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ABSTRACT

Efficient detection and instrumentation of function calls is fun-

damental for a variety of dynamic analysis techniques, including

dynamic callgraph construction, control-flow integrity, and auto-

matic vulnerability discovery. A common way of detecting calls at

the machine code level is to look for CALL instructions. However,

optimizing compilers frequently implement function tail calls with

JMP instructions instead, and distinguishing an intra-procedural

jump from a JMP-based function call is not straightforward. Despite

the importance of making this distinction, prior research has not

produced a reliable solution. In this paper, we address the prob-

lem of dynamic function call detection in real-time. We propose a

heuristic-based approach named iCi to efficiently and automati-

cally instrument calls, including conventional CALLs and JMP-based

calls, at runtime. iCi does not rely on source code, debug informa-

tion, symbol tables or static analysis. We show that iCi achieves

an f-score of 0.95 in the worst case, regardless of optimization level.

We open-source our implementation as well as the oracle we used

for our evaluation.1
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1 INTRODUCTION

Dynamic binary instrumentation is widely used for reverse-engi-

neering [6], profiling [13], runtime checks and debugging [9]. Many

dynamic analysis applications, including security solutions like

1https://github.com/Frky/iCi
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binCFI [19] and TypeArmor [16], depend heavily on reliable func-

tion call recognition. Unfortunately, conventional function call

detection methods which consider only CALL instructions are error-

prone when used for instrumenting callsites, leading to broken

binaries or diminished security. Specifically, these methods miss

optimized tail calls, which implement function calls using the JMP

instruction instead of CALL. This is common in optimized bina-

ries, such as those compiled with gcc at -O2 or -O3. In coreutils

compiled with gcc at -O2, the proportion of JMP-based calls en-

countered in the execution is about 10% of all function calls. These

include both direct and indirect jumps, and also conditional jumps.

Clearly, instrumenting only CALL is not enough to efficiently catch

all function calls.

Despite the importance of accurate call detection for many dy-

namic analyses, no prior work solves the issue of dynamic real-time

function call detection in dependable and reliable manner. While

several works discuss tail call optimization from a compiler perspec-

tive [10, 14, 15], none consider the binary analysis point of view.

Existing dynamic analysis frameworks, such as Pin [8], Dyninst [5]

and DynamoRIO [4] provide only instruction-level syntax-centric

APIs, which force the developer to manually instrument all in-

struction classes of interest. They provide no high-level, semantics-

oriented way of simply instrumenting all function calls regardless

of the low-level call implementation. As a result, these frameworks

are error-prone. For example, perftools, based on Intel PT,2 allows

tracing the program execution and further provides the option to

filter the trace based on the branches that correspond to function

calls only. However, on ffmpeg (compiled with gcc at -O2) it detects

only 1109142 calls out of a total of 1467291 function calls.

In this paper, we address the function call detection problem

using a dynamic heuristic-based approach named iCi (Intuitive

Call Instrumentation), which can efficiently distinguish JMP-based

calls from intra-procedural jumps in real-time during execution of

x86-64 binaries in the dynamic analysis framework Pin. iCi does

not require any prior knowledge on the binary under analysis, and

does not rely on the source code, debug information, symbol table

or any static analysis. To evaluate iCi and competing solutions,

we also develop an open-source oracle. For the function identifi-

cation problem (finding instruction ranges for each function), the

oracle is straightforward, as function boundaries are included in

the debug information. In the case of the runtime function call

2https://github.com/torvalds/linux/blob/master/tools/perf/Documentation/intel-
pt.txt
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detection problem (detecting all function calls, both CALL and JMP-

based), ground-truth is not statically available. Section 4.1 discusses

how the oracle handles this problem. We evaluate our approach on

coreutils, binutils, ffmpeg and evince. For each program, we

experiment with four levels of optimizations with gcc. We compare

the accuracy and overhead of iCi with two naive approaches one

could use for call detection, using our oracle as the ground-truth

provider. We also test our function detection on SPEC CPU2006

compiled with -O2. The results show that our approach catches

function calls at runtime with an f-score of 0.95 in the worst case

(400.perlbench from SPEC CPU2006 compiled with gcc -O2), and

does not suffer from optimizations such as tail calls. In comparison,

instrumenting only CALL instructions gives an f-score of 0.906 on

the same binary. Our results also show that iCi applies to both

procedure-oriented and object-oriented programs.

Contributions. First, we define and address the problem of

dynamic function call detection at runtime. Second, we propose

an oracle to obtain ground-truth which can be used for evaluating

solutions to this problem. Third, we introduce iCi, a heuristic-based

dynamic function call detection approach. Finally, we provide both

the oracle and iCi as open-source.3

2 PROBLEM

In this section, we first present a concrete example of the problem

we address, taken from a real-world application (ffmpeg). Then

we introduce notations and definitions to precisely describe the

problem. Finally, we define the scope of our work, including the

assumptions we make, and those we do not require.

2.1 Statement

The problem we address in this paper is the following: how to catch,

dynamically and in real-time, every call to any function embedded in

a given binary? Or, in other words, from a practical point of view,

what dynamic instrumentation is needed to efficiently achieve this?

Let us consider an assembly code snippet, shown in Listing 1,

from ffmpeg compiled with gcc 5.4 at -O2 optimization level.

Although function calls in unoptimized binaries are mainly imple-

mented through the CALL instruction, this changes when optimiza-

tions are enabled. For example, the common tail-call optimization

emits JMP-based function calls.4

0000000000460 c3f <ff_ac3_float_mdct_end >:

460c3f: push %rbx

460c40: mov %rdi ,%rbx

460c43: lea 0x570(%rdi),%rdi

460c4a: callq 431ee7 <ff_mdct_end >

460c4f: lea 0x5e0(%rbx),%rdi

460c56: pop %rbx

460c57: jmpq e2bd50 <av_freep >

Listing 1: Example of JMP-based call in ffmpeg

3https://github.com/Frky/iCi
4Note that Listing 1 is the exhaustive code of ff_ac3_float_mdct_end. The next
instruction in the binary is the first instruction of the next function (namely
ff_ac3_float_mdct_init).

In this example, we see that the function av_freep is called

through a jmpq instruction (at address 0x460c57). This is a con-

crete example of a tail-call which would not be caught by an instru-

mentation based on the CALL instruction only. Our experiments,

presented in Section 5, show that, for the -O2 and -O3 optimization

levels, naive instrumentations of calls either miss a significant num-

ber of calls (if we only instrument CALL instructions) or produce

a huge number of false positives (if we consider every jump as a

call). In particular, for ffmpeg compiled with -O2 by gcc 5.4, the

instrumentation of CALL instructions only leads to an f-score of

0.87 and more than 20% of calls are missed.

2.2 Notations and definitions

Now that we introduced briefly, with a concrete example, the prob-

lem we target, we propose in this section notations and definitions

that lead to a more formal form of this problem and objectives.

2.2.1 The problem. Let us denote by:

• B a binary program that we want to analyze,

• F (B) the set of functions implemented in B or dynamically

linked at runtime,

• e a given execution of B,

• I (e ) the sequence of instructions executed during e .5

From these notations, the problem we address in this paper can

be formalized as follows: for a given execution e of B, and for each

instruction i of I (e ), determine in real-time if i is an invocation of a

function f ∈ F (B).

2.2.2 Oracle. We assume that we can construct a post-mortem

oracle for each function f ∈ F (B), that we denote by O ( f , e ). For a

given execution e , O ( f , e ) ⊂ I (e ) is the list of instructions in I (e )

that are invocations of f . By post-mortem, we mean that this oracle

does not have to be available in real-time. It can be produced at the

end of an execution e .

2.2.3 Inference. For a given execution e and a function f ∈ F (B),

let us denote by C ( f , e ) ⊂ I (e ) the list of instructions inferred as

being invocations of f in real-time. The goal is to find an efficient

way to construct C ( f , e ), with minimal assumptions, and without

relying on the source code, the symbol table or debugging infor-

mation, such that C ( f , e ) produces the best possible f-score with

respect to the ground-truth O ( f , e ) for each function f .

2.2.4 F-score. To compute the f-score, we need to introduce two

additional definitions:

• a false negative is an instruction i ∈ O ( f , e ) such that i <

C ( f , e ),

• a false positive is an instruction i ∈ C ( f , e ) such that i <

O ( f , e ).

For a given execution e , we denote by FN (resp. FP ) the set of

false negatives (resp. false positives) for any function. True pos-

itives are defined as the intersection of O ( f , e ) and C ( f , e ) for

any function f . From these, precision and recall are defined as fol-

lows: p = |TP |/( |TP | + |FP |) and r = |TP |/( |TP | + |FN |). Then,

5 Note that each instruction of I (e ) is context-dependent; this means that if a static
instruction i is executed several times during e , it will correspond to several elements
of I (e ).
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for a given execution e , the f-score of the inference C is given by

2 ∗ p ∗ r/(p + r ).

2.3 Scope

Let us now define the scope of this paper, and in particular the

binaries we target and the assumptions we make.

2.3.1 Binaries. In this work, we consider compiled x86-64 bi-

naries obtained from source code, written either in procedure- or

object-oriented languages. We do not make any assumptions on the

language of the source code, and our approach generalizes to other

architectures. In addition, the approach does not rely on any debug

information, nor on the symbol table or the string table. In other

words, the scope of this paper is any binary program obtained by

compilation, and does not require recompilation. Another important

point is that we do not rely on any static analysis of the binary.

Our approach can be implemented even if we only have access to a

stream of instructions at the exact moment they are executed (i.e.,

in real-time).

2.3.2 Assumptions. Although we do not rely on assumptions

regarding information that we can get from the binary to analyze,

we do make several assumptions on the compiler’s choices.

• single entry points - we assume that functions have a

unique entry point in the compiled binary. Our experiments

and recent work [1, 2] show no evidence of counter-examples

with gcc or clang, although there may be examples in hand-

crafted code such as in glibc.

• no interleaving - we assume that functions are not inter-

laced in memory. This means that the sets of instructions

delimited by the entry point and the last return point of each

function should not overlap. Again, we found no counter-

examples in our compiler-generated dataset.

• return address on the stack - we assume that the return

address is at the top of the stack just after a CALL instruction

occurs.

• non-obfuscated code - in this paper, obfuscated binaries

are out of scope.

Note that even if some assumptions do not always hold, counter-

examples have a low impact on our results as long as they are

the exception and not the rule. Moreover, while counter-examples

may lead some heuristic-based checks to fail, the knowledge of iCi

improves as the binary executes, allowing it to eventually catch

and correct cases where assumptions are violated (see Section 3).

3 APPROACH

In this section, we propose an approach to answer the problem we

defined in the previous section. In particular, we provide heuristics

to decide, for a given JMP instruction, if it should be considered as a

call or not. In addition, we want our approach to be real-time. This

means that, for each jump, we want to decide at the moment it is

executed how to classify it. This requirement is due to the fact that

we want this approach to be applicable for real-time analysis such

as CFI.

As we do not want to rely on the symbol table, we do not assume

to know function boundaries at the beginning of the execution. In

addition, we recall that we do not assume to be able to analyze

statically the binary before the execution at this point. Therefore,

the analysis is only based on the flow of instructions that are actually

executed by the CPU.

This approach is implemented in a tool named iCi, whose im-

plementation details are given in Section 4.3.

3.1 Overview

In a few words, our approach consists of two main parts: catching

obvious calls, and filtering jumps to decide which ones are calls

and which are not. Each of these parts could lead to the detection

of a call. Each time a call is detected, we add the target to the list

of known functions. This list is thus enhanced over the execution.

Although this is not the purpose of this paper, the results can be

used to detect functions as well.

3.1.1 Catching obvious calls. We consider two categories of in-

structions to be calls with no further investigation. The first one is

the CALL instruction, either with a direct or an indirect target (be-

cause we are dynamic, we can always resolve the concrete address

of the target). The second one is any JMP instruction located in the

.plt section of the binary: every jump of this kind is immediately

considered to be a call and thus does not go through our filter process

presented in the next section. Knowing that a given instruction

is located in the .plt section requires knowledge of the section

layout. Let us make two remarks regarding this assumption. First,

the section names are not removed when a binary is stripped, so it

is safe to assume their presence within the scope of our work as

outlined in Section 2.3.1.6 Second, while our special treatment of

jumps from the .plt is needed to comply with our oracle’s strict

ground truth definition (see Section 4.1), many applications in prac-

tice do not suffer much if JMP instructions from the .plt are missed

(i.e., not considered to be calls). Indeed, the JMP instruction is just a

wrapper from a CALL instruction to the actual code to be executed

in a library function. Missing it does not mean missing the call to

the library function.

3.1.2 Filtering jumps. The second part of our approach decides

in real-time, for any JMP-based instruction7 (i.e., both uncondi-

tional and conditional jumps, and both direct and indirect jumps),

whether it is a call or not. Figure 1 illustrates the different steps

we perform on each JMP instruction for this purpose. We propose

several heuristic-based checks that can be split into two categories:

exclusion checks - if one of these checks fails, then the JMP is

not considered to be a call; and inclusion checks - if one of these

checks passes, then the JMP is considered to be a call. We perform

inclusion checks after exclusion checks. In addition, if neither of

these two categories of checks lead to a conclusion, then we apply

a default policy which can be configured in our implementation.

In our experiments, we use a default policy which considers a JMP

instruction as not a call.

Another important point is that, during the execution, we keep

a memory of the previous decisions. Every time a call is detected

(either based on the CALL instruction, a jump from the .plt or a JMP

instruction that passes an inclusion check), the target of this call

6Even if section names are not available, it is straightforward to find out which section
is the .plt, since it has a very particular structure.
7Except jumps from the .plt section
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Figure 1: Overview of the different steps to conclude on the nature of a JMP instruction

is added to a list of known entry points. This is important, because

it means that the further the execution proceeds, the more entry

points we know, and the more accurate and efficient our detection

becomes. The same goes for negative checks: if a JMP instruction

matches an exclusion check, thenwe add it in a structure that caches

the pruned jumps. This allows us to decide quickly on jumps that

we have already seen. The implementation details on this particular

point (jump caching) are given in Section 4.3.4.

In the next section, we present our heuristics used in every check

we perform.

3.2 Heuristics

We keep track of the following data, accessible at every jump in-

strumentation:

• the current program counter %rip,

• the target of the jump (address),

• the current entry point, which is the target of the last instruc-

tion that was detected as a call (either CALL, JMP from .plt

or any JMP instruction that matched an inclusion check).

Note that this data might be inaccurate at some point, for

instance if we missed the last JMP-based call,

• the current state of the stack (i.e., value of %rsp),

• the state of the stack when the last call occurred,

• information about the return point of functions seen so far

(see Section 4.3.3).

The first two items of this list are straightforward to know, as

we are performing dynamic instrumentation. The current entry

point depends on the accuracy of the previous instrumentation,

as discussed. We give details about the stack information in Sec-

tion 4.3.2, but for now consider that this information is available

but not completely accurate.

3.2.1 Exclusion checks. We have four exclusion checks, that

are performed sequentially. If one of them fails, then the jump is

considered as not a call immediately and further checks are not

performed.

* Jumps from .plt to .plt ś this is to avoid internal jumps

in .plt. These internal jumps are related to the dynamic loading

process, and we are not interested in catching them. This check

only relies on the knowledge of the .plt location, as discussed

before.

* Internal jump before ś if the target of the jump is between

the current entry point (i.e., the target of the last detected call) and

the current %rip, then it is an internal jump. This relies on two of

the assumptions we presented in Section 2.3.2: functions have a

single entry point and they are not interlaced in memory.

Discussion: This check relies on both assumptions and previously

inferred data. Wrong assumptions would be bad, as they would

cause JMP-based calls to be pruned whereas they should not be. For

example, if a function has several entry points, then a recursive

JMP-based call to the second entry point will not be seen as a call but

as an internal jump. On the other hand, inaccurate data could also

produce false negatives. For instance, if the current entry point is

wrong and points to a lower address, we would prune a JMP-based

call to a function located between the jump instruction and the

wrong entry point. Listing 2 illustrates this situation (this example

was taken from ffmpeg). However, our experiments show that this

is contained in a very few number of false negatives in practice.

000000000040 ed24 <uninit >:

/* supposed entry point */

...

000000000040 ed47 <init >:

/* target of the jump */

...

000000000040 ee41 <init_alphaextract >:

/* real entry point */

40ee41: mov 0x48(%rdi),%rax

40ee45: movl $0x8 ,0x8(%rax)

40ee4c: jmpq 40ed47 <init >

Listing 2: Example of a wrong entry point leading to a false

negative.

* Internal jump after ś if the target of the jump is between the

current %rip and a known return point of the current function, then

it is an internal jump. Section 4.3.3 presents our implementation

internals to get an approximation of these return points for each

function.

Discussion: The previous discussion about inaccurate data also ap-

plies here. If we misdetect the function in which the execution

currently is, then the corresponding return point can be wrong.

If so, this check can produce false negatives as well. The method

we use to retrieve return points (see Section 4.3.3) can also lead to

inaccurate values. It is important to note, however, that we initialize

the return point of a new function to the same value as the entry

point. This implies that this check has no effect on functions for

which the return point is not discovered yet.

* Stack inconsistency ś check if the state is the same as it was

when the last call occurred. Indeed, for a tail call to happen correctly,
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the stack must be cleaned first and the top of it should contain the

(same) return address that was pushed before the previous call.

Discussion: Here, we implicitly assume that JMP-based calls are

in fact tail calls. This assumption is compliant with both our ex-

periments, and prior work [1]. This check is fundamental: every

further inclusion check will be performed on jumps assuming that

the state of the stack is consistent with a call. This allows us to

prune a lot of jumps with a simple check.

3.2.2 Inclusion checks. Remember that inclusion checks are per-

formed only if no exclusion check was conclusive. Thus, at this

point, we know in particular that the stack is consistent with a call,

and that we are not in the .plt.

* Known entry point ś this simply checks if the target of the

jump is a known entry point of a function. Recall that, whenever a

call is detected (either a CALL instruction, a jump from the .plt or

a JMP-based instruction inferred as a call in a previous check), its

target is added to a list of known functions.

Discussion: Although this check is implemented in an efficient

way (see Section 4.3.1), we still perform it after exclusion checks

to properly handle a particular case of a jump to the entry point

of the current function. This could either be a loop starting at the

entry point of a function or a recursive call. To distinguish these

cases, we need to first check the stack consistency.8

* External jump before ś this is to check if the target of the

call is before the last known entry point. Assuming that functions

have a single entry point, this means that we are leaving the current

function, therefore it is a call.

Discussion: This is the complementary test to the internal jump

before exclusion check and therefore, it also relies on the same

assumptions and data values that could be inaccurate.

* Cross entry point ś this checks if there is any known entry

point between the current %rip and the target of the jump. If so,

then we consider this jump as a call. It is the most costly check,

even though we optimized the implementation to reduce this cost

as much as possible (see Section 4.3.1). That is why this check is

performed last.

Discussion: This is the most fundamental inclusion check. It al-

lows us to correctly detect the vast majority of calls based on JMP

instruction. Once again, the more the execution goes, the more

entry points we know, and therefore the more likely a JMP-based

call will cross one of them.

3.2.3 Default policy. As mentioned before, if none of the checks

is conclusive, then we apply the default policy. In our implementa-

tion, the default policy is to prune the jump. However, in this case,

because there could be a misdetection due to inaccurate data, we

do not add the pruned jump to the cache. Thus, next time the same

jump is encountered, all the checks will be performed again.

4 IMPLEMENTATION

We now present some details about the iCi implementation. First,

we give details about the way we obtain ground-truth. Second, we

describe two naive implementations that we use to evaluate against.

Third, we give technical details about the way we implement our

approach.

8We encountered such cases in ffmpeg compiled with -O2.

4.1 Ground-truth - oracle

In Section 2.2, we presented a formal definition of the ground-

truth. In this section, we propose a way to construct an oracle that

provides it.

4.1.1 Entry points. The first step to construct our oracle is to get

entry points of functions. We use the information from the symbol

table to achieve that. In addition, we compute the addresses of

entries in the .plt section, and consider them to be entry points of

functions. Finally, at run time, we instrument routines (using Pin)

to get entry points of functions from dynamically loaded libraries.

4.1.2 Call detection. The oracle instruments every instruction,

and for each instruction checks if the program counter (%eip) is

sequential or not. If a discontinuity is detected, the oracle checks

if the new value of the program counter corresponds to the entry

point of a function, and if so it increments the number of calls.

4.1.3 Discussion. The oracle considers each hit of the entry

point of a function as a call, if it follows a control-flow discontinu-

ity.9 This merits discussion in two scenarios: if a function loops to

its own entry point, or if a function is called without discontinuity

of the program counter. The first case will be seen as a call from the

oracle perspective, while the latter case would not. In practice, these

cases do not happen often with compiled code: function prologues

avoid the first case, while the second is statistically very unlikely.

Additionally, our oracle is not efficient and causes high overhead.

This is indirectly intended: we did not want to add any more com-

plexity than necessary in the oracle, to be sure we are as close as

possible to the oracle definition from Section 2.2.2. For example,

every instruction is instrumented, and the only check is regarding a

discontinuity of the program counter. Moreover, the high overhead

is not an issue, as the oracle is intended for evaluation purposes

only.

4.1.4 Comparison with the oracle. From the oracle, we get the

total number of calls in one execution that we should detect for

every function. Every other analysis we propose in this paper com-

pares to this one. A call detected by the oracle and missed by a

given analysis is a false negative, and a call detected by the analysis

that is not present in the oracle is a false positive.

4.2 Naive implementations of call detection

In addition to the oracle, we provide two implementations that

correspond to naive approaches to catch calls. We use them in our

experiments (see Section 5) to emphasize the problem we address

in this paper. These implementations show that naive approaches

are not enough to address the problem properly.

4.2.1 jcall. The first naive way of implementing call detec-

tion, that we name jcall, is based on two instrumentations. First,

we instrument every CALL instruction. Second, we consider every

jump from the .plt as a call. The second instrumentation catches

every call to dynamically loaded libraries. Table 1 shows that in

the majority of our tests, this approach produces no false positives

(exceptions are discussed in Section 5.6). It also shows that this

9 i.e., when the program counter is not exactly incremented by the length of the current
instruction being executed.
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approach gives good results at -O0 and -O1, but produces many

false negatives at -O2 and-O3.

4.2.2 jmp. The previous implementation produces no false pos-

itives, but misses calls (and in particular tail calls). The second

approach we propose is much more conservative: it considers ev-

ery JMP as a call (in addition to CALL instructions). Clearly, this

produces a lot of false positives - see Table 1. On the other hand,

the jmp instrumentation produces no false negatives, which means

that, in our benchmark, all function calls at the assembly level are

implemented by either a CALL or a JMP instruction (conditional or

unconditional).

4.3 Implementation details of iCi

This section discusses particular points of the iCi implementation.

4.3.1 Function information. Each time a call is detected, we store

information about the called function. If the target is not known

yet, then we need to add an entry to a data structure, in order to

detect later calls easily. This entry also stores the number of times

a function is called (field calls), plus a linked list of instructions

(field ins) that caused the function to be called (for debug and

diagnostic purposes). In addition, it contains information about

known boundaries of functions (especially the highest return site),

as discussed in the next section. An entry is described by the C

structure given in Listing 3.

typedef struct fn_entry {

ADDRINT entry;

ADDRINT ret;

UINT64 calls;

string *name;

string *img_name;

ADDRINT offset;

ins_t *ins;

} fn_entry_t;

Listing 3: C structure of an entry corresponding to a function

Hash table. To efficiently access the entry corresponding to a

given function by its entry point, we store this information in a

hash table. This hash table is indexed by the twenty least-significant

bits of the address after a right shift of 4 bits.10 From this hash table,

we can check quickly if a given address corresponds to an entry

point of a known function, and if so access the information related

to this function.

Binary search tree. In addition, for the last inclusion check (cross

entry point), we need a way to determine if there is a known entry

point between two addresses. To do so, the hash table is not effi-

cient, so we maintain, in addition, a binary search tree that stores

every known function entry point. This data structure allows us to

efficiently check if there is a known entry point between the target

of a jump and the address of the jump instruction.

4.3.2 Call stack. For several purposes, and in particular the

stack inconsistency check, we need to keep a call stack. For this

purpose, every time a call is detected, we push a new entry on the

10Because of memory alignment, many functions have an address with least-significant
bits set to zero.

top of our internal stack structure. This entry stores the following

information:

• the target of the call (i.e., the entry point of the function

being called),

• the supposed return address (i.e., the address of the instruc-

tion statically following the instruction causing the call),

• the current value of %esp.

In addition, we instrument every RET instruction. When such

instructions are executed, we unstack entries from our internal call

stack, until one of them has a return address that corresponds to

the target of the RET instruction. Every function that is unstacked

is considered to be returning as well, which allows us to detect

function boundaries (see next section). If, for example, a tail call

is missed, the stack of calls is not updated and thus gives wrong

information about the context. However, this is corrected when the

tailcalled function returns.

4.3.3 Return points. One of the checks (internal jump after) re-

lies on knowledge of the return boundary of the current function.

As mentioned in the previous section, we instrument RET instruc-

tions to keep an internal call stack. Each time a function returns

with the instruction RET, we update its return site information. We

know which function is returning by looking at the top of the call

stack. Although this information might be inaccurate, experimental

results show that it is sufficient in practice (see Section 5).

There are two important points to be discussed. First, while it

may seem like we make the assumption that functions have a single

return site, we do not. We only keep the value of the highest address

corresponding to a return site for each function. This makes sense

because we assume that functions are not interlaced. Second, we

initialize the return site address to the address of the entry point.

This ensures that the internal jump after check will not produce

false negatives on functions for which we do not have a sufficient

knowledge yet.

4.3.4 Caching. We also maintain a cache of the jump instruc-

tions that were pruned before in the execution. To do so, we use

another hash table. Each time an exclusion check matches, the

pruned jump address is added to the hash table. Therefore, for ev-

ery jump instruction, before doing any exclusion check, we look

for the jump in the hash table, and if it is present we prune it once

again without performing any further tests. Note that we do not

cache jumps that were pruned by the default policy. For those, all

checks are performed again. The reason for this is that the default

policy applies when we have no evidence that allows us to reach a

conclusion given the context we know. The next time, one of the

checks might be conclusive.

5 EXPERIMENTS

This section presents our experiments, to show that iCi is accurate

in detecting calls, and presents a reasonable overhead.We also show

that the results of iCi do not suffer from optimization at compi-

lation, and that our approach is compatible with object-oriented

programs. Finally, we provide experiments on different compilers,

to illustrate the fact that iCi is not compiler-specific.
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5.1 Methodology

5.1.1 Benchmark. The general experiments we present in this

paper are conducted on 98 coreutils programs11, 13 binutils

programs12, ffmpeg and evince. For each of these programs, we

provide an arbitrarily chosen input. A list of all the inputs we use

is included in the repository of the tool, as is everything needed to

re-run the experiments we present in this paper. Each program is

compiled using gcc with each level of optimization (from -O0 to

-O3). In addition to the general experiments, we run iCi on SPEC

CPU2006. We present the corresponding results in Section 5.4.We do

not include our SPEC results in the general experiments because we

only evaluate SPEC at the -O2 level of optimization (see Section 5.4

formore information). Finally, we perform a comparative evaluation

of our results on two compilers: gcc-6.0 and clang-3.8, using the

coreutils programs (see Section 5.5).

5.1.2 Exclude libraries. For each test, we do not track calls in

dynamically-loaded libraries (i.e., calls from a library function to

a library function) for two reasons: first, two different programs

sharing the same library would have correlated results; second, the

libraries have the same optimization level for each experiment, and

so including them would influence our comparative results. Note,

however, that our tool is able to instrument calls within libraries as

well.

5.1.3 Comparison. For every program included in our bench-

marks, we perform each of the analyses we presented in this paper:

oracle, jcall, jmp and iCi. We compare the latter three with

the oracle for accuracy measurements, and for each we compute

the f-score. Note that the comparison with oracle is performed

instruction-wise. This means that not only do we compare the

number of calls each method detects, but we also compare each

and every instruction that was detected as a call. A perfect f-score

for a given analysis a means that a detected the exact same call

instructions as the oracle did, and for each of them the exact same

number of hits.

5.1.4 One execution. We want to compare results of different

analyses, while programs may have non-deterministic behavior.

To solve this practical problem, our accuracy experiments perform

each of the analyses during the same execution. Because they do

not interfere, this has no influence on the results, and we are able

to compare the results between two approaches from a single exe-

cution.

5.1.5 Overhead. To measure overhead, we need a different set-

ting. For that purpose, we run one new execution for each program

and for each analysis to perform. This way, we obtain execution

times and overhead numbers for each individual analysis. We com-

pute the overhead compared to the jmp instrumentation. The ra-

tionale in comparing to it is as follows. We showed in Section 2.1

that one needs to consider JMP-based instructions to achieve com-

plete function call detection. The question is thus how to efficiently

and accurately distinguish JMP-based calls from intra-procedural

11We excluded runcon, chcon, nice and nohup because they execute another pro-
gram with special contexts, chroot because it requires root privileges, and yes for
termination purposes
12Programs targeting Microsoft Windows have been excluded

jumps. The jmp analysis is a good basis for comparison, as it in-

struments every jump but does not perform any selection (every

jump is considered to be a call). Measuring the overhead compared

to jmp is thus equivalent to measuring the overhead due to iCi’s

jump selection.

5.2 Platform

All tests are performed on a 64-bit Debian Stretch (9) run-

ning Linux kernel version 4.9.51-1. The machine is equipped

with an Intel Core i7-4610M CPU and 16GB of RAM. We use

gcc-6.3.0, and Pin 3.4, except for SPEC CPU2006 for which we

use gcc-5.4.0 for compatibility reasons (see Section 5.4).

5.3 General results

Exhaustive results of our experiments on the four sets of program

mentioned previously are given in Table 5. In particular, for the

four levels of optimization, we present the absolute number of

calls13 (TP), false positives (FP) and false negatives (FN) due to

each approach. Number in parenthesis are relative to instructions,

by opposition to the main numbers that are relative to calls. For

instance, at -O0, jcall misses 71 calls in total on binutils, and

these 71 calls are caused by 37 different instructions (some of them

are hit several times during the execution).

The following subsections emphasize interesting results of our

experiments, based on the results of Table 5. For more clarity, we

include partial tables extracted from the main table.

5.3.1 F-score. Table 1 presents the f-score of the different ap-

proaches. First, note that, as expected, jmp gets a very low f-score:

except for evince, it never obtains a better score than 0.518 (that

is for coreutils compiled with -O1). Second, our approach, iCi,

obtains the best f-score in every scenario we encounter, and is never

lower than 0.985. For binutils, the average f-score is a perfect

1.000. For ffmpeg, which includes object-oriented code, the f-score

is 0.997. These results also show that the accuracy of iCi does

not suffer from optimization at compilation time, whereas other

implementations (and especially jcall) do. For instance, jcall

gives good results on ffmpeg at -O0 and -O1. However, with -O2,

its f-score is only 0.874 whereas our approach gives an f-score of

0.997. In Table 5, we observe that the errors due to iCi are mostly

due to false positives. Indeed, the number of false negatives is al-

ways lower than 10 in absolute numbers. From this, we deduce that

improving these results would hinge on improving the exclusion

checks presented in Section 3. We also observe that the number

of false positives in iCi is small compared to the number of call

sites that cause these errors. For instance, on coreutils at -O0, we

detect 55897 false positives in total (over all benchmarks), but they

are caused by only 108 unique instructions.

5.3.2 Overhead. Figure 2 shows the overhead of each approach

compared to jmp, as mentioned in Section 5.1.5. In addition, we

present measurements of a vanilla execution without Pin, named

noinst, plus an execution with Pin but no function detection in-

strumentation (pempty for pintool-empty), to separately measure

the overhead due to Pin and the iCi instrumentation on top of

Pin, respectively. Note that evince is excluded from these results,

13According to the oracle
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-O0 -O1 -O2 -O3

jcall jmp iCi jcall jmp iCi jcall jmp iCi jcall jmp iCi

binutils 1.000 0.223 1.000 1.000 0.222 1.000 0.999 0.222 1.000 1.000 0.221 1.000

evince 0.988 0.831 0.991 0.980 0.796 0.985 0.936 0.803 0.985 0.947 0.818 0.986

coreutils 0.998 0.518 0.999 0.998 0.352 0.998 0.946 0.405 0.998 0.997 0.351 0.998

ffmpeg 0.948 0.227 0.997 0.919 0.183 0.997 0.874 0.182 0.997 0.884 0.181 0.997

Table 1: F-score of our approach on binaries compiled with gcc

(a) -O0 (b) -O1 (c) -O2 (d) -O3

Figure 2: Overhead of each analysis in comparison with jmp for -O2

because it requires interaction with the user, which has an influence

on the execution time.

The results confirm that jcall is faster than jmp, because it does

not instrument jumps (except from .plt). For instance, on ffmpeg

compiled with -O0, jcall is 60% faster than jmp. They also show

that iCi is always faster than jmp, from 10% with ffmpeg at -O0

up to 80% with coreutils at -O1. Although this result might be

surprising, it can be explained by our implementation of iCi. As

mentioned in Section 4.3.4, we use a cache to prune jumps that we

have already seen. This is efficient if jumps are executed several

times, in which case the overhead of iCi is reduced. However, jmp

does not do any caching, so the more a given jump instruction

is reused, the faster iCi is in comparison with jmp. Compared to

noinst, the overhead induced by iCi is significant (up to 90× for

ffmpeg at -O0), but if we compare it with the overhead due to Pin

with no instrumentation (pempty), the overhead is between 2× and

4×.

Table 2 presents the standard deviation of the execution time

of iCi over ten executions. These experiments are conducted on

all the programs of coreutils: each is executed ten times, and

we then compute the standard deviation of the execution time.

We present the min, max and average standard deviation for all

programs (outliers excluded). For example, the standard deviation

of the execution time with iCi is 0.011 on average for coreutils

compiled with -O0. This shows that iCi’s performance is stable.

5.4 SPEC CPU2006

In addition to the general results we presented in the previous

section, we also tested our approach on every program of SPEC

CPU2006 written in C or C++, which we compiled with gcc-5.4

for compatibility reasons. These results are not included in the

general results because we did not run SPEC for the four levels

-O0 -O1 -O2 -O3

min 0.001 0.001 0.001 0.001

max 0.088 0.107 0.102 0.154

average 0.011 0.009 0.008 0.010

Table 2: Standard deviation of the execution time of iCi on

coreutils programs

of optimization, but only for -O2. Level -O2 is the one that gives

the worst results in our general experiments, so it makes sense

to test SPEC on this level. In addition, -O2 is the default level of

optimization when compiling SPEC with default configuration files.

Table 3 presents the f-score of the two naive approaches (jcall

and jmp) plus iCi. In all tests but one, our approach gives an f-

score of 1.000. In comparison, on several programs, jcall scores

significantly lower. For example, on 445.gobmk, it has an f-score of

0.883 whereas iCi has an f-score of 1.000. As several programs

of SPEC CPU2006 are written in C++, this experiment shows that

iCi performs well on object-oriented code.

5.5 Influence of the compiler

Table 4 presents the f-score of iCi and other analyses on all coreutils

programs compiled with both gcc-6.3 and clang-3.8. These ex-

periments show that, although jmp achieves different results with

the two compilers (for instance, at -O1, it has an f-score of 0.518

with gcc and 0.360 with clang), jcall and iCi have very similar

results on each compiler.

5.6 Discussion

iCi provides the option to run in a verbose mode for comparison to

other approaches. This mode outputs every instruction mismatch
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-O2

jcall jmp iCi

400.perlbench 0.906 0.260 0.947

401.bzip2 1.000 0.014 1.000

403.gcc 0.960 0.183 1.000

429.mcf 1.000 0.015 1.000

433.milc 1.000 0.201 1.000

444.namd 1.000 0.001 1.000

445.gobmk 0.883 0.004 1.000

447.dealII 1.000 0.298 1.000

450.soplex 0.995 0.049 1.000

453.povray 0.995 0.276 1.000

456.hmmer 1.000 0.127 1.000

458.sjeng 0.967 0.089 1.000

462.libquantum 0.909 0.632 1.000

464.h264ref 1.000 0.181 1.000

470.lbm 1.000 0.044 1.000

471.omnetpp 0.848 0.432 1.000

473.astar 1.000 0.073 1.000

482.sphinx3 0.914 0.644 1.000

483.xalanbmk 0.895 0.205 1.000

Table 3: F-score of iCi on SPEC CPU2006

between the oracle and a given analysis. This is particularly inter-

esting to understand the source of errors. For instance, one might

ask why the jcall instrumentation leads to false positives, even

though it only instruments CALL. Listing 4 presents an extract from

the output when comparing the oracle with jcall for evince at

level -O0.

. . .
( ev ince@0x42e492 ) c a l l 0 x41cec0 − 0 t ime [ seen 1 ]
( evince@0x4431b7 ) c a l l 0 x41cec0 − 0 t ime [ seen 20 ]
( evince@0x440660 ) c a l l 0 x41cec0 − 0 t ime [ seen 1 ]
( ev ince@0x44f89d ) c a l l 0 x41cec0 − 0 t ime [ seen 1 ]

∗ ( @00000041cec0 ) − 105 e x t r a c a l l s
. . .

Listing 4: Partial output of misdetection from jcall with

evince at -O0

Each line of this output corresponds to a given instruction caus-

ing a misdetection. The last line is the total number of errors for the

given function @00000041cec0. In this case, this address does not

correspond to any function entry point, but to an instruction in the

.plt.got section. False positives occur because jcall considers

every CALL instruction to be a function call, even those targeting

non-function addresses. Due to the page limit, we cannot include a

detailed discussion of all interesting cases we encountered with iCi.

However, we can summarize that the majority of false positives in

iCi are due to similar cases, namely CALL instructions targeting an

address that is not a function entry point.

6 APPLICATIONS

Our methodology for real-time dynamic function call detection has

practical applications in several security domains. In this section,

we discuss how iCi applies to three popular research directions:

Control-Flow Integrity, automatic vulnerability discovery, and high-

level Dynamic Binary Instrumentation.

Control-Flow Integrity ś Control-Flow Integrity (CFI) is a

popular technique which aims to prevent control-flow hijacking at-

tacks by instrumenting indirect control transfers, including indirect

calls and jumps, and checking that they adhere to the application’s

intended control flow graph (CFG). Binary-level CFI systems often

rely on dynamic binary instrumentation (DBI) to transparently en-

able defenses [3, 11, 16ś18]. Many CFI systems protect call sites by

ensuring that they target a legitimate function [11, 16ś18]. Some go

further, keeping a context of all indirect control transfers and using

this context to judge the validity of new control transfers [3]. In both

cases, accurate call site detection, including detection of JMP-based

indirect calls, is an important primitive. Particularly, the ability to

accurately distinguish intraprocedural indirect jumps from JMP-

based calls enables CFI systems to correctly determine which type

of security constraints to add where. This allows CFI systems to

enforce more stringent constraints, forcing intraprocedural indi-

rect jumps, such as switch invocations, to stay within the current

procedure, while allowing JMP-based calls to target only legitimate

functions. As explained in Section 1, existing DBI frameworks like

Intel Pin do not provide facilities to distinguish intraprocedural

from interprocedural indirect jumps [8]. This forces CFI systems

to protect JMP instructions with catch-all instrumentation that pro-

vides less stringent security. iCi provides more accurate call site

detection, which can distinguish JMP-based calls from other types

of jumps, directly benefiting the security of CFI approaches.

Automatic Vulnerability Discovery ś Many automatic vul-

nerability detection systems operate at the function level, both for

ease of analysis, and because it is a suitable search-granularity for

common bugs, such as stack-based bugs [7, 12, 20]. Operating at the

function level is also useful for interoperability with other binary

analysis primitives, such as symbolic execution, which are powerful

tools for semantic analysis but do not scale to full binaries [7]. iCi

benefits binary-level vulnerability detectors by providing themwith

a more accurate record of function invocations and more accurate

stack-frame information. This enables more powerful bug-search

heuristics and root-cause analysis when a vulnerability is found.

High-level Dynamic Binary Instrumentation ś In addition

to aiding the accuracy of specific types of DBI-based tools, iCi also

eases the development of such tools. Existing DBI frameworks like

Pin [8], Dyninst [5], and DynamoRIO [4] are all very low-level,

shifting the burden of problems like function call detection to the

developer. iCi provides the beginnings of a higher-level API, that

allows developers to simply łinstrument all callsž with a single API

call, without having to worry about the low-level details of how

these calls are implemented (with a CALL or JMP instruction). This

allows for more rapid prototyping of DBI-based tools. We intend to

pursue other aspects of high-level DBI in future work.

7 CONCLUSION

Efficient and accurate function call detection is the basis of many

dynamic program analysis techniques. We present the first high-

level approach, called iCi, to automatically instrument both CALL

and JMP-based calls in real-time. Compared to naive solutions, such

as instrumenting all CALL and JMP instructions, iCi provides a far
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-O0 -O1 -O2 -O3

jcall jmp iCi jcall jmp iCi jcall jmp iCi jcall jmp iCi

gcc-6.3 0.998 0.518 0.999 0.998 0.352 0.998 0.946 0.405 0.998 0.997 0.351 0.998

clang-3.8 0.997 0.360 0.998 0.997 0.359 0.998 0.997 0.359 0.998 0.997 0.359 0.998

Table 4: F-score of iCi on coreutils compiled with both gcc-6.3 and clang-3.8

-O0 -O1 -O2 -O3
jcall jmp iCi jcall jmp iCi jcall jmp iCi jcall jmp iCi

binutils

TP 18617150 18336085 18327919 18199970

FN
71
(37)

0
(0)

0
(0)

71
(37)

0
(0)

0
(0)

21187
(96)

0
(0)

1
(1)

1923
(75)

0
(0)

1
(1)

FP
7162
(223)

129827016
(20549)

7162
(223)

7162
(223)

128688861
(20037)

7162
(223)

7161
(222)

128642723
(20036)

7162
(223)

7161
(222)

128308957
(20226)

7162
(223)

fscore 1.000 0.223 1.000 1.000 0.222 1.000 0.999 0.222 1.000 1.000 0.221 1.000
ovhd 0.207 1.00 0.454 0.203 1.00 0.448 0.202 1.00 0.444 0.206 1.00 0.450

evince

TP 11515 6889 6915 7577

FN
63
(37)

0
(0)

1
(1)

63
(37)

0
(0)

1
(1)

652
(180)

0
(0)

1
(1)

589
(148)

0
(0)

1
(1)

FP
210
(103)

4698
(2179)

210
(103)

215
(108)

3537
(1938)

215
(108)

198
(98)

3399
(1911)

215
(108)

200
(108)

3376
(2092)

215
(116)

fscore 0.988 0.831 0.991 0.980 0.796 0.985 0.936 0.803 0.985 0.947 0.818 0.986
ovhd n.c. 1.00 n.c. n.c. 1.00 n.c. n.c. 1.00 n.c. n.c. 1.00 n.c.

coreutils

TP 31235860 14185835 16299089 12966483

FN
37952
(336)

4
(4)

4
(4)

319
(297)

5
(5)

5
(5)

1621545
(654)

5
(5)

11
(11)

24910
(589)

4
(4)

10
(10)

FP
55897
(108)

58039825
(18199)

55897
(108)

50490
(100)

52287208
(15932)

50490
(100)

50481
(101)

47892488
(15808)

50490
(107)

50480
(108)

47929614
(16101)

50489
(114)

fscore 0.998 0.518 0.999 0.998 0.352 0.998 0.946 0.405 0.998 0.997 0.351 0.998
ovhd 0.110 1.00 0.228 0.103 1.00 0.186 0.099 1.00 0.189 0.102 1.00 0.189

ffmpeg

TP 2331517 1484918 1467291 1421025

FN
217619
(29)

27
(23)

0
(0)

217666
(12)

15
(11)

0
(0)

322788
(223)

37
(27)

6
(4)

290067
(180)

36
(23)

6
(4)

FP
13658
(37)

15834525
(12276)

14954
(42)

6682
(25)

13294818
(11145)

7978
(30)

6680
(24)

13183828
(10935)

7978
(30)

6680
(24)

12831611
(11449)

7978
(30)

fscore 0.948 0.227 0.997 0.919 0.183 0.997 0.874 0.182 0.997 0.884 0.181 0.997
ovhd 0.384 1.00 0.874 0.381 1.00 0.834 0.372 1.00 0.837 0.380 1.00 0.830

Table 5: Exhaustive results of our experiments for the two naive approaches and iCi

lower false positive rate, while also offering reasonable runtime

performance. In our evaluation, iCi achieves an f-score of 0.947 in

the worst case, even at high optimization levels with many tail calls.

We release our iCi prototype, as well as the oracle we developed

for our evaluation, as open source.
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