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Nuclear Parton Distributions from Neural Networks∗

The NNPDF Collaboration:
Rabah Abdul Khalek, Jacob J. Ethier, and Juan Rojo

Department of Physics and Astronomy,
Vrije Universiteit Amsterdam, 1081 HV Amsterdam,

Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands.

In this contribution we present a status report on the recent progress
towards an analysis of nuclear parton distribution functions (nPDFs) using
the NNPDF methodology. We discuss how the NNPDF fitting approach
can be extended to account for the dependence on the atomic mass number
A, and introduce novel algorithms to improve the training of the neural
network parameters within the NNPDF framework. Finally, we present
preliminary results of a nPDF fit to neutral current deep-inelastic lepton-
nucleus scattering data, and demonstrate how one can validate the new
fitting methodology by means of closure tests.

PACS numbers: 13.60.-r

Introduction. Parton distribution functions (PDFs) are universal, process-
independent objects describing the longitudinal motion of quarks and gluons
within hadrons [1, 2]. Since PDFs are difficult to compute from first prin-
ciples, they are instead extracted from experimental data by means of a
global analysis in the framework of QCD collinear factorization theorems.
Currently, the PDFs of nucleons bound within heavy nuclei (nPDFs) [3] are
less well understood than their free-nucleon counterparts, due primarily to
the limited experimental constraints available.

This state of affairs is unfortunate, since the determination of nPDFs
is important to reveal the origin and properties of phenomena such as the
Fermi motion, the EMC effect, nuclear shadowing, and possible non-linear
evolution effects in nuclei. In addition, nPDFs are key inputs for the in-
terpretation of heavy-ion collisions and the characterization of the Quark-
Gluon Plasma (QGP), as well as for high-energy astrophysics such as theo-
retical predictions of neutrino-nucleus interaction cross-sections [4].

∗ Talk presented by R. A. K. at Diffraction and Low-x 2018 conference.
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Several groups have presented nPDF determinations in recent years.
Two of such analyses are EPPS16 [5], which fit a nuclear modification fac-
tor with respect to the CT14 [6] proton baseline, and nCTEQ15 [7], which
fit directly the nPDF shape by mimicking the parameterization used in the
CTEQ proton fits [8]. This recent activity in global nPDF studies has been
largely prompted by the availability of proton-lead collision observables such
as dijet, D meson, or W and Z gauge boson production. As in the case of
proton PDFs, these measurements offer the potential of a greatly improved
understanding of nPDFs and their uncertainties.

Towards nNNPDF1.0. Following the NNPDF methodology [9–11] (see [12]
for a summary), we adopt here artificial neural networks (ANNs) as uni-
versal unbiased interpolants to parameterize the x and A dependence of
the nPDFs. As an initial study, we consider only observables from neu-
tral current (NC) deep-inelastic scattering (DIS) off heavy nuclei, which are
assumed to be isoscalar.

The description of isoscalar nuclei observables in DIS below the Z-boson
pole requires the parametrisation of three independent nPDFs, which are
taken to be the quark singlet Σ, the gluon g, and the quark non-singlet octet
T8 distributions. In this basis, for example, the NC DIS structure function
FA2 is given by

FA2 (x,Q2) = ΓS2,Σ(x,Q2
0, Q

2)⊗ Σ(x,A,Q2
0)

+ ΓS
2,g(x,Q

2
0, Q

2)⊗ g(x,A,Q2
0) (1)

+ ΓNS
2,T8

(x,Q2
0, Q

2)⊗ T8(x,A,Q2
0) ,

where the Γ factors encode both the hard–scattering coefficient functions
and the DGLAP evolution kernels. The nPDFs are then parametrised at
an initial scale denoted by Q0, and depend both on the partonic momentum
fraction x and the mass number A.

Following Ref. [13], the convolutions in Eq. (1) can be reduced to a scalar
product by means of an expansion over a set of interpolating polynomials,
allowing us to write

FA2 (x,Q2) =

nf∑
i

nx∑
α

Γ̃i,α(x, xα, Q
2, Q2

0) · qi(xα, A,Q2
0) (2)

where Γ̃ stand for the precomputed FastKernel grids that contain all the
perturbative information relevant for the calculation of FA2 , and qi(x,A,Q

2
0)

represent the initial scale nPDF for the flavour i in a given basis. Note
that in Eq. (2) only the values of the input PDFs at a finite nx-sized grid
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are required to compute the structure functions, leading to a significant
improvement of the numerical computation with respect to the convolutions
in Eq. (1).

The three independent nPDFs that enter Eq. (2) are parametrised as

• Σ(x,A,Q0) = (1− x)αΣx−βΣNNΣ(x,A) ,

• g(x,A,Q0) = Ag(1− x)αGx−βgNNg(x,A) ,

• T8(x,A,Q0) = (1− x)αT8x−βT8 NNT8(x,A) ,

where NNi corresponds to the output of the ANN for a given flavor i. The
preprocessing exponents [14] αi and βi facilitate the training procedure and
can either be fitted or drawn at random from a range determined iteratively.
Furthermore, we fix the overall normalisation of the gluon nPDF,

Ag ≡

(
1−

∫ 1

0
Σ(x,A,Q0)dx

)/∫ 1

0
g(x,A,Q0)dx (3)

so that the momentum sum rule is satisfied. In general, this normalisation
is different for every value of A.

Concerning the input dataset, we consider here a similar set of nuclear
NC DIS measurements that were used by EPPS16 and nCTEQ15. In Fig. 1
the kinematic coverage of the (x,Q2) plane of the nuclear DIS data are
shown. Here, the coverage in x is significantly reduced compared to the
proton case (x > 10−2 versus x > 10−5 respectively). Enlarging this kine-
matic range to smaller values of x and higher values of Q2 is possible by
means of the RHIC and LHC data on nucleon-nucleus collisions.

Neural network training. The underlying procedure for any optimisation
problem, such as the present one, can be summarized by

min
ωωω

C(f(ωωω)), (4)

where C is a cost function to minimize and f is the target function that
depends on a vector of parameters ωωω. In our case, the target functions that
need to be determined from the data are the nPDFs parametrised by the
neural networks, while ωωω represents the neural network weights and thresh-
olds. The cost function is defined here to be the χ2, which measures the
agreement between the experimental data points Di and the corresponding
theoretical predictions Ti of nuclear DIS observables,

χ2 =

ndat∑
i=1

(Ti[f(ωωω)]−Di)
2

σ2
i

, (5)
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Fig. 1: The kinematic coverage in x and Q2 of the NC DIS data included
in this work.

where σi is the total experimental statistical and systematic uncertainties
added in quadrature.

There are different options that can be used to solve Eq. (4). Previous
NNPDF global fits have been based either in Genetic Algorithms (GAs)
or the Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES)
algorithms. Both methods require knowledge only on the local values of
the χ2 and not of its derivatives. Here for the first time in the context
of NNPDF studies we have implemented the method of gradient descent,
one of the most widely used minimization techniques in machine learning
applications. In this procedure, the parameters are shifted by an amount
proportional to the negative of the gradient of the cost function evaluated
at the current position in parameter space,

ωi → ωi −
η

npar

∂χ2

∂ωi
, (6)

where ωi is one of the npar free parameters of the ANN and η is a hyper-
parameter of the algorithm known as the learning rate. In this work, the
gradients are computed numerically by means of automatic differentiation
using the TensorFlow library [15]. The updating process in Eq. (6) is then
iterated until a suitable set of convergence criteria is satisfied, for instance,
using look-back or early stopping with cross-validation.
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Fig. 2: The results of the nNNPDF1.0 Level 0 closure test. The nNNPDF1.0 result
(solid line with hashed bands) is compared to the EPPS16 nPDF result (solid line
with shaded bands) for the iron nucleus (A = 56) at Q0 = 1.3 GeV for the quark
singlet Σ (red), the gluon g (blue), and the quark non-singlet octet distribution T8
(green).

Preliminary results. The application of the NNPDF methodology to a
QCD analysis of nuclear parton distributions can be validated by means of
closure tests, as was done in previous global fits of proton PDFs [11] and
fragmentation functions [16]. In these closure tests, pseudo-data is gener-
ated based on an established theoretical input. In this work, we construct
pseudo-data with Eq. (1) up to NLO in perturbative QCD using the EPPS16
nPDF set. A fit is then performed to this pseudo-data, and by comparing
the fit output to the known input we can assess if a given fitting method-
ology is working successfully. Since this pseudo-data is free from possible
data inconsistencies or limitations in the theory calculations, it provides a
clean testing group to validate the fitting strategy employed.

We have performed the simplest type of closure test, known as Level 0
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Fig. 3: Similar to Fig. 2, but now showing the comparison for discrete values of
mass number A at fixed x = 0.01.

(L0), where the pseudo-data coincides with the EPPS16 prediction without
any additional set of statistical noise added. In this case, a successful fit
should be able to reach asymptotically χ2 → 0, so that the fit predictions
at the structure function level are identical to those obtained with the input
EPPS16 theory. For this L0 closure test, we have used a single neural
network with three input nodes (x, lnx,A), three output nodes NNΣ, NNg,
NNT8 , and a single hidden layer with 20 neurons. This ANN architecture
contains then 143 free parameters. Our final result consists of 200 Monte
Carlo “replicas”, which in L0 tests correspond to different initial parameter
values that are randomly chosen for each fit.

In Fig. 2 we display the x-dependence of the preliminary nNNPDF1.0 L0
closure test fit results for iron nuclei (A = 56). Here the gluon, quark singlet
Σ, and non-singlet octet T8 distributions are shown at the input scale Q0 =
1.3 GeV and are compared with the EPPS16 result. While the EPPS16
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uncertainty band is computed using the asymmetric Hessian method, the
nNNPDF1.0 band instead represents the variance evaluated over the 200
fitted replicas. The fact that both central values agree reasonably well,
especially for the gluon, is a first indication that the closure test is successful.
Note that Σ and T8 are strongly anti-correlated in the data region, since
the actual quantity which is being constrained from data is FA2 ∝ Σ +
T8/4. Also, for L0 closure tests the two error bands have different statistical
interpretations and cannot be compared directly.

In Fig. 3 we present a similar comparison as in Fig. 2, but now show the
mass number A dependence for a fixed value of x. Here we see that the clo-
sure test results agree with the input EPPS16 theory within uncertainties,
and that they reproduce the same qualitative behavior as A is varied.

Next steps. In this contribution we have presented the initial steps towards
the first determination of the nuclear parton distributions in the framework
of the NNPDF methodology. We have validated the effectiveness of im-
proved neural network training algorithms, in particular the gradient de-
scent minimization with TensorFlow. At the closure test level, we have
shown that we are able to reproduce the results of the chosen input theory,
in this case EPPS16 nPDFs. Work in progress is now focused on extending
our approach to Level 1 and 2 closure tests, as well as to a full QCD analysis
of experimental data. Following an initial study on DIS measurements, we
aim to deliver a full-fledged global nPDF fit that accounts for all available
experimental constraints and is based on state-of-the-art theoretical calcu-
lations.

Acknowledgements. This research has been supported by a European
Research Council Starting grant “PDF4BSM”, and by the Netherlands Or-
ganization for Scientific Research (NWO).
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