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a b s t r a c t 

Extending the concept of time-space networks, layered graphs associate information about one or multi- 

ple resource state values with nodes and arcs. While integer programming formulations based on them 

allow to model complex problems comparably easy, their large size makes them hard to solve for non- 

trivial instances. We detail and classify layered graph modeling techniques that have been used in the 

(recent) scientific literature and review methods to successfully solve the resulting large-scale, extended 

formulations. Modeling guidelines and important observations concerning the solution of layered graph 

formulations by decomposition methods are given together with several future research directions. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

i  

d

 

s  

s  

w  

{  

m  

t  

g  

n  

t  

c  

n  

a  

o  

a  

a  

f  

t  

h  

i  

.  

i

1. Introduction 

Several articles describing so-called layered graph formulations

for modeling and solving combinatorial optimization problems

have been published recently. This article classifies these formula-

tions according to generic, mostly problem-independent character-

istics, surveys existing approaches, and details cases where the use

of layered graph models might be particularly beneficial. On sev-

eral occasions, we also point out that some of the most promising,

recently proposed ideas can be extended (easily) for other relevant

problem classes. While our main concern is related to modeling

aspects, we also point out that the (typically) tight dual bounds

obtained from the associated linear programming (LP) relaxations

are often hard to compute due to the large sizes of the underly-

ing models. Thus, we also detail some of the most successful ap-

proaches that have been proposed to reduce the size of the layered

graphs in order to make exact algorithms relying on layered graph

formulations more successful in practice. 

Though the designation layered graph has become popular

rather recently, several older papers (some published even decades

ago) exist that fit into this framework. Hence, it is difficult to point

out what are the first papers referring directly or indirectly to lay-

ered graphs and that have initiated this stream of research. While

important (and in particular, early) developments related to lay-

ered graphs have been made using time-space networks, we point
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E-mail addresses: legouveia@fc.ul.pt (L. Gouveia), markus.leitner@univie.ac.at (M. 

Leitner), mario.ruthmair@univie.ac.at (M. Ruthmair). 

 

(  

p  

v  

https://doi.org/10.1016/j.cor.2018.09.007 

0305-0548/© 2018 Elsevier Ltd. All rights reserved. 
ut that our understanding of layered graphs is more generic and

n no sense restricted to this conventional point of view which in-

eed can be seen as one particular special case. 

We start by giving an intuitive idea of layered graphs and

how that they extend the concept of time-space networks. Con-

ider, e.g., a vehicle routing problem that is defined on a graph

hose node set V contains a depot node 1, and customer nodes

 2 , 3 , . . . , | V |} . A nonnegative travel time and a nonnegative de-

and are associated with each arc a ∈ A and node u ∈ V �{1}, respec-

ively, see Fig. 1 a for an example. Then, the node set of the layered

raph that corresponds to the conventional view as a time-space

etwork is obtained by replicating each node u several times such

hat every copy u t is associated with a particular visiting time t of

ustomer u . Arcs ( u p , v t ) are included between pairs of replicated

odes u p and v t if the travel time from u to v is t − p and the

rc ( u, v ) exists in the original graph. Implicit or explicit bounds

n the maximum travel time of each route restrict the size of such

 layered graph. Observe that the load-dimension of this problem

llows us to adopt an alternative viewpoint that results in a dif-

erent layered graph where each node u is replicated several times

o obtain copies u q but, this time, indicating that the load of a ve-

icle is equal to q after serving node u . Arcs ( u q , v l ) of this load-

ndexed layered graph are included if the demand of node v is l − q

 Figs. 1 b and c show the solution given in Fig. 1 a in the time-

ndexed and load-indexed layered graphs, respectively. 

In this survey, we want to emphasize that there are many ways

different from time) to define the layers of a layered graph. This

erspective allows to define layered graphs that implicitly restrict

alues of arbitrary (cumulative) resources within certain bounds

https://doi.org/10.1016/j.cor.2018.09.007
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Fig. 1. (a) A solution with two routes of an example instance of a VRP with travel time limit 7 and vehicle capacity 6. Travel times are provided next to the arcs and node 

demands are given in parentheses next to the node numbers. (b) The same solution shown in a time-indexed layered graph (aka time-space network). (c) The same solution 

shown in a load-indexed layered graph. 
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i.e., by the graph structure) rather than by using explicit con-

traints (which usually leads to formulations with weaker LP re-

axation bounds). We will also point out that layered graphs often

llow the modeling of complex dependencies relatively easy (e.g.,

osts depending on the current consumption of some resource)

hat would be difficult to model (by linear formulations) using al-

ernative approaches. 

Goal and structure The main goal of this survey is to increase

he awareness of the modeling options of layered graphs and of

heir benefits. A better knowledge of these options can increase

he possibility of considering layered graphs when modeling com-

lex problems by mixed integer linear formulations. To describe

nd classify existing modeling ideas later on, Section 2 will de-

ail some of the consequences of adopting the layered graph per-

pective instead of only considering the more restricted time-space

etworks or time-dependent formulations. Section 3 discusses in

ore detail several layered graph modeling approaches using a

apacitated vehicle routing problem with additional (generic) re-

ource constraints as an example. Section 4 recalls and formally

escribes from an abstract perspective three modeling techniques

hat, together, can be seen as a unifying framework for most of

he frequently used modeling techniques. Section 5 classifies the

xisting literature. Together, Sections 3 – 5 aim to introduce and

xplain the main modeling ideas related to layered graphs that ap-

eared in the scientific literature as well as to summarize a signifi-

ant part of it. For the latter, we do, however, focus on the domains

f routing and network design. Since layered graph formulations

re known to be attractive from a modeling perspective but may

e difficult to solve algorithmically due to their size, Section 6 dis-

usses important aspects and techniques that have been used in

rder to improve the performance of solution methods relying on

ayered graph formulations. To conclude, in Section 7 we also detail

hat we believe to be the main and most important avenues for

uture research related to layered graphs thereby indicating prob-

em specifications for which layered graph formulations and solu-

ion methods might be particularly attractive. 

Notation Given a graph G = (V, A ) and a subset of nodes

 ⊂ V , we will use notation δ+ (S) = { (u, v ) ∈ A | u ∈ S, v / ∈ S} , and
−(S) = { (u, v ) ∈ A | u / ∈ S, v ∈ S} . Analogous notation will be used

or different graphs, and for simplicity we will write δ−(u ) and
+ (u ) instead of δ−({ u } ) and δ+ ({ u } ) for singleton sets S = { u }
p  
 Notation z(W 

′ ) = 

∑ 

u ∈ W 

′ z u will be used for a set of variables z

efined on set W and a subset W 

′ ⊆W . 

. Change of perspective: Time-dependent vs. layered 

ormulations 

In this subsection, we show how researchers changed their

iew from modeling with time-dependent formulations to model-

ng with layered graph formulations. This discussion will be based

n the Asymmetric Traveling Salesman Problem (ATSP) for which

1) provides a generic formulation (based on arc decision variables)

hich has been the starting point for several studies ( Abeledo

t al., 2013; Godinho et al., 2014; Oncan et al., 2009 ). 

in 

∑ 

a ∈ A 
c a x a (1a) 

.t. x (δ−(u )) = 1 ∀ u ∈ V (1b) 

 (δ+ (u )) = 1 ∀ u ∈ V (1c) 

 a ∈ A : x a = 1 } induces a connected graph (1d) 

 a ∈ { 0 , 1 } ∀ a ∈ A (1e) 

It is well known that a solution for (1b),(1c) , and(1e) , the so-

alled assignment relaxation, is composed of a set of disjoint cycles

overing all nodes of the graph. Thus, the additional constraints for

he generic part (1d) of the formulation need to prevent the exis-

ence of more than one cycle. In the (natural) space of arc design

ariables this can be achieved, e.g., by the subtour elimination con-

traints first proposed by Dantzig et al. (1954) or the equivalent cut

onstraints 

 (δ−(S)) ≥ 1 ∀ S ⊆ V \ { 1 } , S 	 = ∅ . (2) 

Despite the fact that the number of cut constraints (2) is ex-

onential, they can be efficiently handled in an implicit way since

hey can be separated in polynomial time by using max-flow com-

utations ( Padberg and Rinaldi, 1991 ). The obtained LP bounds are
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usually comparably good and current state-of-the-art methods for

the ATSP as well as closely related problems are typically based

on this formulation together with further valid inequalities. In the

remainder of this article, we follow Pulleyblank (1989) and use

the term natural space formulation for formulations that use only

the necessary set of decision variables, e.g., one variable associ-

ated to each arc of the underlying graph as in the formulation

above for the ATSP. Similarly, natural space approach refers to an

algorithmic solution method based on a natural space formulation.

So-called extended formulations use additional variables that fre-

quently allow the derivation of compact formulations for which the

number of variables and constraints is polynomial with respect to

the input size. One of the first compact, extended formulations for

the ATSP is a time-dependent formulation proposed by Picard and

Queyranne (1978) in the context of a machine-scheduling problem.

This formulation (which uses node 1 as start and end node of the

tour) is defined by adding time (or position) dependent variables

Z 
p 
a that are equal to one if and only if arc a ∈ A is in position

p ∈ { 0 , 1 , . . . , | V | − 1 } and by replacing (1d) in the generic formu-

lation by equations (3) . 

Z 0 (δ+ (1)) = 1 (3a)

Z p (δ−(u )) = Z p+1 (δ+ (u )) ∀ u ∈ V \ { 1 } , ∀ p ∈ { 0 , 1 , . . . , | V | − 2 }
(3b)

∑ 

p∈{ 0 , 1 , ... , | V |−1 } 
Z p a = x a ∀ a ∈ A (3c)

Z p a ∈ { 0 , 1 } ∀ a ∈ A, ∀ p ∈ { 0 , 1 , . . . , | V | − 1 } (3d)

The validity of this formulation (which will be denoted by PQ)

will be discussed below when establishing its interpretation in a

layered graph. Several articles use similar “time-dependent” for-

mulations (see, e.g., ( Fox et al., 1980; Godinho et al., 2014; Gou-

veia, 1995 )) and compare their LP relaxations. For completeness,

we note that one set of assignment constraints, (1b) or(1c) , be-

comes redundant (and can be removed) since the time-dependent

flow conservation constraints (3b) already guarantee that if one

arc goes into a given node then one arc must leave it (or vice-

versa). Additionally, by using the linking constraints (3c), the orig-

inal variables x a can be eliminated and we obtain a model writ-

ten with the time-dependent variables Z 
p 
a alone (this is how the

PQ model was introduced in Picard and Queyranne, 1978 ). A first

connection with a layered graph model can be established by con-

sidering the layered graph G = (V, A ) defined by node set V =
{ 1 0 , 1 | V | } ∪ { u p | u ∈ V \ { 1 } , p ∈ { 1 , 2 , . . . , | V | − 1 }} and arc set A =
{ (u p , v p+1 ) | { u p , v p+1 } ⊆ V, (u, v ) ∈ A } . The time-dependent part

of formulation PQ, that is equations (3) , can be viewed as model-

ing a path in G from node 1 0 to node 1 | V | . While equations (3) do

not forbid that multiple copies of the same original node may be

included in such a path, this is prevented in the complete formula-

tion through in-degree (1b) or out-degree (1c) constraints, respec-

tively. The previously described connection with a layered graph

method can go a step further by observing that one can work di-

rectly in this graph, that is, one can define cut constraints in the

layered graph that strengthen the LP relaxation, and adapt the sep-

aration algorithms known for the similar constraints defined in the

original graph. To define cut constraints in a layered graph, observe

that formulation PQ can be interpreted as a model for the General-

ized TSP ( Fischetti et al., 1997 ) defined in the layered graph. In the

latter problem, the node set is partitioned into subsets and one

seeks for a minimum cost cycle including exactly one node from

each subset. All copies of each original node in the layered graph

form a subset and exactly one copy must be visited. This relation
uggests the layered graph cut constraints ( Gouveia et al., 2011b ) 

(δ−(S)) ≥ 1 ∀ S ⊂ V, 1 0 / ∈ S, ∃ u ∈ V \ { 1 } | { u p : p 

∈ { 1 , 2 , . . . , | V | − 1 }} ⊆ S (4)

hich also appeared in ( Godinho et al., 2014 ) as a theoretical out-

ome of a compact flow based formulation defined in the lay-

red graph. The cut constraints (4) are valid since at least one

opy of each node needs to be included in the tour and the set

 is constrained to include all copies u 1 , u 2 , . . . , u | V |−1 of at least

ne original node u . Despite producing strong LP bounds (see,

.g., Godinho et al. (2014) for bounds obtained with an equiva-

ent flow formulation), existing and well engineered natural space

pproaches ( Roberti and Toth, 2012 ) typically render branch-and-

ut algorithms based on constraints (4) as not competitive due to

he large number of layered graph variables and separated layered

raph cut constraints. On the contrary, such layered graph branch-

nd-cut algorithms may be competitive for slightly different prob-

em variants for which efficient approaches in the (natural) space

f arc variables are not known. As one example, we refer to the

ime-dependent TSP ( Abeledo et al., 2013 ) and its particular case of

he cumulative TSP for which very tight LP gaps of a layered graph

odel are reported by Godinho et al. (2014) (by using a theoreti-

ally equivalent flow based model). 

Two special cases of the cut constraints (4) are worth men-

ioning. When the set S is composed solely of whole subsets

f node copies, by using the linking constraints (3c), we ob-

ain the cut constraints (2) . The other case is obtained when S =
 u p , v 1 , v 2 , . . . , v | V |−1 } for two nodes u and v (and 2 ≤ p ≤ | V | − 2

 (observe that S contains all copies of a given node v and one

opy of another node u which is not on the first or last layer). Us-

ng equations (3) it can be shown that in this second special case,

he cut inequalities are equivalent to 

 

p 
u v ≤

∑ 

(i,u ) ∈ A,i 	 = v 
Z p−1 

iu 
∀ (u, v ) ∈ A, ∀ p ∈ { 2 , 3 , . . . , | V | − 2 } . (5)

These two-cycle elimination constraints state that if arc ( u, v ) is

n position p then an arc in position p − 1 coming from a node

ifferent from v has to enter node u . A similar set of constraints

ymmetric to inequalities (5) can also be obtained which can be

hown, however, to be equivalent to the previous one, in terms of

he corresponding LP relaxations. To the best of our knowledge,

hese inequalities have been first proposed in Gouveia (1999) as a

ew class of (time-dependent) inequalities to break subtours in the

ontext of tree problems. Later, such inequalities have been used

or related tree problems ( Costa et al., 2009; Ljubi ́c and Gollow-

tzer, 2013 ). As noted above, these inequalities can also be used

or routing problems. Results known from the literature ( Abeledo

t al., 2013; Godinho et al., 2014 ) suggest that adding inequali-

ies (5) to model PQ improves the LP bound, more noticeable and

ignificant for instances with time-dependent costs. In the next

ections we will introduce layered graph modeling aspects, a clas-

ification of existing approaches, and a discussion of known meth-

ds to reduce the size of layered graphs. Before going into these

etails we would like to point out that layered graph models and

olution approaches might be well suited to solve rather complex

roblems for which no tight natural space models and correspond-

ngly well-performing natural space methods exist. On the con-

rary, the large number of layered graph variables may require sig-

ificant implementation effort when aiming to achieve a perfor-

ance comparable to, e.g., such natural space methods. 

. Resource constrained capacitated vehicle routing 

In this section, we will discuss in detail some of the modeling

echniques with layered graphs that have been used recently, see,

.g., Gouveia et al. (2017) . For this analysis we use the Resource
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onstrained Capacitated Vehicle Routing Problem (RCVRP) that is de-

ned on a directed graph G = (V, A ) whose node set is the disjoint

nion of a depot node 1 and customer nodes N = { 2 , 3 , . . . , | V |} .

ach customer u ∈ N has an associated demand q u > 0 while a cost

 a ≥ 0 and resource consumption r a > 0 are associated with each

rc a ∈ A . The goal is to identify a set of at most K tours (each

tarting and ending at the depot) with minimum total cost such

hat the total demand of customers included in each tour does not

xceed Q and the total resource usage of each tour does not exceed

 . An example instance together with a feasible solution is given in

ig. 2 . 

The RCVRP generalizes well known variants of the CVRP such

s the distance constrained VRP ( Laporte et al., 1984 ), which is the

pecial case with limited travel costs for each tour, i.e., r a = c a , 

 a ∈ A . The extra limiting resource might also be interpreted as

attery usage in the context of electric vehicle routing problems.

n the following, we will focus on a particular variant of the RCVRP

ith unit demands, i.e., in which q u = 1 , ∀ u ∈ N . This assumption

overs cases in which the number of customers each vehicle can

isit is the restrictive factor instead of a more general, individ-

al customer demand. It will also allow us to discuss implications

nd provide modeling and implementation suggestions for prob-

ems with multiple resources and where the number of feasible

alues (and the limit) of one constraint is comparably small while

ther resources have more general and larger domains. 

Generic formulation (6) for the RCVRP will be used for the fol-

owing discussion. This formulation will be augmented with vari-

us sets of variables and constraints to introduce different classes

f layered graph modeling approaches. Natural space decision vari-

bles x a ∈ {0, 1}, ∀ a ∈ A , indicate whether an arc is included in a

our or not. 

in 

∑ 

a ∈ A 
c a x a (6a) 

.t. x (δ+ (1)) ≤ K (6b) 

 (δ−(u )) = 1 ∀ u ∈ N (6c) 

 (δ+ (u )) = 1 ∀ u ∈ N (6d) 

 (δ−(S)) ≥ 1 ∀ S ⊆ N (6e) 

 a ∈ A : x a = 1 } satisfies the capacity constraint for each route
(6f) 

 a ∈ A : x a = 1 } satisfies the resource constraint for each route
(6g) 

 a ∈ { 0 , 1 } ∀ a ∈ A (6h) 

Constraints (6b)–(6d) ensure that at most K vehicles leave the

epot and that the in- and out-degree of every customer node is

xactly one. Connectivity constraints (6e) eliminate subtours and

he constraints (6b)–(6e) therefore ensure that each solution forms

t most K routes each starting and ending at the depot. Thus,

 complete formulation is obtained by additionally ensuring the

apacity and resource constraints for each route, cf. generic con-

traints (6f) and (6g). 

Before turning our attention to layered graph formulations,

e observe that several, well known possibilities allow to en-

ure the resource constraints. Some of them use only the arc
ariables and use capacity cut inequalities ( Letchford and Salazar-

onzález, 2006 ) (possibly together with additional sets of inequal-

ties of exponential size). Natural space branch-and-cut algorithms

ased on them belong to the best approaches for solving differ-

nt variants of VRPs but require the development of sophisticated

eparation procedures. Other approaches use a polynomial number

in terms of the size of the input graph) of additional variables and

onstraints, i.e., compact formulations. In the following, we will de-

cribe one such option that is based on single-commodity flows.

et variable f a ≥ 0 define the total load of a vehicle when traversing

rc a ∈ A . Then, formulation (7) ensures the capacity constraints,

.e., models constraints (6f). 

f a = x a ∀ a ∈ δ+ (1) (7a) 

f (δ+ (u )) − f (δ−(u )) = 1 ∀ u ∈ N (7b) 

 ≤ f a ≤ (Q + 1) x a ∀ a ∈ A \ δ+ (1) (7c) 

Using variables g a ≥ 0, ∀ a ∈ A , that define the total resource

pent by a vehicle after traversing arc a ∈ A , a similar formulation

8) ensures the resource constraints, i.e., models constraints (6g). 

 a = r a x a ∀ a ∈ δ+ (1) (8a) 

(δ+ (u )) − g(δ−(u )) = 

∑ 

a ∈ δ+ (u ) 

r a x a ∀ u ∈ N (8b) 

 ≤ g a ≤ Rx a ∀ a ∈ A \ δ+ (1) (8c) 

The following subsections will introduce separate and com-

ined layered graph formulations for the two resource constraints

f the RCVRP. To simplify notation, we will thereby assume inte-

ral resource values r a ∈ N + . To this end, we observe that the only

ecessary assumption is that the number of achievable resource

alues is finite and that this assumption always holds due to the

ombinatorial nature of the RCVRP since there exists only a finite

umber of paths from the depot to any other node. In this sec-

ion, we consider layered graphs containing a copy of each original

ode at each possible (and feasible) resource state. Details about

fficient construction and preprocessing methods of layered graphs

ill be given in Section 6 . Further note that throughout this article,

e will denote by achievable resource values the subset of feasible

esource values that can be realized in a solution. 

We refrain from introducing models that contain one layered

raph per vehicle. Such formulations have the advantage of allow-

ng to model one resource constraint by a single knapsack con-

traint per vehicle, and implicitly ensuring the other resource con-

traint due to the structure of the layered graph. However, be-

ides the large number of variables they also include a significant

mount of symmetries with well-known disadvantages in (branch-

nd-bound based) solution methods. 

.1. Resource layered graph 

In this subsection, we detail how to complete the abstract

ormulation (6) using a layered graph G R = (V R , A R ) that en-

odes the resource constraint, see Fig. 3 . Its node set is de-

ned by V R = { 1 0 , 1 R } ∪ { u r | , u ∈ N, r ∈ { 1 , 2 , . . . , R − 1 }} , and con-

ists of two copies of the depot node (a starting depot at re-

ource value 0 and an end depot at resource value R ) and copies

f all customer nodes u ∈ N at all layers (i.e., resource consump-

ion values) r that may possibly be obtained in a feasible tour,

.e., r ∈ { 1 , 2 , . . . , R − 1 } . Visiting a node u r , u ∈ N , in a solution

ndicates that the total resource consumption of the path from
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Fig. 2. An example instance of the RCVRP with unit node demands, Q = 4 , and 

R = 8 . Arcs a ∈ A are labeled by ( c a , r a ). Bold arcs indicate a feasible solution with 

an objective value of 16 consisting of the two routes (1,2,7,1), with resource con- 

sumption 8 and demand 2, and (1,6,5,4,3,1), with resource consumptions 8 and de- 

mand 4, to this instance. 

Fig. 3. Resource-indexed layered graph G R for the RCVRP instance given in Fig. 2 . 

The solution from Fig. 2 is indicated by bold arcs. Gray nodes are not reachable 

from the depot and arcs adjacent to them are not shown (they can be removed in 

preprocessing). 
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the depot to customer u is equal to r . The arc set is defined

by A R = { (u p , v l ) | { u p , v l } ⊆ V R , (u, v ) ∈ A, p ∈ { 0 , 1 , . . . , R − r u v } , l =
p + r u v , v 	 = 1 } ∪ { (u p , 1 R ) | (u, 1) ∈ A, p ∈ { 1 , 2 , . . . , R − r u 1 } , that

contains arcs ( u p , v l ) connecting two copies of original nodes u and

v, v 	 = 1, whenever ( u, v ) ∈ A and r u v = l − p, as well as arcs from

copies u p of customer nodes to the end depot 1 R if ( u , 1) ∈ A and

p + r ≤ R . 
u 1 
One main difference to the layered graphs sketched in the in-

roduction is that copies of the depot node are avoided at layers

ifferent from 0 and R . Thus, arc ( i p , 1 R ) is used instead of ( i p , 1 l ),

 = p + r i 1 ≤ R, for all arc copies that possibly terminate a route,

nd as a consequence each feasible route can be modeled as a path

rom 1 0 to 1 R that contains at most one copy of a node i ∈ N . For-

ulation (9) is similar to the equation system (3) of the PQ for-

ulation (see Section 2 ) adapted to the case of multiple tours and

an be used in place of (6g). It uses layered graph arc variables

 

r 
u v ∈ { 0 , 1 } , ∀ ( u r , v s ) ∈ A R , that are equal to one if and only if arc

 u, v ) ∈ A is used in one of the tours such that the total resource

onsumption after visiting u is equal to r . 

 

0 
1 v = x 1 v ∀ (1 , v ) ∈ A (9a)

 (δ−(u r )) = X (δ+ (u r )) ∀ u r ∈ V R \ { 1 0 , 1 R } (9b)

∑ 

(u r , v s ) ∈ A R 
X 

r 
u v = x u v ∀ (u, v ) ∈ A (9c)

 

r 
u v ∈ { 0 , 1 } ∀ (u r , v s ) ∈ A R (9d)

As in the case of the (time dependent) ATSP discussed in

ection 2 , we can strengthen the LP bounds of the formulation ob-

ained from (9) using two-cycle elimination constraints (10) . 

 

r 
u v ≤

∑ 

(i p ,u r ) ∈ δ−(u r ) ,i 	 = v 
X 

p 
iu 

∀ (u r , v s ) ∈ A R , u, v 	 = 1 (10)

The family of layered graph cut constraints (11) is obtained

rom observing that there must exist a copy of every node that

s reachable from the source depot 1 0 . Thus, at least one arc must

ross each cut separating the source depot from all copies of at

east one customer node. 

 (δ−(S)) ≥ 1 ∀ S ⊆ V R \ { 1 0 } , ∃ u ∈ N : { u r , r 

∈ { 1 , 2 , . . . , R − 1 }} ⊆ S (11)

We note that original graph connectivity constraints (6e) are

ot required in a formulation obtained from replacing (6g) by

9) and (6f) by the single-commodity flow system (7) but typi-

ally strengthen, however, the associated LP relaxation. The latter

oes not hold if layered graph cut constraints (11) are included. It

s easy to see that constraints (11) imply the original graph cuts

6e), see Section 2 for an explanation in the context of the ATSP.

owever, as detailed in Section 6 there may still be good reasons,

rom a practical point of view, to explicitly consider the original

raph cuts (6e). Finally, we observe that despite the fact that a for-

ulation using (9) , possibly augmented by (10) , contains “only” a

seudo-polynomial number of variables and constraints, using it in

ractice often imposes non-trivial challenges for medium to large

esource limits R and sets of achievable resource states. As indi-

ated in the next section, in the context of the RCVRP one may

lternatively focus on a layered graph that implicitly ensures the

apacity constraint since the associated capacity limit will usually

e much smaller in the case of unit demands. Other approaches

nd techniques to solve huge layered graph formulations are sum-

arized in Section 6 . 

.2. Load layered graph 

An alternative formulation can be defined by considering a

oad-indexed layered graph G Q = (V Q , A Q ) that encodes each ve-

icle’s load and thus can be used to implicitly guarantee the ca-

acity constraints, see Fig. 4 . While it can be used in general, such

n approach is particularly appealing when the number of achiev-

ble load values and the capacity limit Q are small, as, e.g., in the
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Fig. 4. Load-indexed layered graph G Q for the RCVRP instance given in Fig. 2 . The 

solution from Fig. 2 is indicated by bold arcs. Gray nodes are not reachable from 

the depot and arcs adjacent to them are not shown (they can be removed in pre- 

processing). 
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d  
onsidered special case of unit demands. Then, node set V Q con-

ists of two copies of the depot node (a start depot with load 0

nd an end depot with load Q ) and copies of customer nodes at

ayers between 1 and Q , i.e., V Q = { 1 0 , 1 Q } ∪ { u q | q ∈ { 1 , 2 , . . . , Q}}
 Arc set A Q connects node copies that are connected in the orig-

nal graph whenever a partial route can be continued using the

espective arc, i.e., A Q = { (u p , v p+1 ) | { u p , v p+1 } ⊆ V Q , (u, v ) ∈ A, p ∈
 0 , 1 , . . . , Q − 1 } , v 	 = 1 } ∪ { (u q , 1 Q ) | (u, 1) ∈ A, q ∈ { 1 , 2 , . . . , Q}} . 

The PQ system (12) builds upon variables Y 
q 
u v ∈ { 0 , 1 } , ∀ ( u q ,

 l ) ∈ A Q , which are equal to one if and only if a vehicle travels di-

ectly from u to v with a load equal to q after serving node u . 

 

0 
1 v = x 1 v ∀ (1 , v ) ∈ A (12a) 

 (δ−(u q )) = Y (δ+ (u q )) ∀ u q ∈ V Q \ { 1 0 , 1 Q } (12b) 

∑ 

u q , v l ) ∈ A Q 
Y q u v = x u v ∀ (u, v ) ∈ A (12c) 

 

q 
u v ∈ { 0 , 1 } ∀ (u q , v l ) ∈ A Q (12d) 

A complete formulation is obtained after replacing (6f) by

12) and using flow system (8) in place of (6g). As for the for-

ulation introduced in Section 3.1 based on the resource layered

raph we can reinforce the associated dual bounds by considering

he compact set of two-cycle elimination constraints (13) and / or

ayered graph cut constraints (14) . 

 

q 
u v ≤

∑ 

(i q −1 ,u q ) ∈ δ−(u q ) ,i 	 = v 
Y q −1 

iu 
∀ (u q , v l ) ∈ A R , u, v 	 = 1 (13) 

 (δ−(S)) ≥ 1 ∀ S ⊆ V Q \ { 1 0 } , ∃ u ∈ N : { u q | q ∈ { 1 , 2 , . . . , Q}} ⊆ S 

(14) 

.3. Independent resource and load layered graphs 

If the LP relaxation gaps of a layered graph formulation is small,

he additional burden of handling the associated large number of
ariables and constraints may pay off from a computational per-

pective. The use of single-commodity flow systems (or other well-

nown approaches involving a compact number of variables and

onstraints such as, e.g., Miller-Tucker-Zemlin constraints) for mod-

ling a second class of resource constraints may, however, result

n too large LP relaxation gaps. Thus, when using such an ap-

roach for problems with multiple resource constraints, one may

nd up with a huge formulation (due to one layered graph) pro-

ucing a large LP optimality gap (due to the weak model used

or the second resource). To overcome this disadvantage, we can

se both layered graph models simultaneously, i.e., replace (6f) and

6g) by (12) and (9) , respectively. The resulting formulation ensures

oth types of resource constraints implicitly and can be expected

o produce (in many cases) much tighter LP relaxation gaps than

he two previously described approaches, each employing a single

ayered graph. Two-cycle elimination constraints and layered graph

ut constraints can be considered in one or both graphs to further

trengthen the dual bounds. To further improve the LP bounds, it

ight be worth to investigate stronger (problem specific) linking

onstraints between the two sets of layered graph variables. 

.4. Three-dimensional load and resource layered graph 

This section goes one step further by considering the two

esource constraints in a single, three-dimensional layered graph

 QR = (V QR , A QR ) , see Fig. 5 . Recent works ( Gouveia et al., 2015;

017; Gouveia and Ruthmair, 2015 ) provide evidence that such

raphs lead to significantly stronger LP bounds than the op-

ions discussed above. Thereby, node u qr encodes that the load

fter visiting node u is equal to q while the total resource con-

umption from the depot up to u is equal to r . Consequently,

 QR = { 1 00 , 1 QR } ∪ { u qr | u ∈ N, q ∈ { 1 , 2 , . . . , Q} , r ∈ { 1 , 2 , . . . , R − 1 }} 
and A QR = { (u ql , v q +1 ,r ) | { u ql , v q +1 ,r } ⊆ V QR , (u, v ) ∈ A, r u v =

 − l, q ∈ { 0 , 1 , . . . , Q − 1 } , v 	 = 1 } ∪ { (u qr , 1 QR ) | (u, 1) ∈ A, r + r u 1 ≤
, q ∈ { 1 , 2 , . . . , Q} . 

Using the PQ model (15) on G QR in place of (6f) and (6g)

ields a valid formulation. Thereby, layered graph arc variables

 

qr 
a ∈ { 0 , 1 } , ∀ a = (u qr , v ls ) ∈ A QR , indicate whether arc ( u, v ) is

sed within a tour with a load of q and a total resource consump-

ion of r after visiting node u . 

 

00 
1 v = x 1 v ∀ (1 , v ) ∈ A (15a) 

(δ−(u qr )) = Z(δ+ (u qr )) ∀ u qr ∈ V QR \ { 1 00 , 1 QR } (15b) 

∑ 

u qr , v ls ) ∈ A QR 

Z qr 
u v = x u v ∀ (u, v ) ∈ A (15c) 

 

qr 
u v ∈ { 0 , 1 } ∀ (u qr , v ls ) ∈ A QR (15d) 

As in the previous subsections, two-cycle elimination con-

traints (16) and / or layered graph cut constraints (17) can be used

o strengthen the LP relaxation. 

 

qr 
u v ≤

∑ 

(i q −1 ,p ,u qr ) ∈ δ−(u qr ) ,i 	 = v 
Z q −1 ,p 

iu 
∀ (u q,r , v ls ) ∈ A QR , u, v 	 = 1 (16) 

 

qr (δ−(S) ≥ 1 ∀ S ⊆ V QR \ { 1 00 } , 
∃ u ∈ N : { u rq | r ∈ { 1 , 2 , . . . , R − 1 } , 
q ∈ { 1 , 2 , . . . , Q}} ⊆ S} (17) 

.5. Comparison of LP relaxation bounds 

Finally, we discuss and compare the LP relaxation bounds of the

ifferent modeling approaches described above based on a small
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Fig. 5. Load and resource layered graph G QR for the RCVRP instance given in Fig. 2 . The solution from Fig. 2 is indicated by bold arcs. Gray nodes are not reachable from the 

depot and arcs adjacent to them are not shown (they can be removed in preprocessing). 
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o  
example. We consider an instance of the RCVRP with 20 nodes lo-

cated randomly in a 10 0 0 × 10 0 0 grid, unit customer demands, Eu-

clidean arc costs, random arc resource values r a ∈ { 1 , . . . , 10 } , ∀ a ∈
A, and a minimal number of vehicles K = �| N| /Q� for differ-

ent vehicle capacities Q ∈ {4, 7, 10} and different resource limits

R ∈ {20, 30, 40}. The different layered graph formulations discussed

in this section are compared with respect to their LP gaps which

are defined as ( OP T − LB ) / OP T , where OPT and LB denotes the

optimal integer value and the lower bound obtained from the LP

relaxation, respectively. Base model (6) without connectivity con-

straints (6e) is part of all formulations. For the abstract parts (6f)

and (6g) modeling capacity and resource constraints, respectively,

we either use single-commodity flow (SCF) systems (7) , (8) , or

PQ systems (9) , (12) , (15) , depending on the layered graph(s) uti-
ized. Additionally, different sets of valid inequalities are added in

he variants. Detailed configurations and the resulting LP gaps are

iven in Table 1 . 

It can be clearly seen that all formulations based on layered

raphs obtain tighter LP gaps than the variant with two SCF sys-

ems, except for the case when no further valid inequalities are

dded to the PQ systems. This immediately indicates that PQ sys-

ems alone do not necessarily lead to strong formulations but as

oon as valid inequalities are added—especially in the space of the

esource-indexed variables, i.e., the two-cycle elimination (2C) and

ayered graph cut constraints (LCC)—gaps are heavily reduced in

any cases. 

When comparing variants based on single layered graphs, we

bserve that it is beneficial to use layered graphs in cases when
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Table 1 

LP gaps of different formulations for a single RCVRP instance. (SCF: single-commodity flow system, PQ: Picard-Queyranne system 

in layered graph, CC: cut constraints in graph G , 2C: two-cycle elimination constraints in layered graph, LCC: layered graph cut 

constraints). 

Model LP gaps in % for Q / R 

Capacity Resource Valid inequalities 4/20 4/30 4/40 7/20 7/30 7/40 10/20 10/30 10/40 

SCF (7) SCF (8) CC (6e) 13.3 11.8 11.4 12.0 11.1 9.9 6.7 4.6 4.5 

- 7.2 5.1 5.0 12.3 13.3 11.3 6.8 10.7 10.3 

CC (6e) 5.6 3.5 3.1 8.2 8.4 6.3 4.8 2.1 2.0 

PQ (12) SCF (8) 2C (13) 5.2 2.6 2.2 7.6 8.3 5.5 4.6 1.8 4.0 

CC (6e) + 2C (13) 5.2 2.6 2.2 7.6 7.0 5.1 4.6 1.4 1.6 

LCC (14) 5.2 2.6 2.2 7.6 6.9 5.1 4.6 1.3 1.2 

- 9.6 13.0 14.3 10.4 12.4 13.6 7.3 11.2 9.7 

CC (6e) 7.0 10.2 11.0 6.6 6.4 7.4 4.8 2.0 1.9 

SCF (7) PQ (9) 2C (10) 4.4 7.6 9.2 3.8 5.9 7.8 2.2 0.8 3.4 

CC (6e) + 2C (10) 4.4 7.0 8.9 3.8 4.8 5.9 2.2 0.6 1.4 

LCC (11) 4.3 6.9 8.9 3.8 3.6 5.9 1.6 0.4 0.9 

- 4.9 4.6 4.9 10.2 11.3 10.6 6.6 10.2 9.3 

CC (6e) 4.5 3.3 3.1 6.6 6.3 5.9 4.8 1.9 1.9 

PQ (12) PQ (9) 2C (10),(13) 3.3 2.2 2.2 3.8 5.8 5.0 2.2 0.4 3.1 

CC (6e) + 2C (10),(13) 3.3 2.2 2.2 3.8 4.5 4.3 2.2 0.4 1.2 

LCC (11),(14) 3.2 2.2 2.2 3.8 3.5 4.0 1.6 0.0 0.6 

- 3.5 4.1 4.5 8.1 9.7 9.3 5.2 6.8 7.4 

CC (6e) 3.4 2.7 3.0 6.0 6.0 5.3 3.2 0.9 1.7 

PQ (15) 2C (16) 2.5 2.1 2.2 3.7 4.3 4.5 1.9 0.3 2.8 

CC (6e) + 2C (16) 2.5 2.1 2.2 3.7 3.2 3.9 1.9 0.0 0.9 

LCC (17) 2.5 1.8 1.9 3.0 2.1 3.4 0.7 0.0 0.0 
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c  
he corresponding capacity or resource constraint is very tight.

hen, the size of the corresponding formulations is moderate, the

btained LP gaps are tight, and there is not too much overhead re-

ated to handling the corresponding layered graphs. On the other

and, when capacity or resource bounds are loose, the overhead

ue to the large layered graphs might be too large to compen-

ate the comparably small (in some cases negligible) gain in the

alue of the bounds when compared to the alternative model-

ng approaches. Examples for this observation can be seen when

omparing the gaps for the extreme cases of Q = 4 , R = 40 and

 = 10 , R = 20 . The results also indicate that using both layered

raphs simultaneously can in most cases further reduce the gaps

ut usually only by a slight amount. The reason for this might be

hat the constraints linking the variables of each PQ system with

he original arc variables are, usually, not too strong. As noted be-

ore, such a model might benefit from additional constraints di-

ectly linking the two sets of layered graph variables. This weak-

ess is also avoided in the three-dimensional layered graphs which

ead to the smallest gaps (indicated in Table 1 by bold values). 

. Modeling with layered graphs 

The case study in the previous section detailed how to use sin-

le, multiple, and multi-dimensional layered graphs in the pres-

nce of two knapsack-type resource constraints for each “topolog-

cal unit” which in the RCVRP is a route starting and ending at

he depot. In this section, we review these three main modeling

oncepts from a general perspective, thereby, using an abstract op-

imization problem as a guideline. The discussion will also allow

s to discuss more general resource constraints in addition to the

napsack-type constraints mentioned above. Furthermore, we will

lso point out further important modeling aspects potentially aris-

ng in problems extending (or being different from) the one used

hroughout this section. 

Consider a generic combinatorial optimization problem defined

n a directed graph G = (V, A ) with a dedicated depot (or root)

ode 1 and K resource values r k a > 0 , k = 1 , 2 , . . . , K, associated

ith each arc a ∈ A . Further assume that each feasible solution is

he union of a set of at most L (not necessarily disjoint) building

locks C ⊂ A, l ∈ { 1 , 2 , . . . , L } , each containing the special node
l 
, that need to respect certain topological constraints, e.g., form

outes or paths. For simplicity, we assume throughout this sec-

ion that each feasible solution connects node 1 with all nodes and

ontains precisely one path P u ⊆
⋃ L 

l=1 C l that connects the depot

 with node u ∈ V , i.e., a unique total resource consumption from

 to any other node can be computed. We also assume that for

ach resource k ∈ { 1 , 2 , . . . , K} and node u ∈ V , set R 

k 
u specifies the

easible values for the total resource usage 
∑ 

a ∈ P u r 
k 
a on the path

rom 1 to node u . Concerning the latter set, observe that the dis-

rete nature of the underlying optimization problem ensures that

he number of achievable resource values (and hence a resulting

ayered graph in case it is not constructed by simply replicating

odes for all possible resource values but using the more clever

ethod described in Section 6.1 ) is finite even in cases where R 

k 
u ,

k ∈ { 1 , 2 , . . . , K} , is a continuous set, e.g., an interval in the con-

ext of time windows for vehicle routing problems. Knapsack-type

esource constraints (as discussed in the previous section) are ob-

ained as a special case of an interval when all lower bounds are

qual to zero and when the upper bounds of all nodes coincide. 

Assuming that the topological constraints are already enforced,

he following three main patterns for using layered graphs to (im-

licitly) ensure (some of) the resource constraints can be seen as

 unifying framework for most existing layered graph models from

he literature. 

.1. Single (2-dimensional) layered graph with extra resource 

onstraints 

In this case, the main idea is to pick one resource, say l ,

nd implicitly ensure the associated resource constraints in a lay-

red graph G 

l = (V l , A 

l ) while the constraints for resources k =
 , 2 , . . . K, k 	 = l , are enforced through explicit (sets of) constraints

nd possibly via the inclusion of additional variables. The node set

 

l typically consists of a root node 1 0 and set { u r | u ∈ V \ { 1 } , r ∈
 

l 
u } containing copies of all other nodes at feasible layers. In case

ach building block needs to end at a particular node (e.g., the de-

ot 1) an additional copy (e.g., 1 R ) of the latter node is typically in-

luded at the highest feasible resource value R = max R 

l 
1 

. The arc

et A 

l contains arcs { (u p , v q ) | { u p , v q } ⊆ V l , (u, v ) ∈ A, q = p + r l u v } 
onnecting any two node copies u p and v q whose associated origi-
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nal nodes u and v are connected and when the resource usage r l u v 
along arc ( u, v ) satisfies r l u v = q − p . In case the above mentioned

“target node” (say 1 R ) is included, the arc set A 

l typically also

includes arcs { (v q , 1 R ) | v q ∈ V l , (v , 1) ∈ A, R ≥ q + r l v 1 } . Assuming

that the basic model ensuring the topological constraints includes

arc design variables x uv ∈ {0, 1}, ∀ ( u, v ) ∈ A , a complete model is

typically obtained through adding the following components: 

(i) Layered graph arc variables X 
p 
u v ∈ { 0 , 1 } for each ( u p , v q ) ∈ A 

l . In

many situations, these variables can be replaced by their con-

tinuous relaxation since they become binary automatically due

to the other constraints. 

ii) Linking constraints between layered and original graph arc vari-

ables. Under the assumptions made at the beginning of this

section, these constraints can have the form 

∑ 

(u p , v q ) ∈ A l 
X 

p 
u v = x a , ∀ a = (u, v ) ∈ A. (18)

Note that there exist particular problems (see, e.g., Leitner et al.,

2018c ) where not all arcs of a solution must be used in each

layered graph in which case above equations are replaced by

less than or equal to constraints. If a problem allows for using

an arc multiple times (at different resource values), the linking

constraints typically need to be replaced by their weaker form

X 

p 
u v ≤ x a , ∀ (u p , v q ) ∈ A 

l , a = (u, v ) ∈ A (19)

or by 

∑ 

(u p , v q ) ∈ A l 
X 

p 
u v ≤ M · x a , ∀ a = (u, v ) ∈ A 

l (20)

in case an upper bound M on the number of traversals of arc a

is known. 

ii) Necessary or strengthening constraints ensuring connectivity

and / or the required topological structure on layered graph

G 

l . If G 

l is acyclic (as for the considered problem since all re-

source values are assumed to be strictly greater than zero), con-

straints 

X 

p 
u v ≤ X (δ−(u p )) , ∀ (u p , v q ) ∈ A 

l , u 	 = 1 

can be used to ensure connectivity on G 

l , i.e., to ensure that

there exists a path from 1 0 to (the source of) each selected

arc. For (routing) problems in which the in- and out-degree

of each node must be equal to one, we can replace the lat-

ter constraints by constraints similar to the ones proposed by

Picard and Queyranne (1978) , see, e.g., (9b). Note that two-

cycle elimination constraints and layered graph connectivity

constraints also fall into this class of constraints. Finally, we

note that in contrast to all previous examples there exist cases

in which layered graph cut constraints need to be included

(even if original graph cuts and above compact connectivity

constraints are considered). Situations like this arise, e.g., when

a layered graph contains cycles and nodes may be visited more

than once in solutions to the considered problem. 

v) Additional variables and / or constraints (defined on the orig-

inal graph or on layered graph G 

l ) ensuring all constraints re-

lated to resources different from l . 

Observe, that K different options (one for each resource) for

such formulations exist and it may not be obvious which of them

is preferable both in theory and practice. Besides the theoretical

strength of a resulting formulation, main factors influencing the

choice are the size of G 

l and options to model the constraints as-

sociated with resources different from l . 
.2. Multiple (independent, 2-dimensional) layered graphs 

In contrast to the pattern discussed above, we can consider a

et of K layered graphs where for each index k , k = 1 , 2 , . . . , K, the

ayered graph G 

k = (V k , A 

k ) implicitly ensures the resource con-

traints with index k , see, e.g., Gouveia et al. (2017) . Each such

raph is defined analogously to graph G 

l for resource l introduced

n the previous subsection. Hence, there is no need to include fur-

her explicit resource constraints, but instead one needs to ensure

he existence of a solution (on the original graph) that can be em-

edded in a feasible way into each of these layered graphs. In

hat respect, a comparably simple (but nevertheless frequent) case

rises whenever the strong linking constraints (18) are valid (for

ach resource) in which case they allow to directly link all layered

raph variables to the original space variables. As opposed to that,

eplacing the latter constraints by inequalities or even considering

nly weak linking constraints (19) might lead to situations where

he solutions on different layered graphs may differ. Thus, in such

ases one may need to include further, problem specific constraints

o ensure that all layered graph solutions map to a single, feasible

olution in the original space (see, e.g., Gouveia et al. (2014) for

 similar situation). Necessary or strengthening constraints related

o connectivity and / or the required topological structure (i.e., type

iii) from the list above) can be included for all or just a subset of

ll considered layered graphs. In addition, the explicit information

bout the resource usage on nodes or arcs for every resource may

llow the removal of options in preprocessing or the inclusion of

urther, strengthening inequalities that improve the LP relaxation

hen compared to simply linking each set of layered graph vari-

bles to those defined in the original space. We conclude this pat-

ern by pointing out that there exist several modeling approaches

hat may be considered in between the one discussed in this sec-

ion and the previous one. These alternatives (for which we will

kip a formal description) stem from cases where layered graphs

re considered for a subset (of cardinality greater than one) of

he resources and the remaining resources are modeled with ex-

ra constraints. 

.3. Multi-dimensional layered graphs 

If K ≥ 2, we can also employ a single, (K + 1) -dimensional lay-

red graph G L = (V L , A L ) in which each node u r ∈ V L , u ∈ V , r =
(r 1 , r 2 , . . . , r K ) ∈ Q 

K , r k ∈ R 

k 
u , k = 1 , 2 , . . . , K, encodes the re-

ource state vector of all K resources when visiting it. Arcs ( u r ,

 s ) ∈ A L exist if s = r + r u v , whereby r u v = (r 1 u v , r 
2 
u v , . . . , r 

K 
u v ) is the

esource vector associated with arc ( u, v ). Depending on the con-

idered problem (see, Section 4.1 ) a copy of a target node, say 1 R ,

 = ( max R 

1 
1 
, max R 

2 
1 
, . . . , max R 

K 
1 
) , may also be included together

ith arc set { (u r , 1 R ) | (u, 1) ∈ A, r + r u 1 ≤ R } . While the size of

uch a graph can be enormous (even for K = 2 ), it has the benefit

hat each node (and hence every route or path in the graph) in-

rinsically satisfies all resource constraints. The application of tech-

iques that aim to reduce its size (see Section 6 for a detailed

verview on existing work in that domain) is, in this case, even

ore essential than for the modeling paradigms of the two previ-

us subsections. Besides the fact that there is no need to explic-

tly ensure resource constraints, the modeling aspects and obser-

ations provided in Section 4.1 directly generalize to this multi-

imensional case (partly with slightly more complicated notation

ue to the vector-valued indices) and we therefore refrain from

heir repetition. Further details can also be found in Gouveia and

uthmair (2015) and Gouveia et al. (2015, 2017) that apply the

oncept of three-dimensional graphs in the context of routing and

etwork design problems. Finally, note that many intermediate op-

ions exist that slightly differ from this concept or even com-

ine the paradigms discussed in this and the latter two subsec-
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ions. These options (which to the best of our knowledge have not

een considered in the literature) include, e.g., considering one K 

′ -
imensional layered graph, 3 ≤ K 

′ < K + 1 , together with explicit

urther constraints and / or one or more further layered graphs

which again might by multi-dimensional). 

. Further classifications of layered graph models 

The previous two sections have detailed three main modeling

oncepts that can be used to classify most layered graph formu-

ations. In this section, we augment this classification by pointing

ut additional, important aspects (together with implications con-

erning formulations and solution methods). Most of them can oc-

ur in any of the previously described three modeling concepts.

long the description of these aspects, we also provide pointers

o corresponding articles (a more detailed overview is given in

able 2 ). Before introducing the additional aspects, we note that

he formulations proposed in several articles, see, e.g., Gouveia

t al. (20 06, 20 08b, 2011a, 2016a) , can be interpreted as introduc-

ng one layered graph per commodity (though they do not explic-

tly make use of layered graphs). Thus, in some sense they could

e classified as introducing multiple, independent layered graphs.

s the structure of the layered graph is not explicitly used or ex-

loited and the different graphs are related to the same resource,

e do, however, refrain from including such approaches in our

lassification. 

.1. Acyclic and general layered graphs 

Until now, this article has focused on cases in which each con-

idered resource may only increase or decrease, such as, e.g., time

assed since a tour has been started, position in a solution relative

o some source node, or load of a vehicle in vehicle routing prob-

ems. It is immediate that layered graphs considered in such situ-

tions are acyclic. Significant advantages obtained from exploiting

he latter fact in modeling and the design of solution algorithms

re one reason why a large part of the literature related to lay-

red graphs focuses on these cases. As described in Section 4 , the

se of such acyclic layered graphs allows to ensure connectivity

y a set of constraints whose size is polynomial with respect to

he size of the layered graph (typically one constraint per node or

rc is required). Hence, one usually obtains a formulation that is

olynomial or pseudo-polynomial in the number of variables and

onstraints that usually can be strengthened by adding aforemen-

ioned cut constraints on the original and layered graph. 

Several formulations and approaches for applications in logistics

ptimization that are based on acyclic layered graphs have been

roposed, see, e.g., Abeledo et al. (2013) ; Brandstätter et al. (2016) ;

odinho et al. (2014) ; Gonçalves de Deus (2018) ;

ansknecht et al. (2018) . Further important examples that are

ypically motivated from (telecommunication) network design

nclude limiting the transmission delay from one or more central

ources (e.g., central servers) via hop-constraints ( Botton et al.,

015; 2013; De Boeck and Fortz, 2018; Diarrassouba et al., 2016;

ouveia et al., 2014; 2011b; Leitner, 2016; Ljubi ́c and Gollowitzer,

013; Pereira and Salles da Cunha, 2018; Sinnl and Ljubi ́c, 2016 ),

r between all relevant nodes via diameter constraints ( Gouveia

t al., 2015; 2011b ), as well as more general delay or distance

onstraints from one or multiple central nodes ( Ruthmair and

aidl, 2011; 2012 )). 

However, recent examples have described layered graph ap-

roaches where the underlying graph is not acyclic. The reason

s that resource usage may both increase and decrease at nodes

r along arcs in these problems, see, e.g., Gouveia and Ruth-

air (2015) for such an approach on pickup and delivery prob-

ems. Another example that fits into this category can be found
n the context of electric vehicle routing problems where arc re-

ource values correspond to energy consumption which might be

egative due to battery recuperation, see Gouveia et al. (2016b) .

ouveia et al. (2017) study the black-and-white TSP where dis-

ance and hop-constraints are imposed between consecutive pairs

f black nodes in a TSP tour. The last requirement can be mod-

led as resetting the traveled distance and traversed hops to zero

henever a black node is visited. For this reason, some of the ap-

roaches proposed in Gouveia et al. (2017) include layered graphs

hat contain cycles. Somewhat similar layered graph approaches

re studied in Leitner et al. (2018c) for a network design problem

ith upper bounds on the distance a signal may travel. Expensive

ignal-recovering equipment (i.e., relays) can, however, be placed

t nodes in which case the travel distance associated with a signal

s reset to zero. Leitner et al. (2018c) model the installation of such

 device at node u with layered graphs including arcs from u l to

 0 where l is the total distance of the signal from its source or the

ast relay node, respectively. Observe that the existence of the lat-

er arcs will typically introduce cycles. Mahjoub et al. (2017) con-

ider layered graphs for a rather general class of network design

roblems where cycles arise from the fact that edges between two

odes at the same layer may exist. It is easy to observe that pre-

iously mentioned (pseudo-) polynomial constraint sets are typ-

cally not sufficient for ensuring connectivity if a graph is not

cyclic ( Gouveia and Ruthmair, 2015 ). Thus, other sets of connec-

ivity constraints on the original graph (or other formulations that

nclude connectivity constraints such as, e.g., flow systems) need

o be added to the model. To make matters worse, observe that

nsuring connectivity in the original graph may not be sufficient

n case nodes (different from the source of a commodity) may be

isited multiple times. The reason is that connectivity on the orig-

nal graph does not prevent the existence of disconnected cycles in

he layered graph in this case. Hence, the connectivity requirement

eeds to be ensured in the layered graph as well. 

General layered graphs may also arise in approaches that con-

ider approximations (together with possible refinements later on)

f the set of achievable resource states, see, e.g., Dash et al. (2010) ;

uthmair (2012) ; Ruthmair and Raidl (2011) ; Wang and Regan

20 02, 20 09) and Section 6.2 for a detailed overview on such

ethods. 

.2. Explicit and implicit resource constraints 

As detailed above, layered graph formulations have been

ainly considered when the definition of an optimization prob-

em contains one or multiple resources for which certain bounds

eed to be ensured per building block of a solution, see, e.g.,

ouveia et al. (2011b) ; Ljubi ́c and Gollowitzer (2013) . In contrast

o these explicit resource constraints, a few papers suggested to

se layered graphs for modeling implicit resource constraints. The

atter includes cases that do not (further) limit the use of some

esource but in which the underlying layered graph is solely used

or modeling reasons. One notable example is the aforementioned

ork ( Godinho et al., 2014 ) for the ATSP in which a graph with | V |

ayers is used to eliminate subtours via theoretically strong models.

 second class of layered graph approaches making use of implicit

esource constraints can be derived from the three-dimensional

ayered graph model proposed in Gouveia et al. (2015) . In the lat-

er work, the authors study a network design problem that aims

o identify a minimum cost diameter-constrained spanning tree

hat contains a diameter-constrained Steiner tree defined on a sub-

et of required nodes and subject to a different (smaller) diame-

er limit. In addition to the two explicit resource constraints, an

mplicit upper bound on the distance between the two tree cen-

ers is established and used to derive a non-straightforward lay-

red graph formulation. Besides strong linear programming bounds
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Table 2 

Overview on articles considering layered graph (LG) formulations and solution methods according to the criteria described in Sections 4 and 5 . 

Paper problem resource number of sources fixed source single LG (2-dimensional) multiple LG (2-dimensional) multi- dimensional LG acyclic LG implicit resource LG general demand LG natural space LG 

Abeledo et al. (2013) position 1 
√ √ √ √ 

Bendali et al. (2010) position 1 
√ √ √ 

Boland et al. (2017) time 1 
√ √ √ √ 

Botton et al. (2013) position 1 
√ √ √ 

Botton et al. (2015) position 1 
√ √ √ 

Brandstätter et al. (2016) time 1 
√ √ √ √ √ 

Dash et al. (2010) time 1 
√ √ √ 

De Boeck and Fortz (2018) position 1 
√ √ √ 

Diarrassouba et al. (2016) position ≥ 1 
√ √ √ √ 

Fischer and Helmberg (2014) time 1 
√ √ √ √ 

Fleischer and Skutella (2007) time 1 
√ √ √ √ 

Godinho et al. (2014) position 1 
√ √ √ √ √ 

Gonçalves de Deus (2018) time ≥ 1 
√ √ √ √ 

Gouveia and Ruthmair (2015) load 1 
√ √ √ √ 

/ ✗ 
√ √ 

/ ✗ 

Gouveia et al. (2011b) position 1 
√ √ 

Gouveia et al. (2014) position ≥ 1 
√ √ √ 

Gouveia et al. (2015) position 2 
√ √ √ √ 

Gouveia et al. (2017) position/distance 1 
√ √ √ √ 

✗ / 
√ 

Hansknecht et al. (2018) time 1 
√ √ √ √ √ 

Leitner (2016) position 1 
√ √ 

Leitner et al. (2018c) distance ≥ 1 
√ √ √ 

Ljubi ́c and Gollowitzer (2013) position 1 
√ √ √ 

Mahjoub et al. (2013) position ≥ 1 
√ √ √ 

Mahjoub et al. (2017) position ≥ 1 
√ √ 

Pereira and Salles da Cunha (2018) position 1 
√ √ √ 

Ruthmair and Raidl (2011) delay (time) 1 
√ √ √ 

Ruthmair and Raidl (2012) delay (time) 1 
√ √ √ √ 

Sinnl and Ljubi ́c (2016) position 1 
√ √ √ 

Wang and Regan (2002) time 1 
√ √ √ 

Wang and Regan (2009) time 1 
√ √ √ 
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ssociated with the latter formulation, the reported results also

how that a branch-and-cut algorithm based on this formulation

ignificantly outperforms alternative methods. Somehow similar,

ouveia and Ruthmair (2015) propose a three-dimensional layered

raph formulation for a pickup-and-delivery problem with one ex-

licit (load) and one implicit (position) dimension. 

From a more general perspective, we observe that the resource

ounds of explicit resources typically do not increase (significantly)

hen the instance size increases since the latter should not in-

uence the maximally allowed resource usage per solution com-

onent. In contrast, bounds for implicit resource constraints typ-

cally depend on the input size, e.g., the maximal position of an

lement within a solution depends on the total number of nodes.

ssuming a maximally allowed resource value of R this indicates

hat each additional node will typically induce at most R additional

ode copies on a layered graph in case of explicit resources but

p to R + | V | additional node copies when modeling implicit re-

ources (in case its upper limit increases by one unit when one

ode is added). These considerations seem particularly important

hen considering problems with multiple (implicit or explicit) re-

ource constraints in which a decision whether a layered graph or

ther constraint sets should be used to ensure the bounds of each

esource can be made separately for each resource. 

.3. Unit and general demands 

From a pure modeling perspective, it does not make a differ-

nce whether layered graph formulations are considered for re-

ources with unit (see, e.g., Abeledo et al., 2013; Gouveia et al.,

011b; Ljubi ́c and Gollowitzer, 2013 ) or general values (see, e.g.,

ash et al., 2010; Fleischer and Skutella, 2007; Wang and Regan,

002 ). This is not true, however, with respect to solution methods.

o see this, observe that general resource values often allow for

 much larger number of achievable resource values and conse-

uently lead to much larger resource-indexed graphs. This, in turn

as implications concerning the performance of algorithms operat-

ng on them. Further note that the impact of layered graph prepro-

essing and approximation techniques may be significantly higher

n the case of general demands. 

.4. Fixed and selected roots/depots 

As indicated in Table 2 , most relevant articles consider cases

here layered graphs are used to bound resource usage from a

xed, predefined root (e.g., a depot in logistics or routing appli-

ations or a central server in telecommunication network design).

otable exceptions from this class include works on diameter con-

trained spanning trees ( Gouveia et al., 2015; 2011b ) where the

entral elements (i.e., nodes or edges) need to be selected and the

aximum diameter is subsequently ensured by limiting the dis-

ance from them. Layered graph formulations and branch-and-cut

lgorithms for the generalized hop-constrained minimum spanning

ree problem are studied in Leitner (2016) . In this problem variant,

ne out of a fixed set of candidate root nodes (those that are con-

ained in a predefined root cluster) needs to be chosen. As in the

iameter case, this selection is modeled via an artificial root node

hat is connected to all these nodes together with a constraint en-

uring that the out-degree of this artificial root node is equal to

ne. 

.5. Single and multiple roots 

We can also classify layered graph formulations based on the

xistence of a single or multiple roots. The vast majority of arti-

les (cf. Table 2 ) focuses on the former case which is easier to
andle and similar to our case study given in Section 3 . There-

ore, the following discussion will focus on the cases of multiple

oots or central nodes which require some additional modeling

onsiderations. Considering applications in telecommunication net- 

ork design, Diarrassouba et al. (2016) ; Gouveia et al. (2014) and

eitner et al. (2018c) create one layered graph (one set of explicit

ariables) for each root of a fixed set of source nodes each of

hich is associated with hop constraints to a given set of other

odes. While these subgraphs are unrelated with each other in

eitner et al. (2018c) , further strengthening constraints relating

he solutions on the different layered graphs are considered in

ouveia et al. (2014) where the union of these partial solutions

ust form a tree. Mahjoub et al. (2017) propose a distance trans-

ormation where a flow formulation in a single (undirected) lay-

red graph is used to ensure connectivity between the sources

nd targets of several commodities. More complex hop-constraints

re, however, modeled using one layered graph per commodity,

f. Diarrassouba et al. (2016) . One of the models in ( Gouveia et al.,

015 ) extends the approach of selecting a single central node by

ouveia et al. (2011b) to the case of two nested trees by consider-

ng two separate layered graphs together with strong linking con-

traints between the associated variables. Multiple root nodes also

rise in maritime logistics ( Gonçalves de Deus, 2018 ) where differ-

nt vehicles may start their service from different locations. 

.6. Extended and natural space layered graphs 

Layered graph formulations are typically proposed as extended

ormulations with the aim to derive theoretically stronger models

r to allow an easier modeling of certain relations. Extending an

nderlying problem by including resource-dependent costs would,

owever, make such a layered graph formulation a natural vari-

ble space formulation. The fact that an existing model only needs

daptations concerning the cost associated with the layered graph

rcs also highlights one advantage of such approaches, i.e., their

nherent flexibility. To the best of our knowledge, despite being

ather appealing such natural space layered graph approaches have

eceived little attention so far. The few studies in that direction in-

lude the work by Abeledo et al. (2013) on the time-dependent

SP where costs depend on the position of an arc in the tour. Sim-

larly, Godinho et al. (2014) consider the special case of the cu-

ulative TSP, where an arc ( u, v ) at position p has costs (| V | −
p + 1) c u v . Among other models, Brandstätter et al. (2016) pro-

ose a layered graph for modeling the battery state of electric ve-

icles over a planning horizon, i.e., the graph has nodes b t that

ndicate a battery state equal to b at time t . While simpler (and

ore effective) modeling techniques exist (and are considered in

randstätter et al., 2016 ) in case linear charging functions are as-

umed, such an approach can be used easily for the consideration

f more general, non-linear charging functions. 

. Solving layered graph formulations 

In cases involving large sets of achievable resource values, the

ize of the layered graphs and thus the size of the corresponding

ormulations might get huge, especially for multi-dimensional lay-

red graphs ( Gouveia et al., 2015; 2017; Gouveia and Ruthmair,

015; Ruthmair and Raidl, 2011 ), see Section 4.3 . Even though

he LP bound of such formulations is usually quite tight and thus

ight lead to smaller branch-and-bound trees when compared

ith methods based on alternative (natural) formulations, solving

he LP relaxation can take a substantial amount of time. In this

ection we discuss issues related to the solution of layered graph

ormulations from a computational point of view, especially how to

eal with the size of large layered graphs and associated resource-

ndexed formulations. 
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Fig. 6. Resource-indexed layered graph for the RCVRP instance given in Fig. 2 . 
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6.1. Preprocessing 

Typically, resource-indexed formulations are directly built from

a given problem instance, cf., the time-indexed formulations for

scheduling problems ( Van den Akker et al., 20 0 0 ). More precisely,

variables are created for each node and arc in the original graph

and for each resource value within a given resource interval (based

on a given granularity). However, many of these variables might

not correspond to a resource state that is achievable in a feasible

solution. Transforming the original graph to a layered graph before

building the formulation helps in many cases to avoid the creation

of variables corresponding to infeasible resource states. Depend-

ing on the problem being considered, nodes and arcs in the lay-

ered graph can be removed, e.g., based on the following observa-

tions which are applicable to many routing, network design, and

scheduling problems: (i) Nodes without incoming arcs cannot be

reached from some start node and can thus be removed together

with all outgoing arcs. (ii) Nodes without outgoing arcs cannot be

used to reach an end node and can thus be removed together with

all incoming arcs. (iii) In case some node u can only be visited once

and some node v l has only one incoming arc ( u k , v l ), then arc ( v l ,

u m 

) can be removed (if it exists) since using it would result in a cy-

cle of length two (similar for a single outgoing arc). Depending on

the type of layered graph being used, several preprocessing rounds

can be necessary to eliminate all the situations mentioned above.

See Fig. 6 for a comparison of a layered graph for the RCVRP before

and after preprocessing. 

For some instances it might even be hard to generate the ini-

tial, not preprocessed, layered graph by simple replication of nodes

and arcs because of too high time and memory consumption. In-

stead, we suggest the following graph generation directly leading

to a layered graph in which each node has at least one incoming

arc (except for the start nodes), see Fig. 3 . Beginning from each
tart node, for each outgoing arc in the original graph we create

 corresponding arc copy in the layered graph together with the

arget node on the appropriate layer (if it does not exist yet). We

epeat this process iteratively for each newly created node copy. 

In some cases it might even be possible to detect infeasibility

f an instance only based on the associated layered graph, e.g., if

after preprocessing) no copy of some original graph node which

eeds to be visited can be reached. 

Besides eliminating graph components which cannot be in a

easible solution, one could also try to determine nodes and arcs

hich cannot be in an optimal solution. Such reductions often rely

n problem-specific properties or on reduced cost fixing. For the

atter case the dual ascent heuristic by Wong (1984) has been

uccessfully applied in a layered graph approach for hop- and

iameter-constrained tree problems in Gouveia et al. (2011b) to

uickly obtain tight dual bounds. In this paper, the key idea is

o model a hop-constrained tree problem as Steiner tree prob-

em in a layered graph.Then, any method known to solve the

teiner tree problem can be applied, e.g., the dual ascent algo-

ithm in Wong (1984) approximating the LP relaxation bound of

he well-known cut formulation. In addition, a promising set of

ayered graph cuts for initializing the subsequent branch-and-cut

lgorithm can be generated by this dual heuristic. Together with

euristic primal bounds it is possible to further eliminate arcs in

he layered graph based on their reduced costs in case the resid-

al optimality gap is small. Though Gouveia et al. (2011b) do not

tudy the influence of these components on the overall approach,

he excellent performance (compared to layered graph approaches

or related problems) strongly suggests its enormous importance.

his assumption is also supported by several recent articles, see,

.g., Fischetti et al. (2017) ; Leitner et al. (2018a, 2018b, 2017) , that

how the tremendous influence when using dual ascent as an ini-
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ialization or standalone method for solving related problems but

hich do not consider layered graph formulations. 

.2. Approximations 

A more radical way to reduce the size of a layered graph

s to remove non-redundant parts which might be relevant to

btain an optimal solution. Such reductions lead to smaller

ormulations but also to approximations of the original prob-

em. Several such works fitting this approach can be found in

he area of scheduling problems modeled by well-known time-

ndexed formulations, see, e.g., Baptiste and Sadykov (2009) ;

igras et al. (2008) ; Boland et al. (2016) ; Riedler et al. (2017) . Fur-

her articles mainly focus on dealing efficiently with time-related

onstraints in the areas of vehicle routing and network design, see,

.g., Boland et al. (2017) ; Clautiaux et al. (2017) ; Dash et al. (2010) ;

leischer and Skutella (2007) ; Macedo et al. (2011) ; Wang and Re-

an (20 02, 20 09) . Clearly, these ideas are not limited to the time

imension but may also be applicable to other resources. Most

f the approaches are based on coarser discretization of the con-

idered resources. Viewed as a layered graph, these ideas corre-

pond to using only a subset of its nodes, redirecting the layered

raph arcs if necessary and thus changing their associated resource

alue, see, e.g., Boland et al. (2017) ; Ruthmair (2012) ; Ruthmair and

aidl (2011) . 

Depending on how the formulation is adapted to the coarser

iscretization level, i.e., how the original node’s and arc’s resource

alues are modified, the solution space can be extended or re-

tricted. In the first case we obtain a relaxation and thus dual

ounds ( Bigras et al., 2008; Boland et al., 2017; Clautiaux et al.,

017; Dash et al., 2010; Macedo et al., 2011; Riedler et al., 2017;

uthmair, 2012; Ruthmair and Raidl, 2011; Wang and Regan, 2002 )

hile in the latter case we obtain heuristic solutions and thus pri-

al bounds ( Fleischer and Skutella, 2007 ). Both cases can also be

ombined within a solution framework to close the gap from both

irections ( Clautiaux et al., 2017; Ruthmair, 2012; Ruthmair and

aidl, 2011; Wang and Regan, 2002 ). 

The level of discretization can be fixed a priori which gives a

ingle approximate formulation ( Baptiste and Sadykov, 2009; Bi-

ras et al., 2008; Boland et al., 2016; Fleischer and Skutella, 2007 )

r dynamically refined in an iterative approach leading to a series

f (monotonically improving) approximations. In the latter case the

terative refinement is accomplished either by globally increasing

he level of discretization in a regular way ( Clautiaux et al., 2017 ),

r by exploiting the LP or IP solution of the approximate formula-

ion ( Boland et al., 2017; Clautiaux et al., 2017; Dash et al., 2010;

acedo et al., 2011; Riedler et al., 2017; Ruthmair, 2012; Ruth-

air and Raidl, 2011; Wang and Regan, 2002 ). Refinement algo-

ithms are in general finite and end in worst case with the orig-

nal resource-indexed formulation. In most cases optimality can

e shown much earlier, e.g., if the solution to a relaxation is fea-

ible for the original problem. However, due to convergence is-

ues it might also make sense to stop the refinement prema-

urely which needs further ingredients to obtain an exact ap-

roach for the original problem. If the approximate formulation

s a relaxation we need to extend the model to ensure feasibility,

.g., by dynamically adding inequalities to cut off infeasible solu-

ions ( Dash et al., 2010; Ruthmair, 2012 ), by linking the resource-

ndexed variables to the variables of an alternative, usually smaller

ut also weaker, formulation for the original problem ( Baptiste

nd Sadykov, 2009; Boland et al., 2016 ), or by applying specialized

ranching rules ( Bigras et al., 2008 ). 

Finally, note that for resource states which are allowed to both

ncrease and decrease, e.g., the vehicle load in pickup and deliv-

ry problems, it is not obvious how to apply the methods in this

ection to obtain feasible bounds for the original problem. 
.3. Cutting planes 

Due to the typically large size of layered graph formulations

t might make sense to not include all constraints a priori in the

odel but add them dynamically in a cutting plane fashion, which

s mandatory for but not limited to exponentially-sized sets of con-

traints, e.g., layered graph cut constraints (11) . Especially the latter

nes and other valid inequalities in the extended discretized vari-

ble space are known to typically lead to strong LP bounds, see,

.g., Gouveia et al. (2017) ; Gouveia and Ruthmair (2015) ; Pessoa

t al. (2009, 2010) ; Ruthmair and Raidl (2011) ; Uchoa (2011) ;

choa et al. (2008, 2012) . There are, however, some issues which

eed to be considered when using such large sets of layered graph

nequalities: 

i) Solving the separation problem on a large layered graph can be

time consuming. 

ii) The cut convergence can be slow, i.e., one may need too many

cutting plane iterations which, in turn, add a lot of inequali-

ties and many of them may be violated by a small amount only

(tailing off). 

ii) The large number of (possibly quite dense) inequalities can

make the (re)solution of the LP relaxation difficult and time

consuming. 

Several ways can be found in the literature to deal with these

roblems. Large sets of inequalities on a layered graph might in-

lude some subsets which are easier and faster to separate and

ave a sparser structure. Trying to find violated inequalities of such

ubsets first before considering the more general sets might signif-

cantly reduce separation times, improve cut convergence, and lead

o faster LP resolution. For example, when considering the layered

raph connectivity cuts (11) , one might start by separating the sub-

et of connectivity cuts (6e) in the original graph, and then the

ubset of two-cycle inequalities (10) in the layered graph ( Gouveia

t al., 2017; Gouveia and Ruthmair, 2015; Leitner et al., 2018c ).

t can also be beneficial to include a small subset of inequalities

 priori in the model, e.g., by first running a dual ascent algo-

ithm to (heuristically) solve the LP relaxation and which also gives

 promising initial set of layered graph connectivity cuts similar

o (11) for hop-constrained tree problems ( Gouveia et al., 2011b ). 

To avoid a too long tailing off phase, several proposed al-

orithms consider “early branching”, i.e., to go to the branch-

ng phase even though there might still be violated inequalities.

topping criteria for the cutting plane phase can, e.g., be (i) to

dd only inequalities which are violated by a minimal amount,

ee, e.g., Gouveia et al. (2017) ; Gouveia and Ruthmair (2015) ;

eitner et al. (2018c) , and / or (ii) too low LP bound improvements

n the last iterations, see, e.g., Gouveia et al. (2017) ; Gouveia and

uthmair (2015) . 

.4. Decomposition approaches 

The authors in Abeledo et al. (2013) ; Pessoa et al. (2009,

010) ; Uchoa (2011) ; Uchoa et al. (2008) ; Van den Akker

t al. (20 0 0) have chosen a different way to avoid large model

izes when considering resource-indexed formulations. Instead of

irectly using the set of resource-indexed variables, by applying

antzig–Wolfe reformulation they introduce an alternative, even

arger set of variables which represent sets of resource-indexed

ariables that are added dynamically by column generation. These

ew variables might correspond to entire (not necessarily feasi-

le) routes in routing problems ( Abeledo et al., 2013; Pessoa et al.,

009 ), to subtrees in spanning tree problems ( Uchoa et al., 2008 ),

nd to schedules in machine scheduling problems ( Pessoa et al.,

010; Van den Akker et al., 20 0 0 ), respectively. Each resource-

ndexed variable can be expressed by the sum of all of these new



36 L. Gouveia et al. / Computers and Operations Research 102 (2019) 22–38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(  

 

(i  

 

 

 

 

(i  

 

 

 

 

 

 

 

 

l  

l  

t

 

 

 

 

 

 

 

(  

 

(i  

 

 

 

 

(i  

 

 

 

 

t  

s  

s  

t

 

 

 

 

 

(  

 

 

 

 

 

 

 

 

 

 

variables which correspond to structures involving this particular

resource state. Based on this equivalence, the authors are able to

strengthen their formulations by using inequalities in the extended

resource-indexed variable space. Since the new variables do not

arise in the dynamically added valid inequalities, the structure and

complexity of the pricing problem does not change (which is a

highly beneficial property for branch-price-and-cut approaches). 

In case a problem is modeled using a network flow formula-

tion in a layered graph involving, e.g., constrained vehicle routes

or paths to clients or terminal nodes, the constraints linking these

commodities might be relaxed in a Lagrangian way to obtain dual

bounds. The resulting Lagrangian subproblems which often are

variants of resource constrained shortest path problems do not

necessarily need to be solved on the layered graph. Instead, effi-

cient algorithms in the original graph such as dynamic program-

ming algorithms may be used, see e.g., Gouveia et al. (2008a) . Al-

ternatively, the flow conservation constraints for each commodity

can be dualized. Such approaches lead to a larger set of Lagrangian

multipliers, but the resulting subproblems can be solved by in-

spection. Gouveia and Requejo (2001) indicate that the second al-

ternative might be computationally appealing in some cases. Us-

ing more recent gradient algorithms, e.g., bundle methods, to opti-

mize over the Lagrangian multipliers might further improve these

results. It might be interesting to devise similar methods from

network flow based formulations (see, e.g., Godinho et al., 2014 )

that are equivalent to the layered graph formulation presented in

Section 2 for the (time-dependent) ATSP. Since the LP bounds of

this formulation are known to be quite tight but in many cases

difficult to obtain, such Lagrangian relaxation schemes could be a

promising alternative. 

7. Conclusions and research perspectives 

Layered graphs allow to model comparably complex relations

and aspects relatively easy within integer linear programming for-

mulations. The price to pay for this flexibility is a quite large

number of variables in these extended formulations. This makes

the development of competitive, exact solution algorithms build-

ing upon layered graph formulations a challenging and nontriv-

ial task, even though quite tight LP relaxation bounds can often

be obtained from these layered graph formulations. In this survey

paper, we have pointed out possible advantages of adopting the

layered graph view over traditional resource-indexed (and in par-

ticular time-indexed) formulations. A case study on the resource

constrained capacitated vehicle routing problem has been used to

introduce and discuss in detail common layered graph modeling

techniques. Introducing three main modeling concepts, we have

formalized the latter techniques from a general and abstract per-

spective. These concepts enable a classification of the majority of

existing articles considering layered graph models and solution al-

gorithms. We also discussed in detail additional modeling aspects

(and some of their implications) that can be used as further or

alternative classifications. The aim of this survey is, however, to

not only consider modeling aspects. Thus, we also provided an

overview on main ideas developed in order to obtain efficient so-

lution methods relying on large-scale, layered graph formulations.

The main observations and messages of this survey include: 

(i) Layered graphs are a powerful tool for modeling combinatorial

optimization problems by integer linear programming formula-

tions. In particular, certain complex or nonlinear dependencies

that are difficult to address by other modeling techniques can

be included relatively easily. 

ii) The dual bounds obtained from the LP relaxations of layered

graph formulations (with appropriate valid inequalities) are of-

ten quite tight. 
ii) Using layered graph formulations to obtain competitive solution

algorithms is not at all trivial. Indeed, it is important to well en-

gineer all components of such a method and consider advanced

methods such as, e.g., preprocessing, dual ascent, approxima-

tions of layered graphs, or early branching, within a developed

algorithmic framework. 

v) Whether or not a layered graph approach for a particular

problem seems promising strongly depends on the number of

achievable resource values (i.e., layers of the graph) and ex-

isting alternative models and solution algorithms. Using a lay-

ered graph approach may, for instance, not be a good idea if

effective algorithms relying on natural space formulations with

dual bounds of similar quality exist. Similarly, the existence of

well engineered and sophisticated branch-and-price algorithms

based on set covering models can be critical. 

These observations also imply the following general (i.e., prob-

em independent) avenues of potential future research related to

ayered graph approaches, some of which may change the perspec-

ive of the latter point. 

(i) Further study of existing and development of new approxima-

tions for layered graphs that significantly reduce their size. We

particularly refer to approaches that allow to derive both lower

and upper bounds on the optimal solution value and (at least in

principle) converge to an optimal solution. Observe that (to the

best of our knowledge) no such methods are known for gen-

eral layered graphs in which resource states can increase and

decrease. 

ii) Obtain a better understanding of the influence and importance

of cut initialization methods such as dual ascent in the context

of layered graphs and use them in a general setting. 

ii) Develop more efficient methods concerning the use of layered

graph cut constraints (or other sets of strong inequalities de-

fined on layered graphs). This particularly involves cut selection

strategies and cut convergence issues as several recent studies

indicate that the strength of such inequalities is outweighed by

the required computing times. 

v) Obtain a better understanding of the projection of layered

graph cuts to the natural space to derive more compact formu-

lations with similar LP relaxations. Preliminary results in this

direction have been obtained by Gouveia et al. (2011b) and in-

directly by Godinho et al. (2008) . 

Finally, we would like to point out the following characteris-

ics of problems for which layered graph approaches have not been

ufficiently considered yet, despite the fact that they seem well

uited for them (in particular compared to other modeling op-

ions). 

(i) Tight resource constraints in which the feasible values are asso-

ciated with multiple intervals such as, e.g., multiple, tight time

windows. As shown in Section 4 , resource constraints with ar-

bitrary sets of feasible values are easily modeled within layered

graphs by simply excluding all node copies that correspond to

infeasible resource states. 

ii) Synchronization constraints. Synchronizing different compo-

nents (e.g., routes) of a solution is known to be difficult and

is frequently modeled via Big-M terms within Miller-Tucker-

Zemlin-like constraints or by synchronization constraints (e.g.,

one per time point) that are part of the master problem in

set-covering formulations. While the former approach results

in weak LP bounds, the latter is known to be problematic

for (the performance of) corresponding branch-and-price algo-

rithms ( Drexl, 2007; 2012 ). Enforcing maximal or minimal dif-

ferences between resource values of visits of the same node by

different com ponents can (in many cases) be modeled on lay-
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ered graphs by simply restricting the feasible resource values

by in-degree constraints that depend on the other visit. 

ii) Non-linear costs and non-linear resource constraints. As briefly

discussed for the case of the time-dependent TSP, non-linear

costs depending on a certain resource state are easily incorpo-

rated through simply changing the costs of each layered graph

arc accordingly and lead to natural space layered graph formu-

lations. Similarly, cases in which the accumulated usage of a re-

source can depend on the individual arc values in a non-linear

way can be easily handled by appropriately adapting the re-

source consumption of all outgoing arcs of a particular node

copy depending on its associated resource state. On the con-

trary, such relations are not easy to model by (many) alterna-

tive approaches. 
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