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Abstract

We introduce a new fractionally integrated model for covariance matrix dynamics
based on the long-memory behavior of daily realized covariance matrix kernels. We
account for fat tails in the data by an appropriate distributional assumption. The co-
variance matrix dynamics are formulated as a numerically efficient matrix recursion
that ensures positive definiteness under simple parameter constraints. Using intra-
day stock data over the period 2001–2012, we construct realized covariance kernels
and show that the new fractionally integrated model statistically and economically
outperforms recent alternatives such as the multivariate HEAVY model and the
multivariate HAR model. In addition, the long-memory behavior is more important
during non-crisis periods.

Key words: fractional integration, heavy tails, matrix-F distribution, multivariate volatility, realized

covariance matrices, score dynamics

JEL classification: C32, C58

1 Introduction

Various fields in financial econometrics, such as risk- and portfolio management, require

the use of an adequate multivariate volatility model to estimate or forecast the covariance

matrix of financial asset returns. We can distinguish two main lines of literature proposing
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different types of models, namely multivariate generalized autoregressive conditional heter-

oskedasticity (GARCH)-type models (for an overview, see Silvennoien and Teräsvirta,

2009) and stochastic volatility (SV)-type models (for an overview, see Asai, McAleer, and

Yu, 2006). More recently, the availability of intraday high-frequency data has led to a new

class of volatility models including realized (co)variance measures. Such realized measures

help to describe and forecast volatility more precisely than traditional measures such as

squares and cross-products of daily returns; see for instance Andersen et al. (2001).

Typically, either realized variance measures (Barndorff-Nielsen and Shephard, 2002) or

realized kernel measures (Barndorff-Nielsen et al., 2008) are included. Examples of the for-

mer include the Wishart autoregressive (WAR) model of Gourieroux, Jasiak, and Sufana

(2009) and the Conditional Autoregressive Wishart (CAW) model of Golosnoy, Gribisch,

and Liesenfeld (2012), while examples of the latter include the high-frequency-based vola-

tility (HEAVY) model of Shephard and Sheppard (2010) and its multivariate extension by

Noureldin, Shephard, and Sheppard (2012), and the multiplicative error model (MEM) of

Englo and Gallo (2006).

Volatilities are typically strongly persistent, which has led to the introduction of volatil-

ity models with long-memory features. A seminal reference is the fractionally integrated

GARCH (FI-GARCH) model of Baillie, Bollerslev, and Mikkelsen (1996), which is based

on squared daily returns. Realized variance measures exhibit even stronger long memory

features than squared daily returns. Andersen et al. (2001) for instance find that

realized measures are highly persistent and behave as fractionally integrated processes that

can be modeled by autoregressive fractionally integrated moving average (ARFIMA) mod-

els; see also Koopman, Jungbacker, and Hol (2005). Corsi (2009) also captures long-

memory volatility dynamics, but does so using a heterogeneous autoregressive (HAR)

model, which relates realized volatility to a linear combination of lagged daily, weekly, and

monthly realized volatilities. Proietti (2016) introduces an alternative integrated moving

average model for realized variances and assesses its predictive power against other univari-

ate models.

The univariate volatility models with long-memory features available in the literature

face two main challenges that complicate their application to a multivariate context. First,

these models do not account for fat-tailed returns and outliers in either the realized meas-

ures, the returns, or both. Although fat-tailed distributions are often used to describe

returns, thin-tailed distributions such as the Wishart are typically used for the realized

measures despite the fact that also data for the realized measures can be subject to outliers

and influential observations. For example, the Flash Crash in 2010 led to a spike in the real-

ized (co)variance of a large number of assets. Ignoring the possible occurrence of such influ-

ential events in the specification of the volatility propagation mechanism and the likelihood

function can have a huge impact on the estimated volatility dynamics for each of the volatil-

ity models discussed above. Second, multivariate models that incorporate the long-memory

features of (realized) (co)variances face the challenge to simultaneously avoid the curse of

dimensionality and solve the requirement of ensuring positive definite covariance matrices.

Chiriac and Voev (2011) deal with these issues by proposing vector ARFIMA (VARFIMA)

models for the Cholesky decomposition of the realized covariance matrix. The same study

also extends the HAR model of Corsi (2009) to the multivariate setting. Bauer and Vorkink

(2011) solve the issue differently by modeling the matrix-logarithm of the realized

covariance matrix. Both studies, however, model the vectorized (vech) matrix of interest.
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This may become computationally intensive in higher dimensions. Moreover, neither model

accounts for the possible fat-tailedness of realized measures and its impact on the volatility

dynamics as discussed earlier.

In this paper, we address both problems at the same time by introducing a new multi-

variate volatility model for realized (kernel) covariance matrices. Our model allows for

both the long-memory behavior and the fat-tailedness of (realized) covariances by combin-

ing fractionally integrated dynamics with the generalized autoregressive score (GAS) dy-

namics of the theoretical results of Conrad and Haag (2006). The only paper to our

knowledge that combines long-memory and GAS is Janus, Koopman, and Lucas (2014),

but this paper covers only a bivariate setting with univariate long-memory models for the

time-varying variances and correlations. Our model, by contrast, is set in the general multi-

variate matrix setting. Morover, unlike our paper, Janus, Koopman, and Lucas (2014) do

not incorporate realized measures in their analysis and do not provide parameter con-

straints to ensure positive definiteness of the covariance matrix.

To account for fat tails of the realized covariance matrices, we use score-driven dynam-

ics based on a matrix-F distributional assumption as in Opschoor et al. (2018). The result-

ing score-driven steps for the time-varying true covariance matrix automatically reduce the

impact of outlying realized covariance matrices in an intuitive and empirically relevant

way. Due to the matrix formulation of the covariance matrix dynamics, the introduction of

long-memory features can be done in a parsimonious, yet flexible way. We do so following

a very similar line of argument as proposed in Baillie, Bollerslev, and Mikkelsen (1996) to

set up the original FIGARCH model, but then applied to our specific matrix-variate, score-

driven context. The parsimony of our approach is a major asset in the multivariate context,

where the curse of dimensionality looms large.

A well-known additional issue in modeling dynamic covariance matrices is to ensure

positive definiteness of the covariance matrix at all times. Interestingly, our new model dir-

ectly allows us to apply the theoretical results of Conrad and Haag (2006). Using these

results, we can formulate easy parameter restrictions that ensure positive definiteness over

the entire sample period.

We provide an empirical application of our multivariate fractionally integrated model

based on the matrix-F distribution (FIGAS model from now on) on daily realized kernels

for 15 equities from the S&P 500 index. Our sample spans the period January 2001 to

December 2012. Using a forecasting horizon of 1, 5, 10, and 22 days ahead, we compare

both statistically and economically the performance of our new dynamic covariance matrix

model to several strong benchmarks, such as the HEAVY model (Noureldin, Shephard, and

Sheppard, 2012), the GAS tF model (Opschoor et al., 2018), and the multivariate extension

of the HAR model of Corsi (2009).

Using a quasi-likelihood loss function, the FIGAS model outperforms the competing

HEAVY and HAR models, both inside and outside crisis periods. Interestingly, we find that

the fractionally integrated part of our new model only outperforms the short-memory GAS

model during non-crisis periods. Hence, the long-memory property seems particularly rele-

vant during calm periods. We assess the economic significance of our results by considering

mean–variance efficient portfolios based on the forecasts. Again we find that the FIGAS

model outperforms its competitors by producing statistically significantly lower ex post

conditional portfolio standard deviations, combined with lower portfolio concentration,

lower total number of short positions, and equal or less turnover.
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The rest of this paper is set up as follows. In Section 2, we introduce the new FIGAS

model for realized covariance matrices under fat-tails. In Section 3, we provide a simulation

experiment to show the performance of the model and estimation procedure. In Section 4,

we apply the model to a panel of daily realized kernels. We conclude in Section 5.

2 Modeling Framework

2.1 The FI-GARCH Model

Before we introduce our new score-driven fractionally integrated volatility model, we first

briefly review the main steps in the development of the univariate FI-GARCH(1, 1) or

FIGARCH 1;d; 1ð Þ model of Baillie, Bollerslev, and Mikkelsen (1996). This paves the way

to the new fractionally integrated dynamics in the score-driven framework. The FIGARCH

1; d;1ð Þ model is obtained by rewriting the standard GARCH(1, 1) model of Bollerslev

(1986) as

r2
tþ1 ¼ xþ a�2t þ br2

t , 1� aL� bLð Þ�2tþ1 ¼ xþ 1� bLð Þvtþ1; (1)

with L the lag operator Lr2
tþ1 ¼ r2

t ; r2
t the conditional variance of �t, and vt ¼ �2t � r2

t a

martingale difference. Baillie, Bollerslev, and Mikkelsen (1996) introduce the FIGARCH

1; d;1ð Þ model by replacing the left-hand side lag polynomial 1� aL� bLð Þ by

1� Lð Þd 1� /Lð Þ, with j/j < 1 and 1� Lð Þd the fractional difference operator defined by

the binomial expansion

1� Lð Þd ¼ 1� dLþ d d � 1ð Þ
2!

L2 � d d � 1ð Þ d � 2ð Þ
3!

L3 þ � � � ; (2)

for any real order of fractional integration d > �1. Using vt ¼ �2t � r2
t , the FI-GARCH

1; d;1ð Þmodel can also be rewritten in its ARCH(1) representation

1� Lð Þd 1� /Lð Þ�2tþ1 ¼ xþ 1� bLð Þvtþ1 , r2
tþ1 ¼ ~xþW Lð Þ�2tþ1; (3)

with ~x ¼ 1= 1� bð Þ and

W Lð Þ ¼ 1� 1� Lð Þd 1� /Lð Þ
1� bLð Þ ¼

X1
i¼1

wiL
i: (4)

Thus, the conditional variance r2
tþ1 depends on lags of �2tþ1, where the weight assigned

to each lag declines hyperbolically according to W Lð Þ.
An important issue related to FI-GARCH models is whether these models are strictly

stationary or not. According to Conrad and Haag (2006) and the references therein, this is

still an open question. The same authors show that the original Baillie, Bollerslev, and

Mikkelsen (1996) specification is not covariance stationary. To circumvent this problem,

Karanasos, Psaradakis, and Sola (2004) introduced the closely related LMGARCH model,

changing Equation (3) into

1� Lð Þd 1� /Lð Þ �2tþ1 � x
� �

¼ 1� bLð Þvtþ1 , r2
tþ1 ¼ xþW Lð Þ �2tþ1 � x

� �
; (5)

where it can be shown that E½r2
tþ1� ¼ x. The beauty of this model is that it combines

the covariance stationary property of �t (for any 0 < d < 1) with long-memory in �2t .
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The LMGARCH model is one of the basic blocks for our model presented in the following

subsection.

2.2 Score-Driven Fractionally Integrated Volatility Dynamics

Analogously to the FI-GARCH/LMGARCH case, we can now introduce the fractionally

integrated score-driven multivariate volatility model. Consider a k� kð Þ -matrix process

RKt; t ¼ 1; . . . ;T, generated by

RKt ¼ V
1=2
t Zt V

1=2
t

� �0
; ZtjF t�1 � DZ Ikð Þ; (6)

where F t�1 is the information set containing all information up to time t – 1, Vt denotes

the conditional covariance matrix, RKt denotes the realized kernel covariance matrix meas-

ure, and Zt denotes a k� kð Þ -matrix-valued innovation.1 The matrix root V
1=2
t is defined

such that V
1=2
t ðV

1=2
t Þ0 ¼ Vt. The realized kernel process RKt is a consistent and robust esti-

mator of Vt correcting for market-microstructure noise; for more details, see Barndorff-

Nielsen et al. (2011).

We assume Vt follows the score-driven dynamics as introduced by Creal, Koopman,

and Lucas (2011, 2013) and Harvey (2013). Score dynamics adjust the time varying

parameter Vt in the direction of steepest ascent of the local log-likelihood function.

The approach is computationally easy to implement given its explicit form for the likeli-

hood function. Score-driven dynamics also possess information theoretic optimality proper-

ties; see Blasques, Koopman, and Lucas (2015). Let p RKtjVtð Þ denote the predictive

conditional density for RKt. Then the score-driven dynamics for Vt are driven by the scaled

score

st ¼ St � @logp RKtjVtð Þ=@Vt

� �
� St
0; (7)

where St is a scaling matrix to correct for the curvature of the log predictive density at time

t. We come back to the precise form of the conditional observation density p RKtjVtð Þ, the

choice of scaling St, and the expression for the scaled score st in Section 2.3. For now, it suf-

fices to note that our distributional and scaling choices allow us to write st as st ¼ s(
t � Vt,

where s(
t is positive definite for all t. For other distributional or scaling choices, positive def-

initeness of s(
t may no longer be ensured.

To introduce fractionally integrated dynamics for the score-driven model, we first note

that due to the standard properties of a predictive density score, st is a martingale difference

by construction. It thus automatically takes the role of the martingale difference vt in

Equation (1). Similarly, s(
t is always positive definite and takes the role of �2t in Equation

(1). Consider the standard GAS(1, 1) dynamics Vtþ1 ¼ Xþ ast þ bVt of Creal, Koopman,

1 One could add a measurement equation for the daily returns rt, for instance a Student’s t-distribu-

tion rt jF t�1 � t lt ; Vt ; �ð Þ with conditional mean lt, conditional covariance matrix Vt , and degrees

of freedom parameter �. We also estimated such an extension of the model. The returns typically

contain much less information on Vt than do the RKt observations. Omitting the returns therefore

typically does not reduce the model fit substantially, which is why we only report the results for the

model without the daily return equation.
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and Lucas (2013), where a and b are scalar parameters. Using Vt ¼ s(
t � st, we first rewrite

the GAS(1, 1) model into a GARCH type model

Vtþ1 ¼ Xþ ast þ bVt , Vtþ1 ¼ Xþ As(

t þ BVt (8)

with B ¼ b� a and A ¼ a.

The fractionally integrated score-driven dynamics can now be derived analogously to

the FI-GARCH setting, namely

Vtþ1 ¼ Xþ As(
t þ BVt , 1� AL� BLð Þs(

tþ1 ¼ Xþ 1� BLð Þstþ1

) 1� Lð Þd 1� /Lð Þs(
tþ1 ¼ Xþ 1� BLð Þstþ1;

(9)

where we again replaced the standard GAS polynomial 1� Aþ Bð ÞLð Þ by the fractionally

integrated polynomial 1� Lð Þd 1� /Lð Þ, where / is a scalar parameter and X is a fixed

positive definite parameter matrix. Finally, we follow Karanasos, Psaradakis, and Sola

(2004) by slightly redefining Equation (9) as

1� Lð Þd 1� /Lð Þ s(

tþ1 � X
� �

¼ 1� BLð Þstþ1; (10)

such that for appropriate d we obtain that Vt is covariance stationary with E Vt½ � ¼ X. We

label the model the fractionally integrated GAS model of order 1; d;1ð Þ, or in short FIGAS

1; d;1ð Þ.
Using the definition st ¼ s(

t � Vt, we can rewrite Equation (10) as

Vtþ1 ¼ Xþ 1� 1� Lð Þd 1� /Lð Þ
1� BL

 !
s(

tþ1 � X
� �

¼ XþW Lð Þ s(

tþ1 � X
� �

; (11)

with W Lð Þ as defined in Equation (4). Thus, also for the FIGAS(1;d;1) model, the condi-

tional covariance matrix Vtþ1 is an infinite weighted sum of current and past s(
t , where the

weight assigned to each lag declines hyperbolically according to W Lð Þ.
The fractionally integrated score dynamics introduced in Equation (10) are substantially

different from those introduced in Janus, Koopman, and Lucas (2014). Whereas Janus,

Koopman, and Lucas (2014) impose a fractional polynomial directly on the (in their case

univariate) volatility parameter Vt, we follow the original approach of Baillie, Bollerslev,

and Mikkelsen (1996) much more closely and impose the fractional polynomial on s(
t . An

important advantage of our current FIGAS specification compared with that of Janus,

Koopman, and Lucas (2014) is not only that we allow for a multivariate setting, but

also that we can immediately establish the positive definiteness of the sequence of covari-

ance matrices Vt for all times t using simple parameter restrictions. This is stated in the fol-

lowing proposition for the FIGAS 0; d;1ð Þmodel, which we use in the empirical application

later on.

Proposition 1.Assume that X and s(
t in Equation (11) are positive definite for all t. Then the

conditional covariance matrices Vt from the FIGAS 0; d;1ð Þmodel are positive definite if

Case 1. 0 < B < 1, d � B � 0;

Case 2. � 1 < B < 0, d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2� dð Þ

p� �
=2 � B.

The proof follows directly from Corollary 3 of Conrad and Haag (2006). The propos-

ition is stated for the FIGAS(0;d; 1) model, which is the model we use in the empirical ap-

plication later on. It is straightforward, however, to apply the results of Conrad and Haag
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(2006) also for more general forms of the FIGAS model, such as the FIGAS(1; d; 1). This

feature is quite convenient and follows from the way we have set up the fractionally inte-

grated dynamics in contrast to earlier papers on fractionally integrated score-driven

dynamics.

The conditions of Proposition 1 are easily checked for our model. The assumption on X

is easily enforced through the model’s parameterization. We show in the next subsection

that also the second assumption on the positive definiteness of s(
t is automatically satisfied

for the fat-tailed distributional choice made in this paper. The restrictions in Case 1 or Case

2 of the proposition can then again be easily imposed by the model’s parameterization.

2.3 Score for Matrix-F Distribution

We now turn to our choice for the conditional observation density DZ �ð Þ in Equation (6) to

complete the FIGAS specification under fat tails. To account for possible fat tails of the

realized kernel distribution, we assume that RKt has a matrix-F distribution. The use of a

matrix-F distribution for realized measures was first proposed in Opschoor et al. (2018)

and is given by

pRK RKtjVt;F t�1; �1; �2ð Þ ¼ K �1; �2ð Þ �
j �1

�2�k�1 V�1
t j

�1
2 jRKtj �1�k�1ð Þ=2

jIk þ �1

�2�k�1 V�1
t RKtj �1þ�2ð Þ=2 ; (12)

with positive definite expectation Et RKtjF t�1½ � ¼ Vt, and degrees of freedom parameters

�1; �2 > kþ 1, where

K �1; �2ð Þ ¼
Ck �1 þ �2ð Þ=2
� �

Ck �1=2ð ÞCk �2=2ð Þ ; (13)

and Ck xð Þ is the multivariate Gamma function

Ck xð Þ ¼ pk k�1ð Þ=4 �
Yk
i�1

C xþ 1� ið Þ=2
� �

; (14)

see, for example, Konno (1991).

Given the density in Equation (12), Opschoor et al. (2018) show that the scaled score2

of the matrix-F distribution with respect to Vt is given by

st ¼
�1

�1 þ 1
Wt � RKt � Vt½ �; Wt ¼

�1 þ �2

�2 � k� 1
� Ik þ

�1

�2 � k� 1
RKt � V�1

t

� ��1

; (15)

using scaling matrix St ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= �1 þ 1ð Þ

p
Vt. Given �1; �2 > kþ 1 and given that Vt and RKt

are positive definite, we obtain that s(
t ¼ st þ Vt is positive semi-definite. The choice of

scaling matrix St to obtain the scaled score in Equation (15) corrects the raw score for the

most important curvature aspects. In particular, for the limiting case of the Wishart

2 Another parameterization could be to model the (time-varying) Cholesky matrix of Vt . This would re-

sult in more complex expressions for the derivatives, however, that would be numerically less effi-

cient than the matrix recursion derived here. In addition, the parameterization of Vt is not sensitive

to the order of the variables, whereas the Cholesky decomposition is. Finally, note that Proposition

3 in Opschoor et al. (2018) shows that the scaled score in Equation (15) with respect to a general

matrix Vt coincides with the scaled score expression for a symmetric matrix Vt.

72 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article-abstract/17/1/66/5187415 by Vrije U

niversiteit Am
sterdam

 user on 17 July 2020



distribution St collapses up to a constant of proportionality to the inverse conditional

Fisher information matrix scaling as introduced (as one of the scaling possibilities) in Creal,

Koopman, and Lucas (2013). For finite �2, scaling by St no longer coincides with precise in-

verse information matrix scaling, but still corrects for the most important curvature aspects

of the score, while retaining high numerical efficiency; see Opschoor et al. (2018) for fur-

ther comments and details.

The score st is highly intuitive. If the (weighted) realized kernel matrix RKt is above the

current estimate Vt, the estimate is updated upward. Because of the fat-tailedness of the ma-

trix-F distribution, the observations RKt are weighted in a matrix sense by the weigth ma-

trix Wt. This reduces the impact of outlying RKt observations and generalizes the well-

known scalar weights one obtains for Student’s t-distributed returns with time-varying

volatility as in Creal, Koopman, and Lucas (2011). For example, if RKtV
�1
t grows large,

the weight matrix Wt tends to zero. The presence of Wt thus gives the model a robust fea-

ture for the measurement for Vt. For the Wishart distribution, we have �2 !1 and thus

Wt ¼ Ik, such that Vt reacts linearly to the realized kernel value.

Using the expression for the scaled score st, we obtain automatically that s(
t ¼ st þ Vt is

positive semi-definite for all t. To see this, note that Wt � RKt can be written as
�1þ�2

�2�k�1 ðRK�1
t þ �1

�2�k�1 V�1
t Þ

�1. As the sum of two positive definite matrices is again positive

definite, this expression is positive definite if �1 is positive, �2 > kþ 1, and RKt and Vt are

both positive definite. As a result, the parameter restrictions formulated in Proposition 1

can be used to enforce positive definiteness of Vt for all t in the FIGAS model.

2.4 Estimation

We estimate the parameters of the FIGAS model by maximum likelihood. To estimate the

entries of X, we use a targeting approach and estimate it as bX ¼ ð1=TÞPT
t¼1 RKt, as under

covariance stationarity our current parameterization implies E½RKt� ¼ E½Vt� ¼ X. We esti-

mate the remaining static parameter vector h ¼ fB; �1; �2;dg of the FIGAS model by max-

imum likelihood. To do so, we maximize the log-likelihood LðhÞ ¼
PT

t¼1 Lt, where Lt is

defined as the log-likelihood of the matrix-F distributions of Equation (12). This standard

prediction error decomposition of the likelihood function is made possible due to the

observation-driven nature of the FIGAS model using the classification of Cox (1981). The

starting value V1 can be either estimated or set equal to RK1.

The maximum-likelihood estimation for the fractionally integrated model requires trun-

cation of the infinite distributed lags in Equation (2). We choose the maximum number of

lags, which equals T – 1. Finally, we put the pre-sample innovations equal to zero, guided

by the finding of Bollerslev and Mikkelsen (1996) that the effect of pre-sample values has a

negligible effect on the parameter estimates, provided that the sample size is sufficiently

large. Pre-sample values of Vt are put to the sample analog of the unconditional covariance

matrix.

3 Simulation Experiment

Before presenting the empirical results, we perform a Monte Carlo study to investigate the

statistical properties of the maximum-likelihood estimator for h. To that end, we simulate

T time series observations of k�k daily realized covariance matrices using the FIGAS

model as the true data generating process (DGP). We set T equal to 500 and 1500,

Opschoor & Lucas | Realized Covariance Kernels 73

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article-abstract/17/1/66/5187415 by Vrije U

niversiteit Am
sterdam

 user on 17 July 2020



respectively, and choose k equal to 5 and 15. The chosen parameters are based on the

FIGAS 0;d; 1ð Þ model estimated in the application in Section 4. For k = 5, we choose

b ¼ �0:10; �1 ¼ 50; �2 ¼ 35, d = 0.60, and X the unconditional covariace matrix with

Xii ¼ 4 i ¼ 1; . . . kð Þ and Xij ¼ 2:8 i 6¼ jð Þ. For k = 15, we set b ¼ 0:15; �1 ¼ 70; �2 ¼ 60,

while the other parameters remain the same. For each simulated series, we estimate h by nu-

merically maximizing the likelihood function.

Table 1 presents the results based on 1000 replications. Clearly, all parameters are esti-

mated near their true values. The standard deviations decrease if the sample size T increases

or if the cross-dimensional dimension k becomes larger. There is a slight downward bias in

d and B, which is partly resolved by increasing the sample size. This could also be due to a

long lasting effect of the initialization of the initial covariance matrices to their uncondi-

tional expectation. This bias tapers off (not shown) if the sample size grows substantially

larger. We also observe that the targeting approach works well as both X11 and X12 are esti-

mated accurately. Similar results hold for the other entries of X.

4 Empirical Application

In this section, we apply the FIGAS model to an empirical data set of 15 U.S. equities. Our

aim is to describe the covariance dynamics both in-sample and out-of-sample. All equities

are part of the S&P 500 index. We first provide some of the stylized facts of the data. Next,

we introduce our competing benchmark models. Finally, we test the in-sample and out-of-

sample performance of the different models.

Table 1 Parameter estimations of FIGAS DGP

Coef. True T = 500 T = 1500

Panel A: k = 5

d 0.60 0.574 (0.023) 0.590 (0.013)

B –0.10 –0.121 (0.048) –0.109 (0.030)

�1 50.00 49.647 (3.230) 49.871 (1.948)

�2 35.00 35.431 (1.651) 35.160 (0.967)

X11 4.00 4.015 (0.840) 3.982 (0.905)

X12 2.80 2.823 (0.729) 2.790 (0.802)

Panel B: k = 15

d 0.60 0.566 (0.009) 0.586 (0.005)

B 0.15 0.118 (0.014) 0.137 (0.008)

�1 70.00 69.489 (1.114) 69.699 (0.671)

�2 60.00 60.550 (0.821) 60.243 (0.492)

X11 4.00 3.995 (0.567) 3.985 (0.618)

X12 2.80 2.811 (0.485) 2.790 (0.525)

Notes: This table shows Monte-Carlo averages and standard deviations (in parentheses) of parameter estimates

from simulated FIGAS processes. The table reports the mean and the standard deviation in parentheses based

on 1000 replications.
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4.1 Data

The data consist of daily returns and realized covariances measures for 15 randomly chosen

U.S. equities, where we have ensured that they come from various industries, such as

Materials, Financials, Energy, IT, etc. Table 2 provides an overview of the companies con-

sidered in our data set. The data span the period January 2, 2001 until December 31, 2012

and contain T = 3017 trading days. We observe consolidated trades (transaction prices)

extracted from the Trade and Quote (TAQ) database from 9:30 A.M. until 4:00 P.M. with a

time-stamp precision of 1 s. We first clean the high-frequency data following the guidelines

of Barndorff-Nielsen et al. (2009) and Brownlees and Gallo (2006).3 Next, we construct

realized kernels using the refresh-time-sampling methods of Barndorff-Nielsen et al.

(2011).

Figure 1 shows a snapshot of the data by plotting the realized variances (based on the

kernel approach) of Alcoa Inc. (AA) and Caterpillar Inc. (CAT) in the diagonal panels, and

the realized correlation and covariance in the off-diagonal panels. The figure shows that

both the realized (co)variance(s) and the realized correlation contain a substantial number

of spikes. The spikes do not only occur during the global financial crisis, but also during

other periods such as the early 2000s. This motivates the use of our FIGAS framework

based on the fat-tailed matrix-F distribution, which automatically downweights the impact

of such incidental observations on the volatility and covariance dynamics.

The autocorrelation functions in Figure 2 strongly suggest that the realized covariance

matrix displays long-memory behavior. After lag 50, the autocorrelation is around 0.4 for

the realized kernel volatilities of AA and CAT. Likewise, the autocorrelation of the realized

Table 2 S&P 500 constituents

No. Ticker Permno Name Subsector

1. AA 24643 Alcoa Inc. Materials

2. AXP 59176 American Express Company Financials

3. BA 19561 The Boeing Company Industrials

4. CAT 18542 Caterpillar Inc. Industrials

5. GE 12060 General Electric Company Industrials

6. HD 66181 The Home Depot Consumer discretionary

7. HON 10145 Honeywell International Industrials

8. IBM 12490 International Business Machines IT

9. JPM 47896 JP Morgan Financials

10. KO 11308 Coca-Cola Consumer staples

11. MCD 43449 McDonald’s Consumer discretionary

12. PFE 21936 Pfizer Health care

13. PG 18163 Procter & Gamble Consumer staples

14. WMT 55976 Wal-Mart Stores Inc. Consumer staples

15. XOM 11850 Exxon Mobil Energy

Notes: This table lists 15 companies listed at the S&P 500 index during the period January 2, 2001–December

31, 2012. Ticker symbol and Permno (CRSP identifier) are also provided.

3 See the Online Appendix A for more details.
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covariance and correlation is equal to 0.25 and 0.3 at this long lag length. This provides an

empirical motivation to incorporate long-memory features into the model.

4.2 Alternative Forecasting Models

To benchmark the performance of our FIGAS model, we use three relevant alternative

models: the multivariate extension of the HAR model (Corsi, 2009), put forward by

Chiriac and Voev (2011), the multivariate HEAVY model of Noureldin, Shephard, and

Sheppard (2012), and the short-memory GAS tF model of Opschoor et al. (2018). As a

fourth benchmark, we also considered the long-memory extension of the RiskMetrics

model (Zumbach, 2006). This model, however, turned out to be substantially inferior to all

other models considered, which is why we omit this model from our remaining analysis.

Our first benchmark does not directly model RKt, but first computes the matrix’ Choleski

decomposition RKt ¼ PtP
0
t, where Pt is lower triangular. The multivariate HAR model then

considers Xt ¼ vech Pt as a function of lagged daily, weekly, and monthly (transformed) vol-

atilities, where vech Pt stacks the lower triangular elements of Pt into a vector:

Xtþ1 ¼ aþ b1Xt þ b2Xw
t þ b3Xm

t þ utþ1; (16)

Figure 1 Realized kernel estimates of AA/CAT. This figure shows daily realized kernel volatilities

(square root of the variance) of Alcoa Inc. (AA) and Caterpillar Inc. (CAT) returns on the diagonal pan-

els. The off-diagonal panels contain the realized kernel covariance (upper-right) and correlation

(lower-left) between the two asset returns. The sample spans the period from January 2, 2001 to

December 31, 2012 (T = 3017 days).
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where Xw
t and Xm

t are defined as N�1
PN�1

i¼0 Xt�i with N = 5 (weekly) and 22 (monthly), re-

spectively. Finally, a represents a k kþ 1ð Þ=2 vector of coefficients and bj (j = 1, 2, 3) are sca-

lar parameters. All parameters are estimated by OLS.

The multivariate HEAVY model incorporates realized measures into the volatility speci-

fication by proposing a system of two multivariate GARCH equations for the quantities

Vt ¼ Et ytyt
0jF t�1½ � and Mt ¼ Et RKtjF t�1½ �, where yt denotes a k� 1 vector or daily

returns. The innovations in both of these equations are the realized (co)variance measures

as gathered in the matrix RKt. The dynamics are given by

Vtþ1 ¼ CVCV
0 þ aVRKt þ bVVt; (17)

Mtþ1 ¼ CMCM
0 þ aMRKt þ bMMt; (18)

where aV ; aM; bV , and bM are scalar parameters, and CV and CM are lower triangular matri-

ces. The scalar parameters of both equations are estimated separately by maximum likeli-

hood, assuming a singular Wishart distribution for ytyt
0 and a standardized Wishart

distribution with k degrees of freedom for RKt. The matrices CV and CM are typically

Figure 2 Empirical autocorrelation functions of realized kernels. This figure shows the autocorrelation

function (ACF) for lag 1 until 50 of daily realized kernel volatilities (square root of variance) of Alcoa

Inc. (AA) and Caterpillar Inc. (CAT) in the diagonal panels. The off-diagonal panels contain the ACF of

the realized kernel covariance (upper-right) and correlation (lower-left) between the two asset returns.

The sample is January 2, 2001 until December 31, 2012 (T = 3017 days).
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estimated by covariance targeting, as discussed by Noureldin, Shephard, and Sheppard

(2012). We follow this approach when implementing the model in the remaining analysis.

Our final benchmark is the GAS tF model, which is similar to the short memory equiva-

lent of our FIGAS model:

Vtþ1 ¼ Xþ Ast þ BVt; (19)

with the difference that the scaled score st depends not only on the matrix-F distribution,

but also on Student’s t-distribution. This is due to the fact that in Opschoor et al. (2018),

there are two observation densities, both for the returns yt and for the realized kernel co-

variance matrix. Both observation densities depend on the latent covariance matrix Vt. The

score st is now defined as the sum of the score from the matrix-F and Student’s t-

distributions.

All benchmark models allow for easy h-step ahead prediction of Vt. In case of the

HEAVY model, the second transition equation delivers forecasts of RKtþh for h ¼ 1;2; . . .,

which can subsequently be inserted into the first equation to obtain Vtþh. The h-step ahead

forecast of Vt of the FIGAS model follows directly from Equation (11): Vtþh depends on

s	tþh�1; s
	
tþh�2; . . . ; s	t ; s

	
t�1; . . ., with s	t ¼ st þ Vt by definition. Given the property that

Et stþhjF t½ � ¼ 0k for any value of h � 1; Vtþh is obtained recursively by setting the values of

future score matrices st to zero. Similar results hold for the GAS tF model.

We follow Bollerslev, Patton, and Quaedvlieg (2018) by considering direct forecasts in

case of the multivariate HAR model. These forecasts are obtained by running the following

regression:

Xtþh ¼ aþ b1Xt þ b2Xw
t þ b3Xm

t þ utþh; (20)

where h stands for the forecast horizon. As indicated by Bollerslev, Patton, and Quaedvlieg

(2018), direct forecasts might be more adequate than iterative forecasts due to the possibil-

ity of model misspecification.

4.3 Model Evaluation Procedure

We follow Noureldin, Shephard, and Sheppard (2012) and compare the in-sample and out-

of-sample statistical fit of the models by computing the quasi-likelihood loss function:

QLIKt;h RKtþh;V
a
tþhjt

� �
¼ logjVa

tþhjtj þ tr Va
tþhjt

� ��1
RKtþh

� �
; (21)

with Va
tþhjt the covariance matrix forecast for time t + h given all information up to time t

based on model a. Note that we use RKtþh as a proxy of the true covariance matrix. In-

sample, h is set to 1. Since Vtþ1 is known at time t, the criteria can also be interpreted as

one-step ahead forecasting criteria. As indicated by Laurent, Rombouts, and Violante

(2013), the QLIK loss-function implies a consistent ranking of volatility models since it is

robust to noise in the proxy RKt.

We additionally test the predictive performance of the models using the framework of

Giacomini and White (2006). We start by computing the difference in loss functions be-

tween two competing models a and b,

dt;h a; bð Þ ¼ QLIKt;h RKtþh;V
a
tþhjt

� �
�QLIKt;h RKtþh;V

b
tþhjt

� �
; (22)
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for t ¼ Rþ 1; . . . ;T � h, where the parameters are estimated based on a rolling window of

Tw = 1500 observations. The difference dt can be interpreted as a difference between two

Kullback–Leibler (KL) divergences. Even if the underlying two models are both misspeci-

fied, the difference in their KL divergences still provides a valid assessment criterion. The

corresponding null-hypothesis of equal predictive ability is given by H0 : E dt;h a;bð Þ
	 


¼ 0

for all T � h� R out-of-sample forecasts, which can be tested using the Diebold and

Mariano (1995) (DM) test-statistic

DMh a; bð Þ ¼
�dh a; bð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibs2

h a; bð Þ= T � h� Rð Þ
q ; (23)

with �dh a;bð Þ the out-of-sample average of the loss differences, and bs2
h a;bð Þ a HAC-

consistent variance estimator of dt;h a;bð Þ. A significantly negative value of DMh a; bð Þ
means that model a has a superior forecast performance over model b. The QLIK test can

be used in-sample (interpreted as a “one-step-ahead prediction”) and out-of-sample. In the

out-of-sample test, we choose h = 1, 5, 10, and 22. In addition, we consider the cumulative

forecasts Vt:tþNjt ¼
PN

i¼1 Vtþijt, where N equals 5, 10, and 22, respectively.

As the above evaluation criteria are statistical in nature, we finally also assess the fore-

casting performance from an economic point of view. Motivated by the mean–variance

optimization setting of Markowitz (1952), we do so by considering global minimum vari-

ance portfolios (GMVP); see, for example, Chiriac and Voev (2011); Engle and Kelly

(2012), among others, who perform a similar analysis. The best forecasting model should

provide portfolios with the lowest ex post variance. Assuming that the investor’s aim is to

minimize the h-step portfolio volatility at time t subject to a fully invested portfolio, the

resulting GMVP weights wtþhjt are obtained by the solution of the quadratic programming

problem

min w0tþhjtVtþhjtwtþhjt; s:t:w0tþhjti ¼ 1: (24)

with i a k� 1 vector of ones. Similar as Chiriac and Voev (2011), we assess the predictive

ability of the different models by comparing the results to the ex post realizations or “oracle

forecasts” of the conditional standard deviation, which are given by rp;t ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0tþhjtRKtþhwtþhjt

q
. We again test for significantly different portfolio standard deviations

by means of the DM-test statistic.

Finally, we follow Bollerslev, Patton, and Quaedvlieg (2018) by reporting practical port-

folio quantities involved with implementing the minimum-variance portfolio strategy.

More specifically, we consider the turnover (TOt), the concentration (COt), and the

total short positions (SPt) for each competing model at time t. The turnover at time t is

defined as

TOt ¼
Xk

i¼1

���w ið Þ
tþ1 �w ið Þ

t

1þ y ið Þ
t

1þw0tyt

��� (25)

where w ið Þ
t and y ið Þ

t the i-th element of the weight vector wt and return vector yt. A model

that produces more stable covariance matrix forecasts implies in general less turnover and

hence, less transaction costs.
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Further, the portfolio concentration and total portfolio short position both measure the

amount of extreme portfolio allocations. Again, more stable forecasts of Vt should result in

less extreme portfolio weights. The portfolio concentration reads

COt ¼
Xk

i¼1

w ið Þ2
t

0@ 1A1=2

; (26)

while the total portfolio short positions SPt is given by

SPt ¼
Xk

i¼1

w ið Þ
t I w ið Þ

t < 0
h i

(27)

with I �½ � an indicator function that takes the value 1 if the i-the element of the weight vector

is lower than zero.

4.4 In-Sample Results

Table 3 shows parameter estimates and standard errors based on the sandwich (robust co-

variance matrix) estimator A�1
0 B0A�1

0 with B0 the inverse Hessian of the likelihood eval-

uated at the optimum (information matrix), and A0 the expected value of the outer product

of the gradients at the optimum. We show the results for a selection of k = 5 randomly

chosen stocks and for the complete set of all 15 equities.

The results in Table 3 show that the FIGAS model has the best fit to the data compared

with the other models. In a preliminary analysis, the coefficient / in the FIGAS specifica-

tion turned out to be statistically insignificant, such that we estimate a FIGAS(0; d;1) model

as our preferred fractionally integrated score-driven model.

Based on the QLIK loss function, the FIGAS model has the best value, followed by the

GAS tF, HAR, and the HEAVY model, respectively. Comparing the FIGAS, GAS, and

HEAVY models, the QLIK values suggest that the largest gain is obtained by introducing

the score-driven dynamics: the average QLIK drops from 7.89 (20.06) for the HEAVY

model to 7.66 (18.96) for the GAS model. Hence, allowing for fat-tailedness in the realized

covariance kernels improves the fit substantially. The further drop in QLIK when moving

from GAS to FIGAS is more modest, but still sizable given the sample size. For k = 5, the

simple HAR model still does quite well. The HAR model’s relative performance, however,

quickly deteriorates in higher dimensions such as k = 15, as is seen in Panel B of Table 3.

The likelihood and the BIC values for the different models underline that the FIGAS

model provides a better fit to the data than the GAS and HEAVY models. Especially when

k = 15, the differences are large. In order to compare the FIGAS-type model with the GAS,

HEAVY, and HAR models, we only consider the likelihood of these models associated with

the realized kernel covariance matrix. For the GAS tF model, this implies that we only con-

sider the likelihood of the matrix-F distribution, while for the HEAVY and HAR models

we report the Wishart distribution with k degrees of freedom for the realized kernels. This

makes the likelihood comparable to that of the FIGAS model, as the latter consists only of

the matrix-F distribution.

We see a clear distinction between the likelihoods of the HEAVY and HAR model and

the FIGAS model. This occurs mainly due to the likelihood contribution for the realized

kernels. More specifically, this contribution equals 25,000 points (k = 5) or 130,000 points
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(k = 15) when going from the Wishart distribution (HEAVY and HAR model) to the ma-

trix-F distribution (FIGAS model). Fat-tailedness of RKt thus appears a prevalent feature in

the data.

The likelihood values for the short-memory GAS specification and the FIGAS model are

easier to compare. The likelihood increases by almost 400 points (k = 5) or even more than

2400 points (k = 15), with one parameter less to be estimated. This underlines that the long-

memory features also play an important role in explaining the volatility and correlation

dynamics.

Looking at the individual parameter estimates, we first note the positive and significant

long-memory coefficient d. A similar estimate of d is found by, for example, Proietti (2016)

in the univariate case. The value of d is highly robust across the dimensions considered and

indicates that autocorrelations only die out very slowly.

The high degree of persistence in the FIGAS model is mirrored by the other models. For

example, for the HAR model the estimated values of b1 þ b2 þ b3 are also close to 1.

Similarly, the estimate of the autoregressive coefficient for the short-memory GAS model is

very close to 1 (b 
 0:99), indicating a strong persistence. The value of B of the FIGAS

model changes from significantly negative for k = 5 to significantly positive for the case of

all equities. Based on Proposition (1), we empirically satisfy the constraint for positive def-

initeness of the resulting covariance matrices Vt for both dimensions. Although the value of

B is negative for k = 5 and positive for k = 15, both values imply a highly similar set of auto-

covariance functions; see Figure 3. If anything, the increase of the dimension leads to a

slightly stronger long-memory feature.

The degrees of freedom parameter �2 is estimated at around 35 and 65 for 5 and 15

dimensions, respectively. Despite that the value of b�2 may appear high, such values already

result in a substantial moderation of the effect of incidentally large observations RKt in

Equation (15) through the matrix weighting scheme. Also fat-tailedness for these values of

�2 is considerably larger than that of the Wishart distribution (see also Opschoor et al.,

2018).

Figure 4 plots some of the fitted volatilities and correlations. We show the results for

Alcoa (AA) and Caterpillar (CAT) for the FIGAS model and the HAR model of Equation

Figure 3 FIGAS implied correllograms for Vt for k = 5 (left) and k = 15 (right). This figure plots the

implied correllograms of the conditional volatility of Alcoa Inc. (AA) corresponding with the FIGAS

model based on parameter estimates in Table 3. The left panel shows the correllogram implied by the

estimated model on AA/BA/CAT/GE/KO, while the right panel uses all (k = 15) equities.
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(16). The figure shows remarkable differences between the two models for both the volatil-

ity and the covariances and correlations. Focusing first on the volatilities and covariances,

the robust transition scheme based on matrix-F score dynamics produces considerably

fewer spikes: spikes of the HAR model stand out much more clearly than the spikes of the

FIGAS model. Notable differences are apparent for both companies during the periods

2001–2003, 2007–2008, and 2010–2011. The FIGAS framework is able to mitigate the im-

pact of temporary RKt on the estimates of Vt.

We conclude that already for short horizons there is evidence that a combination of

long-memory and fat-tailedness improves model performance. We expect the long-memory

properties to become even more important once we move into longer forecasting horizons,

as we do next.

4.5 Out-of-Sample Results

In our out-of-sample analysis, we assess both the short-term and long-term forecasting per-

formance of the FIGAS model. We consider h-step ahead forecasts, with h ¼ 1; 5;10; and

22. In addition, we consider aggregated covariance forecasts for the next one or two trading

Figure 4 Estimated volatilities and correlations. This figure plots the estimated volatilities of AA and

CAT (see Table 2) in the upper-left and lower-right panels, and the pairwise covariances and correla-

tions in the upper-right and lower-left panels, respectively. Time varying parameter paths are esti-

mated using the FIGAS model and HAR model. The estimates are based on the full sample, January 2,

2001 until December 31, 2012 (3017 observations).
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weeks and for the next month, that is, Vt:tþh ¼ Vtþ1 þ Vtþ2 þ � � � þ Vtþh with h = 5, 10, and

22. Similar to the in-sample analysis of the previous subsection, we compare the FIGAS

model with the HEAVY model, the GAS model, and the multivariate HAR model.

We test the predictive ability of the different models based on the loss-differences of the

QLIK loss function (21) using the test–statistic defined in Equation (23). We use a moving

window of 1500 observations and re-estimate the parameters after each 25 observations

(
 1 month). The first in-sample period corresponds to the period January 2001–December

2006, which is well before the financial crisis of October 2008. This forecasting experiment

therefore constitutes a major robustness test for all the models considered.

Table 4 contains the results for the whole out-of-sample period (Panel A). We present

the results for the five-dimensional case, as well as for all assets (k = 15). Negative t-test sta-

tistics (in parentheses) indicate that the FIGAS model performs better. The overall signifi-

cant negative values in Panel A for horizons h ¼ 1;5; 10; 22 as well as for the aggregated

forecasts clearly show that the FIGAS model statistically outperforms the HEAVY and

HAR models. The short-memory GAS model still does quite well for horizons of (up to)

h = 5 or 10, though worse than the FIGAS specification. Also here, however, the FIGAS

model does significantly better for longer horizons such as h = 22 (for both dimensions) and

h ¼ 1 : 22 (for k = 5). The improvements due to the long memory features of the FIGAS spe-

cification thus appear particularly pronounced in cases where they matter most, namely at

long horizon forecasting.

To further investigate where the performance of the fractionally integrated specification

comes from, we split the sample in two periods: the Financial Crisis period (July 2007–

December 2009) and the non-crisis period (December 2006–July 2007 and January 2010–

December 2012). Panels B and C of Table 4 show that discriminating between the crisis

and non-crisis periods provides us two additional insights. First, the differences between the

average QLIK values between the FIGAS model and the HAR and HEAVY models increase

during the crisis compared with the non-crisis period. This holds especially for k = 15. The

crisis period is characterized by more spikes, and the FIGAS specification can better deal

with these due to the score dynamics and the fat-tailed distributional assumptions. The

FIGAS model, therefore, performs particularly well in the crisis period compared with its

HAR and HEAVY counterparts.

Second, the FIGAS model and the short-memory GAS specification perform similarly

well during the crisis period, but not during the non-crisis period. In non-crisis years, the

FIGAS model statistically outperforms its short-memory counterpart. Hence, the fractional-

ly integrated dynamics appear particularly valuable during calm periods, while accounting

for fat-tailedness of returns and realized covariances are more important during turbulent

years. To summarize, taking account of both fat-tailedness (during turbulent times) and

long-memory effects (during calm periods) provides the FIGAS model with its superior fore-

casting performance over longer time spans.

Table 5 illustrates the economic significance of the covariance matrix forecasts by show-

ing the mean of the ex post conditional portfolio standard deviation, computed by imple-

menting the period-by-period ex ante minimum variance portfolio weights obtained from

Equation (24). In addition, we show three ex post portfolio statistics such as the turnover,

concentration, and short positions. Panel A displays results for the 1, 5, 10, and 22 step

ahead predictions, while panel B corresponds to the cumulative forecasts with a window of

5, 10, or 22 trading days. Both panels show the average out-of-sample portfolio standard
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Table 4 Test-statistics on predictive ability (QLIK criterion)

1 5 10 22 1:5 1:10 1:22

Panel A: Full out-of-sample

A.1: AA/BA/CAT/GE/KO

FIGAS 8.04 8.41 8.67 9.11 16.30 19.93 24.15

(––––) (––––) (––––) (––––) (––––) (––––) (––––)

GAS 8.06 8.44 8.75 9.32 16.32 19.96 24.24

(–2.6) (–1.1) (–1.7) (–1.9) (–1.1) (–1.4) (–1.9)

HEAVY 8.29 8.70 9.03 9.72 16.56 20.21 24.52

(–14.9) (–8.2) (–3.6) (–2.3) (–11.3) (–6.6) (–3.5)

HAR 8.06 8.51 8.84 9.50 19.73 26.14 33.77

(–1.9) (–3.2) (–2.2) (–1.6) (–34.1) (–34.8) (–26.6)

A.2: All assets (k = 15)

FIGAS 19.05 20.01 20.75 21.86 43.74 54.58 67.17

(––––) (––––) (––––) (––––) (––––) (––––) (––––)

GAS 19.12 20.06 20.89 22.23 43.78 54.65 67.32

(–3.7) (–0.8) (–1.1) (–1.8) (–1.2) (–1.0) (–1.4)

HEAVY 20.63 21.66 22.50 24.00 45.34 56.23 68.92

(–19.9) (–9.7) (–5.4) (–2.9) (–13.6) (–8.7) (–5.0)

HAR 19.41 20.65 21.71 23.48 53.15 72.22 95.06

(–6.8) (–5.1) (–3.1) (–1.9) (–32.6) (–34.4) (–27.7)

Panel B: Crisis period

B.1: AA/BA/CAT/GE/KO

FIGAS 10.82 11.37 11.84 12.69 19.17 22.91 27.33

(––––) (––––) (––––) (––––) (––––) (––––) (––––)

GAS 10.83 11.36 11.94 12.94 19.16 22.92 27.41

(–0.7) (0.3) (–0.9) (–1.1) (0.4) (–0.3) (–0.9)

HEAVY 11.05 11.72 12.43 13.84 19.43 23.27 27.93

(–7.0) (–4.6) (–2.6) (–1.9) (–5.6) (–3.8) (–2.5)

HAR 10.84 11.52 12.18 13.53 22.21 28.49 35.89

(–1.1) (–2.4) (–2.0) (–1.5) (–16.4) (–15.9) (–11.4)

B.2: All assets (k = 15)

FIGAS 27.65 29.11 30.42 32.71 52.57 63.73 76.91

(––––) (––––) (––––) (––––) (––––) (––––) (––––)

GAS 27.70 29.02 30.43 32.91 52.53 63.68 76.92

(–1.1) (0.8) (0.0) (–0.5) (0.6) (0.3) (0.0)

HEAVY 29.26 31.17 32.89 36.28 54.40 65.77 79.42

(–9.5) (–5.3) (–3.3) (–2.1) (–6.8) (–4.7) (–3.2)

HAR 28.14 30.16 32.25 36.12 60.72 79.37 101.5

(–6.1) (–4.2) (–2.8) (–1.8) (–15.2) (–15.7) (–12.0)
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deviation, the associated DM test statistics vis-à-vis the FIGAS model (in parentheses), and

the ex post mean of the portfolio turnover, concentration, and short positions. For all pairs

of assets and all forecasting horizons considered, the FIGAS model produces the lowest ex

post portfolio standard deviation. This result also holds for the aggregated forecasts. The

reductions in standard deviations are statistically significant compared with all of the

benchmarks.

The second parts in all subpanels (containing TO, CO, SP) show that overall the FIGAS

model shows also the best results with respect to the portfolio statistics related to the prac-

tical implementation of the minimum variance strategy. First of all, all subpanels of Table 5

indicate that short positions are always lowest for the FIGAS model. This implies that on

average the stable forecast of the covariance matrix implies less extreme weights.

Table 4 Continued

1 5 10 22 1:5 1:10 1:22

Panel C: Non-crisis period

C.1: AA/BA/CAT/GE/KO

FIGAS 6.01 6.25 6.35 6.50 14.21 17.75 21.83

(––––) (––––) (––––) (––––) (––––) (––––) (––––)

GAS 6.03 6.30 6.42 6.67 14.24 17.79 21.91

(–3.5) (–2.2) (–2.6) (–2.8) (–2.2) (–2.4) (–2.6)

HEAVY 6.27 6.50 6.54 6.70 14.46 17.97 22.03

(–16.5) (–9.7) (–5.7) (–3.2) (–13.1) (–9.4) (–5.3)

HAR 6.02 6.31 6.39 6.56 17.92 24.41 32.22

(–1.8) (–2.1) (–1.2) (–0.8) (–35.8) (–43.5) (–45.2)

C.2: All assets (k = 15)

FIGAS 12.76 13.36 13.67 13.93 37.28 47.89 60.04

(––––) (––––) (––––) (––––) (––––) (––––) (––––)

GAS 12.85 13.50 13.92 14.41 37.38 48.04 60.30

(–6.3) (–4.2) (–3.6) (–3.4) (–4.6) (–3.8) (–3.3)

HEAVY 14.32 14.71 14.91 15.01 38.72 49.25 61.24

(–29.1) (–20.7) (–15.1) (–9.3) (–25.3) (–19.6) (–13.9)

HAR 13.03 13.69 13.99 14.23 47.62 66.99 90.32

(–3.9) (–3.0) (–1.6) (–0.9) (–35.5) (–42.5) (–45.8)

Notes: This table shows test statistics on superior predictive ability between the FIGAS model and the GAS,

HEAVY, or multivariate HAR model, respectively, based on the QLIK loss function defined in Equation (21).

The test is based based on 1, 5, 10, and 22-step ahead predictions of the covariance matrix, applied to 5 and

15 (all) equities. In addition, we consider cumulative forecasts with a window of 5, 10, and 22 trading days.

Panel A presents results for full out-of-sample (December 2006–December 2012), Panel B describes the results

for the Financial Crisis period (July 2007–December 2009), and Panel C shows the results for the non-crisis

period (December 2006–July 2007 and January 2010–December 2012). The subpanels 1 and 2 correspond to

the number of considered assets, that is, k = 5 and k = 15. We report the average QLIK loss for each model

with the associated DM-type of test statistic in parentheses. A negative test statistic indicates superior predict-

ive ability of the FIGAS model. We use a moving window of 1500 observations. The prediction period contains

1495 observations.
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Table 5 Ex post minimum variance portfolio standard deviations

AA/BA/CAT/GE/KO All assets (k = 15)

FIGAS GAS HEAVY HAR FIGAS GAS HEAVY HAR

Panel A.1: 1 step ahead

�rp 0.925 0.926 0.949 0.927 0.688 0.689 0.737 0.693

t-stat (DM) (––) (–3.1) (–21.1) (–2.8) (––) (–3.9) (–34.9) (–6.9)

TO 0.146 0.123 0.117 0.197 0.249 0.201 0.202 0.382

CO 0.723 0.723 0.797 0.740 0.483 0.486 0.578 0.517

SP –0.025 –0.026 –0.094 –0.034 –0.173 –0.175 –0.337 –0.223

Panel A.2: Five step ahead

�rp 0.933 0.937 0.956 0.935 0.700 0.703 0.746 0.705

t-stat (DM) (––) (–6.4) (–12.9) (–3.0) (––) (–5.1) (–21.7) (–5.4)

TO 0.084 0.112 0.102 0.117 0.162 0.189 0.162 0.246

CO 0.723 0.722 0.793 0.737 0.477 0.485 0.569 0.512

SP –0.020 –0.024 –0.087 –0.028 –0.166 –0.174 –0.325 –0.217

Panel A.3: 10-step ahead

�rp 0.938 0.942 0.959 0.940 0.707 0.711 0.750 0.712

t-stat (DM) (––) (–4.6) (–9.9) (–3.0) (––) (–4.4) (–16.3) (–4.3)

TO 0.066 0.102 0.093 0.093 0.128 0.175 0.142 0.193

CO 0.723 0.720 0.789 0.735 0.476 0.484 0.562 0.509

SP –0.018 –0.022 –0.081 –0.026 –0.164 –0.174 –0.316 –0.215

Panel A.4: 22 step ahead

�rp 0.946 0.952 0.962 0.948 0.718 0.723 0.755 0.723

t-stat (DM) (––) (–3.9) (–6.6) (–2.0) (––) (–3.9) (–12.0) (–3.5)

TO 0.050 0.083 0.074 0.067 0.097 0.150 0.117 0.138

CO 0.724 0.718 0.781 0.731 0.475 0.483 0.552 0.507

SP –0.016 –0.018 –0.072 –0.023 –0.163 –0.174 –0.302 –0.215

Panel B.1: 5-step ahead (cumulative)

�rp 2.121 2.126 2.172 2.124 1.589 1.593 1.693 1.597

t-stat (DM) (––) (–5.5) (–14.6) (–3.5) (––) (–4.9) (–22.4) (–6.1)

TO 0.107 0.117 0.110 0.150 0.199 0.196 0.181 0.294

CO 0.723 0.722 0.795 0.738 0.479 0.485 0.573 0.514

SP –0.021 –0.025 –0.090 –0.031 –0.168 –0.175 –0.330 –0.218

Panel B.2: 10-step ahead (cumulative)

�rp 3.032 3.043 3.101 3.038 2.282 2.289 2.425 2.294

t-stat (DM) (––) (–5.7) (–11.4) (–3.5) (––) (–4.7) (–16.9) (–4.9)

TO 0.090 0.112 0.105 0.127 0.172 0.191 0.170 0.255

CO 0.723 0.721 0.792 0.737 0.478 0.485 0.568 0.512

SP –0.020 –0.024 –0.086 –0.029 –0.166 –0.174 –0.324 –0.217
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Differences are particularly apparent for higher dimensional settings (k = 15), where short

positions can be about twice as large for instance for the HEAVY model. Second, the

FIGAS model produces the lowest portfolio concentration in case k = 15 across all models.

For k = 5 the FIGAS still has less concentration than the HEAVY and HAR models, but is

sometimes outperformed by the GAS specification, though only slightly so. Third, the port-

folio turnover of the FIGAS models is the lowest across all models when the horizon

increases. For example, for 10 and 22 step ahead point forecasts and the cumulative fore-

cast of 22 trading days, the FIGAS portfolio turnover is considerably lower than the turn-

over of the benchmarks. All in all, the FIGAS specification also appears to outperform its

benchmarks in economic terms.

5 Conclusions

We introduced a new multivariate fractionally integrated model with score-driven volatility

dynamics (FIGAS) for matrix-variate realized covariance matrix observations. The pro-

posed model explicitly acknowledges that realized (co)variances display long-memory be-

havior. It does so in a way that ensures positive definiteness of the covariance matrices by

simple parameter restrictions in the model. In addition, the model takes into account that

realized covariance matrices are typically fat-tailed. The score-driven matrix-valued dynam-

ics automatically correct for influential observations in the realized covariances.

For a number of S&P500 equity returns over the period 2001–2012, we showed that

both in-sample and out-of-sample and both statistically and economically the new model

outperformed strong recent competitors such as the HEAVY model of Noureldin,

Shephard, and Sheppard (2012) and the multivariate HAR model of Corsi (2009) and

Table 5 Continued

AA/BA/CAT/GE/KO All assets (k = 15)

FIGAS GAS HEAVY HAR FIGAS GAS HEAVY HAR

Panel B.3: 22-step ahead (cumulative)

�rp 4.567 4.588 4.657 4.577 3.461 3.477 3.656 3.480

t-stat (DM) (––) (24.8) (28.4) (23.2) (––) (24.5) (212.0) (23.4)

TO 0.077 0.104 0.098 0.108 0.147 0.183 0.160 0.215

CO 0.723 0.720 0.788 0.735 0.476 0.484 0.561 0.509

SP –0.018 –0.021 –0.080 –0.026 –0.164 –0.174 –0.315 –0.215

Notes: This table shows results on a GMVP, based on 1-, 5-, 10-, and 22-step ahead predictions of the covari-

ance matrix, according to the FIGAS, GAS, HEAVY, and the multivariate HAR model, applied to 5 and 15

equities. Panel A shows the results corresponding with 1-, 5-, 10-, and 22-step ahead predictions, while Panel B

reports results on the cumulative forecasts with a window of 5, 10, and 22 trading days. For each model, the

table shows the ex post mean of the daily portfolio volatility, portfolio turnover (TOt), concentration (COt),

and the total number of short positions (SPt), as defined in Equations (25)–(27). The number between parenthe-

ses shows the test-statistic on equal portfolio volatility between the FIGAS model and the HEAVY, GAS, or

HAR model. The (absolute) lowest number value of all statistics across the models are marked bold. We use a

moving window of 1500 observations. The prediction period runs from December, 2006–December, 2012

(1495 observations).
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Chiriac and Voev (2011). Interestingly, the fractionally integrated dynamics appear particu-

larly valuable during calm periods. The outlier robust features of the model due to the score

dynamics and the fat-tailed distributional assumptions, by contrast, are most useful during

turbulent times. Combining the two, the FIGAS model shows the best overall performance

over the entire sample.

Supplementary Data

Supplementary Data are available at Journal of Financial Econometrics online.
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