
https://doi.org/10.1177/0956797618808470

Psychological Science
2019, Vol. 30(1) 43 –54
© The Author(s) 2018
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/0956797618808470
www.psychologicalscience.org/PS

ASSOCIATION FOR
PSYCHOLOGICAL SCIENCEResearch Article

From logical reasoning to grasping new concepts, 
humans differ in cognitive capacities. A substantial part 
of this variance is captured by psychometric measures 
such as fluid-intelligence tests or the general intelli-
gence factor (g), which aggregates test results across 
various domains of cognitive performance. These mea-
sures are reliable, are stable across the life span (Deary, 
Whalley, Lemmon, Crawford, & Starr, 2000), and are 
associated with important life outcomes, including edu-
cational attainment (Deary, Strand, Smith, & Fernandes, 
2007), job performance, and health (Batty et al., 2009).

Much research has been devoted to understanding 
how individual differences in cognitive performance 
arise and whether they can be accounted for by envi-
ronmental, developmental, genetic, and neuroanatomical 
factors. A classic hypothesis proposes a positive associa-
tion between intelligence and total brain volume (TBV; 
e.g., Galton, 1889). For decades, the only way to test this 

hypothesis was empirical studies using proxies of TBV 
such as head circumference. However, this work was 
controversial because of methodological issues (Stott, 
1983) and concerns about racial and cultural bias.

The introduction of MRI in the late 1980s led to a 
burst of studies that directly examined the relationship 
between TBV and intelligence. The first published study 
reported a correlation (r) of .51 in a sample of 40 col-
lege students (Willerman, Schultz, Neal Rutledge, & 
Bigler, 1991). However, the reported association has 
declined as sample sizes have grown: The first meta-
analysis of the literature (k = 14, N = 858) estimated an 
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Abstract
A positive relationship between brain volume and intelligence has been suspected since the 19th century, and empirical 
studies seem to support this hypothesis. However, this claim is controversial because of concerns about publication bias 
and the lack of systematic control for critical confounding factors (e.g., height, population structure). We conducted 
a preregistered study of the relationship between brain volume and cognitive performance using a new sample of 
adults from the United Kingdom that is about 70% larger than the combined samples of all previous investigations 
on this subject (N = 13,608). Our analyses systematically controlled for sex, age, height, socioeconomic status, and 
population structure, and our analyses were free of publication bias. We found a robust association between total brain 
volume and fluid intelligence (r = .19), which is consistent with previous findings in the literature after controlling for 
measurement quality of intelligence in our data. We also found a positive relationship between total brain volume and 
educational attainment (r = .12). These relationships were mainly driven by gray matter (rather than white matter or 
fluid volume), and effect sizes were similar for both sexes and across age groups.
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average correlation of .37 (Gignac, Vernon, & Wickett, 
2003). A later, more comprehensive meta-analysis (k = 
37, N = 1,530) estimated a smaller correlation of .29 
(McDaniel, 2005). The largest meta-analysis to date, 
which included unpublished data, reported an even 
smaller correlation of .24 (k = 88, N = 8,036; Pietschnig, 
Penke, Wicherts, Zeiler, & Voracek, 2015).

Scholars have been debating the reliability, size, and 
meaning of a relationship between TBV and cognitive 
ability for many years (e.g., Stott, 1983). Finding con-
sensus is impeded by three main limitations. First, 
researchers in only a few studies systematically con-
trolled for confounding factors such as height, age, and 
socioeconomic status. A second concern is population 
stratification, that is, systematic biological differences 
across groups that might correlate with environmental 
and cultural factors.1 If not properly controlled for, 
population stratification can induce a spurious relation-
ship between biomarkers and phenotypes (Cardon & 
Palmer, 2003). For example, individuals of northwest 
European descent may be slightly taller, have slightly 
larger brains, and perform slightly better in intelligence 
tests. But this effect could be primarily driven by more 
favorable environments (e.g., better schools, better health 
care) that could confound the relationship between TBV 
and intelligence. Genetic-association studies have shown 
that self-reported ethnicity is often not sufficient to cor-
rect for such confounds. However, controlling for the first 
few principal components from the genetic data of the 
study participants has proven to be an effective strategy 
that is now standard in genetic-association studies (Price 
et al., 2006; Rietveld, Conley, et al., 2014).

A third issue is a bias toward publication of positive, 
statistically significant results and effect sizes that over-
estimate the true values. The most recent meta-analysis 
on intelligence and TBV by Pietschnig et  al. (2015) 
found evidence for publication bias and showed that 
the correlation in published reports was .30 (k = 53,  
N = 3,956) but was only .17 in a larger set of unpub-
lished studies (k = 67, N = 2,822). In contrast, Gignac 
and Bates (2017) did not find evidence for publication 
bias. However, their analysis was restricted to published 
studies of healthy participants only. Although several 
analytical techniques have been proposed to detect 
such bias, their capacity to estimate the true effect size 
is controversial, and their power to reject the null 
hypothesis of no publication bias is low in small sam-
ples (Ioannidis, Munafò, Fusar-Poli, Nosek, & David, 
2014). A clean approach to avoid publication bias is to 
conduct a well-powered study following a preregistered 
analysis plan (Gonzales & Cunningham, 2015).

We addressed these three shortcomings of the cur-
rent literature here. Specifically, we conducted a pre-
registered analysis of the relationship between measures 
of cognitive performance and TBV using data from the 

UK Biobank (UKB; Miller et  al., 2016; Sudlow et  al., 
2015). The UKB is a data collection of unprecedented 
richness and scale that was not part of any previous 
study on the relationship between TBV and cognitive 
performance. Our final sample contained 13,608 geno-
typed individuals with anatomical MRI brain scans. The 
sample was an adult population (> 40 years old) of 
European decent, all of whom completed at least one 
test of cognitive performance. This sample is approxi-
mately 70% larger than the combined samples of all 
previous studies associating in vivo TBV and intelli-
gence (Pietschnig et al., 2015); it permits novel ways 
to control for confounds and allows comparing effect 
sizes across various demographic groups.

Our investigation provided the opportunity for two 
additional contributions. First, we investigated the dif-
ferential contributions of gray matter (neuronal cell 
bodies, dendrites, unmyelinated axons, glial cells, syn-
apses, and capillaries), white matter (myelinated axons, 
or tracts), and cerebrospinal fluid to the association 
between TBV and intelligence. Both gray- and white-
matter volumes are genetically correlated with general 
intelligence (Sniekers et al., 2017) and are thought to 
contribute to the association on the basis of small-
sample studies (e.g., Haier, Jung, Yeo, Head, & Alkire, 
2004); understanding their differential contributions is 
essential for further theoretical development of accounts 
of the relationship between TBV and intelligence.

Second, we examined the association between TBV 
and educational attainment, an important real-life out-
come that crucially impacts individuals’ income, health, 
and longevity (Lager & Torssander, 2012). To date, this 
association has been investigated in only a few small-
sample studies of elderly or clinical populations (e.g., 
Coffey, Saxton, Ratcliff, Bryan, & Lucke, 1999).

Method

The UKB data

The UKB (Miller et  al., 2016; Sudlow et  al., 2015) 
recruited 502,617 people between the ages of 40 and 
69 years in 2006 through 2010 from the general popula-
tion across the entire United Kingdom. Almost all par-
ticipants (488,363) have been genotyped (Bycroft et al., 
2018), and extensive batteries of lifestyle measures have 
already been collected. The project aims to acquire 
high-quality MRI scan data from 100,000 participants in 
the next few years (Miller et  al., 2016), following a 
standardized protocol at three dedicated, identical scan-
ning centers operating 7 days per week, each scanning 
18 subjects per day. As of April 2018, 15,040 participants 
have already been scanned, and their T1 structural brain 
images have been processed by the UKB team (Smith, 
Alfaro-Almagro, & Miller, 2014) and converted from 
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Digital Imaging and Communications in Medicine 
(DICOM) to Neuroimaging Infor matics Technology Ini-
tiative (NIfTI) format. Health outcomes are tracked over 
time for all participants by linking the UKB to official 
hospital records. The principle goal of the project is to 
use large-scale longitudinal data to better understand 
disease etiology and to develop predictive methods for 
early onset disease detection. An important by-product 
of the UKB project is the generation of an unprecedent-
edly large and rich data set to study behavioral pheno-
types and their relation to the collected biological 
markers (e.g., genotypes, brain scans) and health out-
comes (e.g., cognitive performance, subjective well-
being, body mass index, diseases).

Measures

Fluid intelligence. The UKB contains a short measure 
of verbal-numerical reasoning (referred to as the fluid-
intelligence test) that consists of 13 multiple-choice ques-
tions (see the Supplemental Material available online) 
measuring the capacity to solve problems that require 
logic and reasoning ability, independently of acquired 
knowledge. Participants had 2 min to complete as many 
questions as possible from the test. The fluid-intelligence 
test score is the simple unweighted sum of the number of 
correct answers given to these 13 questions. Participants 
who do not answer all of the questions within the allot-
ted 2-min limit are given a score of zero for each of the 
unattempted questions.

The fluid-intelligence test was administered on three 
occasions: (a) the initial assessment visit, (b) the first 
repeat assessment visit, and (c) the imaging visit (see 
below). The test was also administered in an online 
follow-up, which contained one additional question 
(thus, the maximum score was 14). The pairwise cor-
relation between measurement instances in the sample 
that included brain scans and genotypes was between 
.60 and .69 (Ns between 989 and 7,584; see Table S1 in 
the Supplemental Material), consistent with earlier 
reports (Lyall et al., 2016). Participants did not receive 
feedback about their performance, and they were not 
informed about the correct answers to the test questions 
at any point. We had access to 14,021 participants with 
brain scans and at least one measurement instance of 
fluid intelligence. To maximize sample size and to 
reduce noise in the measure, we aggregated the scores 
of all measurement instances. To do so, we standard-
ized each score separately to have a mean of 0 and a 
standard deviation of 1. We constructed the variable of 
fluid intelligence for each participant by taking the 
average of these standardized scores (in cases in which 
multiple observations were available for an individual) 
and standardizing the resulting measure again. To control 
for differences among individuals who participated in 

different test instances (e.g., participants who have taken 
all four tests vs. participants who have taken only one 
test), we generated indicator variables for each one of 
the tests (i.e., a variable equal to 1 if the participant took 
a specific instance of the test and equal to 0 otherwise, 
and likewise for the other test instances) and included 
them as control variables in the regression analyses.

Other cognitive measures. Apart from conducting the 
fluid-intelligence measure, we performed robustness checks 
and additional exploratory analyses using three addi-
tional cognitive tests that are currently available in a large 
subsample of the UKB (numeric memory, reaction times, 
and visual memory). The psychometric properties of 
these tests are described in detail by Lyall et al. (2016).

Numeric memory was measured by a task that first 
showed participants a 2-digit number and asked them 
to recall that number after a short pause. The number 
of digits then increased by 1 digit until either an error 
was made or the maximum number of 12 digits was 
reached, and the final number of digits shown was 
recorded. A higher number implies better cognitive per-
formance. In the reaction time task, participants com-
pleted a timed test of symbol matching similar to the 
card game Snap, and each participant’s mean response 
time across trials containing matching pairs was recorded. 
Higher scores imply slower responses (i.e., lower cogni-
tive performance). Visual memory was measured by a 
task in which participants memorized the positions of 
either three or six card pairs and then had to match them 
from memory while making as few errors as possible. 
The test score denotes the number of errors made (i.e., 
higher scores imply lower cognitive performance).

General cognitive ability (g). It is well known that low 
measurement quality can attenuate the estimated rela-
tionship between variables, and Gignac and Bates (2017) 
found substantially higher correlations between brain 
size and cognitive ability in studies with “excellent” mea-
sures of IQ than in studies with “good” or “fair” measures 
(r = .39, 95% confidence interval, or CI = [.32, .46]; r = .32, 
95% CI = [.16, .46]; and r = .21, 95% CI = [.14, .28], respec-
tively). To check the robustness of our main results based 
on the crude fluid-intelligence test described above, we 
repeated our analysis using four more comprehensive mea-
sures of g. Our measures of g used the fluid-intelligence 
test as well as the three additional cognitive tests available 
in the UKB, described above.

Our primary measure of g employed all available 
measurement instances of these tests and standardized 
each instance separately. Then, we averaged across 
instances and standardized the resulting measure again. 
Following standard practice in the literature, we extracted 
the first unrotated principal component from these vari-
ous measures of cognitive performance to obtain a proxy 
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for g (Benyamin et al., 2014; Lyall et al., 2016; Rietveld, 
Esko, et al., 2014), yielding 7,511 participants.

We found that fluid intelligence had the highest load-
ing on g (.77 in Lyall et al., 2016, and .78 in our data; 
see Table S2 in the Supplemental Material), consistent 
with the findings of earlier studies. In our analyses, we 
chose to focus on fluid intelligence instead of g because 
(a) the numeric memory test was available for only a 
subset of our participants, which reduced the sample 
size for g analyses by almost 50% compared with the 
sample size for fluid intelligence, and (b) imputation 
of missing observations was not possible without 
potentially introducing substantial noise. We preferred 
fluid intelligence over the other two cognitive tests that 
were available in our entire sample (reaction time and 
visual memory) because these two have substantially 
lower loadings on g (–.37 and –.48, respectively) and 
lower retest reliability (reaction time r ≈ .55, visual 
memory r ≈ .21; see Table S1).

Our second measure of g was constructed by per-
forming factor analysis of a single factor on the four 
tests instead of principal component analysis (PCA). The 
analysis used minimum residuals estimation and oblimin 
rotation. The correlation between this measure of g and 
our primary measure derived from PCA was .94.

Our third measure of g used a previously published 
protocol to construct g in the UKB described by Lyall 
et al. (2016). This protocol made use of the data from 
only the first touch-screen interview; it ignored data 
from the three-pair version of the pair-matching test and 
used natural logarithm (LN) transformations of reaction 
time and LN + 1 of the visual memory tests. PCA was 
then used as a dimensionality-reduction technique to 
extract g (N = 1,017).

Our fourth measure of g was constructed in a similar 
manner to our primary measure but excluded the fluid-
intelligence scores before PCA was performed (N = 
7,511). This provided a measure of g that did not directly 
depend on our main fluid-intelligence measure.

These four measures of intelligence would be rated 
as “good” according to the guidelines established by 
Gignac and Bates (2017; i.e., two to eight tests, two to 
three dimensions, 20- to 39-min testing time), compared 
with a “poor” rating of our main measure of fluid intel-
ligence (one test, one dimension, very short testing 
time). However, fluid intelligence allowed us to study 
the relationship with TBV in a substantially larger sam-
ple (N = 13,608 compared with Ns = 1,017–7,511).

Educational attainment. Following the standard esta-
blished by the Social Science Genetic Association Consor-
tium (Rietveld et  al., 2013), we measured educational 
attainment as equivalent to years of U.S. schooling for the 
highest educational degree that an individual obtained. 
We followed the International Standard Classification of 

Education (United Nations Educational, Scientific and 
Cultural Organization, 1997), which leads to seven cate-
gories of educational attainment that are internationally 
comparable. Educational attainment was measured via 
self-reports in the UKB on three occasions: (a) the initial 
assessment visit, (b) the first repeat assessment visit, and 
(c) the imaging visit. We used the highest educational 
degree reported on any of these occasions as our mea-
sure of educational attainment.

TBV. The UKB collected T1-weighted structural brain 
images using a 3-T Siemens Skyra with a 32-channel head 
coil (Siemens, Erlangen, Germany). The scanning parameters 
were as follows: repetition time (TR) = 2,000 ms, echo time 
(TE) = 2.1 ms, flip angle = 8°, matrix size = 256 × 256 mm, 
voxel size = 1 mm × 1 mm × 1 mm, number of slices = 208. 
Instead of using the preprocessed brain-size variables 
provided by the UKB, we analyzed the T1-weighted 
images ourselves with the Computational Anatomy Tool-
box (CAT; Version12; www.neuro.uni-jena.de/cat/) imple-
mented in Statistical Parametric Mapping (SPM) software 
(Version 12; Wellcome Centre for Human Neuroimaging; 
www.fil.ion.ucl.ac.uk/spm/software/spm12/). CAT12 is a 
fully automated toolbox for measurements of gray-matter 
and white-matter volumes and cortical thickness at voxel 
and region-of-interest levels. Image preprocessing used 
the default settings of CAT12. Images were corrected for 
bias-field inhomogeneity; segmented into gray matter, 
white matter, and cerebrospinal fluid; spatially normal-
ized to Montreal Neurological Institute space using linear 
and nonlinear transformations; and modulated to pre-
serve the total amount of signal in the original image 
during spatial normalization. TBV was calculated by sum-
ming the raw volumes of gray matter, white matter, and 
cerebrospinal fluid.

We conducted the following checks to ensure quality. 
First, we visually inspected all T1 images that were avail-
able to us as of April 2018 (N = 14,793) and excluded 48 
images because of artifacts, poor image quality, or gross 
brain pathology hampering image segmentation. Next, 
we processed the images using the CAT12 toolkit (Gaser 
& Dahnke, 2016) and performed the sample homogene-
ity check implemented in that software package, result-
ing in the exclusion of 366 images because they were 
more than 2 standard deviations away from the sample 
mean. After these quality control steps were conducted, 
images from 14,379 individuals were available for analy-
sis. The vast majority of these 14,379 individuals reported 
to be of White European ancestry (N = 13,894, field 
21000 in the UKB data set).

Independently from us, the UKB Imaging Working 
Group also derived a measure of brain volume in a 
slightly smaller subsample (n = 14,165) based on white 
and gray matter only (i.e., excluding fluid; see field 
25010 in the UKB data set and Miller et al., 2016). The 
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correlation between their measure of brain volume and 
our TBV is .91 (p < .0001). To check the robustness, we 
repeated our main analysis with the UKB-derived 
measure.

Genetic principal components. To control for ances-
try and genetic diversity in the sample, we used the first 
40 principal components of the genetic data (for details, 
see Bycroft et al., 2018). The principal components were 
derived from high-quality markers from all autosomes 
that were pruned to minimize linkage disequilibrium 
(Price et al., 2008), resulting in a set of 147,604 single-
nucleotide polymorphisms obtained from a set of 407,219 
unrelated, high-quality samples that match our subsam-
ples very closely in terms of ethnicity.

Descriptive statistics of the sample. Figure S1 in the 
Supplemental Material displays the distribution of TBV in 
our sample; the distributions of the cognitive scores and 
educational attainment are displayed in Figures S2 to S7 
in the Supplemental Material. The descriptive statistics of 
our sample are reported in Table S3 in the Supplemental 
Material, and Table S2 summarizes the first-order pair-
wise correlations between the key variables used in our 
analyses.

Among the different cognitive measures, fluid intel-
ligence was most strongly correlated with g as well as 
educational attainment and TBV. Male sex and body 
height had strong positive correlations with TBV and 
weak positive correlations with cognitive performance 
in the UKB sample. These findings highlight the impor-
tance of controlling for sex and height in our analyses.

We also observed small correlations (|r| < .13) 
between (a) the first and second principal components 
of the genetic data and TBV and (b) the first and second 
principal components of the genetic data and measures 
of cognitive performance, most noticeably for fluid intel-
ligence. The first few genetic principal components in 
European samples typically map the settlement and his-
torical migration patterns in a country relatively well. 
Thus, genetic principal components tend to capture envi-
ronmental differences in terms of living standards, reli-
gion, and culture across people, which may bias the 
estimated relationship between TBV and fluid intelligence 
if they are not controlled for.

Analysis

Our analyses followed a preregistered protocol (https://
osf.io/fvm7p/register/565fb3678c5e4a66b5582f67). Spe-
cifically, we used UKB data from all individuals of Euro-
pean descent who were genotyped and scanned by 
April 2018 who also had measures of fluid intelligence, 
educational attainment, and all other control variables 
described in the protocol (N = 13,608). We tested for 

an association between TBV (white matter + gray matter +  
fluid) and fluid intelligence and between TBV and edu-
cational attainment using linear regression models that 
controlled for sex, age at brain scan, age at IQ test 
(using a dummy for each year to capture nonlinear 
effects), height, the indicator variables for the instances 
of the cognitive test, the first 40 principal components 
of the genetic data, and all interactions between age at 
IQ test and sex.

For individuals who participated in more than one 
instance of the cognitive test, we computed and con-
trolled for the average age at testing, rounded to the next 
integer value. The regressions on educational attainment 
controlled for birth-year dummies instead of age at IQ 
measurement, to capture differences due to time-specific 
environmental factors (e.g., educational reforms). To 
estimate the marginal R2 of TBV on fluid intelligence and 
educational attainment, we computed the change in R2 
between a model that includes all covariates (including 
genetic principal components) but no TBV and a model 
that did not include them.

To observe whether the relationship between TBV and 
cognitive performance was biased by subtle population 
structure and body height, we estimated additional mod-
els that did not include genetic controls or body height 
and compared the coefficients with those of the model 
that included them. We further performed multiple 
regression analyses that decomposed the effect of TBV 
into gray and white matter as well as fluid volume.

Our large sample also allowed us to conduct stratified 
analyses that elucidated whether the relationship 
between brain size and cognitive measures was constant 
across different population groups. Our analysis plan 
specified that subsamples needed to be large enough 
to yield at least 90% statistical power to test effect sizes 
with a correlation greater than .10 and an alpha of .05 
after Bonferroni correction for multiple comparisons. 
Assuming that we would conduct, at most, 50 indepen-
dent tests (α = .05/50 = .001), the minimum required 
subsample size to achieve 90% power for an effect (r) 
of .10 would be 2,096. Given this threshold, we were 
well powered to conduct separate analyses for men  
(n = 6,425), women (n = 7,183), and four age groups, 
dividing the sample at the 25th, 50th, and 75th percen-
tiles of the age distribution (n > 3,278 in each group).

Our analysis plan also considered the possibility of 
comparing effect sizes across groups of different ances-
try (e.g., European, Chinese, Indian). However, the vast 
majority of our final sample was of White European 
descent (N = 13,180), and no other ethnic group was 
large enough to be studied separately given our pre-
defined criteria for statistical power.

Apart from our preregistered plan, we performed 
additional robustness checks by repeating the main 
analyses while replacing the dependent variables by 
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the three additional cognitive tests available in the UKB 
(numeric memory, reaction time, and visual memory), 
as well as the four different proxies of g that we con-
structed. Furthermore, we ran regressions that added 
controls for place of birth (using dummy variables for 
geographic east and north coordinates) and socioeco-
nomic status, approximated by the Townsend deprivation 
index. The Townsend index is based on the postal code 
of a participant’s household address and measures unem-
ployment, lack of car ownership, lack of house owner-
ship, and overcrowding in an area. Higher Townsend 
scores indicate higher deprivation (Hill et al., 2016).

Finally, we tested whether the association between 
TBV and cognitive performance was driven by a spe-
cific cognitive construct by estimating a multiple linear 
regression model that predicted TBV from all four dif-
ferent cognitive tests and control variables.

Results

TBV and fluid intelligence

Figure 1 illustrates the positive relationship between TBV 
and fluid intelligence in our pooled sample of 13,608 
participants. We found a correlation between TBV and 
fluid intelligence of .21 (95% CI = [.19, .23], p = 3.20 × 
10–86) without genetic controls and .19 (95% CI = [.17, .22], 
p = 4.30 × 10–74) after correcting for subtle population 
structure (see Table 1).2 Using the Townsend index of 
social deprivation and place of birth3 instead of genetic 

principal components yielded exactly the same result  
(r = .19, 95% CI = [.17, .22], N = 12,822; see Table S5 in the 
Supplemental Material). Adding the genetic principal com-
ponents to the regression that already controlled for the 
Townsend index and place of birth did not attenuate the 
association between brain volume and fluid intelligence 
any further. Thus, the relationship between TBV and fluid 
intelligence survived stringent controls for possible con-
founds. Without controlling for body height, we found that 
the estimated correlation between TBV and fluid intelli-
gence slightly increased to .21 (95% CI = [.19, .23], p = 
2.52 × 10–92; see Table S6 in the Supplemental Material).

Overall, variation in TBV accounted for a change in 
R2 of approximately 2.1% of the variation in fluid intel-
ligence in the sample. The estimated marginal effects 
in the model including all controls suggest that a  
100-cm3 increase in TBV at the population mean 
increased the expected fluid intelligence by 0.14 stan-
dard deviations (with sample SD = 1.0, 95% CI = [0.13, 
0.16]). Using the UKB-derived measure of brain volume 
(N = 13,409), we found estimates with overlapping 95% 
CIs: a correlation of .18 (95% CI = [.16, .20], p = 5.82 × 
10–68) in the model including all controls and a marginal 
effect of .17 for each 100-cm3 increase in total white 
and gray matter (95% CI = [.15, .18], p = 5.82 × 10–68; 
see Table S7 in the Supplemental Material).

When we included controls for potential confounds, 
our effect-size estimate was 20% to 35% smaller than 
in the recent meta-analyses by Pietschnig et al. (2015; 
r = .24, 95% CI = [.21, .27], N = 8,036) and Gignac and 
Bates (2017; r = .29, 95% CI = [.24, .33]). One potential 
reason is that we used more stringent controls for 
potential confounds than were used in previous work. 
However, even the raw correlation between TBV and 
fluid intelligence in our data (r = .20) is smaller than 
in previous work. A likely cause underlying this smaller 
estimate is that fluid intelligence is measured with more 
noise in our study compared with other studies, which 
used longer, more comprehensive cognitive tests 
(Gignac & Bates, 2017). One way to account for mea-
surement error is to divide the correlation between fluid 
intelligence and TBV by the square root of the test-
retest reliability of the fluid-intelligence measure, which 
is between .60 and .69 (see Table S1).4 This leads to 
disattenuated effects (rs) of up to .27 (without genetic 
controls) and .25 (with controls), which are consistent 
with the estimates in the most recent meta-analyses in 
the literature (Gignac & Bates, 2017; Pietschnig et al., 
2015).

TBV and educational attainment

We also found a robust empirical relationship between 
TBV and educational attainment (see Table 2). Although 
educational attainment was measured almost without 
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Fig. 1. Scatterplot showing the relationship between total brain vol-
ume and residualized fluid intelligence. The regression line (in blue) 
was estimated using local polynomial smoothing. The gray band 
indicates 99% confidence intervals (CIs). Fluid intelligence was first 
normalized and then residualized by sex, age, height, the first 40 
principal components of the genome, Sex × Age interactions, and 
indicator variables for the instances of the cognitive tests taken as 
independent variables. Parameters for smoothing were as follows: 
kernel = epanechnikov, degree = 0, bandwith = 19.16, pwidth = 28.74.
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error (in contrast to fluid intelligence), the correlation 
with educational attainment was smaller than for fluid 
intelligence (r = .12, 95% CI = [.10, .15] including genetic 
controls, N = 13,608). We found an almost identical 
result when using the Townsend index of social depri-
vation and place of birth as control variables for popu-
lation structure instead of genetic principal components 
(r = .11, 95% CI = [.08, .13], N = 12,822; see Table S8 in 
the Supplemental Material). Repeating the regressions 
with the UKB-derived measure of TBV yielded results 
with 95% CIs that overlapped with the main analyses 
(see Table S7). Overall, TBV accounts for a change in 
R2 of approximately 0.9% of the sample variation in 

educational attainment. To put this result in perspective, 
an increase of 100 cm3 in TBV at the population mean 
increased the expected schooling by 0.4 years.

Gray-matter, white-matter, and  
fluid volume

Table 3 shows the results of a multiple regression that 
decomposed the effect of TBV into gray- and white-
matter as well as fluid volume. The largest contribution 
to fluid intelligence came from gray matter (r = .13, 95% 
CI = [.10, .16]). White matter (r = .06, 95% CI = [.03, 
.09]) and fluid were also associated (r = .05, 95% CI = 

Table 1. Results From the Ordinary Least Squares Regressions Testing the Influence of Total Brain 
Volume on Fluid Intelligence

Variable

Excluding genetic controls Including genetic controls

β Marginal effect (dy/dx) β Marginal effect (dy/dx)

Total brain volume 0.21*
[0.19, 0.23]

0.0014*
[0.0013, 0.0016]

0.19*
[0.17, 0.22]

0.0013*
[0.0012, 0.0015]

Control: male 0.08
[–1.05, 1.22]

–1.09
[–3.71, 1.54]

0.21
[–0.91, 1.33]

–0.15
[–2.75, 2.44]

Control: age at scan 0.26*
[0.17, 0.34]

0.04*
[0.02, 0.05]

0.22*
[0.14, 0.31]

0.03*
[0.02, 0.04]

Control: height 0.11*
[0.09, 0.14]

0.01*
[0.01, 0.01]

0.09*
[0.06, 0.11]

0.01*
[0.01, 0.01]

 R2 .11 .11 .13 .13
 N 13,608 13,608 13,608 13,608

Note: Values in brackets are 95% confidence intervals. Total brain volume was measured in cubic centimeters; control 
variables included sex (baseline category was female), age at scan in years, height in centimeters, participant-specific IQ 
testing sessions (dummy coded), and all interactions between average age at IQ-testing sessions (dummy coded) and sex. 
The two right columns also include controls for population structure using the first 40 principal components of the genome. 
Coefficients for genetic principal components, indicators for IQ test, and Age × Sex interactions are not displayed.
*p < .001.

Table 2. Results From the Ordinary Least Squares Regressions Testing the Influence of 
Total Brain Volume on Educational Attainment

Variable

Excluding genetic controls Including genetic controls

β
Marginal effect 

(dy/dx) β
Marginal effect 

(dy/dx)

Total brain volume 0.11*
[0.09, 0.14]

0.0037*
[0.0030, 0.0044]

0.12*
[0.10, 0.15]

0.0040*
[0.0033, 0.0047]

Control: male 0.53
[–0.28, 1.34]

–8.38
[–19.60, 2.84]

0.49
[–0.31, 1.29]

–7.40
[–18.53, 3.72]

Control: age at scan –0.00
[–0.12, 0.12]

–0.00
[–0.08, 0.08]

–0.03
[–0.15, 0.09]

–0.02
[–0.10, 0.06]

Control: height 0.06*
[0.03, 0.08]

0.03*
[0.02, 0.04]

0.06*
[0.03, 0.08]

0.03*
[0.02, 0.04]

 R2 .03 .03 .05 .05
 N 13,608 13,608 13,608 13,608

Note: Values in brackets are 95% confidence intervals. Brain volume was measured in cubic centimeters; 
control variables included sex (baseline category was female), age at scan in years, birth year (dummy 
coded) and its interactions with sex, and height in centimeters. The two right columns also include 
controls for population structure using the first 40 principal components of the genome. Coefficients for 
genetic principal components and Age × Sex interactions are not displayed.
*p < .001.
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[.03, .07]) with fluid intelligence but to a much smaller 
extent. For educational attainment, we found compa-
rable effect sizes of gray matter (r = .06, 95% CI = [.03, 
.09]) and fluid (r = .07, 95% CI = [.05, .09]) and an even 
smaller effect of white matter that was indistinguishable 
from 0 (r = .03, 95% CI = [.00, .06]).

Analyses stratified by sex and age

The relationship between TBV and fluid intelligence 
was of comparable magnitude for women (r = .16, 95% 
CI = [.14, .18]; dy/dx = 0.0013, 95% CI = [0.0011, 0.0015]) 
and men (r = .15, 95% CI = [.13, .17]; dy/dx = 0.0011, 
95% CI = [0.0010, 0.0013]; see Table S9 in the Supple-
mental Material). Furthermore, we found no interaction 
between sex and TBV influences on fluid intelligence 
(see Table S10 in the Supplemental Material). The rela-
tionship between TBV and fluid intelligence also 
appears to be relatively stable across age (see Table 
S11 in the Supplemental Material). Although the effect 
size decreased to .15 in the oldest cohort (≥ 62 years), 
the 95% CI ([.10, .19]) overlapped with that of the other 
three age groups.

Our results for educational attainment show a similar 
pattern. We found similar effect sizes for women (r = 
.11, 95% CI = [.08, .13]) and men (r = .09, 95% CI = [.07, 
.12]) as well as no significant age-dependent variation 
in effect sizes (see Tables S12 and S13 in the Supple-
mental Material).

Robustness checks

We repeated our analysis with more elaborate proxies 
of g (see Tables S14a–S14d in the Supplemental Mate-
rial). For our primary proxy of g, we found standardized 

effect-size estimates almost identical to those in our 
main analysis on fluid intelligence (r = .18, 95% CI = 
[.15, .21] including genetic controls, N = 7,511; see Table 
S14a). The same held for the proxy of g derived by Lyall 
et al. (2016; r = .18, 95% CI = [.09, .26], N = 1,017; see 
Table S14b). We found slightly higher standardized 
effect sizes when using factor analysis instead of PCA 
to derive g (r = .21, 95% CI = [.18, .24] including genetic 
controls, N = 7,511; see Table S14c). However, the 95% 
CIs of the estimates all overlapped with our results for 
fluid intelligence. These findings were confirmed when 
we estimated marginal effects instead of betas.

When using the g measure constructed without fluid 
intelligence, the relation with TBV was substantially 
smaller (r = .10, 95% CI = [.07, .12] including genetic 
controls, N = 7,511; see Table S14d), suggesting that a 
large share of the association between TBV and cogni-
tive ability is accounted for by fluid intelligence.

Specificity

To explore the associations between TBV and cognitive 
measures that are different from fluid intelligence and 
g, we conducted exploratory analyses using the three 
other cognitive tasks of the UKB (see Table S15 in the 
Supplemental Material). We found statistically signifi-
cant, yet much smaller in magnitude, associations of 
TBV with numeric memory (r = .11, 95% CI = [.08, .14] 
including genetic controls, N = 7,722) and visual mem-
ory (r = –.05, 95% CI = [–.07, –.03] including genetic 
controls, N = 13,292) and no significant relationship 
with the reaction time task (r = –.02, 95% CI = [–.04, 
.00] including genetic controls, N = 13,292).

Moreover, when TBV was predicted using a multino-
mial regression that included the four different cognitive 

Table 3. Results From the Ordinary Least Squares Regressions Testing the Influence of White-
Matter, Gray-Matter, and Fluid Volume on Fluid Intelligence and Educational Attainment

Variable

Fluid intelligence Educational attainment

Standardized β
Marginal effect 

(dy/dx) Standardized β
Marginal effect 

(dy/dx)

Gray-matter volume 0.13*
[0.10, 0.16]

0.0021*
[0.0016, 0.0026]

0.06*
[0.03, 0.09]

0.0010*
[0.0004, 0.0015]

White-matter volume 0.06*
[0.03, 0.09]

0.0010*
[0.0005, 0.0015]

0.03
[–0.00, 0.06]

0.0004
[–0.0001, 0.0009]

Fluid volume 0.05*
[0.03, 0.07]

0.0008*
[0.0004, 0.0012]

0.07*
[0.05, 0.09]

0.0011*
[0.0008, 0.0015]

 R2 .14 .14 .06 .06
 N 13,608 13,608 13,608 13,608

Note: Values in brackets are 95% confidence intervals. Total gray-matter, white-matter, and fluid volumes were 
measured in cubic centimeters. Regressions included controls for population structure using the first 40 principal 
components of the genome and all other control variables specified in Table 1 (for fluid intelligence) and Table 2 
(for educational attainment). Coefficients for control variables are not displayed.
*p < .001.
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measures in our data altogether, the coefficient of fluid 
intelligence was substantially larger than the coefficients 
of all other measures (see Table S16 in the Supplemental 
Material), suggesting that the association between TBV 
and cognitive ability is best captured by fluid intelli-
gence. This finding was robust to controlling for edu-
cational attainment in the regression. It is important to 
note, however, that the smaller association of TBV with 
numeric memory and visual memory was likely driven 
by the low quality of these measures (see Table S1).

Discussion

Our results indicate that there is a robust positive rela-
tionship between TBV and intelligence that is similar 
across sex and various age strata. When we accounted 
for the relatively low reliability of the cognitive mea-
sures in the UKB, the estimated effect sizes were com-
parable with previous recent meta-analyses on this 
topic. Yet TBV accounts for a relatively small share in 
overall variation in cognitive performance (ΔR2 ≈ 2%). 
Importantly, our results are free of publication bias and 
come from a sample that is approximately 70% larger 
than the combined samples of all previous investiga-
tions on this topic, and our analyses systematically con-
trolled for important potential confounds. Our analysis 
shows that the lion’s share of the association between 
TBV and intelligence is explained by individual differ-
ences in gray-matter volume. Furthermore, we docu-
ment that TBV is also positively associated with 
educational attainment, although the association is sub-
stantially smaller than for intelligence (ΔR2 ≈ 0.9%).

Although our study demonstrates that the association 
between TBV and cognitive performance is solid, our 
work and the literature as a whole have limitations that 
provide avenues for further research. First, our results 
are based on a large population sample of adults and 
the elderly that overrepresented individuals of higher 
socioeconomic status, and the sample consists almost 
entirely of individuals of European descent from the 
United Kingdom. The positive, linear relationship 
between TBV and fluid intelligence that we observed 
was driven by the large majority of individuals in that 
sample who had brain volumes and measures of fluid 
intelligence in the normal range. At the extreme ends 
of the distributions, the relationship between TBV and 
fluid intelligence seems to be weaker or even nonex-
istent (see Fig. 1). It is reasonable to expect that the 
positive relationship we observed would not hold for 
people affected by chronic or degenerative neurological 
problems (e.g., dementia, Alzheimer’s disease, Parkinson’s 
disease) or other medical conditions that are known to 
be linked to abnormal brain development or physiology. 
Furthermore, the results may not generalize to children. 

Although we have no reason to believe that the results 
depend on other characteristics of the participants, 
materials, or context, continuous exploration of the 
generalizability of the results to other populations is 
worthwhile.

A second important limitation concerns causal infer-
ence. The empirical work on the relationship between 
TBV and intelligence and between TBV and educational 
attainment, including our study, is based on nonexperi-
mental data, so we cannot rule out reverse causation 
or the influence of unobserved confounds. Although it 
may be most intuitive that brain anatomy causes cogni-
tive performance and educational attainment, a reverse 
relationship may also exist (e.g., via brain plasticity that 
adapts the brain to how it is used; e.g., May, 2011). 
Furthermore, although we controlled for more potential 
confounding factors than did authors of earlier studies, 
the identifying assumption of regression analysis that 
the error term is independent from the regressors may 
still be violated. For example, people with larger brains 
may have access to better schools and health-care sys-
tems in a manner that is not captured by our genetic 
and demographic controls. In addition, brain anatomy 
and cognitive performance are both highly heritable 
(h2 ≈ .8; Posthuma et al., 2002), and the coheritability 
between the two (rg ≈ .3; Sniekers et al., 2017) suggests 
that both are partially influenced by the same genetic 
factors (Okbay, Beauchamp, et  al., 2016; Posthuma 
et  al., 2002). Investigating these relationships further 
would be of interest.

Third, the low measurement quality of behavioral phe-
notypes in large data sets is a limitation that is the result 
of a trade-off between sample size and measurement 
accuracy, both of which are costly. Whereas using a crude 
measure of a construct in a very large sample often allows 
obtaining greater statistical power than a perfect measure 
in a small sample (Okbay, Baselmans, et al., 2016), mea-
surement error leads to attenuated (standardized) effect-
size estimates. We addressed this challenge by reporting 
disattenuated effects that divided sample estimates by the 
square root of the retest reliability of the cognitive 
measures.

Fourth, it is likely that structural differences in spe-
cific brain regions differentially contribute to individual 
differences in cognitive performance, over and above 
what is captured by TBV. Of note, despite a strong cor-
relation between sex and TBV in our sample (r = .62), 
all of the cognitive measures in our sample showed sex 
differences that were meager (see Table S1), suggesting 
the possibility that sex differences in other brain char-
acteristics compensate for the discrepancy in TBV (e.g., 
women have greater cortical thickness; Ritchie et al., 2018).

Fifth, the relationship between anatomical brain fea-
tures and cognitive performance is likely mediated by 
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neural processes that are better captured by measures 
of functional brain activity than by volumetric measure-
ments. Furthermore, many distinct mental processes 
(e.g., attention and memory) contribute to performance 
in intelligence tests. Therefore, our understanding of 
how individual differences in cognition arise may ben-
efit greatly from more detailed, possibly nonlinear, 
mappings between anatomical and functional brain 
measures and individual differences in distinct mental 
capacities.

Finally, further theoretical accounts for what the 
association between TBV and intelligence might imply 
about the evolution of human intelligence are needed 
(e.g., González-Forero & Gardner, 2018). Many previous 
investigations have been motivated by an implicit 
assumption that humans have particularly large brains 
and are also exceptionally cognitively flexible, relative 
to other species (Gonda, Herczeg, & Merilä, 2013). 
However, there are no agreeable means to quantify 
intelligence between species, and although some recent 
efforts reported cross-species correlations between TBV 
and cognitive traits such as self-control (MacLean et al., 
2014) and problem solving (Benson-Amram, Dantzer, 
Stricker, Swanson, & Holekamp, 2016), this emerging 
literature is in its early days and is not without contro-
versies (Kabadayi, Taylor, von Bayern, & Osvath, 2016). 
Furthermore, humans are by no means the species with 
the largest brain size (cetaceans and elephants have 
much larger brains), ratio of brain to body size, or rela-
tive number of neurons, and empirical evidence sug-
gests that our species is also not superior when it comes 
to various cognitive phenotypes, including working 
memory (Inoue & Matsuzawa, 2007). We hope that 
future studies will shed further light on how indi-
vidual differences in cognitive capacities arise by 
exploring the associations between cognitive abilities 
and additional biomarkers (such as functional brain 
measures) as well as their interactions with environ-
mental conditions.
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Notes

1. Population stratification is a well-known concern in genetic-
association studies. For example, a spurious relationship between 
the lactase gene that codes for the enzyme lactase and educa-
tional attainment is found if analyses in genetic-association stud-
ies do not properly control for population stratification (Rietveld, 
Conley, et al., 2014). Lactose intolerance is unrelated to cogni-
tive ability and is much more frequent in southeastern parts of 
Europe than in northwestern parts.
2. Similar results (i.e., significant coefficients for TBV and 
substantial overlap in the 95% CIs) were obtained when we 
repeated the analyses for each of the test-taking instances in 
isolation, in the subsample that took all four tests (N = 708; see 
Table S4 in the Supplemental Material).
3. We report regression results with dummy variables for east and 
north coordinates; the results held when dummy variables for 
all interactions of east and north coordinates were used instead.
4. This approach assumes that the measurement noise of TBV 
is negligible.
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