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ABSTRACT
Microservice architecture (MSA) is defined as an architectural style
where the software system is developed as a suite of small ser-
vices, each running in its own process and communicating with
lightweight mechanisms. The benefits of MSA are many, ranging
from an increase in development productivity, to better business-IT
alignment, agility, scalability, and technology flexibility. The high
degree of microservices distribution and decoupling is, however,
imposing a number of relevant challenges from an architectural
perspective. In this context, measuring, controlling, and keeping a
satisfactory level of quality of the system architecture is of para-
mount importance.

In this paper we propose an approach for the specification, aggre-
gation, and evaluation of software quality attributes for the architec-
ture of microservice-based systems. The proposed approach allows
developers to (i) produce architecture models of the system, either
manually or automatically via recovering techniques, (ii) contribute
to an ecosystem of well-specified and automatically-computable
software quality attributes for MSAs, and (iii) continuously mea-
sure and evaluate the architecture of their systems by (re-)using the
software quality attributes defined in the ecosystem. The approach
is implemented by using Model-Driven Engineering techniques.

The current implementation of the approach has been validated
by assessing the maintainability of a third-party, publicly available
benchmark system.

CCS CONCEPTS
• Applied computing → Service-oriented architectures; •
Software and its engineering → Domain specific languages;
Software maintenance tools;
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1 INTRODUCTION
Lewis and Fowler define the microservice architecture (MSA) as
an architectural style in which a system is developed as a suite of
small services, each running in its own process and communicating
with lightweight mechanisms, often HTTP-based REST APIs [11].
The MSA architectural style puts emphasis on the design and de-
velopment of highly maintainable and scalable software, where a
large system is arranged as a set of independent lightweight ser-
vices [21]. The benefits of the MSA style are various, e.g., increase
of development productivity, better business-IT alignment, agility,
scalability, and technology flexibility [29].

However, the MSA architectural style is also plagued by numer-
ous challenges, such as efficient service discovery over complex
networks, security assurance, performance optimization, data shar-
ing [1]. One of the root causes of the challenges related to MSA is
that MSA shifts the complexity of the system from inside a mono-
lith to the interdependencies among the (potentially hundreds of)
microservices [29]. Other relevant reported challenges of the MSA
style are related to the adoption of a different mindset for develop-
ers and ineffective knowledge communication [12]. In this context,
objectively measuring, controlling, and keeping at an acceptable
level the quality of the system is of paramount importance for the
success of the system. As of today, there is a plethora of frame-
works and tools for assessing different aspects of an MSA, such
as dynatrace1. However, each of them has its own internal quality
model, level of abstraction, and system representation. This situa-
tion makes the assessment of the overall quality of an MSA terribly
difficult and inefficient as developers needs to be familiar with each
measurement framework and its related notation, underlying data

1https://www.dynatrace.com
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model, and key performance indicators in order to get actionable
insights about the system.

This paper proposes MicroQuality, a novel approach for the
quality evaluation of MSAs. MicroQuality is based on three main
principles: abstraction, reusable quality attributes, and continuous
quality assessment. For what concerns abstraction, MicroQuality
is centered around an architecture model of the system, allowing
developers to focus explicitly on architecture-related concerns, in-
stead of imposing the high cognitive burden due to the potentially
highly heterogeneous technologies, the internal business logic of
the involved microservices, their low-level details, etc. The archi-
tecture model of the system can be specified either manually or
automatically via pre-existing architecture recovery techniques
for MSAs (e.g., [2, 14, 15]). MicroQuality provides reusable qual-
ity attributes via an ecosystem of well-specified and language-
independent software quality attributes for MSAs; the proposed
ecosystem fosters reuse by allowing developers to (i) define their
own quality attributes, (ii) share them across different systems and
organizations, and (iii) reuse quality attributes defined by other
developers using the ecosystem. Technically, this is achieved by
taking advantage of Model Driven Engineering techniques (i.e.,
model transformation and model weaving), which allow Micro-
Quality to be independent from both (i) the modeling language
used for representing the architecture of the system, and (ii) the
quality attributes living in the ecosystem. Each specific quality
attribute in the MicroQuality ecosystem is paired with dedicated
software components called metric providers, whose responsibility
is to compute the value of the quality attribute for the currently ana-
lyzed system. Metric providers allow MicroQuality to automatically
compute the values related to the quality attributes, thus opening
for the continuous quality assessment of MSAs, where (i) the
(automatically recovered) architecture models of the system can be
measured by MicroQuality at any point in time and (ii) developers
get data-driven and timely insights about the architecture of the
system, while (re-)using the quality attributes defined within the
whole ecosystem.

The main contributions2 of this study are the following:

– an approach for the specification, aggregation, and evalu-
ation of software quality attributes for microservice-based
systems at the architectural level;

– a Java-based implementation of the proposed approach in
the context of Docker-based systems;

– the application of the proposed approach to a third-party
open-source benchmark system called Acme Air.

The remainder of the paper is organised as follows. Section 2
provides background information, Section 3 gives an overview of
the proposed approach, whereas its main phases are detailed in
Sections 4, 5, and 6. In Section 7 we discuss the scope, benefits and
limitations of the approach. Section 8 presents a comparison with
related work, and Section 9 closes the paper and discusses future
work.

2A repository containing the tool and the examples shown in this paper are available
at https://github.com/gssi/QualityMicroART

2 BACKGROUND
In this section we discuss maintainability as an example of qual-
ity attribute for MSAs (Section 2.1) and we describe the running
example used throughout the paper (Section 2.2).

2.1 Example – Maintainability of MSAs
As a way to exemplify how measurable quality attributes can
be aggregated in order to predicate on the overall quality of a
microservice-based system, in this section we describe maintain-
ability as an aggregation of coupling, cohesion, and complexity3.

Maintainability can be defined as the level of effort required
for modifying a software product [10]. Modifications can include
corrections, improvements, and adaptation of the software due to,
e.g., changes in the environment or new requirements [22].

In the literature, numerous studies attempt to assessmaintainabil-
ity from different perspectives and with different purposes. Oman
et al. [20] provide a hierarchical structure of measurable attributes
that impact maintainability. The selected attributes are aggregated
in order to provide a final indicator for maintainability. Among
others, the attributes of coupling, cohesion and complexity are the
key indicators for the overall maintainability of the system [20].

Perepletchikov et al. [22] review the literature about coupling
in software systems with the aim to find a set of metrics for esti-
mating the overall maintainability of the system. The study reports
that it has been widely accepted that high quality software should
exhibit low coupling and complexity, and high cohesion. Moreover,
the authors state that structural software attributes do not directly
describe the quality of a product; rather they are used as predictors
of external quality attributes such as reliability, efficiency, maintain-
ability and portability and that the higher the cohesion, the less the
maintainability effort required during service development. Also Hitz
et al. [16] state that the impact of coupling on the overall maintain-
ability of a software system is widely accepted in the state of the
practice. They also report that, in structured design and program-
ming, the importance of coupling and cohesion as main attributes
w.r.t. system decomposition has been well accepted by practitioners.
Software engineering experts consider software designed as both
more reliable and more maintainable.

Concerning cohesion, Sindhgatta et al. [26] confirm that highly
cohesive designs are desirable since they are easier to analyze and
test, and provide better stability and changeability, which make the
whole system more maintainable. Finally, controlling and minimiz-
ing software complexity is considered as one of the most important
objectives during software development as it may affect other key
software qualities like reusability, reliability, testability, and main-
tainability [17, 25]. Complexity is one of themajor factors in the cost
of developing and maintaining software [19]. To summarize, we can
derive the following generic formula for software maintainability.

3It is important to note that MicroQuality is independent from any specific quality
attribute and its users can use their own definitions, according to their technical and
organizational needs.
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Maintainability =




HIGH , (Coupling = LOW ∧ Cohesion = HIGH) ∨
(Complexity = LOW ∧ Coupling = LOW) ∨
(Cohesion = HIGH ∧ Complexity = LOW)

LOW , otherwise

Intuitively, high coupling negatively impacts the overall main-
tainability of the system, as well as a high level of complexity;
differently, high cohesion positively impacts the maintainability of
the system. The LOW and HIGH thresholds in the formula have
not been explicitly defined since their values depend on the specific
characteristics of the MSA being considered and can vary across
different projects.

The formula presented above will be considered throughout the
paper as an example of quality model definition in the context of
MicroQuality.

2.2 Running Example – the Acme Air System
An illustrative example of a microservice-based architecture is
given in Figure 1. Acme Air4 is an open-source implementation of
a fictitious airline system whose key requirements are: the ability
to scale to billions of web API calls per day, the need to develop and
deploy the application in public clouds, and the need to support
multiple channels for user interaction.

Figure 1: Acme Air architecture

The system is composed of six microservices: web interface,
authentication, customer, flight, booking, and a service discovery.
Each microservice is responsible to manage its own data and is
allowed to communicate with the others only via RESTful calls.
Services are small, independently deployable and independently
scalable. The microservice-based implementation of Acme Air can
support multiple data stores (i.e., MongoDB, IBMCloudant), can run
in several application modes and can support running on various
runtime platforms, including stand-alone bare metal system, vir-
tual machines, Docker containers, IBM Bluemix, and IBM Bluemix
Container service [6].

Microservice-based systems must be designed to cope with fail-
ure [11], meaning that the application must be able to tolerate

4https://github.com/acmeair/acmeair

possible service failures either by recovering promptly or by grace-
fully degrading its functionalities. Acme Air can be easily equipped
with Hystrix5, a latency and fault tolerance library for distributed
systems [6], which allows to monitor the system in real-time and
to promptly detect and react to failures. MSAs aim to support to
a great extent the agility and scalability of applications, and as
new incoming requests are made through the web interface, the
microservices interact with each other to serve the requested func-
tionalities. Even though Acme Air is a simple microservice-based
system, its complexity can rapidly grow for many reasons (e.g., high
loads of traffic, latency issues, service failures), hence providing a
suitable benchmark for our MicroQuality approach.

3 OVERVIEW OF THE APPROACH
As shown in Figure 2, the MicroQuality approach is composed of
three phases, each dedicated to one of the three principles presented
in the introduction, i.e., abstraction, reusable quality attributes con-
figuration, and continuous quality assessment. Specifically, in the
architecture modeling phase, the Architecture Recovery Engine
( A in the figure) automatically extracts the architecture of the
MSA-based system and stores it into the MSA model ( B ). The lat-
ter masks the complexity of the system under consideration and
represents it in terms of architecturally-relevant entities, such as the
microservices composing the system, their provided and required
interfaces (e.g., the endpoints of their REST APIs), their interde-
pendencies, etc. The MSA model conforms to a domain-specific
language specifically tailored to represent MSAs (see Section 4). In
this phase, developers can use the MSA model for understanding
the overall structure of the system, without having to delve into
the low-level details of each microservice (we recall that an MSA
system can contain hundreds of interconnected microservices at
deployment time). It is important to note that MSA models can also
be manually specified and/or refined by developers; MicroQuality
does not impose any constraint on how MSA models are created.

Figure 2: Overview of the approach

The goal of the quality attributes configuration phase is to
allow developers to specify the quality model that is most suitable
for the characteristics of their system. More specifically, the Qual-
ity Model Manager ( C ) provides a domain-specific language for
5https://github.com/Netflix/Hystrix
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Figure 3: Acme Air MSA model

precisely specifying the quality model ( D ) in terms of the quality
attributes it is composed of, their data types, how they are aggre-
gated into more complex quality attributes, etc. The quality model is
defined using a textual concrete syntax and refers to a set of reusable
definitions of quality attributes ( E ). Each quality attribute qai in
{qa1 . . .qan } is automatically computed by MicroQuality either by
means of its corresponding metric providermpi or by aggregating
the values of other quality attributes. Metric providers are software
components implemented in Java and that are (i) independent from
each other, (ii) independent from the architectural language used
for representing the MSA, and (iii) treated as third-party black-box
data providers by MicroQuality. In this way, as we will show in the
context of the running example, MicroQuality is flexible enough for
allowing developers to reuse previously-defined quality attributes
and for computing the values of quality attributes by using their
preferred technologies and external services.

In the quality evaluation phase, the MSA model and the qual-
ity model are given as input to the Quality Evaluation Engine ( F ),
which in turn measures the architecture of the system as based on
the quality attributes defined in the quality model. Intuitively, for
each quality attribute qai in the quality model, the Quality Evalua-
tion Engine computes its value either by invoking its metric provider
mpi on some elements within the MSA model, or by aggregating
the values of previously-computed qas. The produced output con-
sists of two models: the Evaluated Quality Model ( H ) containing
all the measured quality attributes and the Quality-Architecture
Weaving model ( G ), which traces the evaluated quality attributes
to their corresponding entities within the MSA model of the sys-
tem (e.g., a specific microservice, an interface). We opted to use a

dedicated weaving model for linking the evaluated quality model
and the MSA model in order to (i) keep the definitions of the qas
independent from the architectural language of the MSA model,
thus allowing their reuse across projects and organizations, and (ii)
do not constrain the developer in terms of which language should
be used for creating the MSA model, thus enabling MicroQuality
to use any approach for representing/extracting the architecture of
the system, depending on the specific technical and organizational
needs of the system.

Each model represented in Figure 2 has its own dedicated graph-
ical/textual modeling editor, which is not depicted here for the sake
of clarity. In the next sections, we detail each phase of MicroQual-
ity by presenting its technical details, involved models, and the
application to the Acme Air running example.

4 MODELING MICROSERVICE
ARCHITECTURES

In this section we briefly recall the approach by Granchelli et al. [15]
that we integrated in the component A for obtaining the MSA
models ( B ), subject of the quality evaluation performed by the en-
gine ( F ). This approach is a recovery mechanism for microservice
architectures, composed of two phases namely architecture recovery
and architecture refinement. The architecture recovery phase deals
with all the activities necessary to extract an architectural model
of the system starting from its source code repository and run time
information (e.g., log files) that we call MSA Model ( B ). The archi-
tecture model represents the architecture of the system which is
composed by all the elements of the microservices architecture. Its
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Figure 4: The customized quality metamodel from [3]

representation is based on a domain-specific language (DSL) for
microservice-based systems, that we reused in our approach. We
briefly recall its underlying metamodel with the intent of presenting
an example of an MSAModel. The metamodel is composed of seven
metaclasses where Product is the root node of the system being
designed. MicroService represents the microservices composing
the system. Interface represents a communication endpoint and
it is attached to specific microservices, for which it represents either
an input or output port. Link connects two interfaces together, thus
representing the communication among them. Team is composed
of one or more developers. Each microservice is owned by only one
team. The metaclass Developer represents a software developer
that participates to the system. Cluster is a logical abstraction for
grouping together specific microservices.

This DSL is developed around the microservice needs and char-
acteristics [11], and it is kept minimal in order to support the de-
sign and description of multiple microservice-based systems. The
architecture refinement phase aims to refine the initial extracted
architectural model into one or more refined architectural models
by means of refinement incremental steps. The software archi-
tect can decide to enhance the generated architectural model in
order to recover an architecture more suitable for its needs, e.g.,
removing unnecessary details, perform model analysis, architec-
tural change impact analysis, overall understanding of the system,
and finally decide when the refined architectural model is ready
to be finalized. Every model generated by the Architecture Re-
covery Engine or refined by the architect is an instance of this
DSL metamodel. For instance, Figure 3 shows the model, extracted
from the given repository, representing the refined MSA model
of the running Acme Air system. This model, realized with the
provided editor appositely conceived for the approach, can eas-
ily be inspected to identify the extracted services and the connec-
tions among services. For instance, the /auth_service_node1/ of the
customer_service_node1 component is connected to the /acmeair−
cs/rest/api/loдin/authcheck node of the auth component. This
means, that the component customer_service_node1 uses the
/acmeair−cs/rest/api/loдin/authcheck operation of the auth com-
ponent to verify if the user is authorized to perform their profile edit-
ing operation offered by /acmeair − cs/rest/api/customer/conf iд.

5 DEFINING QUALITY ATTRIBUTES FOR
MICROSERVICE ARCHITECTURES

Another important component of MicroQuality is the integration
of the Quality Metamodel presented by Basciani et al. [3], that we
customized for representing quality definition in the field of MSA.
This approach plays a key role since it enables the specification of
quality models according to user requirements for different soft-
ware artefacts and domains, like MSA. The considered metamodel
is shown in Figure 4, it consists of a number of constructs as ex-
plained in the following. QualityModel is the root element consist-
ing of QualityAttributes, ValueTypes, and MetricProviders. A
QualityAttribute represents a quality aspect that is considered to
be relevant for contributing to the quality assessment of a given arte-
fact, in our case the MSA architectural model and all its elements.
A quality attribute, like maintainability can be an aggregation of
other attributes, like the complexity and the coupling, as detailed in
the remaining of this section. Thus, each quality attribute indicates
how to compose the contained attributes in order to provide an
overall quality evaluation for the considered attribute. Each quality
attribute has a Value representing its calculated value by the eval-
uation engine. Value can be SingleValue or AggregatedValue,
where SingleValue represents the value obtained by the applica-
tion of a given MetricProvider, which refers to a software com-
ponent able to calculate the value of the related quality attribute.
A MetricProvider is labelled with the attribute id, used to iden-
tify and retrieve the actual software component implementing the
considered metric, that is part of the overall architecture of the pro-
posed approach, labeled with E in Figure 2. This metamodel has
been extended in order to enable the evaluation of internal elements
and not only an overall evaluation as proposed in [3]. This has been
enabled with the attribute type inside MetricProvider metaclass,
allowing to associate the model element to be considered by the
metric calculation. AggregatedValue indicates a composition of
different values and it is specified by means of an OCL expression.
Each Value has a reference with a ValueType element, which de-
fines its type, enabling the specifications of categories (like LOW,
MEDIUM, HIGH ), ranged values (e.g., from 0 to 5), textual, boolean,
integer, and real values. This approach has been applied to specify

1229



Quality Model for MSA, labeled with D in Figure 2, where the
software architect can specify relevant quality attributes for its
domain and perspective.

In this section we report on an excerpt of the quality model we
processed in the running example for the Acme Air evaluation.
Figure 5 shows the quality model containing a set of considered
quality attributes as defined in Section 2.1. The model is represented
in the left hand side with a concrete syntax used by the architect
to easily define the concepts and on the right the model-based
representation that will be actually processed by the engine. For
instance, in the defined model the maintainability is defined with a
bottom-up process, where first we define the Enumeration type to
hold the evaluation result of the quality metric. As defined in the
maintainability formula in Section 2.1, the result of the estimation
is an enumeration of 3 possible values ’HIGH’, ’MEDIUM’, ’LOW’
(see Figure 5 lines 12-14) 6. Then the aggregated value that holds
the enumeration is defined in lines 22-32. Inside the aggregated
value we create the operation that compute the maintainability
value (lines 23-31). In this operation the values to be aggregated
to estimate the maintainability, can be specified as shown in lines
25-26, together with the OCL operation aggregating the values
(lines 27-30).

OCL [32] is the object constraint language to express the formu-
las that the quality attributes use for navigating the MSA models.
In lines 3-8 one of the Metric Provider named CouplingCalculator
has been defined with its relative ID and its type, defining which
metric component will calculate the coupling of the MicroService
model element.

6 EVALUATING THE QUALITY OF
MICROSERVICE ARCHITECTURES

In this section, given as input an MSA model B , we show how
this architecture can be measured with respect to the quality defi-
nition ( D ), for example the one shown in Figure 5. The evaluation
engine, labeled with F , is a software component that is able to
evaluate the quality attributes defined in the quality model. By
applying the declared metrics in the model and invoking the re-
lated {mp1 . . .mpn } metric providers, it is able to generate a model
called Evaluated Quality Model (labeled with H ) together with the
Quality-Architecture Weaving Model ( G ).

A fragment of the Java code of the evaluation engine is shown
in Listing 1. The evaluation engine for each value (lines 4 to 15),
depending on its nature, single or aggregated, invokes the related
service responsible for computing it. In particular, in case of single
value the evaluation engine invokes the relatedmp metric provider
(line 6-8), whereas, in case of aggregated value, it executes the OCL
operation by using the OCL evaluator (line 12).

1 c l a s s E v a lQua l i t y implements Eva l u a t i onEng in e {
2 p u b l i c m s aQua l i t y R e l a t i o n s h i p s e v a lQu a l i t y ( ) {
3 Qua l i tyMode l qm = s . g e tQua l i t yMode l ( ) ;
4 f o r ( Value v : qm . g e tQua l i t yV a l u e s ( ) ) {
5 i f ( v i n s t a n c e o f S i n g l eVa l u e ) {
6 Me t r i c P r o v i d e r mp = ( ( S i n g l eVa l u e ) v ) .

getMeasuredBy ( ) ;
7 Me t r i c C a l c u l a t o r mc = mcs . g e t (mp . g e t I d ( ) ) ;

6The thresholds associated with the ranges can be customized by the architect

8 Re l a t i onGroup rg = mc . c a l c u l a t e ( msa .
g e tM i c r o s e r v i c eMode l ( ) , v ) ;

9 ws . addRe l a t i onGroup ( rg ) ;
10 } e l s e i f ( v i n s t a n c e o f Aggrega tedVa lue ) {
11 Aggrega tedVa lue av = ( Aggrega tedVa lue ) v ;
12 Re l a t i onGroup rg = os . eva luateOCL ( av ) ;
13 ws . addRG ( rg ) ;
14 }
15 }
16 s . saveQM ( ) ;
17 ws . saveWeaving ( ) ;

Listing 1: Excerpt of the Evaluation Engine

Each metric provider is implemented as a Java class for each
single value. Listing 2 shows a snippet of code related to the Com-
plexity Metric Provider.

1 c l a s s Comp l e x i t yCa l c u l a t o r implements
Me t r i c C a l c u l a t o r {

2 . . .
3 p u b l i c Re l a t i onGroup c a l c ( P roduc t p , Value v ) {
4 Re l a t i onGroup rg = ws . c rea teRG ( v . getVarName ( ) ) ;
5 L i s t V a l u e l v = qm . c r e a t e L i s t V a l u e ( ) ;
6 f o r ( EOb jec t o : p . eA l lCon t en t s ( ) ) {
7 i f ( o i n s t a n c e o f v . getMeasuredBy ( ) . type ) {
8 i n t sum = 0 ;
9 i f ( o . ge tExpose ( ) != n u l l )
10 sum += o . ge tExpose ( ) . s i z e ( ) ;
11 i f ( o . g e t R equ i r e ( ) != n u l l )
12 sum += o . g e tR equ i r e ( ) . s i z e ( ) ;
13 In t ege rVa lueType e l = qm . c r e a t e I n t ( sum ) ;
14 R e l a t i o n s r = ws . c rea teRRL ( o , e l ) ;
15 rg . g e tRe f e rTo ( ) . add ( r ) ;
16 l v . g e tE l emen t s ( ) . add ( e l ) ;
17 }
18 }
19 v . s e tVa lueType ( l v ) ;
20 r e t u r n rg ;
21 }

Listing 2: Metric Provider for complexity quality
attribute

Line 7 checks if the type specified in the quality model is instance
of the processed element of the MSA Model in the iteration; if so, it
applies the code responsible for computing the value of the metric
on the current artefact (lines 8-17). Once computed, it creates the
relation in the resulting weaving model, to link the right artefact
of the MSA model with the calculated value in the quality model
(lines 14-15).

As already said, the results of the quality evaluation phase are
multiple. The first generated model is the Evaluated Quality Model.
It is an instance of the declared and executed quality model ( C
in Figure 2), where the calculated values for the quality attributes,
relative to the subject MSA model, are stored. An example of the
evaluated quality model for the Acme Air system is shown in Fig-
ure 7 right panel (labelled with H ).

The second generated model is the Quality-MSA weaving model,
labelled with G in Figure 2. In order to compose this model we
conceived a Weaving Metamodel shown in Figure 6.

Weaving models are special kinds of models that set relations
across different models in order to create a wider representation
of the domain. The model weaving is considered as the operation
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Figure 5: Excerpt of the Quality Model for MSA

for setting fine-grained relationships between models or metamod-
els and executing operations on them based on the semantics of
the weaving associations specifically defined for the considered
application domain [9, 24].

In the MicroQuality approach the operation of model weaving is
used to assign a specific evaluated metric value from the evaluated
quality model, to the MSA architecture target of the computation.
This allows to realize both a higher separation of concerns as well
as a higher level of abstraction. A metric value, that impacts a qual-
ity attribute of the architecture, can be related to each element
of the MSA architecture model, e.g., cluster, microservice, prod-
uct, interface. For this reason the type attribute of the metaclass
MetricProvider in the Quality Metamodel has been set to type

Figure 6: Quality-architecture weaving metamodel

EClassifier, in order to allow the developer to refer to each pos-
sible element in the application domain. These enable the architect
to specify custom quality attributes and target them on elements of
the MSA architecture model without changing or refactoring the
models.

Figure 7 shows the resulting weaving model of the Acme Air sys-
tem. This permits the architect to inspect the relationships among
evaluated quality attributes and the MSA model given as input. The
left panel (labelled with B ) shows the MSA model of the Acme Air
system (subject of the evaluation), extracted by the Architecture
Recovery Engine. The selected element in the model is the Product,
identifying the whole software product Acme Air.

The central panel (labelled with G ), is the relation connector
between the evaluated quality model and the MSA model, that
can be navigated in order to read the evaluation result. This panel
renders the weaving model conforming to the weaving metamodel
in Figure 6. The evaluation result can be seen in the right panel,
where the selected relation drives the reading to the maintainability
of the whole system resulted HIGH.

The proposed approach allows to inspect the single elements
composing the MSA model and navigate the related quality evalua-
tion for the executed quality model given as input (for instance the
one proposed in Figure 5).

The result of the evaluation for the quality model in Figure 5
on the whole Acme Air system is summarized in Table 1 since the
model in Figure 7 cannot be exploded to show all the evaluations
covered in the paper. The Acme Air system resulted LOW in Cou-
pling with a result of 0.5, LOW in Cohesion (0.64) and LOW in
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Figure 7: Weaving Quality between the Acme Air MSA model (left) and the evaluated quality model (right)

complexity (5), confirming to have a HIGH level of maintainability
(see formula in Section 2.1).

Table 1: Quality Assessment of the Acme Air architecture

Quality Attribute Evaluation
Coupling LOW
Cohesion LOW
Complexity LOW
Maintainability HIGH

7 DISCUSSION
The MicroQuality approach has been designed specifically for
microservice-based systems. It combines the advantages of the ap-
proach for recovering microservice-based systems presented in [14]
with the advantages of the extensible and generic approach assess-
ing the quality of modelling artefacts published by Basciani et al.
[3].

On the one hand, a limitation of the scope of our approach to
MSA lies in the fact that the used recovery approach relies on spe-
cific sources of information (e.g., Docker files) typically available
only in microservice-based systems. On the other hand, the integra-
tion of MicroQuality with automatic architecture recovery allows
MicroQuality to support continuous quality assessment of MSA
systems –a quite powerful feature– as the architectural models can
be automatically recovered and measured at any point in time.

MicroQuality addresses a growing interest of the community
around the continuous quality assessment of MSA systems, as also

confirmed by Bogner et al.: the potentially very large number of
services makes the automatic gathering of metrics all the more impor-
tant [4]. Moreover, the same authors report that well established
metrics for MSA systems have not been established yet. From this
perspective, the flexibility of MicroQuality is of great value as it
allows to define customised quality attributes for MSA systems.

To the best of our knowledge, well established metrics for MSA
are not yet defined. To address this problem, the same authors in
[4] created a repository of possible metrics for MSA as a first step
towards the identification of suitable metrics in the field. There-
fore, these metrics can be used by architects and developers for
their projects and can be easily integrated into the MicroQuality
approach (we recall that MicroQuality provides the possibility for
its users to define their own quality models and metric providers).
This makes the overall approach more user-centric since the same
users (i.e., architects and developers) can define, use, and share their
own quality specification models.

Inevitably, the current implementation of MicroQuality inher-
its the same limitations of the architecture recovery technique
presented in [14]. Even though the recovery approach aims to be
generic, it still relies on specific sources of information (e.g., Docker
files or similar), which, if not present, makes the architecture recov-
ery technique challenging or difficult to be applied.

As already mentioned in Section 2.2, we have validated our
approach using the Acme Air benchmark. Currently, this seems to
be the only open-source test system available for benchmarking
microservice-based systems [8]. We aim to further improve the
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validation of our MicroQuality approach on a larger MSA system
with a higher number of microservices.

8 RELATED WORK
The approach presented in this paper shows distinguishing charac-
teristics that makes it different from other existing approaches in
the field. First of all, our approach specifically targets the domain of
microservice-based systems. Second, it combines together (and ex-
tends) two different existing approaches: the architecture recovery
approach presented by Granchelli et al. in [15] and the automated
quality assessment approach proposed by Basciani et al. in [3]. To
the best of our knowledge this is the first approach that provides the
possibility to: (i) automatically extract a model of the architecture
of a microservice-based system, (ii) support the customization of
the quality attributes of the system, and (ii) produce quantitative
measures for their assessments.

If we consider the steps of the approach separately, there exists
a number of related works in the field. Concerning architecture
recovery, many approaches exist to recover a model of an existing
system by analysing its source code. In the majority of cases, these
techniques are applicable only to systems developed with mono-
lithic or service-oriented architectures (SOA), while we specifically
target microservice-based systems. Two secondary studies [1, 8]
have reported a possible lack of research in architecture recovery
techniques specific for MSA. Two different approaches have been
published so far: MicroART [15] and MiSAR [2]. MicroART is an
approach for automatic architecture recovery of MSA systems and
leverages its own specific domain-specific language using Model
Driven Engineering techniques. MiSAR [2] is a more recent ap-
proach for architecture recovery and relies on a different set of
concepts mapped on its own specific metamodel. An important
difference between the two approaches is that while MicroART is
automatic, MiSAR relies on a manual process for the definition of
mapping rules as well as for the code inspection.

Concerning the assessment of quality attributes, in MicroQuality
approach metrics are calculated directly on the (recovered) archi-
tectural model of the system. Differently, existing approaches in the
literature often rely on source code analysis. For example, Stormer
presents SQUA3RE [28], a conceptual framework providing a set of
concepts and components for enabling quality attribute analysis on
existing monolith systems. In this work, the definition of quality
attributes is based on the QUA Model [28]. Nuraini and Widyani
present a quality assessment methodology [18] based on the use of
SOA-QEM as quality model. The quality attributes are mapped to
basic metrics, which are evaluated on the source code with the use
of an external tool. Plösch et al. propose an Evaluation Method for
Internal Software Quality (EMISQ) [23] for systematically assessing
the internal software quality of a software system. EMISQ metrics
extraction is performed with tools directly on the system source
code and it is not possible to create customized quality attributes
and apply them to the system evaluation. Goeb and Lochmann [13]
present a unifying meta-model to describe the quality of service-
oriented systems as an enhancement of the Quamoco meta-model.
Their approach relies on the source code analysis. The Quamoco
approach [7, 30, 31] provides a tool chain to both define and assess
software quality. It contains the metamodel with the related editor

and an integration with the quality assessment toolkit ConQAT.
The ConQAT provides the value indicators for quality attribute
specified in the quality model, which are later aggregated to assess
software quality. The ISO Standard 14598 [27] provides a frame-
work for evaluating the quality of software products as well as the
requirements for software measurement and evaluation. However,
the standard does not allow to create customized quality attributes
and apply them to the framework. In [3] Basciani et al. presented an
extensible and generic approach to assess the quality of modelling
artefacts. They proposed a tool chain enabling users to specify
custom quality models, and to apply them on the artefacts being
analysed in order to automatically assess their quality. The pre-
sented application of the proposed approach are real metamodels
and ATL transformations. We partially used the presented tool in
the domain of MSA, extending the approach and redefining the
metric providers for the application. The approach by Basciani et
al. does not allow to inspect the artifacts internally, but we have
overcome this limitation by introducing the weaving model in our
approach. The advantages of focusing on a specific DSL for quality
models allows the MicroQuality approach to overcome the limita-
tion of other existing approaches. We have validated our approach
focusing on the maintainability quality attribute, but the Micro-
Quality approach supports the definition of any quality attributes,
provided that the specific metric provider components are imple-
mented to retrieve the necessary information for the computation
of the metric. This characteristics allows MicroQuality to be more
flexible with respect to other approaches, as for example techniques
based on UML profiles (e.g., UML Marte), which rely on predefined
concepts with the result of being limited in their extensibility and
customization.

A first contribution to the field of maintainability metrics for
microservice-based system has been performed by Bogner et al. [4].
In [4] they present a holistic survey of maintainability metrics
specifically designed for service-based systems, and provide also ini-
tial insights for the applicability of the samemetrics to microservice-
based systems. Authors also suggest that researchers and practi-
tioners can use the identified metrics as a repository to identify
appropriate metrics for their projects. Bogner et al. defined a main-
tainability quality model for service- and microservice-based sys-
tems in [5], but the quality model has not been fully validated
yet.

In this section we have reported on the state of the art in archi-
tecture recovery techniques for microservice-based systems and the
architectural evaluation approaches that are more closely related
to our approach. However, due to the extensive amount of work in
the literature, providing a complete general reference on recovery
techniques and architectural evaluation approaches is unfeasible.
For the interested reader, more information can be found in the
secondary studies published in [1, 8, 21].

9 CONCLUSIONS AND FUTURE WORK
In this paper we have presented MicroQuality, an approach for
the quality evaluation of MSAs. MicroQuality is centered around a
technology-independent architecture model of the system, which
can be specified either manually or automatically via pre-existing
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architecture recovery techniques for MSAs. Model Driven Engi-
neering techniques are used for making MicroQuality independent
from both (i) the modeling language used for representing the ar-
chitecture of the system, and (ii) the quality attributes computed on
the model. Quality attributes live in a dedicated ecosystem of well-
specified and language-independent software quality attributes for
MSAs. MicroQuality has been architected so to enable the contin-
uous quality assessment of MSAs in order to get data-driven and
timely insights in the overall quality of the measured system.

MicroQuality has been evaluated in the context of Acme Air, a
publicly available benchmark system for microservices. We applied
MicroQuality to measure the maintainability of Acme Air, defined
as an aggregation of coupling, cohesion, and complexity of its
microservices.

As future work, we are planning to architect MicroQuality as a
microservice-based system itself, so to make its main components
independently extensible and flexible. We are also developing a
web app for accessing all MicroQuality functionalities in an inte-
grated manner, thus improving its overall usability. This will open
the possibility for performing industrial case studies in which the
ecosystem of quality attributes will be incrementally enriched and
MicroQuality will be used for evaluating the quality of real MSAs
in the context of industrial projects. In this direction, we plan to
extend the quality evaluation applying metrics which can depend
on run-time aspects, e.g., frequency of invocations, frequency of
selection of branches in choices, frequency of services’ failures and
so on.
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