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Single Stock Call Options as Lottery Tickets: Overpricing and
Investor Sentiment

Luiz F�elixa, Roman Kr€ausslb, and Philip Storka

aVU University Amsterdam; bUniversity of Luxembourg

ABSTRACT
The authors investigate whether the overpricing of out-of-the money single stock calls can
be explained by Tversky and Kahneman’s [1992] cumulative prospect theory (CPT). They
hypothesize that these options are expensive because investors overweight small probability
events and overpay for positively skewed securities (i.e., lottery tickets). The authors find
that overweighting of small probabilities embedded in the CPT explains the richness of out-
of-the money single stock calls better than other utility functions. Nevertheless, overweight-
ing of small probabilities events is less pronounced than suggested by the CPT, is strongly
time varying, and most frequent in options of short maturity. The authors find that fluctua-
tions in overweighting of small probabilities are largely explained by the sentiment factor.

KEYWORDS
Cumulative prospect theory;
Investor sentiment; Risk-
neutral densities;
Call options

Introduction

Barberis and Huang [2008] hypothesized that Tversky
and Kahneman’s [1992] cumulative prospect theory
(CPT) explains a number of seemingly unrelated pric-
ing puzzles. In contrast to previous literature, which
concentrates on the CPT’s value function (see
Benartzi and Thaler [1995], Barberis and Huang
[2001]), Barberis and Huang [2008] focused on the
probability weighting functions of the model. They
concluded that the CPT’s overweighting of small
probability events explains why investors prefer posi-
tively skewed returns, or “lottery ticket” type of secur-
ities. Because of such preference, investors overpay for
positively skewed securities, turning them expensive
and causing them to yield low forward returns. The
authors argue that this mechanism is the reason why
IPO stocks, private equity, distressed stocks, single
segment firms and deep out-of-the money (OTM) sin-
gle stock calls are overpriced among other irrational
pricing phenomena.

The proposition made by Barberis and Huang
[2008] that deep OTM single stock calls resemble
overpriced lottery-like securities due to investors’
overweight of tails has not yet been verified empiric-
ally.1 Empirical studies on probability weighting func-
tions implied by option prices are offered by Dierkes

[2009], Kliger and Levy [2009], and Polkovnichenko
and Zhao [2013].2 The evidence provided by these
papers is, however, restricted to the index put options
market, which behaves very differently from the single
stock option market as the main buyers of OTM
index puts are institutional investors seeking portfolio
insurance (Bates [2003], Bollen and Whaley [2004],
Lakonishok et al. [2007], Barberis and Huang 2008).
Despite that, the results of Dierkes [2009] and
Polkovnichenko and Zhao [2013] suggest that over-
weighting of small probabilities partially explains the
pricing puzzle in equity index options.

Contrary to the index put market, trading activity
in single stock calls is concentrated among individual
investors (Bollen and Whaley [2004], Lakonishok
et al. [2007]) and is speculative in nature (Lakonishok
et al. [2007], Choy [2015]). Beyond that, Mitton and
Vorking [2007] and Kumar [2009] provided empirical
support to the link between preference for skewness
and individual investor trading activity. The fact that
many individual investors have a substantial portion
of their portfolios tied up in low-risk investments,
such as pensions, social security, 401(k)s, or IRAs, or
are averse (or constrained) to borrow (Frazzini and
Pedersen [2014]) encourages them to buy financial
instruments with implicit leverage such call options.
Hence, given the very distinct clientele of these 2
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option markets (institutional investors vs. retail invest-
ors) and the different motivation for trading (portfolio
insurance vs. speculation), we reason that the OTM
single stock calls overpricing is a puzzle in itself,
requiring an independent empirical analysis from the
index option market.

The first contribution of our study is to investigate
whether the CPT can empirically explain the claimed
overpricing of OTM single stock call options. We
empirically test whether tails of the CPT density func-
tion outperform the risk-neutral density (RND) and
rational subjective probability density functions on
matching tails of the distribution of realized returns.
We do not use traded options prices, but we calculate
them off implied volatility data. We find that our esti-
mates for the CPT probability weighting function par-
ameter c are qualitatively consistent with the ones
predicated by Tversky and Kahneman [1992], particu-
larly for short-term options. Our estimates do suggest
that overweight of small probabilities is less pro-
nounced than suggested by the CPT. This analysis
complements the results of Barberis and Huang
[2008] and provides novel support to explain the
overpricing of OTM single stock calls. Our empirical
results extend the findings of Dierkes [2009], Kliger
and Levy [2009], and Polkovnichenko and Zhao
[2013] because we show that investors’ overweighting
of small probabilities is not restricted to the pricing of
index puts but it also applies to single stock calls.

Second, we provide evidence that overweighting of
small probabilities is strongly time-varying and con-
nected to the Baker and Wurgler [2007] investor sen-
timent factor. These findings contrast the CPT model,
in which the probability weighting parameter for gains
(c) is constant at 0.61. In fact, our estimates suggest
that the c parameter fluctuates widely around that
level, sometimes even reflecting underweighting of
small probabilities. We show that overweighting of
small probabilities was quite strong during the dot-
com bubble, which coincided with a strong rise in
investor sentiment. The strong time variation in over-
weight of tails indicates that investors have either a
“bias in beliefs” or time-varying (rather than static)
skewness preferences.3

Finally, we find that overweighting of small proba-
bilities is largely horizon-dependent, because this bias,
captured by c, is mostly observed within short-term
options prices rather than in long-term ones (i.e., c
being smaller than 1 for 3- and 6-month options and
being often higher than 1 for 12-month options). We
reason that such positive term structure of tails’ over-
weighting exists because individual investors may

speculate using the cheapest available call at their dis-
posal, that is, they buy the cheapest lottery tickets that
they can find. As 3- and 6-month options have much
less time value than 12-month ones do, more pro-
nounced overweighting of small probabilities within
short-term options seems sensible. This result is con-
sistent with individual investors being the typical
buyers of OTM single stock calls and the fact that
they mostly use short-term instruments to speculate
on the upside of equities (Lakonishok et al. [2007]).

The remainder of this article is organized as fol-
lows. The second section describes the CPT model.
The third section describes the data and methodology
employed in our study. The fourth section presents
our empirical analysis and the fifth section discusses
our robustness tests. The sixth section concludes.

Cumulative prospect theory

The prospect theory (PT) of Kahneman and Tversky
[1979] incorporates behavioral biases into the stand-
ard utility theory, which presumes that individuals are
rational. Such behavioral biases are (a) loss aversion,
(b) risk-seeking behavior, and (c) nonlinear preferen-
ces.4 The CPT is described in terms of a value func-
tion (t) and a probability distortion function (w). The
value function is analogous to the utility function in
the standard utility theory and it is defined relative to
a reference point 0. Therefore, positive values within
the value function are considered as gains and nega-
tive values are losses, which leads to

t xð Þ ¼ xa; if x � 0
�k �xð Þb; if x<0;

�
(1)

where the loss-aversion parameter k� 1, curvature
parameters a and b range between [0,1], and x are
gains or losses. Thus, along the dominium of x, the
CPT’s value function is asymmetrically S-shaped with
diminishing sensitivity as x! 61.

The value function is, thus, concave over gains and
convex over losses, differently from the traditional
utility function used by standard utility theory. Such a
shape of the value function implies diminishing mar-
ginal values as gains or losses increase, which means
that any additional unit of gain (loss) becomes less
relevant when wealth increases (decreases). As a and
b increase, the effect of diminishing sensitivity
decreases, and as k increases the degree of loss aver-
sion increases. The value function has a kink at the
reference point, which implies loss aversion, as the
function is steeper for losses than for gains.
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Furthermore, the CPT also embeds a probability
distortion function or a decision weight function. This
function takes probabilities and weights them nonli-
nearly, so that the difference between probabilities at
high percentiles (e.g., between 99% and 100%) has
more impact on preferences than the difference
between probabilities at small percentiles (e.g.,
between 10% and 11%). The CPT applies probability
distortions to the cumulative probabilities (CDF),
whereas the PT applies them to the probability density
function (PDF). The enhancement brought by this
new formulation satisfies stochastic dominance condi-
tions not achieved by the PT, which renders the CPT
applicable to a wider number of experiments. The
parametric form of the probability distortion functions
suggested by Tversky and Kahneman [1992], respect-
ively, for gains wþ and losses w- are:

wþ pð Þ ¼ pc

pc þ 1�pð Þc� �1=c ; (2a)

w� pð Þ ¼ pd

pd þ 1�pð Þd
� �1=d ; (2b)

where the parameters c and d define the curvature
of the weighting function for gains and losses,
which leads the probability distortion functions to
assume inverse S-shapes. As a result, low probability
events are overweighted at the cost of moderate and
high probabilities. The parameters estimated by
Tversky and Kahneman [1992] for the CPT model,
which are discussed in the following empirical ana-
lysis, are k¼ 2.25, b¼ 0.88, a¼ 0.88, c¼ 0.61,
and d¼ 0.69.

Data and methodology

In this section, we first describe the theoretical back-
ground that allows us to relate empirical density func-
tions (EDFs), RND, and subjective density functions.
This is a key step for testing the hypothesis that the
CPT helps to explain overpricing of OTM options,
because we build on the assumption that investors’
subjective density estimates should correspond, on
average, to the distribution of realizations (see Bliss
and Panigirtzoglou [2004]). This implies that investors
are somewhat rational. This assumption is not incon-
sistent with the CPT assumption that the representa-
tive agent is less than fully rational. The CPT suggests
that investors are biased, not that decision makers are
utterly irrational to the point that their subjective
density forecast should not correspond, on average, to
the realized return distribution. Thus, testing whether

the CPT’s weighting function explains the overpricing
of OTM options, ultimately, relates to how the sub-
jective density function produced by CPT’s preferen-
ces matches empirical returns. Because the
representative agent is not observable, subjective dens-
ity functions are not estimable like EDF and RND are.
As such, we build on the following theory to derive
subjective density functions from RNDs.

In our empirical exercise, we first derive subjective
density functions for (a) the power and (b) exponen-
tial utility functions. Because the CPT model contains
not only a utility function (the value function), but
also the weighting function, we produce 2 density
functions: (c) the hereafter called partial CPT density
function (PCPT), in which only the value function is
taken into account, and (d) the CPT density function,
in which both the value and the weighting functions
are considered. Last, we also calibrate the CPT’s prob-
ability weighting function parameter c to market data
and are, then, able to compute (e) the estimated CPT
density (ECPT). We provide details on estimation
methods for our 5 subjective density functions, a–e, in
the Subjective Density Functions section, and for the
RND and EDF in the Estimating RND and
EDF section.

Once all 5 subjective density functions are
obtained, we distinguish 4 analyses in our empirical
analysis section: (a) the estimation of long-term CPT
value and weighting function parameters (from which
we can produce the ECPT density) (see Estimated
CPT Long-term Parameters section); (b) EVT-based
tests of consistency between tails of the EDF, the
RND, and our 5 subjective probability distributions
(Density Functions Tails’ Consistent Test Results sec-
tion); (c) the estimation of time-varying c parameter
(Estimated CPT Time-Varying Parameter section);
and (d) a regression linking the CPT time-varying
probability weighting parameter (c) to sentiment
measures as well as numerous control variables (Time
Variation in the Probability Weighting Parameter and
Investor Sentiment section).

We use single stock weighted average IV data used
for the largest 100 stocks of the S&P 500 index within
our RND estimations. Appendix A.1 shows how single
stock weighted average IV are computed. Weights
applied are the S&P 500 index weights normalized by
the sum of weights of stocks for which IVs are avail-
able. Following the S&P 500 index methodology and
the unavailability of IV information for every stock in
all days in our sample, stock weights in this basket
change on a daily basis. The sum of weights is, on
average, 58% of the total S&P 500 index capitalization
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and it fluctuates between 46 and 65%. The IV data
comes from closing mid-option prices from January 2,
1998 to March 19, 2013 for fixed maturities for 5
moneyness levels (i.e., 80, 90, 100, 110, and 120) at 3-,
6-, and 12-month maturity. Continuously com-
pounded stock market returns are calculated through-
out our analysis from the basket of stocks weighted
with the same daily varying loadings used for aggre-
gating the IV data. A index is calculated from this
stream of returns, which we call the realized return
index. IV data and stock weights are kindly provided
by Barclays.5 Single stock returns are downloaded
via Bloomberg.

We take the perspective of end-users of single-
stock OTM call options. Hence, we assume that sup-
ply imbalances are minimal and do not impact IVs.
We think this assumption is reasonable because (a)
option markets for the largest 100U.S. stocks are
liquid, (b) any unhedged risk run by market makers
can be easily hedged by purchasing the stock, and (c)
unhedged risk by market makers is likely much
smaller when supplying call options relative to put
options. Market makers run little unhedged risk
when supplying call options vis-�a-vis supplying puts
because stocks returns are negatively skewed, making
gap and jump risk much lower on the upside than
on the downside. Gârleanu et al. [2009] showed that
this condition is different for the index option mar-
ket, where market makers mostly provide put options
for portfolio insurance programs. This implies that
put sellers become more risk sensitive following
equity market declines, as their un-hedged risk
increases, which makes them unwilling to write add-
itional puts to the market. Our IV data show no
indication of an increase in the IV skew from 120%
moneyness options, nor from at-the-money options
around moments of market stress (e.g., the
2008–2009 global financial crisis). Hence, we find no
evidence of the presence of supply imbalances in the
OTM calls in our sample.

Subjective density functions

Standard utility theory tells us that since the represen-
tative agent does not have risk-neutral preferences,
RNDs are inconsistent with subjective and EDF, thus
both “real-world” probabilities. Hence, if investors are
risk averse or risk seeking, their subjective probability
function should differ from the one implied by option
prices. The relation between the RND,fQ STð Þ, and
“real-world” probability distributions, fP STð Þ, with
ST being wealth or consumption, is described by

f STð Þ;the pricing kernel or the marginal rate of substi-
tution (of consumption at time T for consumption
at time t):

fQðSTÞ
fPðSTÞ ¼ K

U 'ðSTÞ
U 'ðStÞ

� f STð Þ; (3)

where K is the subjective discount factor (the time-
preference constant) and U �ð Þ is the representative
investor utility function.

As CPT-biased investors price options as if the
data-generating process has a cumulative distribution
FeP STð Þ ¼ w FP STð ÞÞ

�
, where w is the weighting func-

tion, its density function becomes feP STð Þ ¼
w0 FP STð ÞÞ � fP STð Þ
�

(see Dierkes [2009], Polkovnichenko
and Zhao [2013]) and Equation 3 collapses into
Equation 4:

fQ STð Þ
w' FP STð ÞÞ � fP STð Þ ¼ f STð Þ:
� (4)

which, rearranged into Equation 6 via Equations 5a
and 5b, demonstrates that for the CPT to hold, the
subjective density function should be consistent with
the probability-weighted EDF:

fQðSTÞ|fflfflfflffl{zfflfflfflffl}
RND

¼ w0ðFPðSTÞÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
probability weigthing

� fPðSTÞ|fflfflffl{zfflfflffl}
EDF

� fðSTÞ|fflffl{zfflffl}
pricing kernel

; (5a)

fQðSTÞ|fflfflfflffl{zfflfflfflffl}
RND

¼ f ePðSTÞ|fflfflffl{zfflfflffl}
probability weigthing EDF

� fðSTÞ|fflffl{zfflffl}
pricing kernel

; (5b)

fQðSTÞ
K U 0 ðSTÞ

U 0 ðStÞ
¼ fQðSTÞ

fðSTÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Subjective density

¼ f ePðSTÞ|fflfflffl{zfflfflffl}
probability weigthed EDF

(6)

Following Bliss and Panigirtzoglou [2004],
Equation 6 can be manipulated so that the time-pref-
erence constant K of the pricing kernel vanishes, pro-
ducing Equation 7, which directly relates the
probability weighted EDF, the RND, and the marginal
utility, U 0 STð Þ:

f ePðSTÞ|fflfflffl{zfflfflffl}
probability weigthed EDF

¼
K U 0ðSTÞ

U 0ðStÞ QðSTÞð
U 0ðStÞ
U 0ðxÞ QðxÞdx

¼
fQðSTÞ
U 0ðSTÞð
fQðxÞ
U 0ðxÞ dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Generic Subjective density function

;

(7)

where
Ð Q xð Þ
U 0 xð Þ dx normalizes the resulting subjective

density function to integrate to 1. Once the utility
function is estimated, Equation 8 allows us to convert
RND into the probability weighted EDF. As the CPT
marginal marginal utility function is
U 0 ¼ tðSTÞ¼ v0 STð Þ, and thus, v0 STð Þ¼ aSTa�1 for
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ST � 0, and v0 STð Þ ¼ �kb �STð Þb�1 for ST < 0, we
obtain Equations 8 and 9:

fePðSTÞ ¼
fQðSTÞ
a ST a�1ð
fQðxÞ
axa�1 dx

for ST � 0; and (8)

fePðSTÞ|fflffl{zfflffl}
probability weigthed EDF

¼
fQðSTÞ

�kbð� STÞb�1ð
fQðxÞ

�kbð�xÞb�1 dx|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Partial CPT density function

for ST<0:

(9)

Equations 8 relates the probability-weighted EDF,
which uses the CPT probability distortion functions
for weighting, to the subjective density function
derived from the CPT value function for gains. We
call the RHS the partial CPT density function (PCPT),
as it does not embed the probability function.
Equation 9 is the corresponding equation for losses.
As the function w FP STð ÞÞ

�
is strictly increasing over

the domain [0,1], there is a 1-to-1 relationship
between w FP STð ÞÞ

�
and a unique inverse w�1 FP STð ÞÞ

�
.

So, the result feP STð Þ ¼ w0 FP STð ÞÞ � fP STð Þ
�

also implies
feP STð Þ w�1ð Þ0 FP STð ÞÞ ¼ fP STð Þ

�
. This outcome allows

us to directly relate the original EDF to the CPT sub-
jective density function, by “undoing” the effect of the
CPT probability distortion functions within the PCPT
density function:

fP STð Þ|fflffl{zfflffl}
EDF

¼
fQ STð Þ
v0 STð ÞÐ fQ xð Þ
v0 xð Þ dx

w�1ð Þ0 FPðSTð ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
CPTdensityfunction

; (10)

where, v0 STð Þ is the CPT’s marginal utility function.
This result allows us to obtain a clear representa-

tion of the CPT subjective density function, thus,
where the value and the weighting function are simul-
taneously taken into account. At this stage, we can
evaluate to what extent the tails of the RND and the
set of our subjective densities match the tails of the
realized distribution.

Estimating CPT parameters

We start evaluating the empirical validity of the CPT
for single stock call options by comparing EDF to the
CPT density function parameterized by Tversky and
Kahneman [1992]. Subsequently, we estimate CPT
weighting function parameters k and c with the same
goal. We estimate these parameters nonparametrically,
by minimizing the weighted squared distance between
physical distribution and the partial CPT density

function for every bin above the median of the 2 dis-
tributions, as follows:

t kð Þ ¼ Min
XB
b¼1

Wb EDFb
prob�CPTb

prob

� �2
; (11)

where EDFb
prob and CPTb

prob are, respectively the prob-

ability within bin b in the empirical and CPT density
functions and Wb are weights given by

1= 1ffiffiffiffi
2p
p
Ð1
0:5 e

�x2=2dx ¼ 1, the reciprocal of the normal-

ized normal probability distribution (above its
median), split in the same total number of bins (B)
used for the EDF and CPT. The loss aversion param-
eter, k, in Equation 11 is optimized using multiple
constraint intervals: [0,3], [0,5], and [0,10].6 Once the
optimal k is known, we minimize Equation 12 using
its estimate and the CPT k:

wþ c; d ¼ cð Þ ¼ Min
XB
b¼1

Wb EDFbprob�CPTb
prob

� �2
; (12)

where c, the probability weighting parameter for
gains, is constrained to by the permutation of the fol-
lowing upper bounds (1.2, 1.35, 1.5, 1.75, and 2) and
lower bounds (–0.25, 0 and 0.28).7 Weights applied in
these optimizations are due to the higher importance
of matching probabilities tails in our analysis than the
body of the distributions.

Our nonlinear bounded optimization is a single
parameter one, where we first estimate optimal
c(which we impose to equal dÞ across all permutations
of upper and lower bounds to select the bounds that
produce the lowest residual sum of square (RSS).
Subsequently, we estimate k and c as suggested by the
sequence of optimizations described by Equations 11
and 12. This method resembles the ones of Kliger and
Levy [2009], Dierkes [2009], and Polkovnichenko and
Zhao [2013]. Once optimal parameters k and c are
estimated, we can produce another long-term subject-
ive density function: the ECPT, in which we apply the
optimal c for the characterization of its probability
weighting function. Finally, we also estimate time-
varying c using different assumptions of k so to evalu-
ate the sensitivity of c to changes in k.

Density Function Tails’ Consistency Test

We check for tail consistency of our set of 5 subjective
density functions (CPT, PCPT, ECPT, power, and
exponential), RND, and the EDF by applying extreme
value theory (EVT). EVT allows us to estimate the
shape of the tails of these 7 PDFs and to extract the
returns implied by an extreme quantile within our
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PDFs. We estimate the tail shape estimator (u) by
means of the Hill [1975] estimator:

û ¼ 1

ĥ
¼ 1

k

Xk
j¼1

ln
xj

xkþ1

	 

; (13)

where k is the number of extreme returns used in the
tail estimation, and xkþ1is the tail cutoff point. The
tail shape estimator u measures the curvature (i.e., the
fatness of the tails of the return distribution): a high
(low) u indicates that the tail is fat (thin). The inverse
of u is the tail index (h), which determines the tail
probability’s rate of decay. A high (low) h indicates
that the tail decays quickly (slowly) and, therefore, is
thin (fat). The tail shape estimator and tail index give
us a good representation of the curvature of the tails,
but since tails may have the same shape while estimat-
ing diverse extreme observations, we focus on the
semiparametric extreme quantile estimator used by
Straetmans et al. [2008]:

q̂p ¼ xkþ1
k
pn

	 
1
ĥ

; (14)

where n is the sample size, p is the corresponding
exceedance probability, which means the likelihood
that a return xj exceeds the tail value q, and xkþ1is the
tail cutoff point. The choice of the optimal value of k,
and thus the tail cut-off point, xkþ1, is made through
the use of Hill-plots, see Hill [1975] and the Density
Functions Tails’ Consistent Test Results section for
empirical details. We note that, as û ¼ 1

ĥ
, q̂p depends

on the tail shape estimator u. Similar to value-at-risk
(VaR) modeling, the q̂�p statistic indicates the level of
the worst return occurring with probability p, which
is small. This is the reason why we call q̂p extreme
quantile return (EQR). As we are interested only in
the upside returns with a p probability estimated from
calls, we only compute q̂þp by applying the same
methodology to the right side of the RND obtained
from the single stock option market.

In addition to the EQR, we also evaluate the dens-
ity function tails using expected shortfall (ES), which
captures the average loss beyond the tail cutoff point.
As we are interested in the upside of the distribution,
we call such measure expected upside (EU) as the
average gain beyond the tail cut-off point. We evalu-
ate the EU following Danielsson et al. [2006] formulae
for the ES, which relates the EQR (i.e., the VaR) to
the ES (i.e., the CVaR) as described in the following:

ÊUq pð Þ ¼
ĥ

ĥ � 1
�xkþ1 k

pn

	 
1
ĥ

; (15)

where h is the tail index. Straetmans et al. [2008] used

the tail quantile statistic
ffiffi
k
p

ln k
pkð Þ ln

q̂ pð Þ
q pð Þ

h i
;which is asymp-

totically normally distributed, in a t test as follows:

Tq ¼ q̂1�q̂2
r q̂1�q̂2½ � � N 0; 1ð Þ; (16)

where the denominator is calculated as the boot-
strapped difference between the estimated quantile
parameters q̂p using 1,000 bootstraps. The null

hypothesis of this test is that the q̂p parameters do not

come from independent samples of normal distribu-
tions, therefore, q̂1 ¼ q̂2. The alternative hypothesis is
that the q̂p parameters have unequal means. Such t

test is also applied to our EU analysis, as the distribu-
tion of the EU follows the same distribution of the

tail quantile statistic
ffiffi
k
p

ln k
pkð Þ ln

q̂ pð Þ
q pð Þ

h i
, given that the EU is

the extreme quantile estimator multiplied by
a constant.

Estimating RND and EDF

For the estimation of the RND, the first step taken is
the application of the Black-Scholes model to our IV
data to obtain options prices (C) for the S&P 500
index. Note that we calculate these options prices off
our IVs sample and we do not use traded options
data. Once our data is normalized so strikes are
expressed in terms of percentage moneyness, the
instantaneous price level of the S&P 500 index (S0)
equals 100 for every period for which we would like
to obtain implied returns. Contemporaneous dividend
yields for the S&P 500 index are used for the calcula-
tion of P as well as the risk-free rate from 3-, 6-, and
12-month T-bills. We implement a modified Figlewski
[2010] method for extracting our RND structure, as in
Felix et al. [2016].8

We estimate the EDF in 2 different ways. First,
using the entire sample of realized returns (r), we esti-
mate the long-term EDFs nonparametrically, where
r¼ ln(ST/St) and St is the realized return index at time
t, and ST is the forward level of the same index 3, 6,
or 12 months forward (i.e., 21, 63, and 252 days for-
ward, respectively). Because of overlapping periods,
we initially estimate our empirical distribution from
nonoverlapping returns for these 3 maturities by using
distinct starting points. This methodology was also
applied by Jackwerth [2000] and Ait-Sahalia and Lo
[2000]. However, because the length of the overlap-
ping periods is relatively large compared with our
total sample, especially for the 12-month forward
returns, we average the distribution with distinct
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starting points to prevent that our results are sensitive
to any distribution (with specific starting point) used9.

In a second step, we estimate time-varying EDFs
built from an invariant component, the standardized
innovation density, and a time-varying part, the con-
ditional variance (r2tjt�1) produced by an EGARCH
model. We first define the standardized innovation,
being the ratio of empirical returns and their condi-
tional standard deviation (ln St=St�1ð Þ=rtjt�1) produced
by the EGARCH model. From the set of standardized
innovations produced, we can then estimate a density
shape (i.e., the standardized innovation density). The
advantage of such a density shape versus a parametric
one is that it may include the typically observed fat-
tails and negative skewness, which are not incorpo-
rated in simple parametric models (e.g., the normal).
This density shape is invariant and it is turned time
varying by multiplication of each standardized innov-
ation by the EGARCH conditional standard deviation
at time t, which is specified as follows:

ln St=St�1ð Þ ¼ lþ et; etf
�

0; r2tjt�1
� �

; (17a)

and

r2tjt�1 ¼ x1 þ ae2t�1 þ br2t�1jt�2 þ #Max 0;�et�1½ �2;
(17b)

where a captures the sensitivity of conditional vari-
ance to the lagged squared innovations (e2t�1), b cap-
tures the sensitivity of the conditional variance to the
conditional variance (r2t�1jt�2Þ, and # allows for the
asymmetric impact of lagged returns
(#Max½0;�et�1�2). The model is estimated using max-
imum log-likelihood in which innovations are
assumed to be normally distributed.

Up to this point, we managed to produce a 1-day
horizon EDF for every day in our sample but we still
lack time-varying EDFs for the 3-, 6-, and 12-month
horizons. Thus, we use bootstrapping to draw 1,000
paths towards these desired horizons by randomly
selecting single innovations etþ1ð Þ from the 1-day
horizon EDFs available for each day in our sample.
We note that once the first return is drawn, the con-
ditional variance is updated (r2t�1jt�2Þ affecting the
subsequent innovation drawings of a path. This
sequential exercise continues through time until the
desired horizon is reached. To account for drift in the
simulated paths, we add the daily drift estimated from
the long-term EDF plus the risk-free rate to drawn
innovations, thus the 1-period simulated returns is
etþ1 þ lþ Rf . The density functions produced by the
collection of returns implied by the terminal values of
every path and their starting points are our 3-, 6-, and

12-month EDFs. We note that by drawing returns
from stylized distributions with fat tails and excess
skewness, our EDFs for the 3 relevant horizons also
embed such features. Finally, once these 3 time-vary-
ing EDFs are estimated for all days in our sample, we
estimate c for each of these days using Equation 12.10

Our approach for estimating both the long-term
EDF and the time-varying EDF is closely connected to
the method applied by Polkovnichenko and Zhao
[2013], which is based on Rosenberg and Engle
[2002]. The choice for an EGARCH approach versus
the standard GARCH model is due to the asymmetric
feature of the former model that embeds the “leverage
effect,” which is the negative correlation between an
asset’s returns and changes in its volatility (see
Bollerslev et al. [2009]).

Empirical analysis and results

In this section, we present our empirical results. As
we estimate EDF in the 2 ways described (the long-
term and time-varying EDFs), we are able to estimate
long-term and time-varying cs by minimizing
Equation 12. We use our long-term c estimates to
compare the ECPT to the other subjective density
functions using the tests described in the section
Density Function Tails’ Consistency Test. The time-
varying estimates of c are analyzed in Estimated CPT
Time-varying Parameters and Time Variation in the
Probability Weighting Parameter and Investor
Sentiment sections with the use of a regression model.

Estimated CPT long-term parameters

We report the estimated CPT parameters (k and c)
extracted from long-term density functions in Table 1,
Panel A. We find that k, the parameter of loss aver-
sion, which is 2.25 in the CPT shows a quite different
outcome for 3-month option, 1.02, which indicates no
loss aversion. For the 6- and 12-month options k is
2.66 and 3.00, respectively. This finding suggests that
loss aversion is more pronounced at longer maturities
than suggested by the CPT. Apart from that, 12-
month k estimates vary strongly across the different
optimization upper bounds used (i.e., 3, 5 and 10),
always matching the bound value,11 whereas estimates
from 3- and 6-option maturities are very stable across
upper bounds.

The estimated probability weighting function par-
ameter c is slightly higher than the one suggested by
the CPT (i.e., 0.61) at the 3- and 6-month horizons at
0.75 and 0.81, respectively. For 12-month options, c is
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around 1.09. These results suggest that overweighting
of small probabilities occurs in short-term options (up
to 6 months), while 12-month options seem to behave
more rationally. These findings support our hypoth-
esis that individual investors are, on average, biased
when purchasing single stock call options, as sug-
gested by Barberis and Huang [2008].

Density Functions Tails’ Consistency Test results

As specified in Density Function Tails’ Consistency
Test section, we test the empirical consistency of
density function tails among a set of 5 subjective dis-
tributions (CPT, PCPT, ECPT, power, exponential),
the RND, and the EDF. We employ EVT through
Equations 13–16. We require return streams (xjÞ,
which are only available for the long-term EDF. Thus,
we apply an inversion transform sampling technique
to our other PDFs to obtain sampled returns12.

Once we obtain returns for all 5 PDFs, the next
step is to set k as the optimal number of observations
used for estimation of u by Equation 13, the Hill esti-
mator. We produce Hill plots for the right tail of our
distributions, which depict the relationship between k
and u as a curve (see Straetmans et al. [2008]).
Picking the optimal k is done by observing the inter-
val in this curve where the value of stabilizes while k
changes. In this area there is a stable trade-off
between a good approximation of the tail shape by
the Pareto distribution and the uncertainty of such
approximation (using fewer observations). The inter-
val that corresponds to 4–7% of observations is the
most stable region across the Hill-plots of the tails of
the EDF and the CPT. As an increase in k increases
the statistical power of the estimator but may distort
the shape of the tail, we decide to set k as chosen

from the Hill-plots equal to 4%. Subsequently, the
shape estimator u for the EDF, RND, power, expo-
nential, PCPT, CPT, and ECPT is computed, extreme
quantile returns (EQRs) can also be estimated via
Equation 14. Once k is determined, the tail cutoff
point xkþ1 follows automatically. Subsequently, the t
test in Equation 16 is applied to evaluate whether the
EQRs estimated from a set of 2 distributions (RND,
power, exponential, PCPT, and CPT vs. EDF) have
equal means (the null hypothesis). The results of this
test are shown in Table 2, Panel A.

For the 3-month option maturity, we find that the
EQR implied by the CPT is the only one that matches
the realized EQR. The EQR implied by the ECPT is
almost the same as implied by the CPT, thus, it also
statistically matches the EDF. Per contrast, the EQRs
for the RND, power, exponential, and PCPT densities
always overshoot the one for the EDF. All other com-
parisons between these distributions’ EQR at the 3-
month maturity reject the null hypothesis that returns
at the same quantile are equal. This empirical finding
indicates that the equity market upside implied in
option markets (i.e., the RND) and the power, expo-
nential and PCPT densities are always higher than the
ones realized by the equity market. The EQRs from
the CPT and the ECPT are clearly the best matches
for the EDF. For the 6-month maturity, upside
returns priced by the RND and ECPT best match the
EQR. No rational subjective density function consist-
ently matches the EQR of the EDF, as they almost
always overshoot it. Per contrast, the CPT density
always undershoots the EDF’s extreme returns. The
PCPT is the only other subjective density (apart from
the ECPT) that has an EQR statistically equal to the
EDF. In contrast to the 3- and 6-month maturities,
the EQRs from the RND for the 12-month maturity
all underestimate the EQRs from realized returns. The
same underestimation is documented for the PCPT,
CPT and ECPT.

In line with these results for the EQR, Table 2,
Panel B, shows that the expected upside (EU) for the
EDF in the 3-month horizon more closely matches
the EU for the CPT and ECPT density functions.
Similar to our analysis on the EQR, for the other sub-
jective densities, the EUs for all quantiles are also
much larger than the EDF expected upside. For the 6-
months maturity, the expected upsides for the CPT
and ECPT density functions are no longer close to
each other nor to the realized ones. The densities that
better match the expected upside of the EDFs are the
PCPT and the RND. For the 12-month horizon, in

Table 1. Long-term CPT parameters and consistency test on
tail shape.

Gamma (c) Lambda (k), (cjk̂)
Maturity Estimate RSS Estimate RSS Estimate RSS

3 months 0.75 0.02 1.02 0.12 0.54 0.01
6 months 0.81 0.02 2.66 0.30 0.87 0.02
12 months 1.09 0.06 3.00 1.64 1.12 0.07

Note. This table reports the estimated long-term CPT parameters gamma
(c), lambda (k), and c conditional on optimal k (cjk̂) from the single
stock options as well as optimizations’ residual sum of squares (RSS) of
Equations 11 and 12. The parameter c defines the curvature of the
weighting function for gains, which leads the probability distortion
functions to assume inverse S-shapes. Estimated parameters close to
unity lead to weighting functions that are close to un-weighted proba-
bilities, whereas parameters close to zero denotes a larger overweight-
ing of small probabilities. The parameter k is the loss aversion
parameter. These parameters are long-term since their estimates are
obtained by setting the average CPT density functions to match the
return distribution realized within our full sample. These parameters are
estimated using Equations 11 and 12.
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line with the results from our EQR analysis, the power
density best matches realized EUs.

In summary, across the 3 EVT tests performed
(i.e., on tail shape, EQR, and EU), the 3 option matur-
ities and the 3 quantiles evaluated, we observe that
the success rate of the CPT subjective density func-
tions on matching the EDF tails is 57%. In contrast,
this success rate is 38% for the power utility, 33% for
the RND and only 10% for the exponential utility
density function. These results suggest that CPT-
related distributions best match the EQR of the EDF,
especially at the short maturities.

These findings reiterate our takeaway from the
Estimated CPT Long-Term Parameters section: 12-
month options are priced more rationally than
shorter-term ones, which seem to be priced as a result
of lottery buying by individual investors. Figure 1
compares the CDFs from 6 of our equity return den-
sities: the EDF, the RND, the CPT, the PCPT, the
exponential-utility density, and the power-utility dens-
ity.13 We focus on the right tails of these distributions,
as we are interested in how closely the RND from call
options and derived subjective density functions
match the tails of the EDF.

In Figure 1, we see that the tails implied by option
prices (RND, in red) are fatter than the tails from the
CPT (in dark blue) and EDF (in green) density func-
tions over the 3-month horizon. The right tail of the
RND distribution is thinner than the ones of the
PCPT, the exponential- and the power-utility den-
sities. Thus, the upside risk implied from options is
much higher than the one realized by the EDF, a sign
of a potentially biased behavior by investors in such
options. This observation is confirmed by the EQRs
and the EU estimated across the different quantiles,
which in all cases report higher upside in the RND

than in the EDF and the CPT. Figure 1 also suggests
that the upside risk of the RND is more consistent
with the PCPT density, whereas the CPT tails seem
very distinct from the PCPT, which is in line with our
earlier findings. The plot in column B, which depicts
the CDF at the 6-month horizon, suggests that the
RND and the EDF are closer than at the 3-month
horizon. At the same time, the CPT density seems
more disconnected from the EDF. These findings
match our results from the EQR and the expected
upside comparisons. The PCPT tail is, at this horizon,
higher than the EDF, CPT, and RND ones and closer
to the EDF one than to the CPT, which matches our
findings from EQR and the expected upside tests. The
exponential and power utility densities have right tails
that are much fatter than the other densities, includ-
ing the EDF. Figure 1 shows that at the 12-month
horizon the CPT’s CDF tails seem completely discon-
nected from the EDF. The EDF tails are much fatter
than the CPT ones and slightly fatter than the RND
ones. The RND seems to match the EDF the best,
suggesting long-term options trade more rationally
than short-term ones.

Overall, Figure 1 confirms our hypothesis that end-
users of OTM single stock calls are likely biased and
behave as buying lottery tickets when trading short-
term options. These results strengthen the evidence
provided by Ilmanen [2012], Barberis [2013], Conrad
et al. [2013], Boyer and Vorkink [2014], and Choy
[2015], who showed that investors push single stock
option prices to extreme valuation levels.

Estimated CPT time-varying parameters

To further investigate time-variation in the CPT’s
overweighting of small probabilities in single stock

(A) 3-month horizon (B) 6-month horizon (C) 12-month horizon
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Figure 1. Cumulative density functions. This figure shows 3 plots that depict the cumulative density function (CDF) for equity
returns obtained from the empirical density function (EDF), the risk-neutral density (RND), and the 4 subjective density functions:
(a) the power utility density, (b) the exponential utility density, (c) the cumulative prospective theory density (CPT), and the partial
CPT (PCPT). The equity returns’ CDFs from these 6 sources are presented for the 3-, 6-, and 12-month horizons. The plots display
cumulative probabilities on the y-axis and the terminal price levels on the x-axis, given an initial price level of 100.
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options, we apply Equation 12 to each day in the sam-
ple to estimate the c (weighting function) parameter.
Lower and upper bounds of –0.25 and 1.75 are used
in this optimization as they produce the lowest RSS
across permutation of all bounds when using the CPT
parameterization. We estimate c under 4 different
assumptions about the loss aversion parameter: () k
equals 2.25, the CPT parameterization; (b) no loss
aversion, k equals 1; (c) augmented loss aversion, k
equals 3; and (d) optimal k, as estimated by
Equation 11.

Table 3, Panel A reports the statistics when k
equals 2.25. We find that the median and mean time-
varying values of c, estimated from the 3-month
options, are above its CPT value of 0.61 but still
reflect overweight of small probabilities. This finding
suggests that overweighting of small probabilities is
present within the pricing of 3-month call options as
suggested by the theory. The distribution of c is
skewed to the right and overweight of small probabil-
ities is present 64% of times within the 3-month
maturity. The 25th percentile of c is 0.74, clearly sug-
gesting a less pronounced overweight of small proba-
bilities than suggested by the CPT. Interestingly, when
we split the sample in 3 parts (Table 3), we observe
that overweight of small probabilities is most strongly
present at the beginning of our sample, in 97% of the
days from January 5, 1998, to January 30, 2003, but
that has it faded since 2003. This finding suggests that
overpricing of single stock options is not structural,

which only partially confirms our hypothesis that the
CPT can empirically explain the overpricing of OTM
single stock call options.

At the 6-month maturity, overweighting of small
probabilities is less frequent than in the 3-month
tenor. The long-term c equals 0.81 and is somewhat
out of sync with the time-varying estimates. Similarly,
to the 3-month maturity, the distribution of c is also
slightly skewed to the right and the 75th quantile of c
equals 1.14, suggesting an underweighting of tail prob-
abilities. However, probability overweighting again
decreases over time as within the overall sample.
Differently from the other maturities, c estimates for
the 12-month maturity tend toward underweight of
tail probabilities, with median c of 1.03 and a mean c
of 1.01.

In summary, the statistics in Table 3, Panel A, indi-
cate that the weighting function parameters c for all 3
maturities are time varying. Overweight of small prob-
abilities holds for the 3-month maturity, less convin-
cingly so for the 6-month maturity, and not at all for
the 12-month maturity.

As the loss-aversion parameter k is of high import-
ance in the CPT model, we estimate c under different
k parameterizations, more specifically, for (a) k equals
1; (b) k equals 3; (c) optimal k, as estimated from the
long-term empirical distribution (see Table 1). We
report these estimates in Panel B of Table 3, when we
assume k equals 1. The estimates for c in all 3 matur-
ities fall strongly compared with the estimates under

Table 3. Time-varying gamma parameter.
Maturity Min 25% Qtile Median Mean 75% Qtile Max StDev % c<1 % c<1 (98-03) % c<1 (03-08) % c<1 (08-13) RSS

Panel A – Gamma with CPT loss aversion (k¼ 2.25)
3 months – 0.74 0.91 0.89 1.04 1.75 0.23 64% 97% 35% 59% 0.0209
6 months – 0.81 0.99 0.96 1.14 1.75 0.28 52% 92% 18% 46% 0.0170
12 months 0.04 0.91 1.03 1.01 1.14 1.75 0.22 41% 83% 11% 29% 0.0225
Panel B – Gamma with no loss aversion (k¼ 1)
3 months 0.32 0.52 0.66 0.67 0.80 1.27 0.18 97% 100% 94% 97% 0.0253
6 months 0.32 0.55 0.71 0.72 0.87 1.75 0.21 90% 98% 79% 92% 0.0198
12 months 0.29 0.62 0.83 0.80 0.98 1.75 0.22 81% 98% 63% 83% 0.0169
Panel C – Gamma with augmented loss aversion (k¼ 3)
3 months 0.45 0.81 0.96 0.98 1.11 1.75 0.25 58% 93% 27% 53% 0.0230
6 months 0.38 0.89 1.02 1.06 1.25 1.75 0.25 45% 83% 13% 38% 0.0196
12 months 0.37 0.98 1.07 1.09 1.19 1.75 0.21 31% 66% 6% 22% 0.0265
Panel D – Gamma with optimized loss aversion
3 months 0.33 0.52 0.66 0.67 0.81 1.75 0.18 97% 100% 93% 97% 0.0249
6 months 0.37 0.86 1.01 1.02 1.17 1.75 0.24 47% 86% 15% 40% 0.0187
12 months 0.34 0.96 1.05 1.06 1.17 1.75 0.20 35% 73% 8% 24% 0.0250

Note. This table reports the summary statistics of the estimated CPT time-varying parameter gamma (c) from the single stock options market for each
day in the full sample across different values of lambda (k). The parameter k is the loss aversion parameter and the parameter c defines the curvature
of the weighting function for gains, which leads the probability distortion functions to assume inverse S-shapes. An estimated c parameter close to
unity leads to a weighting function that is close to the unweighted probabilities, whereas values close to zero denote a larger overweighting of small
probabilities. The column with heading % c < 1 reports the percentage of observations in which c < 1, thus, the proportion of the sample in which
overweight of small probabilities is observed. We report this metric for the full sample as well as for 3 equal-sized splits of our full sample, namely:
(98-03), from January 5, 1998, to January 30, 2003; (03-08), from January 31, 2003, to February 21, 2008; and (08-13), from February 22, 2008, to March
19, 2013. Panel A reports the summary statistics of c when we assume the CPT parameterization, where k equals 2.25. Panel B reports the summary
statistics of c when we assume the loss aversion parameter k equals 1 (no loss aversion). Panel C reports the summary statistics of c when we assume
k equals to 3 (augmented loss aversion). Panel D reports the summary statistics of c when we assume k to equal its estimated (optimal) values, as
reported in Table 1, Panel A.
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the CPT loss aversion calibration (k¼2.25). A lower
loss aversion parameter consistently gives rise to
higher c estimates, across the different options’ matur-
ities and quantiles. The opposite effect is observed
when k is increased from 2.25 to 3, as shown in
Table 3, Panel C. The rise in c estimates is observed
in all 3 maturities and across both the 25 and 75%
quantiles. Table 3, Panel D, which reports c estimates
when optimized k parameters are used, shows distinct
results for the 3-month maturity versus the 6- and 12-
month maturity. For the 3-month maturity, we
observe a downward shift to c estimates, whereas for
6- and 12-month maturities, the estimates rise.
However, this opposite effect in estimates is, in fact,
qualitatively equal to the result just described when
we assume k as 1 or 3, as the optimal k parameters
estimated for the 3-, 6-, and 12-month maturities are
1.02, 2.66, and 3.00, respectively.

The reason why a lower (higher) loss aversion gives
rise to a decreased (increased) c is that it increases
(decreases) the probability on the left side of distribu-
tion, influencing the probabilities and the shape of the
right side of the CPT distribution. High values of k
push the CPT density to have more probability on the
right side of the distribution, which is spread propor-
tionally to the probabilities originally observed in the
right-side bins, all else equal. The impact of such
probability shift fades into the tail. Nevertheless, the
right tail of the CPT density does turn fatter (and the
c parameter higher) as k increases. The opposite
occurs for low values of k: the right tail of the CPT
density thins, causing c estimates to be low (which
more forcefully can turn the RND right tail into such
thin CPT tail). One important finding from our
experimentation with different k parameters is the
existing time variation observed when k equals 2.25 is
unchanged. Overweighting of tails increases dramatic-
ally when low levels of k are used, while showing
great time variation.

We interpret these findings as a strong evidence
that single stock options are not overvalued due to a
structural skewness preference. We reckon that if
static skewness preferences would drive overweight of
small probabilities, the parameter c would be relatively
stable throughout our sample. The volatility of c sup-
ports the view that investors experience (time varying)
“bias in beliefs” or, alternatively, time-varying prefer-
ences (see Barberis [2013]). Our results are in line
with Green and Hwang [2011] and Chen, Kumar and
Zhang [2015], who reported similar time-varying
effects in the overpricing, skewness effects, and
returns for IPOs and lottery-like stocks.

Time variation in the probability weighting
parameter and investor sentiment

In the following we investigate which factors may
explain the reported time-variation of c. Our main
hypothesis is that it is linked to investor sentiment.
The link between sentiment and overweighting of small
probabilities or lottery buying in OTM single stock
calls originates from the fact that individual investors
are highly influenced by market sentiment and atten-
tion-grabbing stocks (Barberis et al. [1998], Barber and
Odean [2008]), and that OTM single stock calls trading
is speculative in nature and mostly done by individual
investors Lakonishok et al. [2007]. For instance,
Lakonishok et al. [2007] argued that the IT bubble of
2000, a period of high variation of c, is linked to ele-
vated investor sentiment, when the least sophisticated
investors were the ones most inclined to purchase calls
on growth and IT stocks. Figure 2 depicts time-varying
cs and the Baker and Wurgler [2007] sentiment factor,
showing that these measures often move in tandem.
For example, during the IT bubble, the level of c seems
quite connected with the level of sentiment, especially
for the 3- and 6-month options.

To formally test our hypothesis that time variation
of c is linked to investor sentiment, we specify a regres-
sion model. In Equation 18, the explained variable is c
for the 3-, 6-, and 12-month horizons and the explana-
tory variables are the Baker and Wurgler [2007] senti-
ment measure14 and the percentage of bullish investors
minus the percentage of bearish investors given by the
survey of the American Association of Individual
Investors (AAII), used as a proxy for individual
investor sentiment by Han [2008]. From Goyal and
Welch [2008], we used the following control variables:
E12, the 12-month moving sum of earnings on the
S&P5000 index; B/m, the book-to-market ratio; Ntis,
the net equity expansion; Rfree, the risk-free rate; Infl,
the annual inflation rate; Corpr, the corporate spread;
Svar, the stock market variance and; CSP, the cross-sec-
tional premium.15 Our monthly sample starts in
January 1998 and ends in December 2010.

ct ¼ cþ w1Sentt þ w2IISentt þ w3E12t þ w4B=Mt

þ w5Ntist þ w6Rfreet þ w7Inflt þ w8Corprt
þ w9Svart þ w10CSPt þ et;

(18)
where Sent is the Baker and Wurgler [2007] sentiment
measure, IISent is the AAII individual investor senti-
ment measure.

Additionally, we run univariate models to under-
stand the individual relation between c and each of
the control variables:
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ct ¼ ci þ wixi;t þ et; (19)

where x replaces the n explanatory variables earlier
specified, given i ¼ 1… n.

Table 4, Panel A presents the estimates of Equation
18. We note the high explanatory power of the multi-
variate regression, ranging from 68% to 71%. As
expected, Sent is consistently negative and statistically
significant across the 3 different horizons studied as
well as in the univariate regressions of Sent. The
explanatory power of the variable Sent in the univari-
ate setting is high, between 22% and 29%. These find-
ings do support our hypothesis that overweighting of
small probabilities increases at higher levels of senti-
ment and that sentiment strongly impacts the prob-
ability weighting bias of call option investors. In
contrast with the variable Sent, the coefficients for the
individual investor sentiment (IISent) are positive, but
not statistically significant either in the multivariate
setting or in the univariate one (see Table 4).

The 9 Goyal and Welch [2008] control variables
add substantial explanatory power to our multivariate
regressions, as the 3-, 6-, and 12-month models
explain, respectively, 71%, 68%, and 67% of c. The
control variables that are statistically significant in our
multivariate setting are E12, B/m, Rfree, Infl, Svar, and
CSP (Table 4). We observe that c is positively linked
to E12, the 12-month moving sum of earnings on the
S&P 500 index, as well as to B/m, the book-to-market
ratio, in both multivariate and univariate regressions.

The positive relation between E12, B/m and c could
be explained by mean reversion of earnings and valu-
ation being linked to a greater overweighting of small
probabilities, which could be justified by the higher
investor sentiment outweighing earning downgrades
and rising valuations in a rallying market. Further, the
stock market variance, Svar, is negatively linked to c.
Apparently a higher risk environment coincides with
a higher overweighting of small probabilities.

As an extra check, we apply the Least Absolute
Shrinkage and Selection Operator (Lasso) method-
ology to our multivariate regressions (see Tibshirani
[1996] and Appendix A.2). We apply Lasso to select
the regressors that are most relevant for the overall fit
of c. The coefficients that shrink to zero via Lasso are
identified in Table 4 (Panel A) with a dagger (†).
Model selection via the Lasso confirms that Sent and
IISent are more relevant for the overall fit of c than
the fundamental factors Ntis, Infl, Corpr, and CSP.

These results indicate that single stock option
investors overweight small probabilities when senti-
ment is exuberant, not necessarily when stock funda-
mentals are exuberant. More importantly, these
results support our earlier findings that overweight
of small probabilities is strongly time-varying and
linked to sentiment. Therefore, overweight of small
probabilities is unlikely to result from (static)
investor preferences but from investors’ bias-in-
beliefs or time-varying preferences, which seem
related to sentiment.

Figure 2. Time varying nature of gamma parameter in CPT. This figure depicts the time-varying nature of the gamma, c, param-
eter from 3-, 6-, and 12-month single stock options estimated using the CPT parameterization as well as the sentiment factor of
Baker and Wurgler [2007].
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Furthermore, we run our regression models
(Equations 18 and 19) using different assumptions
about the value of k, the loss aversion parameter. In
this exercise we set k to imply (a) no loss aversion
(k¼1); (b) augmented loss aversion (k¼3); and (c)
optimal loss aversion, where k assumes the estimated
value by Equation 11 and reported in Table 1, Panel
A. To save space, we only report a summary of
the outcome.

We find that the results for Sent are similar to the
ones obtained in our main regressions: Sent is nega-
tively linked to c and statistically significant at all
horizons but with less statistical significance, explana-
tory power and magnitude at the 12-month horizon.
Across all options maturities, the Sent coefficient
increases when k equals 3 and it shrinks when k
equals 1, which is intuitive: as k increases, the proba-
bilities on the left side of the CPT distribution
increase, favoring a thinner tail on the right side of
the PCPT distribution, which then requires less over-
weight of tail adjustment (through a higher c) for the
PCPT to match the EDF. As a higher c is obtained by
such increase in k, the coefficient of c with the given
sentiment factor also increases in magnitude.

The robustness of the relation between c and Sent
suggests that levels of loss aversion do not drive
investors to overweight upside tail events, as one
could hypothesize when associating upside speculation
with a state of low loss aversion. Our results suggest
that overweighting of small probabilities is consist-
ently linked to sentiment, rather than positive funda-
mentals or loss aversion levels. Our results tie in
closely with the findings of Green and Hwang [2011],
who find that in IPOs the skewness effect is stronger
during period of high investor sentiment. In the same
line, Chen et al. [2015] concluded that when gambling
sentiment is high, stocks with lottery-like characteris-
tics earn positive abnormal returns in the short-run,
followed by underperformance in the long run.

Robustness tests

In the following, we perform 4 robustness tests on
our results: (a) by using the Prelec [1998] weighting
function rather than the CPT one; (b) by applying
Kupiec’s test to probability tails; (c) by estimating
time-varying c under different assumptions of d, a,
and b; and (d) by evaluating whether the overweight
of tails priced in the IV of single stock options is, in
fact, not caused by a high IV priced in the index
option market.

Kupiec’s test for tail comparison

We employ Kupiec’s [1995] test to compare the tails
of the EDF with those of the subjective density func-
tions and of the RND as a robustness test to the EVT
methods applied. Kupiec’s test was originally designed
to evaluate the accuracy of value-at-risk (VaR) models,
where the estimated VaR were compared with realized
ones. Because the VaR is no different from the EQR
on the downside (i.e., the q̂�p statistic), we can also
make use of Kupiec’s method to test the accuracy of
the q̂þp statistic for subjective densities and the RND
on matching realized EQRs. Kupiec’s method com-
putes a proportion of failure (POF) statistic that eval-
uates how often a VaR level is violated over a
specified time span. Thus, if the number of realized
violations is significantly higher than the number of
violations implied by the level of confidence of the
VaR, then such a risk model or consistency of tails is
challenged. Kupiec’s test is a log-likelihood ratio test,
defined as

LRPOF ¼ �2 log 1�p�ð Þn�t p�ð Þt� þ 2 log 1� t=n½ �ð Þn�t��
t=nð Þt� � v2 1ð Þ; (20)

where p� is the POF under the null hypothesis, n is
the sample size, and t is the number of violations in
the sample. The null hypothesis of such test is
t=n ¼ p� (i.e., the realized probability of failure
matches the predicted one. If the LR exceeds the crit-
ical value, v2 1ð Þ ¼3.841, the hypothesis is rejected at
the 5% level. In our empirical problem, p� equals the
assumed probability that the EQR of the subjective
and risk-neutral densities will violate the EQR of the
realized returns, whereas t=n is the realized number
of violations. Because we apply Kupiec’s test to upside
returns, violations mean that returns are higher than a
positive threshold.

The first step in applying Kupiec’s test is outlining
the expected percentage of failure (p�) between the
EQR from the EDF and from the subjective and risk-
neutral densities. We assume p� as being 5% and 10%.
The percentages can be seen as the expected frequency
that the tails of the subjective and of the RND distri-
butions overstate the tails of the distribution of the
realized returns. As a fatter tail reflects an overweight-
ing of small probabilities, we expect that densities that
do not adjust for the CPT weighting function will
deliver a higher frequency of failures than the CPT
density function. The Kupiec’s test results are reported
in Table 5.

Panel A in Table 5 suggests that the probability of
failure for the RND, power, exponential, and PCPT
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densities is particularly high at the 3-month horizon,
with more than 99% for the EQR at 90% and 95%
and for p�equal to 5% and 10%. These densities often
contain fatter tails than the EDF. For the CPT density,
the POF is much lower across the 2 values of p�used
and the 90% and 95% EQR. These findings suggest
that at the 90% and 95% EQR, the CPT densities
overstate less frequently the EDF tails than other den-
sities. The violations of the EDF tails are, however,
still substantial as they occur between 41% and 52%
of times. Nevertheless, for the 99% EQR, the POF for
all densities decreases considerably and, for the CPT,
it becomes 16%.

Panel B of Table 5 depicts a very similar pattern
of the POF for the probability densities derived from
the 6-month options as we find for the 3-month
options. The POF is close to 100% for all densities

apart from the CPT at the 90% and 95% EQR, while
at the 99% EQR violations fall substantially.
Nevertheless, the CPT remains the best approxima-
tion for the EDF, with the lowest POF. The result
suggests that the CPT density is statistically equal to
the EDF. The results for p� at the 5 or 10% level are
very similar. Panel C presents the POF for the 12-
month maturity. Again, the CPT violates the EDF
the least, especially far out in the tail. The RND,
power, exponential, and PCPT densities record POFs
that are much smaller than for the 3- and 6-month
maturities but that are still high in comparison to
the CPT.

Overall, the Kupiec’s test confirms the results
reached in our EVT analysis, which further evidences
that the CPT model is superior in matching real-
ized returns.

Table 5. Robustness checks: Kupiec’s test.
EQR 90% EQR 95% EQR 99%

p� ¼ 10% POF p value LR stat POF p value LR stat POF p value LR stat

Panel A. 3-month call options
RND vs. EDF 99.9% 0.0000 1 99.2% 0.0000 1 50.5% 0.0000 414.8
Power vs. EDF 100.0% 0.0000 1 100.0% 0.0000 1 84.7% 0.0000 1
Expo vs. EDF 100.0% 0.0000 1 100.0% 0.0000 1 86.8% 0.0000 1
PCPT vs. EDF 100.0% 0.0000 1 100.0% 0.0000 1 67.2% 0.0000 752.0
CPT vs. EDF 58.2% 0.0000 559.6 45.7% 0.0000 333.3 16.0% 0.0002 13.6
p� ¼ 5% EQR 90% EQR 95% EQR 99%
RND vs. EDF 99.9% 0.0000 1 99.2% 0.0000 1 50.5% 0.0000 671.5
Power vs. EDF 100.0% 0.0000 1 100.0% 0.0000 1 84.7% 0.0000 1
Expo vs. EDF 100.0% 0.0000 1 100.0% 0.0000 1 86.8% 0.0000 1
PCPT vs. EDF 100.0% 0.0000 1 100.0% 0.0000 1 67.2% 0.0000 1
CPT vs. EDF 58.2% 0.0000 861.9 45.7% 0.0000 561.3 16.0% 0.0000 65.5
Panel B. 6-month call options
p� ¼ 10% EQR 90% EQR 95% EQR 99%
RND vs. EDF 99.9% 0.0000 1 93.3% 0.0000 1 13.8% 0.0160 5.8
Power vs. EDF 99.9% 0.0000 1 97.7% 0.0000 1 22.1% 0.0000 49.7
Expo vs. EDF 99.9% 0.0000 1 97.8% 0.0000 1 23.0% 0.0000 56.4
PCPT vs. EDF 99.9% 0.0000 1 97.3% 0.0000 1 17.0% 0.0000 18.2
CPT vs. EDF 62.4% 0.0000 647.0 36.3% 0.0000 197.3 5.7% 0.0019 9.6
p� ¼ 5% EQR 90% EQR 95% EQR 99%
RND vs. EDF 99.9% 0.0000 1 93.3% 0.0000 1 13.8% 0.0000 44.8
Power vs. EDF 99.9% 0.0000 1 97.7% 0.0000 1 22.1% 0.0000 137.7
Expo vs. EDF 99.9% 0.0000 1 97.8% 0.0000 1 23.0% 0.0000 149.7
PCPT vs. EDF 99.9% 0.0000 1 97.3% 0.0000 1 17.0% 0.0000 76.0
CPT vs. EDF 62.4% 0.0000 1 36.3% 0.0000 369.9 5.7% 0.5474 0.4
Panel C. 12-month call options
p� ¼ 10% EQR 90% EQR 95% EQR 99%
RND vs. EDF 62.8% 0.0000 655.1 25.0% 0.0000 72.9 20.3% 0.0000 37.0
Power vs. EDF 93.5% 0.0000 1 42.5% 0.0000 283.5 29.3% 0.0000 114.7
Expo vs. EDF 94.6% 0.0000 1 43.1% 0.0000 292.7 30.4% 0.0000 126.2
PCPT vs. EDF 79.5% 0.0000 1067.2 36.1% 0.0000 194.7 24.4% 0.0000 68.3
CPT vs. EDF 29.4% 0.0000 115.2 7.2% 0.0480 3.9 8.4% 0.2666 1.2
p� ¼ 5% EQR 90% EQR 95% EQR 99%
RND vs. EDF 62.8% 0.0000 1 25.0% 0.0000 177.9 20.3% 0.0000 114.2
Power vs. EDF 93.5% 0.0000 1 42.5% 0.0000 492.6 29.3% 0.0000 245.6
Expo vs. EDF 94.6% 0.0000 1 43.1% 0.0000 505.3 30.4% 0.0000 263.5
PCPT vs. EDF 79.5% 0.0000 1 36.1% 0.0000 366.1 24.4% 0.0000 170.2
CPT vs. EDF 29.4% 0.0000 246.4 7.2% 0.0631 3.5 8.4% 0.0048 8.0

Note. This table reports the results from Kupiec’s [1995] percentage of failure (POF) test for violations of the extreme quantile returns (EQR) from the
empirical density function (EDF) by the EQR of a set of RND and subjective density functions. The test is performed as a robustness check to the
extreme value theory (EVT)–based tests performed on the EQR and on the expected upside returns. The null hypothesis, which is designed as a log-like-
lihood ratio test (Equation 20)), is that the realized probability of failure (v=nÞ matches the predicted one (p�). Thus if the LR exceeds the critical value,
v2 1ð Þ ¼3.841, such a hypothesis is rejected at the 5% level. Translating the methodology to our empirical problem, p� becomes the assumed probabil-
ity that the EQR of the subjective and of the risk-neutral densities will violate the EQR of the realized returns, where v=n is the realized number of vio-
lations. We note that because we apply Kupiec’s test to the upside returns, violations mean that returns are higher than a positive threshold.
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Prelec’s weighting function parameter

As a second robustness check, we estimate the weight-
ing function parameter x of the RDEU model sug-
gested by Prelec [1998] to test whether our
conclusions are robust to other weighted functions
formulations16. The Prelec weighting function (wþ�P )
is given by Equation 21:

w6
P pð Þ ¼ expð�ð�log pð ÞÞxÞ; (21)

where the parameter xdefines the curvature of the
weighting function for both gains and losses, which
also leads to S-shaped probability distortion functions.
In Prelec [1998], the standard x parameter value
equals 0.65. Our time-varying and long-term (LT)
estimates for x are presented in Table 6, Panel A.

The long-term estimates of x are somewhat in line
with those in the RDEU but less so for the 12-month
horizon: x estimated from the 3-, 6-, and 12-months
are 0.46, 0.67, and 1.11, respectively. These parameters
are somewhat consistent with our long-term estimates
for c being, 0.75, 0.81, and 1.09 (see Table 1), as they
suggest overweighting of small probabilities that fades
with the increase in the option horizon. Similarly,
time-varying estimates of x also indicate more over-
weight of small probabilities than suggested by c esti-
mates. We find the mean (0.95) and median (0.93) for
time-varying estimates of x from 3-month options to
be higher than the ones in Prelec [1998]. This

outcome means that overweighting of small probabil-
ities within the single stock option markets is less
than suggested by RDEU and that estimated Prelec
parameters imply a less pronounced overweight of
tails than suggested by our CPT parameter estima-
tions. In line with our results for the CPT, for the 6-
and 12-month maturities, underweight of small proba-
bilities is, however, more frequent than overweight.
The average x for the 6-month options is 1.02, and
1.05 for the 12-month options.

The time-variation observed in our main results is
thus confirmed by the usage of Prelec’s weighting
function, as overweight of tails is pervasive mostly in
the 1998–2003 sample.

Estimating Time-Varying c Under Different
Assumptions for d, a, and b

As a third robustness test to our time-varying esti-
mates of c, we run optimizations where we fix the
parameter d instead of jointly optimizing it with c.
We impose d¼ 1 (no overweight of small probabilities
on the left side of the distribution) or 0.69, the value
of d within the CPT. Table 6, Panels B and C, shows
that results from optimizations with different values
for d are qualitatively the same as our main results
(i.e., a positive term structure and sample dependency
of overweight of small probabilities. Unreported
results also indicate a negative correlation between c

Table 6. Robustness checks: Time-varying weighting function parameters.
Maturity Min 25% Qtile Median Mean 75% Qtile Max StDev % c<1 % c<1 (98-03) % c<1 (03-08) % c<1 (08-13) RSS LT

Panel A - Prelec omega (xÞ
3 months 0.42 0.76 0.93 0.95 1.07 1.75 0.27 64% 95% 36% 61% 0.0204 0.46
6 months 0.37 0.84 0.99 1.02 1.17 1.75 0.26 51% 88% 21% 45% 0.0170 0.68
12 months 0.44 0.94 1.07 1.05 1.18 1.75 0.21 39% 79% 10% 28% 0.0201 1.14
Panel B – Gamma with overweight of small probabilities on the right tail (d¼0.69)
3 months 0.44 0.70 0.86 0.97 1.21 1.75 0.34 58% 99% 23% 53% 0.0231
6 months 0.40 0.75 1.01 1.04 1.27 1.75 0.31 49% 93% 13% 43% 0.0198
12 months 0.40 0.83 1.05 1.04 1.24 1.75 0.25 43% 87% 11% 32% 0.0238
Panel C – Gamma with neutral probability weighting on the right tail (d¼1)
3 months 0.48 0.73 0.88 0.97 1.15 1.75 0.30 62% 98% 30% 58% 0.0230
6 months 0.43 0.80 0.99 1.03 1.24 1.75 0.30 51% 92% 16% 45% 0.0191
12 months 0.50 0.87 1.03 1.02 1.13 1.75 0.22 44% 84% 12% 35% 0.0233
Panel D– Gamma with pronounced diminishing sensitivities to gains and losses (a and b ¼0.75)
3 months 0.45 0.81 0.96 0.98 1.09 1.75 0.25 57% 93% 27% 52% 0.0230
6 months 0.38 0.90 1.02 1.06 1.23 1.75 0.25 44% 82% 13% 36% 0.0196
12 months 0.32 0.99 1.07 1.09 1.18 1.75 0.20 30% 65% 5% 21% 0.0276
Panel E – Gamma with no diminishing sensitivities to gains and losses (a and b ¼1)
3 months 0.00 0.72 0.88 0.87 1.03 1.75 0.24 67% 98% 40% 64% 0.0204
6 months 0.00 0.78 0.98 0.93 1.14 1.75 0.30 55% 94% 21% 49% 0.0163
12 months 0.04 0.86 1.02 0.98 1.14 1.75 0.25 44% 88% 11% 33% 0.0207

Note. This table reports robustness checks of our time-varying estimates of overweight of small probabilities. Panel A reports the summary statistics of
the estimated omega (xÞ parameter, which is the parameter used in the Prelec’s [1998] probability weighting function (see Equation 21). Similarly to
the CPT, the parameter x defines the curvature of the weighting function for gains and losses, which leads the probability weighting functions to
assume inverse S-shapes. An x parameter equal to one means a weighting function with un-weighted (neutral) probabilities, whereas x< 1 denotes
overweighting of small probabilities. Similarly to c, we estimate long-term x0s (reported for c in Table 1, Panel A) as well as time-varying x0s (reported
for c in Table 4, Panel C). Panels B and C report c estimates when the CPT’s probability weighting parameter for left side of the distribution (d) is
assumed to be, respectively, 0.69 (the CPT parameterization) and 1 (neutral probability weighting). Panels C and D report c estimates when the CPT’s
value weighting parameters a and b for diminishing sensitivity to gains and losses are assumed to be, respectively, 0.75 (increased diminishing sensitiv-
ity) and 1 (no diminishing sensitivity). We assume in these robustness tests that the loss aversion parameter k equals 2.25.
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and sentiment and high explanatory power of
regressions.

Similarly, we estimate c under different specifica-
tions for a and b. We assume a¼b¼ 1 (no diminish-
ing sensitivity to gains and losses) and a¼b¼ 0.75
(more pronounced diminishing sensitivity to gains
and losses) instead of the CPT parameterization
a¼b¼ 0.88. Our results, reported in Table 6, Panels D
and E, suggest that lower sensitivity to gains and
losses leads to a decrease in overweight of small prob-
abilities (higher c), whereas higher sensitivity to gains
and losses leads to an increase in overweight of tails
(lower c). This effect is similar to the one observed by
changes in k (see Estimated CPT Time-Varying
Parameters section).

As indicated in the Estimated CPT Time-Varying
Parameters section, we also estimate time-varying c
using different lower (–0.25, 0 and 0.28) and upper
bounds (1.2, 1.35, 1.5, 1.75, and 2). We find that
higher bounds produce upward shifts in the esti-
mated c across all quantiles, median and averages to
the extent that overweight of small probabilities
becomes less pronounced but remains present. The
time-variation pattern observed in Figure 2 and,
more importantly, the strong negative relationship
with sentiment reported in Table 4 are, though,
extremely robust to changes in lower and upper opti-
mization bounds.

Overweight of (right) tails driven by IV of single
stock options

Finally, given that overweight of small probabilities by
single stock call investors was most evident during the
IT bubble period (as Table 3 suggests), we hereby
evaluate whether this finding may have been driven
by movements in the IV of index options rather than
changes in the IV of single stock options. We perform
such analysis because our methodology for calculation
of average weighted stock IV volatilities partly relies
on the IV on index options (as it depends on implied
correlations), as Equations A.1j and A.1l in Appendix
A.1 suggest. Essentially, we want to ensure that the
overweight of small probabilities observed from our
single stock options data is not caused by a rise in
index options’ IV. As overweight of small probabilities
is a corollary of high IV skew17, we examine the IV
skews (120% moneyness vs. at the money [ATM])
from both index options and from single stock
options within our sample using a k-nearest-neighbors
(KNN) algorithm (see Appendix A.3 for detail).
Figure 3 depicts a scatter plot that relates single stock
IV skews (on the y-axis) with index option IV skew
(on the x-axis) overlaid with the decision boundary
between overweight of tails (in red) and its absence
(in blue), produced by the application of the KNN
algorithm to our full data sample. The picture

Figure 3. k-Nearest-neighbors Plot for IV Skews. This figure shows a scatter plots depicting the relation between single stock
(120% minus ATM) IV skews (on the y-axis) and index (120% minus ATM) IV skews (on the x-axis). Observations colored in red
imply the presence of overweight of small probabilities on the right side of the distribution (c< 1), whereas observations colored
in blue imply either neutral probability weighting (c¼ 1) or underweight of small probabilities (c> 1). The decision boundary is
produced by a k-Nearest-Neighbors algorithm (k¼ 41, estimated via cross-validation) and delimits the region in which a new
observation (of paired IV skews, such as the solid dotes) will be assigned to the overweight of small probabilities class (in red) or
the alternative class (in blue).
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suggests that that overweight of small probabilities is
almost never caused by positive index IV skews,
whereas positive single stock IV skews very often pro-
duce overweight of tails rather than underweights.
Overweight of tails are mostly caused by situation
where single stock IV skew are higher than index IV
skew, which suggest that either high single stock IV
skews or low implied correlation are responsible for
overweight of tails, not index options’ IV. These con-
ditions can be anecdotally confirmed by our observa-
tion of IV skews during the 2000’s IT bubble. During
that period, when overweight of tails was pervasive,
IV skew from single options was quite high, close to
þ10 volatility points, whereas the same IV skew from
index options reached extreme low levels such as –15
volatility points. This disconnect between the 2 IV
markets, which drove the implied correlation to 2.8%
(an extreme low level), suggests that the index
options’ IV was not the driver for overweight of tails
during the IT bubble. These findings reiterate our
suggestions that overweight of small probabilities
observed in our sample is caused by trading in single
stock options by retail investors, rather than activity
in the index option market.

Conclusion

Single-stock OTM call options are deemed overpriced
because investors overpay for positively skewed secur-
ities, resembling lottery tickets. The CPT’s probability
weighting function of the Tversky and Kahneman
[1992] theoretical model provides an appealing
explanation why these options are expensive: invest-
ors’ preferences for positively skewed securities. In
our empirical analysis, we find that the CPT subjective
density function implied by single stock options out-
performs the RND and 2 rational densities functions
(from the power and exponential utilities) in matching
the tails of realized equity returns. We estimate the
CPT probability weighting function parameter c and
find that it is qualitatively consistent with the one pre-
dicated by Tversky and Kahneman [1992], particularly
for short-term options. This outcome endorses our
hypothesis that investors in single stock call options
are biased.

Our analysis provides detailed insights into the
behavior of single stock option investors. Our empir-
ical findings suggest that overweight of small probabil-
ities is less pronounced than proposed by the CPT.
We find that the overweighting of tail becomes less
pronounced as the option maturity increases.
Investors in single stock calls are more biased when

trading short-term contracts, whereas they seem to be
more rational when trading long-term calls. This
result is consistent with individual investors being the
typical buyers of OTM single stock calls and the fact
that they mostly use short-term options to speculate
on the upside of equities.

We also find that investors overweighting of small
probabilities is strongly time-varying and sample
dependent. Time variation in cs remains strong even
when we account for different levels of loss aversion,
different diminishing sensitivities to gains and losses,
different degrees of overweighting of the left tail and
an alternative (Prelec’s) weighting function. The
strong time-variation and sample dependency of c
suggest that investors do not have a static preference
for skewness, but rather time-varying preferences or a
“bias in beliefs” (see Barberis [2013]).

Such time variation in c is also confirmed by the
pronounced overweighting of tails during periods in
which sentiment is high, for instance, the IT bubble
period of 2000. This finding is consistent with the
Baker and Wurgler [2007] sentiment measure being
the main explanatory variable of overweighting of
small probabilities. Our results challenge the view that
single stock call options are structurally overpriced
and offer the insight that overweight of tail events
implied in these options are conditional on sentiment
levels and option maturity rather than positive stock
fundamentals, loss aversion levels, or investor prefer-
ences for skewness.

Our findings have several important practical
implications. First, the understanding of time variation
in investors’ overweighting of small probabilities could
be used in the development of behavioral option pric-
ing models, which still remains in its infancy. To the
extent that overweighting of small probabilities is a
latent variable or, simply, not trivial to estimate, we
suggest that future option pricing models should be
made more sentiment-aware. Second, of importance
for such next generation option-pricing models is the
inclusion of a positive term structure of tails’ over-
weighting. Such potential modifications on options’
pricing have large and direct consequences to risk
management, hedging, and arbitrage activities. Third,
from a financial stability point of view, investors’
overweighting of small probabilities in single stock
options could be of use to regulators for identifying
the presence of speculative equity markets bubbles.

Notes

1. Boyer and Vorkink [2014] provided evidence that
lottery-like single stock options do deliver lower
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forward returns than options with lower ex-ante
skewness. However, their paper does not test why
these options are overvalued, nor does it analyze the
potential time-variation in ex-ante skewness and
forward returns. Conrad et al. [2013] found similar
results for ex ante skewness and subsequent
stock returns.

2. These studies focus on the rank-dependent expected
utility (RDEU) rather than the CPT, as the RDEU is
seamlessly effective in dealing with the overweighting
of probability phenomena. The RDEU’s probability
weighting functions are strictly monotonically
increasing, whereas the CPT one is not. RDEU
functions are also easier to estimate because they use 1
less parameter than the CPT.

3. We acknowledge that it is unclear whether overpricing
of OTM calls is caused by overweighting of small
probabilities (i.e., a matter of preferences), or rather by
biased beliefs. Barberis [2013] discussed how both
phenomena are distinctly different and how both
(individually or jointly) may explain the overpricing in
OTM options. We take a myopic view and use only
the first explanation, for ease of exposition.

4. Loss aversion is the property in which people are
more sensitive to losses than gains. For details, see
Tversky and Kahneman [1992] and Barberis and
Huang [2001]. Risk-seeking behavior happens when
individuals are attracted by gambles with unfair
prospects. The risk-seeking individual chooses a
gamble over a sure thing even though the 2 outcomes
have the same expected value. Nonlinear preferences
occur when equally probable prospects are more
heavily weighted by agents than others. For details, see
Tversky and Kahneman [1992] and Prelec [1998].

5. We thank Barclays for providing the implied volatility
data. Barclays disclaimer: “Any analysis that utilizes
any data of Barclays, including all opinions and/or
hypotheses therein, is solely the opinion of the author
and not of Barclays. Barclays has not sponsored,
approved or otherwise been involved in the making or
preparation of this Report, nor in any analysis or
conclusions presented herein. Any use of any data of
Barclays used herein is pursuant to a license.”

6. Zero is used as the lower bound for the estimation of
k to characterize loss aversion. The different upper
bounds follow the maximum mean and median of k
across different experiments as estimated by
Abdellaoni et al. [2007].

7. These upper and lower bounds were set to allow the
optimizer to explore a wide range of parameters
around the neutral (unweighted) probability function
characterized by c¼ 1 and, at the same time, allow for
discerning levels of residual sum of squares to select
the final bounds to be used in our experiment.

8. The main advantage of this method over other
techniques is that it extracts the body and tails of the
distribution separately, thereby allowing for fat tails.
The Figlewski [2010] method is close to the one
employed by and Bliss and Panigirtzoglou [2004],
where body and tails are also extracted separately. We
favor Figlewski’s [2010] approach as the Bliss and
Panigirtzoglou [2004] approach assumes that IV is

constant beyond the observable strikes, resembling the
Black-Scholes model (with lognormal tails).

9. As a robustness check to this approach, we compare
our 3-, 6-, and 12-month empirical distributions with
the ones calculated from nonoverlapping returns. We
use data since 1871 for the U.S. equity price index,
made available by Welch and Goyal [2008], who used
S&P 500 data since 1926, and data from Robert
Shiller’s website for the preceding period. Our
empirical distributions are quite similar to the ones
estimated from the longer data set, suggesting that
they are indeed suitable as long-term distributions.

10. Due to drift, the model of time-varying EDF for the
12-month horizon occasionally does not match the
one of the PCPT model. This difference is challenging
to estimation of c (Equation 12), as a larger amount of
c estimates produce unreasonable PDFs such as
nonmonotonic CDFs. Therefore, to perform the
optimizations given in Equation 12, we set the mode
of the simulated EDF equal to the one of the PCPT.

11. We do not find the high variability of the k parameter
from 12-month options to be a concern in our
exercise as c estimates conditional on k̂estimates using
all upper bounds are not volatile and qualitatively the
same as when k¼ 2.25.

12. This technique is known as the Smirnov method. It
entails drawing n random numbers from a uniformly
distributed variable U ¼ (u1; u2; :::; unÞ bounded at
interval [0,1] and, subsequently, computing
xj  F�1 ujð Þ, where F are the CDFs of interest (see
Devroye [1986]). Hence, the Smirnov method
simulates returns that resemble the ones of the inverse
CDF by randomly drawing probabilities along
such function.

13. We omit the ECPT for better visualization as its CDFs
are very similar to the CPT ones. The similarity is
caused by the ECPT left tail weighting function
parameter dð ) being the same for the CPT and
because the estimated long-term c for the 3 maturities
are close to the Tversky and Kahneman [1992] one.

14. Available at http://people.stern.nyu.edu/jwurgler/
15. The complete set and description of variables

suggested by Goyal and Welch (2008) is available at
http://www.hec.unil.ch/agoyal/. We select a smaller set
to avoid multicollinearity, excluding variables that
correlate more than 40 percent with each other.

16. A major advance of Prelec’s [1998] weighting function
vis-a-vis the CPT is that it is monotonic for any value
of x, whereas the CPT can have a nonmonotonic
probability weighting for low levels of c.

17. While this relation is widely acknowledged, Jarrow
and Rudd [1982], Corrado and Su [1996], and
Longstaff [1995] provided a formal theorem for the
link between IV skew and risk-neutral skewness
and kurtosis.

18.
Pn

i¼1 w
2
i r

2
i is typically of order 10–4 as a multiplication

between powers of decimal numbers produces very
small numbers, in the current case of order 10–5.
Distinctively, as

Pn
i¼1 wiri

� �2
applies the power after

the sum is computed, its order of magnitude is much
larger, of 10–2 in our data set, the same applying
for r2I .
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19. Note that the CBOE S&P500 Implied Correlation
index does not match our implied correlation metric
also because it uses IVs for the largest 50 stocks of the
S&P 500 index, whereas we use 100 stocks, and fixed
option expirations “rotated” to proxy for 1- and 2-
years maturities, whereas we use fixed maturities of 3-,
6- and 12-month maturities.
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Appendix

A.1 - Single stock weighted average implied
volatilities

Starting from the portfolio variance r2Pformula, Equation
A.1a, we derive the single stock weighted-average IV, given
in Equation A.1l:

r2P ¼
Xn
i¼1

w2
i r

2
i þ

Xn
i6¼j

wiwjqijrirj (A.1a)

Where i and j index for the portfolio constituents. We
re-write Equation A.1a for and index as:

r2I ¼
Xn
i;j¼1

wiwjqijrirj (A.1b)

implying that, Xn
i6¼j

wiwjqijrirj (A.1c)

¼
Xn
i;j¼1

wiwjqijrirj (A.1c)

�
Xn
i¼1

w2
i r

2
i (A.1c)

Where

qij xð Þ ¼ q if i 6¼ j
1 if i ¼ j

;

�
and where rI is the index option IV. We use the S&P500
index and n¼ 100, as we use IVs for the largest 100 stocks
of this index. Then, assuming q as the estimator for average
stock correlation we have:

r2I ¼ q
Xn
i6¼j

wiwjrirj þ
Xn
i¼1

w2
i r

2
i (A.1e)

which, given equality A.1c, can be re-written as:

r2I ¼ q
Xn
i;j¼1

wiwjrirj � q
Xn
i¼1

w2
i r

2
i þ

Xn
i¼1

w2
i r

2
i (A.1f)

r2I ¼ q
Xn
i¼1

wiri

 !2

� q
Xn
i¼1

w2
i r

2
i þ

Xn
i¼1

w2
i r

2
i (A.1g)

r2I ¼ q
Xn
i¼1

wiri

 !2

�
Xn
i¼1

w2
i r

2
i

0@ 1AþXn
i¼1

w2
i r

2
i (A.1h)

q ¼
r2I�

Pn
i¼1

w2
i r

2
iPn

i¼1
wiri

	 
2

�Pn
i¼1

w2
i r

2
i

: (A.1i)

As
Pn

i¼1 w
2
i r

2
i is relatively small18, we simplify (A.1i)

into (A.1j), the implied correlation:

q 	 r2IPn
i¼1

wiri

	 
2 (A.1j)

To obtain the single stock weighted average implied
volatility (Equation A.1l), we square root both sides of the
approximation and re-arrange its terms:

sqrt qð Þ 	 rIPn
i¼1

wiri

	 
 ; (A.1k)

Xn
i¼1

wiri 	 rI
sqrt qð Þ : (A.1l)

Lastly, note that, given equality in Equation A.1c,
Equation A.1i can be re-written as:

q ¼
r2I�

Pn
i¼1

w2
i r

2
iPn

i6¼j
wiwjrirj

¼
r2I�

Pn
i¼1

w2
i r

2
iPn

i¼1

P
i6¼jwiwjrirj

(A.1m)

which is the implied correlation (IC) measure employed
by Driessen et al. [2013] and the CBOE S&P500 Implied
correlation index19.
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A.2 – Least Absolute Shrinkage and Selection
Operator (Lasso)
The regression coefficients in the Lasso methodology are
estimated by minimizing the quantity:

Xn
i¼1

y1 � b0 �
Xp
j¼1

bjxij
� �20@ 1Aþ j

Xn
i¼1

bj ¼ RSSþ j
Xn
i¼1

bj

(A.2)

Where j is the tuning parameter, which is estimated via
cross-validation. The cross-validation applied by us uses
then equal-size splits of our overall data set.

A.3 – k-Nearest-Neighbor classifier
The k-Nearest-Neighbor (KNN) classifier is one of
the approaches in machine learning that attempts to esti-
mate the conditional distribution of the explained variable

(Y) given the explanatory variables (X) and, subsequently,
classify new observations to the class with highest esti-
mated probability. The KNN classifier uses the Euclidean
distance to first identify the closest kth observations within
the training data (in-sample data) to a new test (out-of-
sample) observation provided (x0). Such neighborhood of
points around the test observation x0 is defined as N0:
KNN, then, estimates the conditional probability of x0 to
belong to a class j as the percentage of old observations
(yi) in the neighborhood N0 whose class is also j :

Pr Y ¼ jjX ¼ x0
� � ¼ 1

k

X
i2N0

I yi ¼ jð Þ: (A.3)

In a third step, KNN applies the Bayes rule to perform
out-of-sample classification (in test data) of x0 to the class
with the largest probability. For further details, see Hastie
et al. [2008].
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