i · · ·

...
...

...
... · · ·

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
D
CB
CAB
CA2B

...

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
DiD

∗ +B∗
i U

∗B
(D∗

iC +B∗
i U

∗A)B
(D∗

iC +B∗
i U

∗A)AB
(D∗

iC +B∗
i U

∗A)A2B
...

⎤⎥⎥⎥⎥⎥⎦ .

By taking the Fourier transform of the first column of TGo
, we obtain the

following state space formula:

Go(λ) = D∗
iD +B∗

i U
∗B + λ (D∗

iC +B∗
i U

∗A) (I − λA)−1B.

This completes the proof. �

For completeness we shall also provide a slightly different derivation of
the last part of the proof, that is, the formula for Go. The idea is similar in
nature but slightly different in execution: for |λ| = 1 we compute Go(λ) =
Gi(λ)

∗G(λ) using the realization formulas for Gi and G. This leads to
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Go(λ) = Gi(λ)
∗G(λ)

= (D∗
i + λB∗

i (I − λA∗
i )

−1C∗
i )(D + λC(I − λA)−1B)

= D∗
iD + λB∗

i (I − λA∗
i )

−1C∗
i D + λD∗

iC(I − λA)−1B

+ |λ|2B∗
i (I − λA∗

i )
−1C∗

i C(I − λA)−1B.

Since we consider |λ| = 1 this is equal to

Go(λ) = D∗
iD +

1

λ
B∗

i (I −
1

λ
A∗

i )
−1C∗

i D + λD∗
iC(I − λA)−1B

+B∗
i (I −

1

λ
A∗

i )
−1C∗

i C(I − λA)−1B.

Consider the Stein equation C∗
i C = U∗ − A∗

iU
∗A; see (5.5). This may

be used to compute

(I − 1

λ
A∗

i )
−1C∗

i C(I − λA)−1

= (I − 1

λ
A∗

i )
−1

(
U∗ − 1

λ
A∗

iU
∗(λA)

)
(I − λA)−1

= (I − 1

λ
A∗

i )
−1

(
U∗(I − λA) + (I − 1

λ
A∗

i )U
∗(λA)

)
(I − λA)−1

= (I − 1

λ
A∗

i )
−1U∗ + λU∗A(I − λA)−1.

Inserting this in the formula for Go(λ) we obtain

Go(λ) = D∗
iD +

1

λ
B∗

i (I −
1

λ
A∗

i )
−1C∗

i D + λD∗
iC(I − λA)−1B+

+B∗
i (I −

1

λ
A∗

i )
−1U∗B + λB∗

i U
∗A(I − λA)−1B

= D∗
iD +B∗

i (λI −A∗
i )

−1C∗
i D

+B∗
i

(
I + (I − 1

λ
A∗

i )
−1 − I

)
U∗B

+ λ(D∗
iC +B∗

i U
∗A)(I − λA)−1B

= D∗
iD +B∗

i U
∗B +B∗

i (λI −A∗
i )

−1(C∗
i D +A∗

iU
∗B)

+ λ(D∗
iC +B∗

i U
∗A)(I − λA)−1B.

Because Go is analytic in the open unit disc, we know that the term
B∗

i (λI − A∗
i )

−1(C∗
i D + A∗

iU
∗B) must be zero. Let us give a direct proof of

this fact. This turns out to be an easy consequence of formula (3.23) in [9].
Indeed, this formula states that

C∗
1C1 = (Q−QPQ)−A∗

0(Q−QPQ)A0,

where C1 = D∗C0 +B∗QA0. Multiplying the above formula with PU on the
right and U∗P on the left, we obtain

U∗PC∗
1C1PU = U∗P (Q−QPQ)PU − U∗PA∗

0(Q−QPQ)A0PU.
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Since QPU = U it follows that (Q−QPQ)PU = 0, so the first term on the
right hand side is zero. Further, since A0PU = PUAi it follows that also the
second term on the right hand side is zero. Hence C1PU = 0, which means

0 = (D∗C0 +B∗QA0)PU = D∗Ci +B∗QPUAi = D∗Ci +B∗UAi.

Thus the formula for Go can also be established by a direct computation
using the realizations of Gi and G.
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OT 200, Birkhäuser Verlag, Basel, 2010.

[5] A.E. Frazho and W. Bosri, An operator perspective on signals and systems, OT
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