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a b s t r a c t 

In a vendor-managed inventory setting, a supplier determines the timing and size of replenishments for 

its customers. In the Dynamic-Demand Joint Replenishment Problem (DJRP), one assumes that the sup- 

plier pays a fixed fee for replenishing a customer which often occurs if the supplier outsources trans- 

portation. Hence, there is no incentive for the supplier to schedule replenishments for nearby customers 

in the same period. This results in higher transportation costs for the carrier, decreased vehicle utiliza- 

tion and increased future fees for the supplier. To lower costs for both parties, this paper extends the 

traditional DJRP to the DJRP with Approximated Transportation Costs (DJRP-AT) by taking transportation 

considerations into account. Since routing problems are difficult to solve and it is not necessary to know 

the sequence of the deliveries to the customers as these are outsourced, the transportation costs for a 

given set of customers are approximated using classical schemes. A solution approach for the DJRP-AT 

based on Branch-and-Cut-and-Price is validated using test instances from the literature. Results show im- 

provements of 4% on average and up to 14.4% for individual instances compared with the DJRP. Moreover, 

when the DJRP-AT is compared with the DJRP on instances derived from a real-life case, similar savings 

are obtained. Comparing the DJRP-AT to an equivalent problem with actual routing costs, the solution 

values of the DJRP-AT are on average only 0.77% higher showing the value of the approximation. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

During the last decades, Vendor-Managed Inventory (VMI) sys-

ems have received a lot of attention in the literature ( Andersson,

off, Christiansen, Hasle, & Løkketangen, 2010 ). In such a system, a

upplier manages the inventory of its customers and arranges the

ransportation of the replenishments. The supplier bears both the

nventory holding and transportation costs and therefore strives to

inimize these costs by optimizing inventory and shipping deci-

ions. If the supplier would decide on the replenishments and the

outes to deliver the replenishments, the supplier faces a problem

nown as the Inventory Routing Problem (IRP) ( Coelho, Cordeau,

 Laporte, 2014 ). However, the transport of the replenishments is

ften outsourced to a Logistics Service Provider (LSP). As a con-

equence, the supplier pays a fixed transportation fee for a deliv-

ry that is specified in a long-term contract. The supplier therefore

aces an optimization problem known as the Joint Replenishment

roblem (JRP) ( Khouja & Goyal, 2008 ). When customer demand
∗ Corresponding author. 
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aries over time, this problem is known as the Dynamic-Demand

oint Replenishment Problem (DJRP). The DJRP decides which prod-

cts to order or customers to serve in which periods of the plan-

ing horizon such that demand is satisfied at minimal inventory

olding and servicing costs. More specifically, the cost of servic-

ng a group of customers in a given period consists of two com-

onents, the first of which is a common set-up cost per period if

t least one customer is served in that given period. The second

omponent is a cost for each replenished customer. Because of the

ommon set-up cost per period it can be beneficial for the supplier

o have some customers replenished together with other customers

ven before stock runs low. In that case the inventory holding cost

s higher because more inventory is kept, but it allows the supplier

o save the fixed fee for a period. 

The DJRP encompasses a number of key problem features oc-

urring in real-life applications, but also suffers from a number of

rawbacks. First, because the actual transportation costs are not

irectly considered, the DJRP cannot identify closely situated cus-

omers that would be well-suited for joint replenishment. Hence,

ustomers served in one period may be randomly located in a re-

ion, resulting in high actual transportation costs for the LSP. Also,

he number of replenishments that the LSP is able to perform on

https://doi.org/10.1016/j.ejor.2019.01.070
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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behalf of the supplier can be lower due to large distances between

deliveries. Therefore, consideration of proximity of customers could

result in better utilization of transportation resources, decrease

actual transportation costs for the LSP and eventually decrease

transportation fees for the supplier. In short, based on the DJRP,

the supplier generates requests that are expensive or hard to ful-

fill. Second, the DJRP ignores duration constraints. Vehicle capac-

ity constraints have been considered in the JRP literature (see

e.g., Anily & Tzur (2005) ) and in many routing problems, includ-

ing most studies on the IRP. However, tour duration constraints

have proven to be more binding in several practical applications,

such as online ordered package delivery, blood product distribu-

tion ( Hemmelmayr, Doerner, Hartl, & Savelsbergh, 2009 ) and re-

plenishment of ATMs. Tour duration constraints are rarely found in

the IRP literature. Finally, the DJRP does not take limited customer

storage capacity into account, but in practice, storage capacity is

often restricted. To address these shortcomings of the DJRP we pro-

pose an extension of the DJRP, the DJRP with Approximated Trans-

portation Costs (DJRP-AT), that explicitly considers transportation

costs. Furthermore, the DJRP-AT contains tour duration constraints

and limits customer storage capacity. Because determining the op-

timal delivery tour is computationally expensive, we will approxi-

mate the transportation costs in the DJRP-AT by approximating the

shortest traveling salesman tour. The only work that we are aware

of that includes approximated transportation costs in a VMI set-

ting is Larsen and Turkensteen (2014) . The authors consider a VMI

setting with stochastic demand and order-up-to-levels at the cus-

tomers which they solve with a Markov Chain simulation model. 

Our research is motivated by ATM replenishment in the Nether-

lands. A single supplier (vendor) decides on the timing of ATM

cash replenishment and on the delivery quantity. The actual ATM

replenishment orders per day are outsourced to an LSP, in this ap-

plication often referred to as Cash-in-Transit company (CIT), that

schedules and performs the daily delivery routes. Currently, the

supplier pays a fixed fee to the LSP for each ATM replenish-

ment. Therefore, the current replenishment policy ignores the im-

pact that ordering decisions have on distance traveled and vehi-

cle utilization. The supplier is reconsidering the replenishment cost

structure to better align decisions. To provide insight for future

negotiations between the supplier and the LSP, we examine the

benefit of adopting a DJRP and a DJRP-AT perspective. How a new

ordering policy is to be incorporated in the contract between the

supplier and the LSP, is beyond the scope of this paper. With this

work we contribute to the recent stream of publications on ATM

replenishment. For example, Van Anholt, Coelho, Laporte, and Vis

(2016) develop a heuristic for a pickup and delivery IRP for an ad-

vanced type of ATMs. Larrain, Coelho, and Cataldo (2017) focus on

a local search based heuristic for an IRP in which stock-outs are

allowed and cash is replenished by swapping cassettes. 

To solve the DJRP-AT, this paper proposes a compact formu-

lation in which transportation costs and inventory holding costs

are minimized. Note that inventory holding costs in the appli-

cation relate to the value of money or lost interest. The com-

pact formulation is split by applying Dantzig–Wolfe decomposition

( Desrosiers & Lübbecke, 2005 ). The resulting Master Problem and

Pricing Problem are solved in a Branch-and-Cut-and-Price frame-

work ( Lübbecke & Desrosiers, 2005; Nemhauser & Park, 1991 ). The

Master Problem selects customer subsets to be delivered and deter-

mines the corresponding delivery quantities. The Pricing Problem

generates these customer subsets using a labeling algorithm with

tailored dominance criteria to speed up the process. The solution

method is tested on benchmark instances from the literature and

on instances derived from a real-life case in ATM replenishment. 

The contributions of this paper are threefold. First, the DJRP is

extended to incorporate transportation costs, limitations on storage

capacity at the customers and restricted tour duration. The results
how that the proposed model leads to lower total costs compared

ith the DJRP. Second, we introduce novel dominance conditions

or the labeling algorithm that is used to solve the Pricing Prob-

em. Finally, existing valid inequalities originating from the inven-

ory routing literature are tested, their impact on the integrality

ap is demonstrated and it is shown that their effectiveness is dif-

erent than for other models in which they have been applied. 

The remainder of this paper is organized as follows:

ection 2 discusses literature on the JRP and DJRP, together

ith their relation to the IRP. The DJRP-AT is described and mod-

led in Section 3 . Section 4 proposes a decomposition of the model

nd specifies the Master and Pricing Problems. The algorithm to

olve the Pricing Problem, including novel sufficient dominance

onditions, the valid inequalities and the branching strategy are

resented in Section 5 . Section 6 presents the results of the ex-

eriments on benchmark instances from the literature, introduces

he real-life case and reports on the results of instances derived

rom the real-life case. Finally, the conclusions and directions for

urther research are discussed in Section 7 . 

. Literature review 

The traditional JRP is the problem of minimizing holding and

rdering costs, while ensuring that no customer runs out of stock

n any period of the planning horizon. The ordering costs consist

f a common set-up cost per period and a fixed fee per replen-

shment. An overview of the literature on the JRP from 1989 to

005 distinguishes three types of models ( Khouja & Goyal, 2008 ):

rst, the traditional JRP, considers deterministic and static demand.

his means that demand is known beforehand and remains the

ame for every period of the planning horizon. For this prob-

em, analytical expressions have been derived for the minimal to-

al costs and heuristics have been designed to determine the cor-

esponding cyclic replenishment policy. Second, the extension to

tationary stochastic demand in which the objective is to mini-

ize the expected total cost. Solution methods mainly consist of

sing a periodic review policy or a can-order policy. Finally, the

RP with deterministic and dynamic demand (DJRP) in which the

emand is known but can vary across periods is discussed. The so-

ution for this type of problem is not necessarily a cyclic replen-

shment policy as for the traditional JRP. For the DJRP different

ormulations and heuristic solution methods have been proposed

nd studied ( Boctor, Laporte, & Renaud, 2004; Narayanan & Robin-

on, 2006; Robinson, Narayanan, & Gao, 2007; Webb, Buzby, &

ampbell, 1997 ) and Robinson, Narayanan, and Sahin (2009) have

rovided an overview of available solution methods. Webb et al.

1997) studied fixed replenishment cycle models for the problem

nd compared these to optimal solutions that do no constrain the

eplenishment cycle. Boctor et al. (2004) proposed several linear

rogramming formulations, tested several heuristic solution meth-

ds and proposed an improvement procedure that can be used in

ombination with a heuristic method. 

To increase practical relevance of the DJRP, several extensions

ave been proposed such as capacitated aggregate order size ( Anily

 Tzur, 2005; Federgruen, Meissner, & Tzur, 2007; Narayanan

 Robinson, 2010 ), supplier selection ( Ventura, Valdebenito, &

olany, 2013 ), supplier selection with discounts ( Kang, Lee, Wu,

 Lee, 2017 ), inventory decisions at the supplier ( Cunha & Melo,

016; Solyalı & Süral, 2012 ) as well as inventory decisions and

apacitated production at the supplier ( Senoussi, Mouss, Penz,

rahimi, & Dauzère-Pérès, 2016 ). A commonly occurring practical

onstraint is an inventory capacity limit at the customers. How-

ver, to our knowledge, this constraint has only been included in

ne paper on the DJRP ( Senoussi et al., 2016 ); two papers on the

raditional JRP also include this constraint ( Hariga, Gumus, Dagh-

ous, & Goyal, 2013; Hoque, 2006 ). 
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The IRP combines an inventory problem and a routing prob-

em: it minimizes inventory holding and routings costs by opti-

izing replenishments for a set of customers and explicitly deter-

ining the delivery routes. The IRP is therefore related to the JRP,

et the IRP is structurally different from the JRP because the rout-

ng problem is explicitly solved. Various solution methods for the

RP have been proposed in the literature such as exact methods,

atheuristics and metaheuristics (see Coelho et al. (2014) for an

verview). Some of the exact solution methods for the IRP rely on

he vehicle capacity constraint, for example in the Pricing Prob-

em algorithms and valid inequalities. In our application a tour

uration constraint is more appropriate. In some of the heuristic

olution methods for the IRP, inventory and routing optimization

re considered separately. In a first phase, decisions are made on

he inventory policies, often incorporating a fixed replenishment

ost per delivery, thus solving a variant of the JRP. In a second

hase, routing is optimized given the replenishment decisions of

he first phase. Iterative solution schemes have for example been

roposed by Cordeau, Laganà, Musmanno, and Vocaturo (2015) and

bsi, Archetti, Dauzère-Pérès, and Feillet (2015) . 

Some attention has also been paid to the fact that charging a

xed fee for servicing a customer in the DJRP is not always rep-

esentative for the actual costs involved. A fixed fee per customer

eplenishment assumes that the costs for replenishing customers

re independent, but in practice, this is not always true. Olsen

2008) used the example of using a refrigerated truck for canned

ood delivery, which increases the marginal replenishment costs

f the canned food. Olsen (2008) and Wang, He, Wu, and Zeng

2012) proposed to model the marginal costs with additional fixed

ees depending on the combination of items delivered. Senoussi

t al. (2016) recognized that actual transportation cost are rele-

ant, however, they assumed that the depot is located far away

rom a cluster of customers and that the transportation costs be-

ween the clustered customers are negligible, therefore the authors

ssumed that the costs of a tour are fixed. Rahmouni and Hen-

et (2015) took actual routing costs into account by combining the

eterministic and static JRP with the Traveling Salesman Problem

TSP). For each possible subset of customers the actual tour length

as computed beforehand by solving a TSP, then a linear program-

ing model was used to select the optimal subsets and to deter-

ine the delivery quantities. However, this solution method can

nly be applied to instances of very limited size since for all com-

inations of customers the traveling salesman tour has to be com-

uted. 

. Problem description 

In the DJRP-AT, a single supplier supplies N customers. The cus-

omers face a certain demand per period and have a limited stor-

ge capacity, and therefore require replenishments to prevent them

rom running out of stock. The supplier arranges the customer re-

lenishments in a VMI setting with the objective of minimizing

ransportation and customer inventory holding costs. The trans-

ortation costs in a period are represented by the approximated

our length visiting the replenished customers and a fixed set-up

ee for a period if at least one customer is replenished in that pe-

iod. In the DJRP-AT, constraints are incorporated on the composi-

ion of the set of customers served in one period, e.g., the number

f customers served or the tour duration. Note that the inventory

olding costs at the supplier are not considered since in our prac-

ical application there is an infinite supply (similar to Larrain et al.,

017 ), but these costs could easily be added. 

For the calculation of the transportation costs, consider that

hese costs must be estimated for a large number of customer sub-

ets, which requires careful balance of approximation accuracy and

alculation effort. Also, two sets of customers with the same car-
inality, but with customers at different locations should result in

ifferent transportation costs. Therefore, based on the short litera-

ure review in Appendix A , we adopt the tour length approxima-

ion model of Chien (1992) : 

 ≈ 0 . 98 

√ 

RM 

′ , (1) 

n which R is the area of the smallest rectangle covering both the

ustomers and the depot, and M 

′ is the number of points in the

our (depot and customers). Note that this function underestimates

he actual TSP tour length. The transportation costs also include a

xed cost B that is independent of the distance traveled, but is for

xample a setup cost related to vehicle use. Define binary vector

 to indicate which customers are served and binary variable ˆ Y to

ndicate whether any customer is served ( �i Y i ≥ 1). The following

ransportation cost function will be used to approximate the trans-

ortation costs for the customers in Y and the depot 

f ( Y ) = B ̂

 Y + 0 . 98 

√ 

R ( Y ) M 

′ ( Y ) . (2) 

To formulate the DJRP-AT, consider the following notation in

octor et al. (2004) . A single depot and a set of N = { 1 , 2 , . . . , N}
ustomers are positioned in Euclidean space and there is a finite

ime horizon T = { 1 , 2 , . . . , T } . Let Y it denote the binary decision

ariable that takes value 1 if and only if customer i ∈ N is visited

n period t ∈ T . Let Y t denote the vector { Y 1 t , Y 2 t , . . . , Y Nt } . Define

 it as the quantity delivered to customer i ∈ N in period t ∈ T and

et I it be the quantity in stock at customer i ∈ N at the end of pe-

iod t ∈ T . I it should be non-negative, because stock-outs are not

llowed. The inventory level is measured at the end of the period

ssuming the following order of events: delivery of new stock, con-

umption, inventory calculation. This assumption coincides with

RP literature ( Boctor et al., 2004 ) and with most literature on the

RP ( Archetti, Bianchessi, Irnich, & Speranza, 2014 ). I i 0 denotes the

nitial inventory level and d it is the dynamic and deterministic de-

and in period t ∈ T at customer i ∈ N . For the items in stock at

 customer i ∈ N an inventory holding rate of h it is charged per

eriod t ∈ T . 
We introduce the following additional notation for the DJRP-

T. Each customer i ∈ N has a storage capacity u i . Define for each

 ∈ N and t ∈ T big-M value M it = min 

{
u i , 

∑ T 
s = t d it 

}
. Furthermore,

 single vehicle with unlimited load capacity performs at most

ne route in each time period, beginning and ending at the depot.

ransportation costs in a period are represented by function f ( · ) as

efined in Eq. (2) . Finally, let function g ( · ) assess the composition

f the tour in a given period. We consider two different functions

or g ( · ). First, let g ( · ) be the approximated tour duration and de-

ne k D ∈ R as the maximum tour duration. Second, we let g ( · ) be

he number of customers in a tour and impose that at most k M 

∈ N

ustomers can be served in a single tour. These constraints will be

eferred to as ‘subset composition constraints’ for the remainder

f the paper. DJRP-AT models will only contain one of these two

ypes of constraints to assess the tour composition. 

The goal of the DJRP-AT is to minimize inventory holding and

ransportation costs by selecting, for each period, which customers

o replenish, while avoiding stock-out at any customer, without vi-

lating the customer’s storage capacity restrictions and the addi-

ional restrictions on the tour composition. This problem can be

ormulated as follows: 

 = min 

∑ 

t∈T 

∑ 

i ∈N 
h it I it + 

∑ 

t∈T 
f ( Y t ) (3a) 

.t. I it = I i,t−1 − d it + X it ∀ i ∈ N , ∀ t ∈ T (3b) 

 it ≤ u i − I i,t−1 ∀ i ∈ N , ∀ t ∈ T (3c) 

 it ≤ M it Y it ∀ i ∈ N , ∀ t ∈ T (3d) 
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s  
g( Y t ) ≤ k ∀ t ∈ T (3e)

I it ≥ 0 ∀ i ∈ N , ∀ t ∈ T (3f)

X it ≥ 0 ∀ i ∈ N , ∀ t ∈ T (3g)

 it ∈ { 0 , 1 } ∀ i ∈ N , ∀ t ∈ T (3h)

in which k = k D or k = k M 

, depending on the applied subset com-

position constraints. The objective function (3a) minimizes the

costs for inventory holding and transportation f ( · ) defined in (2) .

The inventory balance for each customer in each period is main-

tained by constraints (3b) . Constraints (3c) ensure that the cus-

tomer’s capacity is not exceeded when a delivery is made and con-

straints (3d) force the amount delivered to zero if a customer is not

visited. Furthermore, constraints (3e) represent the additional con-

straints on the composition of the subset of customers replenished

in a period. Constraints (3f) –(3h) impose binary and non-negativity

constraints on the decision variables. 

4. Column generation 

When considering the complexity of the DJRP-AT with cost

function (2) , it is important to note that the traditional JRP is not

a special case of the DJRP-AT, due to the different cost structure.

Hence, although the traditional JRP is NP-complete ( Arkin, Joneja,

& Roundy, 1989 ), this conclusion cannot be directly made for the

DJRP-AT. Furthermore, analysis of the literature on the complexity

of related problems shows that the so-called Pinwheel Scheduling

Problem is a special case of the DJRP-AT with cost function (2) . The

Pinwheel Scheduling Problem is likely to be an NP-complete prob-

lem ( Jacobs & Longo, 2014 ), but this has not yet been proven de-

spite several attempts. A mapping between the Pinwheel Schedul-

ing Problem and the DJRP-AT, including details on the complexity

of the Pinwheel Scheduling Problem, are presented in Appendix B .

Because the existence of a polynomial-time algorithm is unlikely

and column generation has proven to be efficient for similar prob-

lem structures, this solution method will be used to solve the

DJRP-AT. 

Application of the Dantzig–Wolfe decomposition to problem

(3a) –(3h) results in a Master Problem that selects for every period

a subset of customers to replenish out of a collection of subsets

to minimize the inventory holding and transportation costs. More-

over, the Master Problem optimizes the delivery quantities corre-

sponding to constraints (3b) –(3d) in the compact formulation. The

Pricing Problem generates subsets of customers, taking constraints

(3e) into account, and is solved for each period separately. 

To formulate the Master Problem, let S t be the collection of

subsets of customers that are generated by the Pricing Problem

for period t ∈ T . The binary decision variable Z st equals 1 if subset

s ∈ S t is selected for period t ∈ T . For a specific subset s ∈ S t the

transportation costs c s for servicing its customers is given by the

Pricing Problem. Furthermore, let a is indicate whether customer

i ∈ N is present in subset s ∈ S t . The decomposition gives the fol-

lowing Master Problem: 

z = min 

∑ 

t∈T 

∑ 

i ∈N 
h it I it + 

∑ 

t∈T 

∑ 

s ∈S t 
c s Z st (4a)

s.t. I it = I i,t−1 − d it + X it ∀ i ∈ N , ∀ t ∈ T (4b)

X it ≤ u i − I i,t−1 ∀ i ∈ N , ∀ t ∈ T (4c)

X it ≤ u i 

∑ 

s ∈S t 
a is Z st ∀ i ∈ N , ∀ t ∈ T (4d)

∑ 

s ∈S t 
Z st ≤ 1 ∀ t ∈ T (4e)
 it ≥ 0 ∀ i ∈ N , ∀ t ∈ T (4f)

 it ≥ 0 ∀ i ∈ N , ∀ t ∈ T (4g)

 st ∈ { 0 , 1 } ∀ s ∈ S t , ∀ t ∈ T (4h)

The objective function (4a) aims to minimize total costs. Con-

traints (4b) –(4d) are equivalent to constraints (3b) –(3d) of the

ompact formulation. Constraint (4e) ensures that at most one sub-

et of customers is selected for each period. Finally, non-negativity

nd binary requirements on the decision variables are imposed by

onstraints (4f) –(4h) . 

We use column generation to solve the linear programming

elaxation of (4a) –(4h) since the total number of variables Z st is

xponentially large. Starting with a small subset of all possible

olumns gives the Restricted Master Problem (RMP) and additional

olumns with negative reduced cost are generated by repeatedly

olving the Pricing Problem. To formulate the Pricing Problem, let

s associate the following dual variables with the Master Problem

ith respect to decision variables Z st . Let π1 
it 

be a non-positive dual

ariable associated with constraints (4d) and let π2 
t be the non-

ositive dual variable of constraints (4e) . Let us also reuse decision

ariables Y it from the compact formulation: these variables indi-

ate whether customer i ∈ N is replenished in period t ∈ T and re-

ind that Y t = { Y 1 t , Y 2 t , . . . , Y Nt } . For a given time period t ∈ T the

ricing Problem can be formulated as follows: 

in c̄ t ( Y t ) = f ( Y t ) + 

∑ 

i ∈N 
u i Y it π

1 
it − π2 

t (5a)

.t. g( Y t ) ≤ k (5b)

 t ∈ { 0 , 1 } N (5c)

The objective (5a) is to minimize the reduced cost c̄ t ( Y t ) while

he subset composition constraints are satisfied (5b) . The reduced

ost consists of the transportation costs of the subset f ( Y t ) and dual

erms corresponding to the current solution of the RMP. The subset

omposition constraints (5b) can, in general, concern any function

f the combination of customers in the subset. However, these con-

traints cannot contain the delivery quantities, since these quanti-

ies are determined in the Master Problem. Hence, in our model, a

oad capacity constraint cannot be in the Pricing Problem, but, for

xample, a tour duration constraint is possible. 

. Branch-and-Cut-and-Price 

The Master Problem and Pricing Problem of Section 4 are solved

n a Branch-and-Cut-and-Price framework. In Section 5.1 , a tailored

abeling algorithm to solve the Pricing Problem per period is de-

cribed and novel sufficient conditions are presented that provide

 dominance criterion to discard labels. Valid inequalities are pre-

ented in Sections 5.2 and 5.3 provides a description of the branch-

ng strategy. 

.1. Labeling algorithm for the pricing problem 

To solve the Pricing Problem, we propose a tailored labeling al-

orithm that identifies subsets of customers that will improve the

urrent solution of the RMP. Note that during the process of gener-

ting subsets of customers, only the customer combination is rele-

ant, there is no sequential relationship between the customers as

pposed to routing problems ( Feillet, Dejax, Gendreau, & Gueguen,

004 ). 

Define label L = < s (L ) , c̄ t (L ) , g(L ) > in which s ( L ) is the sub-

et of customers, c̄ t (L ) is the corresponding reduced cost and g ( L )
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Fig. 1. Example of dominance in labeling algorithm. 
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epresents the value of the function g ( · ) in the subset composi-

ion constraint for subset s ( L ). Hence, each label corresponds to a

ubset of customers that is a candidate to be added to the RMP. 

The labeling algorithm starts for each customer i ∈ N separately

nd the labels are extended by adding the other customers one by

ne. The order of the customers in s ( L ) is not important, since the

ubset of customers is considered for replenishment, but the order

n which they are served is not determined. Hence, each possible

ubset has to be considered at most once. Therefore, when starting

ith a label containing customer i and extending with customer j ,

he inverse order of these customers, starting with j and adding i ,

oes not have to be considered. The labeling algorithm terminates

hen all possible subsets of customers are considered. 

Denote L �P as the resulting label from the extension of label L

ith the customers in set P ⊆ N \ s (L ) . The operation to extend a

abel L with the next customer j is to set s (L � { j} ) = s (L ) ∪ { j} and

o compute c̄ t (L � { j} ) and g ( L �{ j }): 

¯
 t (L � { j} ) = c̄ t (L ) − f ( Y t (s (L ))) + f ( Y t (s (L ) ∪ { j} )) + u j π

1 
jt (6) 

= f ( Y t (s (L ) ∪ { j} )) + 

∑ 

i ∈ s (L ) ∪{ j} 
u i π

1 
it − π2 

t 

n which Y t ( s ( L )) is the vector in which the variables corresponding

o s ( L ) equal 1. If we consider the model with subset composition

onstraints that set a maximum on the tour duration, we have 

(L � { j} ) = 0 . 98 

√ 

R (s (L ) ∪ { j} )(| s (L ) | + 1) (7) 

nd if we consider the model with subset composition constraints

hat pose a maximum on the number of customers in the subset,

e have 

(L � { j} ) = g(L ) + 1 (8) 

he extended label is feasible if 

 (L ) ∩ { j} = ∅ ∧ g(L � { j} ) ≤ k (9) 

hen the number of customers N increases, the maximum num-

er of labels becomes large 
(
2 N − 1 

)
. A dominance test will there-

ore be used to reduce the number of labels. 

Denote the set of feasible extensions of label L by E ( L ) which

onsists of all combinations of the customers that have not al-

eady been considered and for which the extension will satisfy the

ubset composition constraints. The following definition for domi-

ance holds 

efinition 1. Label L dominates label L ′ if 

D.1 E ( L ′ ) ⊆E ( L ) 

D.2 c̄ t (L � P ) ≤ c̄ t (L ′ � P ) , ∀ P ∈ E(L ′ ) 

The first condition, D.1, states that a feasible extension of L ′ 
ust also be a feasible extension of L . The second condition, D.2,

equires that all feasible extensions of L do not result in worse so-

utions than the same extensions of L ′ . These conditions are diffi-

ult to check in practice, since all feasible extensions would have

o be computed. Therefore, Proposition 1 introduces sufficient con-

itions for dominance of L over L ′ . 

roposition 1. Label L dominates label L ′ if the following conditions

old 

P.1 s ( L ) ⊆s ( L ′ ) 
P.2 g ( L ) ≤ g ( L ′ ) 
P.3 c̄ t (L ) + �(L, L ′ ) ≤ c̄ t (L ′ ) 

Conditions P.1 and P.2 combined imply condition D.1, such con-

itions are also used for shortest path problems ( Feillet et al.,

004 ), and condition P.3 implies condition D.2. Before a formal

roof for Proposition 1 is presented, an intuitive reasoning for con-

ition P.3 is given and an expression for �( L , L ′ ) is derived. 
The cost function, and therefore the reduced costs, are depen-

ent on the number of customers and the area in which these cus-

omers are located. Consider a comparison of the two labels L and

 

′ for which it holds that s ( L ) ⊆s ( L ′ ), c̄ t (L ) < c̄ t (L ′ ) and g ( L ) ≤ g ( L ′ ).
ne would like to conclude that L dominates L ′ . However, if a

et of customers P is added to both labels, the area that is used

n the cost function can increase more for L than for L ′ , i.e., the

dditional cost of the extension with P is not identical for both la-

els. This could result in c̄ t (L � P ) > c̄ t (L ′ � P ) , therefore, it cannot

e concluded that L dominates L ′ since condition D.2 is violated.

ence, a sufficient dominance condition should be stricter than

¯ t (L ) ≤ c̄ t (L ′ ) , therefore sufficient condition P.3 is introduced. This

ill be illustrated in the following example. Consider an instance

ith four customers, indicated by white nodes and customer in-

ex in Fig. 1 . The depot is indicated by the black node with label

. The current terms for the reduced cost corresponding to each

ustomer are indicated between brackets (suppose πt = 10 0 0 ). 

Now, consider subset s 1 = { 1 , 2 } , the corresponding cost is

f (s 1 ) = 10 0 0 + 0 . 98 
√ 

100 × 200 × 3 ≈ 1240 and the reduced cost

f this subset is c̄ t (s 1 ) ≈ 1240 − 200 − 100 − 1000 = −60 . Similarly,

ubset s 2 = { 1 , 2 , 3 } has f ( s 2 ) ≈ 1537 and c̄ t (s 2 ) ≈ 37 . In this case

 1 and s 2 are comparable, since s 1 ⊂ s 2 . Note that c̄ t (s 1 ) < c̄ t (s 2 ) ,

ence, one would like to conclude that the label with subset

 1 dominates the label with s 2 . However, suppose customer 4 is

dded to both subsets. This gives s 3 = { 1 , 2 , 4 } with f ( s 3 ) ≈ 1620

nd c̄ t (s 3 ) ≈ 70 and s 4 = { 1 , 2 , 3 , 4 } with f ( s 4 ) ≈ 1693 and c̄ t (s 4 ) ≈
57 . Note that the cost increase from subset s 1 to s 3 is larger than

rom subset s 2 to s 4 . Because c̄ t (s 3 ) > c̄ t (s 4 ) , we cannot conclude

rom c̄ t (s 1 ) < c̄ t (s 2 ) that the label with s 1 dominates the label with

 2 . 

A more strict condition is required and therefore �( L , L ′ ) is in-

roduced, representing the maximum difference in costs between

wo labels. The value of �( L , L ′ ) must be sufficient to guarantee

¯ t (L � P ) ≤ c̄ t (L ′ � P ) (∀ P ∈ E(L ′ ) ) to conclude that L dominates L ′ .
irst, express c̄ t (L � P ) and c̄ t (L ′ � P ) in terms of c̄ t (L ) and c̄ t (L ′ ) ,
espectively. Combined with c̄ t (L ) ≤ c̄ t (L ′ ) , an upper bound can be

erived for the difference between c̄ t (L � P ) and c̄ t (L ′ � P ) . The

erivation for the following sufficient value of �( L , L ′ ) is given in

ppendix C : 

(L, L ′ ) = φ
√ 

R (s (L ′ )) | s (L ′ ) ∪ P | − R (s (L )) | s (L ) ∪ P | (10) 

ith R ( · ) as the area of the smallest rectangle and P = N \ s (L ′ ) . A
ormal proof for Proposition 1 with �( L , L ′ ) as defined in (10) can

ow be presented. 

roof. (Proof of Proposition 1 ) Assume two labels L and

 

′ with corresponding subsets of customers s = s (L ) and

 

′ = s (L ′ ) satisfy the conditions in Proposition 1 . Given s ⊆s ′ 
nd therefore s ∪ P ⊆s ′ ∪ P , it holds that if g ( L ) ≤ g ( L ′ ), then

 ( L �P ) ≤ g ( L ′ �P ) if g ( · ) is a monotone function. Hence,

f g ( L ′ �P ) ≤ k , then g ( L �P ) ≤ k and condition D.1 is satis-

ed. To show that condition D.2 holds, note that we have
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already shown in Appendix C that 

c̄ t (L � P ) − c̄ t (L ′ � P ) ≤ c̄ t (L ) − c̄ t (L ′ ) + �(L, L ′ ) (11)

Hence, if c̄ t (L ) + �(L, L ′ ) ≤ c̄ t (L ′ ) , then condition D.2 holds which

concludes the proof of Proposition 1 . �

An overview of the labeling algorithm is provided in

Algorithm 1 . A label is not extended any further in the labeling

Algorithm 1 Labeling algorithm 

1: Initialize list of improving labels I and of labels to propagate P 

2: for i = 0 to N do 

3: Create label l containing i and add l to P 

4: if Reduced cost of l is negative then 

5: Add l to I 
6: while P � = ∅ do 

7: Consider a waiting label p ∈ P 

8: for All customers j with higher index than the last added

customer to p do 

9: Extend p with j to q 

10: if q is feasible and p does not dominate q then 

11: Add q to P 

12: if Reduced cost of u < 0 then 

13: Add q to I 
14: Remove p from P 

algorithm if the subset composition constraint is violated, since no

feasible subsets of customers can be found by adding more cus-

tomers because of the subset composition constraints. Moreover,

after extending a label, it is tested whether adding another cus-

tomer violates a subset composition constraint, in which case an

extension to this customer from the current label is not considered

in a later stage of the labeling algorithm. 

To accelerate the solution process, a heuristic variant of the la-

beling algorithm is applied. If the heuristic fails to find any improv-

ing subsets, the exact labeling algorithm is applied in which all

combinations of customers are considered. In the heuristic pricing

instrument, the process is identical to the exact pricing algorithm,

but the number of customers to which a label can be extended is

limited. Only the extensions to the b customers closest to the last

added customer of a subset are evaluated. The initial value of b is

small (2) and this value is doubled up to a certain limit (8) as long

as no improving subsets of customers are found. 

Preliminary experiments showed that adding all columns with

negative reduced cost could be time consuming for the algorithm

and moreover, many of these columns are not in the final solution.

Therefore, at most 10,0 0 0 columns are added per call to the Pricing

Problem for both the heuristic and the exact pricing instrument. 

5.2. Valid inequalities 

The formulation of the problem can be strengthened with

valid inequalities. Two valid inequalities that were introduced by

Archetti, Bertazzi, Laporte, and Speranza (2007) for the IRP are also

applicable to the DJRP-AT. The first inequality states that if a cus-

tomer i ∈ N is not replenished in periods t − r, t − r + 1 , . . . , t, then

the inventory in period t − r − 1 should be sufficient to cover de-

mand of all periods up to t : 

(ILB) I i,t−r−1 ≥
( 

r ∑ 

j=0 

d i,t− j 

) ( 

1 −
r ∑ 

j=0 

∑ 

s ∈S t 
a is Z s,t− j 

) 

∀ i ∈ N , ∀ t ∈ T , ∀ r = 0 , 1 , . . . , t − 1 (12)

The second inequality gives a lower bound for the number of

required visits to a specific customer i up to a period t taking the
ustomer’s inventory capacity into account: 

NrVis) 

t ∑ 

j=1 

∑ 

s ∈S t 
a is Z s j ≥

⌈∑ t 
j=1 d i j − I i 0 

u i 

⌉
∀ i ∈ N , ∀ t ∈ T (13)

reliminary experiments showed that dynamic management of

he valid inequalities, i.e., adding them whenever violated, slowed

own the execution. Therefore, for all experiments, all valid in-

qualities are added to the model in the root node of the Branch-

nd-Bound tree. 

.3. Branching 

In the compact formulation (3a) –(3h) , the variables indicating

hether a customer is served in a certain time period, the assign-

ent variables, are binary decision variables. The delivery quan-

ity and inventory level decision variables are non-negative and

ontinuous. To find binary results for the assignment variables

 Branch-and-Bound tree is used, which is explored via a best

ound strategy. First, the algorithm branches on the total num-

er of replenishments of a customer i ∈ N over all periods
 

t∈T Y it . In the Master Problem variables this can be expressed as
 

t∈T 
∑ 

s ∈S t a is Z st . If all customers have an integer number of re-

lenishments, the second branching method branches on whether

ny customer is replenished in a period t or no customer is replen-

shed ( 
∑ 

i ∈N Y it ). Expressed in the Master Problem variables, the

orresponding constraints are 
∑ 

s ∈S t z st ≤ 0 and 

∑ 

s ∈S t z st ≥ 1 . If no

ew branches can be identified for the first two branching meth-

ds, the algorithm branches on whether a customer i ∈ N is visited

n a specific period t ∈ T or not ( Y it = 

∑ 

s ∈S t a is Z st ). This branching

ethod leads to binary solutions for the assignment variables in

he compact formulation, hence, if no new branches are identi-

ed an integer solution is found. If there is more than one branch

andidate, the following strategy to select a branch is followed for

ach type of branching. For each branch candidate the child nodes

re quickly evaluated by solving the LP relaxation given the cur-

ent set of columns. The branch that maximizes the lower bound

s chosen. We consider at most 25 branch candidates in the first

0 nodes of the branch and bound tree and at most 15 candidates

n the other nodes. 

. Computational results 

The proposed model for the DJRP-AT is analyzed for two types

f subset composition constraints: a tour duration constraint and

 maximum number of customers served per period (i.e., in a

ubset). The effectiveness of the valid inequalities presented in

ection 5.2 is evaluated for both types of subset composition con-

traints in Section 6.1 . The model with a maximum tour duration

ost resembles practical cases; this model is tested with different

alues for the maximum tour duration. The model with a max-

mum number of customers per subset can be compared to the

JRP with fixed fees ( Boctor et al., 2004 ) and to a variant of the

RP in which the actual routing costs are used. The first compar-

son provides insight in the potential improvements that can be

chieved with the DJRP-AT compared to the DJRP. Section 6.2 ex-

lains how the DJRP-AT and the DJRP are compared and provides

he results. The second comparison shows how well the DJRP-AT

erforms compared to an equivalent IRP in which actual routing

osts are used, on which Section 6.3 reports the results. Note that

esults of the DJRP-AT are not comparable to the results of ‘stan-

ard’ IRP as often used in the literature ( Coelho et al., 2014 ) be-

ause the constraints are different. 

The instances for the IRP, created by Archetti et al. (2007) , are

sed for the computational experiments. Although the IRP differs
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rom the DJRP-AT regarding the cost structure, decision variables

nd constraints, the IRP instances are used as a base, since they

ontain most of the data required for the experiments on the DJRP-

T. The time horizon is equal to either 3 or 6 periods and instances

ith 5, 10, 15 and 20 customers are considered; there are five in-

tances for each combination of number of customers and periods.

or each customer, a location is given by two coordinates, both

andomly chosen within the interval [0, 500]; demand is randomly

elected between 10 and 100, and the customer holding rate is in

he interval [0.1, 0.5]. The customer’s inventory capacity is the de-

and of the customers multiplied by either 2 or 3, which is ran-

omly selected. The initial inventory is the customer’s capacity mi-

us the demand of the first period. The instances are available on-

ine ( Coelho, n.d. ). For the tests on the model including maximal

our duration the maximum ( k D ) is set to 60 0, 80 0, 10 0 0 and 1200

or all instances. If a maximum is set on the number of customers

er subset ( k M 

), this maximum depends on the number of cus-

omers in the instance. For 5 customers, maxima of 3 and 4 are

onsidered, for 10 customers 5, 6, 7 and 8 are considered as max-

ma, for 15 customers 7, 8, 9, 10 and 11 are considered, and for in-

tances with 20 customers 10, 11, 12 and 13 are the maxima. The

xed major cost is set to B = 10 0 0 . 

The RMP is initialized with dummy columns with very high

osts to guarantee a feasible solution for the initial linear pro-

ram. To improve computation times, two heuristics are designed

o attempt quickly identifying columns that provide a feasible in-

eger solution. The first heuristic assigns customers to periods in

 greedy way, ensuring customers do not run out of stock and

especting the subset composition constraints. If the subset com-

osition constraint is a maximum on the tour duration, a second

euristic is applied if the first one did not yield a feasible inte-

er solution. In the second heuristic, before applying the steps of

he first heuristic, the customers are sorted by decreasing distance

rom the depot. Since the sorting process indirectly takes the sub-

et composition constraint into account, this provides a greater

hance of finding a feasible solution. Limited computational ex-

eriments showed that the first heuristic provides a better up-

er bound if a solution is found, therefore this heuristic is applied

rst. 

The algorithm to solve the DJRP-AT as described in the previous

ections is implemented using Java and Gurobi 6.5. All tests are

erformed on a desktop computer running Windows 10, equipped

ith an eight core Intel(R) Core(TM) i7-6700K, CPU 4.00 gigahertz

rocessor with 24 gigabyte of RAM. A single core is used to gen-

rate the results and the maximum running time is two hours per

nstance. 

.1. Effectiveness of valid inequalities 

Two valid inequalities are considered to strengthen the formu-

ation for the DJRP-AT. These valid inequalities are tested for both

ypes of subset composition constraints and the results are pre-

ented in Table 1 . The results are aggregated per number of cus-

omers in the instance ( N ) and the length of the time horizon ( T ).

he average solution time over all tested instances, the number

f instances solved, and the average integrality gap for the solved

nstances are reported for the model without valid inequalities,

he model with only the ILB inequalities ( Eq. 12 ), the model with

nly NrVis inequalities ( Eq. 13 ), and the model with both inequal-

ties, respectively. Next to the number of instances solved, the to-

al number of tested instances that have not been proved infeasi-

le is indicated between brackets. The difference between the two

umbers gives the number of instances that have not been solved

n two hours. The integrality gap is the percentage difference be-

ween the optimal binary solution (LB ) and the solution of the
best 
elaxation of the model in the root node of the Branch-and-Bound

ree (LB root ), which is calculated by (LB best - LB root )/LB best . To test

he effectiveness of the valid inequalities, for instances with 15

ustomers and 3 periods, duration 600 is not considered; for 15

ustomers and 6 periods, both 600 and 800 are not considered,

ince most instances would be infeasible. For instances with 15

ustomers, a maximum number of customers per period ( k M 

) of

, 9, 10 and 11 are considered. 

The observed integrality gaps, as reported in Table 1 , are quite

igh and decrease if more valid inequalities are added. The high

ntegrality gaps can be partially explained by the formulation of

he Master Problem. The linear relaxation of the model allows for

atisfying customer demand in a certain period using only a frac-

ional value for the decision variable corresponding to a subset

ontaining this customer. Therefore, the costs of the subset are

nly fractionally accounted for. Moreover, the linear relaxation al-

ows infeasible combinations of customers to be served in one

eriod in a fractional solution. Therefore, the costs of the frac-

ional solution can be lower, even tough the solution is certainly

ot feasible. Both of these effects were observed in our experi-

ents. For example, consider instance abs3n5 from Archetti et al.

2007) which contains 5 customers, 3 time periods and set k D =
00 as the maximum on the duration. The optimal solution se-

ects customer subset {3} in period 1, subset {1,2} in period 2

nd subset {3,4,5} in period 3; the objective value is 4310. In

he solution of the relaxed model, subsets {1,2} and {3,4,5} are

elected with value 0.5 in both period 1 and period 2. The ob-

ective value of this fractional solution is 3397, resulting in an

ntegrality gap of 21%. Note that in the fractional solution all cus-

omers can be replenished in both period 1 and 2, while a sub-

et consisting of all customers {1,2,3,4,5} is not a feasible subset

iven the tour duration constraint. This demonstrates that the frac-

ional model provides the opportunity to select suboptimal subsets

f customers, causing high integrality gaps. Also note that the in-

tances with the highest integrality gaps do not necessarily have

he highest computation times for both types of subset composi-

ion constraints. 

For the model with a tour duration constraint, the computa-

ional results show that valid inequalities decrease computation

imes and integrality gaps, but that adding both types of valid in-

qualities does not always improve computation times, compared

ith adding one type of inequality. The integrality gaps are best if

oth types of inequalities are used, but only adding the NrVis in-

qualities yields almost the same average integrality gap. For this

ubset composition constraint, the best performance in terms of

omputation times are found if only the ILB inequalities are added

o the model. 

For the model with the constraint on the number of customers

eplenished per period, the results show that both types of valid

nequalities improve the efficiency of the model. The average com-

utation time decreases strongly for all instance sizes. For the

argest instances (15 customers, 6 time periods) the number of

olved instances increases from 12 to 17 out of 20 by adding the

alid inequalities and the average integrality gap is only a third of

he average gap without inequalities. Furthermore, the integrality

ap of the model including only the NrVis inequalities is almost

dentical to the model with both types of inequalities; however,

omputation times show that the model including both types of

nequalities performs better. 

Archetti et al. (2007) concluded that the NrVis inequalities

 Eq. 13 ) are ineffective for solving their IRP model. It is there-

ore important to note that, for the DJRP-AT, these valid in-

qualities lower the integrality gaps substantially and reduce the

omputation time. Hence, for the DJRP-AT, the effectiveness of

hese inequalities has been demonstrated for both types of sub-

et composition constraints. The results per instance with all valid
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Table 1 

Effectiveness of valid inequalities for DJRP-AT for two types of constraints. 

None Only ILB Only NrVis ILB and NrVis 

N T Time (s) # Solved Gap (%) Time (s) # Solved Gap (%) Time (s) # Solved Gap (%) Time (s) # Solved Gap (%) 

Constraint on duration 

5 3 0 20 (20) 28 0 20 (20) 22 0 20 (20) 7 0 20 (20) 7 

10 3 2 18 (18) 42 1 18 (18) 34 1 18 (18) 16 1 18 (18) 16 

15 3 40 13 (13) 44 18 13 (13) 37 17 13 (13) 20 6 13 (13) 20 

5 6 1 20 (20) 25 1 20 (20) 19 1 20 (20) 6 0 20 (20) 3 

10 6 83 16 (16) 31 39 16 (16) 25 71 16 (16) 12 19 16 (16) 9 

15 6 3801 6 (10) 31 3021 7 (10) 26 3316 7 (10) 13 3456 6 (10) 11 

Sum 93 (97) 94 (97) 94 (97) 93 (97) 

Constraint on number of customers 

5 3 0 10 (10) 46 0 10 (10) 42 0 10 (10) 20 0 10 (10) 20 

10 3 2 20 (20) 42 1 20 (20) 34 1 20 (20) 14 1 20 (20) 13 

15 3 30 20 (20) 42 12 20 (20) 34 15 20 (20) 15 7 20 (20) 14 

5 6 3 10 (10) 32 1 10 (10) 26 2 10 (10) 13 0 10 (10) 10 

10 6 86 20 (20) 31 29 20 (20) 24 39 20 (20) 11 20 20 (20) 8 

15 6 4269 12 (20) 30 3212 14 (20) 24 3264 15 (20) 11 2507 17 (20) 11 

Sum 92 (100) 94 (100) 95 (100) 97 (100) 
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(b) DJRP-AT solution

Fig. 2. DJRP and DJRP-AT solutions for instance abs3n10 with T = 3 , k M = 7 and 

m i = 25 (black route in period 2, gray route in period 3). 
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inequalities in the model are available in Appendix D for both

types of subset composition constraints. 

6.2. Comparison DJRP-AT and DJRP 

The results of the DJRP-AT with a constraint on the number of

customers per tour k M 

can be compared with the existing DJRP

with fixed fees ( Boctor et al., 2004 ). In this model a common cost

is paid for serving at least one customer in a period ( B = 10 0 0 )

and an individual cost m i is incurred for replenishing each cus-

tomer. Note that the individual replenishment cost would in prac-

tice be given by the contract between the supplier and the LSP, and

cannot be changed during the execution of the contract. To assess

the impact of the individual replenishment costs, we test several

values for m i , i ∈ N . For the experiments the individual replen-

ishment cost m i is either set to the same value for all customers

(25 and 100) or set according to one of the following schemes.

First, we set m i to a value proportional to the distance to the de-

pot, which we denote by ‘prop’. Second, we define a zone around

the depot in which at least one-third of the customers is located

(‘zones’). For the customers within the zone m i = 25 , and for the

other customers m i = 100 . Third, we divide the total area in four

quadrants (‘quad’). If a customer is in the same quadrant as the

depot m i = 25 , and m i = 100 otherwise. 

To make a fair comparison between the DJRP and the DJRP-AT,

the DJRP is extended with constraints on the customer’s inventory

capacity and a constraint on the number of customers served per

period. Hence, the difference between this model and the DJRP-AT

is the cost structure, i.e., fixed fees for individual replenishments

versus transportation costs. Both models result in subsets of cus-

tomers to be served in each period of the planning horizon and

the corresponding delivery quantities. Importantly, it is not pos-

sible to directly compare the costs of both models. Therefore, the

optimal traveling salesman tours for the resulting customer subsets

are computed. The tour costs reflect the actual incurred routing

costs. The total costs, for both models consisting of the inventory

holding cost, the tour costs and the fixed costs per period, will be

compared. First, the results of one instance are studied in more de-

tail. Next, aggregated results over all tested instances are analyzed.

6.2.1. Illustrative result for one instance 

In this section, one of the tested instances is studied in more

detail and the results demonstrate the effect of the DJRP-AT com-

pared with the DJRP. Consider an example containing 10 customers
instance abs3n10), 3 time periods, a maximum of k M 

= 7 cus-

omers per period and an individual replenishment cost of m i = 25 .

n Fig. 2 , the routes corresponding with the solution of the DJRP

nd the DJRP-AT are drawn. The depot is indicated by D and the

ustomers are numbered according to the order of the customers

n the instance. The black line represents the performed route in

eriod two of the three periods and the grey line represents the

oute in period three; no customers are replenished in period one

n both solutions. The DJRP solution shows that some customers

re replenished multiple times in the planning horizon. Moreover,

ustomers that are located in relatively close proximity, are not

ecessarily replenished in the same period, e.g., customers 7 and

. The total costs of the DJRP solution are 4399 consisting of in-

entory holding cost of 123 and routing costs of 4276, including

he fixed fee per period. The DJRP-AT solution is clearly more effi-

ient from a routing point of view. The two routes cover distinct

reas of the region in which the customers are located and all

ustomers are replenished only once in the planning horizon. The

olding cost, 159, is higher than in the solution of the DJRP. The

outing costs, including the fixed fee per period, are 3914 which is

ower than the DJRP routing costs. The total costs of DJRP-AT solu-

ion are 4073, which is 7.4% lower than the total costs of the DJRP

olution. 

.2.2. Aggregated results 

Table 2 compares aggregated results of the DJRP-AT and the

JRP for the instances proposed by Archetti et al. (2007) . The first

olumns indicate the number of customers ( N ), the length of the

ime horizon ( T ), the maximum number of customers ( k M 

) and the

umber of instances solved out of the five instances ( # ). For each
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Table 2 

Average and maximum improvement and maximum deterioration of DJRP-AT compared with DJRP. 

Average cost improvement (%) Maximum cost improvement (%) Maximum cost deterioration (%) 

m m m 

N T k M # a 25 100 prop zones quad 25 100 prop zones quad 25 100 prop zones quad 

5 3 3 5 3.8 2.1 2.1 1.9 1.9 8.7 7.8 7.8 7.8 7.8 0.4 0.4 0.4 0.7 0.7 

5 3 4 5 4.2 2.5 2.5 2.3 2.3 8.6 7.2 7.2 7.2 7.2 − − − 1.0 1.0 

10 3 5 5 2.3 3.4 1.5 1.5 1.8 9.5 9.5 9.5 9.5 9.5 − − 2.2 2.2 0.6 

10 3 6 5 3.6 4.8 2.8 3.6 2.9 7.1 7.6 7.1 7.1 7.1 0.4 0.4 2.1 0.4 2.1 

10 3 7 5 4.6 4.1 4.1 4.4 4.2 7.9 8.1 8.1 7.8 8.1 0.4 0.4 0.4 0.4 0.4 

10 3 8 5 5.9 5.4 5.4 5.7 5.6 11.1 8.9 8.9 10.6 9.4 − − − − −
15 3 7 5 10.7 9.4 8.9 8.7 8.2 12.2 11.1 10.8 11.6 12.2 − − − − −
15 3 8 5 3.0 1.2 -0.5 0.0 1.1 6.7 3.4 0.4 2.7 5.3 0.5 − 3.0 2.6 2.6 

15 3 9 5 3.6 0.7 0.6 1.7 2.5 5.6 4.6 4.1 4.7 5.7 − 1.5 1.5 0.2 0.2 

15 3 10 5 6.1 3.4 3.3 4.3 5.1 11.0 9.6 9.1 9.6 11.1 − 1.0 1.0 0.1 0.1 

15 3 11 5 8.2 5.6 5.5 6.2 7.0 14.4 14.3 13.9 14.4 13.9 − 2.7 2.7 3.2 3.2 

20 3 10 5 6.8 4.9 1.9 4.3 2.8 8.7 8.7 8.7 8.7 8.7 − − 0.8 − 0.4 

20 3 11 4 2.2 2.4 2.4 2.7 2.7 6.6 7.4 7.4 8.2 8.2 0.5 − − − −
20 3 12 5 2.6 1.5 1.5 2.2 2.2 8.5 5.2 5.2 8.1 8.1 0.9 − − − −
20 3 13 5 4.4 3.4 3.4 3.6 3.6 10.1 8.8 8.8 8.8 8.8 0.9 − − − −
5 6 3 5 5.8 2.6 4.4 4.5 4.5 12.3 5.9 6.6 6.6 6.6 − − − − −
5 6 4 5 3.2 1.8 1.2 1.1 1.4 6.2 4.2 4.1 4.2 4.2 − 0.2 1.5 1.5 1.5 

10 6 5 5 5.3 4.8 4.8 4.8 5.3 10.4 7.9 7.9 8.2 10.4 − − − − −
10 6 6 5 5.7 5.7 5.9 5.7 5.8 9.5 8.4 8.1 8.9 8.0 − − − − −
10 6 5 5 3.0 2.5 2.2 2.1 2.9 6.9 5.3 5.1 4.2 5.8 0.6 − − − −
10 6 8 5 4.3 2.6 3.2 3.0 4.5 7.6 4.9 5.4 5.0 7.7 − − − − −
15 6 8 3 8.6 5.4 6.2 7.7 7.7 11.3 6.1 7.4 11.3 11.3 − − − − −
15 6 9 4 8.1 7.1 6.6 7.1 7.9 11.7 9.5 9.3 9.3 11.6 − − − − −
15 6 10 5 3.7 2.4 2.4 3.2 3.4 6.1 6.1 6.3 5.2 6.2 − − − − −
15 6 11 5 5.1 3.8 3.1 4.3 4.2 7.6 5.3 4.8 5.9 5.5 − − − − −
Overall 5.0 3.7 3.4 3.9 4.1 14.4 14.3 13.9 14.4 13.9 0.9 2.7 3.0 3.2 3.2 

a Number of instances solved out of 5 for each parameter combination. 
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ombination of N , T and k M 

five different individual replenishment

osts are considered for the DJRP ( m = 25 , 100 , prop , zones , quad ).

he average percentage improvement in total costs, the maximum

ercentage improvement in total costs and the maximum percent-

ge deterioration in any of the instances of the DJRP-AT, compared

ith the DJRP, are reported for each combination of parameter val-

es. The percentage improvement in total cost of an instance is

omputed as (cost DJRP - cost DJRP-AT)/cost DJRP. 

The results in Table 2 show that incorporating the approxi-

ated transportation costs in the DJRP reduces the total cost with

.4%–5.0% on average for different schemes for m and 4% overall.

ndividual savings up to 14.4% are achieved. The average improve-

ent between instances with different numbers of customers or

eriods is similar. 

For 494 out of 605 optimally solved instances the DJRP-AT out-

erforms the DJRP and matches its costs for 51 instances. For only

0 instances the DJRP resulted in a slightly better solution than

he DJRP-AT with a maximum cost difference of 3.2%, but only

.96% on average over all m schemes. The cases in which the

JRP resulted in lower costs than the DJRP-AT can be explained

y using the approximated transportation cost in the optimization,

hich does not always lead to the lowest routing and inventory

olding cost. Moreover, the DJRP completely ignores customer loca-

ion when determining replenishments and will mostly serve cus-

omers on the day their inventory is exhausted, provided all con-

traints are respected (except if one day’s major cost can be saved).

f not all customers can be served on the day their inventory is ex-

austed, the customers that have the lowest holding costs will be

erved a day earlier. In this case, the customer’s holding costs ex-

rt substantial influence on the combination of customers served

ogether in the DJRP solutions. This can, coincidentally, result in

avorable combinations of customers regarding the actual routing

ost, which can result in better DJRP solutions compared with the

JRP-AT. However, the results show that this scenario is unlikely,

ince this occurs in a limited number of the instances. 
Table 2 suggests that the DJRP-AT performs better on problem

nstances with a longer planning horizon. The DJRP was only able

o find a better solution than the DJRP-AT in five parameter set-

ings of the instances with a six day planning horizon, and the

avings were 0.2%–1.5%. Therefore, we did additional experiments

n which we increased the planning horizon from three to six days

f the instances with a three day planning horizon. The results do

ot show clearly that the DJRP-AT performs relatively better on in-

tances with a longer planning horizon. 

The improvement in total costs of incorporating the transporta-

ion costs in the DJRP slightly decreases if the individual order-

ng cost m in the DJRP increases from 25 to 100. This can be

xplained by the fact that if the individual replenishment cost is

ower, then the number of replenishments is higher in the DJRP

utcomes, resulting in higher actual total routing costs. This effect

an also be observed in the number of instances for which an im-

rovement, deterioration, or equal costs are reported ( Table 3 ). The

umber of instances showing an improvement decreases as the

alue of the individual replenishment cost m i increases, compared

ith the DJRP. However, the percentage of instances for which de-

erioration must be reported does not increase as m i increases; in-

tead, the percentage of instances with equal costs for both models

ncreases. 

By using proportional costs, zones and quadrant based costs

nstead of the same individual replenishment costs for all cus-

omers, the routing costs are better reflected in the DJRP. Indeed,

e can observe that on average the improvement of the DJRP-AT

ver the DJRP is lower than for the DJRP with m i = 25 . However,

or m i = 100 this is only the case for the proportional individual

eplenishment costs. The proportional costs best reflect the actual

outing costs, in several works in the IRP literature the direct dis-

ance is used (as a starting point) to replace actual routing costs

see for example Cordeau et al. (2015) and Absi et al. (2015) ). Still,

rom our results it shows that the DJRP-AT outperforms using pro-

ortional costs for replenishing a customer. 
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Table 3 

Number and percentage of instances that report improvement, deterioration and equal costs. 

Number of instances Percentage 

m m 

25 100 prop zones quad total 25 100 prop zones quad total 

Improvement 108 97 92 99 98 494 89% 80% 76% 82% 81% 82% 

Detoriation 8 9 14 14 15 60 7% 7% 12% 12% 12% 10% 

Equal 5 15 15 8 8 51 4% 12% 12% 7% 7% 8% 

Total 121 121 121 121 121 100% 100% 100% 100% 100% 

Table 4 

Average difference of DJRP-AT compared with IRP. 

Number of Number of instances Average Average time Average time 

N T k M instances solved equal result difference (%) DJRP-AT (s) IRP (s) 

5 3 3 5 3 −0.28 0.0 1.0 

5 3 4 5 1 −1.30 0.2 1.6 

10 3 5 5 4 −0.54 0.6 1155.8 

10 3 6 4 1 −0.56 0.4 9348.8 

5 6 3 5 4 −0.23 0.4 4.6 

5 6 4 5 0 −1.47 0.4 13.4 

10 6 5 5 3 −0.61 11.0 4944.0 

10 6 6 1 0 −1.19 34.4 13738.0 
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In conclusion, these results show that in approximately 82% of

all solved instances lower total costs can be achieved by using

the DJRP-AT, instead of the DJRP. If the individual replenishment

costs increase, the improvement that the DJRP-AT can achieve de-

creases, however, the number of instances with reported deterio-

rations does not increase. Also, for individual replenishment costs

that better reflect the actual routing cost than the same cost for all

customers, the DJRP-AT still outperforms the DJRP. 

6.3. Comparison DJRP-AT and IRP 

To gain further insight in the quality of the solutions of the

DJRP-AT, we compare the results of the DJRP-AT to the results of

a problem formulation that includes the actual routing problem.

This formulation is a variant of the IRP with a constraint on the

number of customers in a route, hence, this problem is different

than the IRP often addressed in the literature ( Coelho et al., 2014 ).

Therefore, to solve this IRP, the labeling algorithm that solves the

Pricing Problem of the DJRP-AT is replaced by an Integer Lin-

ear Program (ILP) which solves a resource constrained elementary

shortest path problem. The resource is the number of customers

in the route and note that there are arcs with negative cost, hence,

negative cost cycles need to be prevented by adding subtour elimi-

nation constraints. A solution of the ILP is a route with correspond-

ing costs that consists of the arc costs and the fixed costs B . We

use Gurobi to solve the ILP and apply the ‘Solution Pool’ option

to generate multiple solutions in one iteration. Since the solution

method is not especially designed for solving this IRP, only some

of the very small instances, with low values for k M 

, can be solved

within four hours of running time. The differences in computation

time are therefore only indicative. 

Table 4 gives the aggregated results of the comparison between

the DJRP-AT and the IRP, the results per instance can be found in

Appendix D . As in Section 6.2 , the optimal traveling salesman tours

are computed to compare the costs. For each combination of pa-

rameters, the number of instances solved, the number of instances

with equal results for the DJRP-AT and the IRP, the average differ-

ence between the DJRP-AT and the IRP, and the average computa-

tion times of both models are indicated. For 10 customers, 3 time

periods and k M 

= 7 , none of the instances could be solved within

four hours of running time. For 10 customers, 6 time periods and

k = 6 only one instance was solved within four hours. In total
M 
5 instances of the IRP are solved to optimality with computation

imes that are several orders of magnitude higher than those of

he DJRP-AT. Out of the 35 instances, for 16 instances the DJRP-AT

ives the same result as the IRP. On average, the costs of the so-

utions of the IRP are 0.77% lower than the costs of the DJRP-AT.

onsidering that solutions of the DJRP-AT are found by only using

n approximation for the transportation costs, the results are quite

lose to the exact solutions. 

.4. Case study ATM replenishment in Amsterdam 

As described in the introduction, our research is motivated by

 real-life case in ATM replenishment in the Netherlands, in which

 supplier (vendor) decides on which ATMs to replenish per day

nd an LSP (CIT) designs the routes to perform the replenishments.

urrently, the supplier only pays a ‘minor’ transportation cost to

he LSP for each ATM replenishment and no ‘major’ cost. In this

ection we use company data to illustrate the benefit of alternative

eplenishment cost structures based on the DJRP and the proposed

JRP-AT. 

Data on ATMs in Amsterdam and the depot location are pro-

ided by the supplier. The dataset contains per ATM, the address,

torage capacity, dynamic daily demand, and initial inventory level.

o use the existing solution framework, the ATM locations are

apped on the Euclidean plane and the demand data is expressed

n thousands of Euros. Because the future cost structure parame-

ers are not available and current numbers are not disclosed be-

ause of confidentiality reasons, the cost parameters are deter-

ined in consultation with the company to reflect the expected

atio between transportation and inventory holding costs. This in-

ludes minor ( m i ) and major ( B ) transportation cost and inventory

olding rates. A three-day planning horizon is considered appro-

riate and therefore we select the ATMs that need replenishment

ithin the next three days, which results in 75 ATMs. Based on

heir geographical locations and postal codes, the set of ATMs is

aturally split into four subsets of sizes 16, 19, and two of 20 cus-

omers. We let the holding rate vary from 0.1 to 0.3 to represent

ealistic cost ratios. Based on service times and travel times as ob-

erved by the company, we let the maximum number of customers

erved k M 

range from 10 to 13. The same individual replenish-

ent cost m is used for all customers, and tests are performed for
i 
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Table 5 

Percentage improvement DJRP B over DJRP 0 (left), and percentage improvement DJRP-AT over DJRP B (right) in Amsterdam case. 

Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4 

h = 0 . 1 m m m m m m m m 

k M 25 100 25 100 25 100 25 100 25 100 25 100 25 100 25 100 

10 30.1 30.1 30.2 30.2 31.1 31.1 28.2 28.2 11.4 11.4 4.0 4.0 1.1 1.1 8.3 8.3 

11 30.1 30.1 30.3 30.3 29.3 29.3 27.8 27.8 11.4 11.4 4.4 4.4 4.3 4.3 8.1 8.1 

12 30.1 30.1 30.1 30.1 29.2 29.2 24.6 24.6 11.4 11.4 3.1 3.1 4.3 4.3 12.1 12.1 

13 30.1 30.1 32.4 32.4 29.3 29.3 25.0 25.0 11.4 11.4 −0.7 −0.7 4.6 4.6 11.5 11.5 

h = 0 . 2 m m m m m m m m 

k M 25 100 25 100 25 100 25 100 25 100 25 100 25 100 25 100 

10 29.6 29.6 29.1 29.4 30.3 30.3 27.7 27.7 10.8 10.8 3.6 3.6 0.9 0.9 7.7 7.7 

11 29.6 29.6 29.2 29.4 28.6 28.6 27.3 27.3 10.8 10.8 2.7 2.7 3.9 3.9 7.3 7.3 

12 29.6 29.6 29.0 29.3 28.5 28.5 24.1 24.1 10.8 10.8 2.6 2.6 4.0 4.0 11.3 11.3 

13 29.6 29.6 31.4 31.6 28.6 28.6 24.6 24.6 10.8 10.8 −1.2 −1.2 4.0 4.0 10.6 10.6 

h = 0 . 3 m m m m m m m m 

k M 25 100 25 100 25 100 25 100 25 100 25 100 25 100 25 100 

10 30.1 29.1 26.9 28.6 29.5 29.6 26.9 27.2 9.8 10.3 3.8 3.3 0.7 0.7 7.2 7.2 

11 29.8 29.1 27.3 28.7 29.5 27.9 26.5 26.8 10.3 10.3 2.4 2.4 1.4 3.6 6.8 6.8 

12 30.0 29.1 27.9 28.5 27.8 27.9 23.4 23.7 10.0 10.3 1.0 2.0 3.7 3.6 11.0 11.0 

13 30.0 29.1 27.8 30.8 27.8 28.0 23.8 24.2 10.0 10.3 0.4 −1.7 3.7 3.5 10.3 10.3 
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(a) DJRP0 solution
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(b) DJRPB solution
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(c) DJRP-AT solution

Fig. 3. Inventory based replenishment, DJRP B and DJRP-AT solutions for Region 1 ( k M = 11 , m = 100 , h = 0 . 2 , black route in period 1, gray route in period 2, dotted route in 

period 3). 
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alues 25, 50 and 100. We only use the same values for m i for all

ustomers to stay close to the real-life case. 

We estimate the costs of the current situation at the company

y solving the DJRP with the major cost set to zero ( B = 0 , denoted

y DJRP 0 ). To make a fair comparison with the DJRP with major

ost (denoted by DJRP B ) and the DJRP-AT, we subsequently add

he major cost B = 10 0 0 for each period in which a replenishment

akes place. Note that in practice, the current minor cost should

e higher than the future minor cost to cover fixed costs. After

omputing the solutions of the three models, the optimal traveling

alesman tours are computed to compare the costs. 

Table 5 reports the percentage cost improvements of the DJRP B 
ver the DJRP 0 , and of the DJRP-AT over the DJRP B . We only report

he results for m = 25 and m = 100 since the results for m = 50 are

imilar to those for m = 100 . Comparing DJRP 0 and DJRP B shows

hat a substantial cost improvement of 28.6% on average can be

btained, caused by having a route in every period in the DJRP 0 
hile in the DJRP B often only two routes are used. For the com-

arison between DJRP B and DJRP-AT, the results show that for 136

ut of 144 cases, the DJRP-AT results in lower total costs than the

JRP B , with a decrease in total costs up to 12.1%. For the remain-

ng eight instances, the DJRP-AT results in slightly higher costs than
he DJRP B , with differences up to 1.7%. The DJRP-AT solutions are,

n average, 6.4% better than the DJRP B solutions. Table 5 shows

hat the improvement of the DJRP-AT over the DJRP B decreases

lightly for higher holding rates. For the DJRP-AT, it can be benefi-

ial to serve customers earlier in the planning horizon than waiting

ntil the customers run out of stock. However, if the holding rate

s higher, serving customers earlier becomes more costly which re-

ults in higher costs for the DJRP-AT. Interestingly, varying the in-

ividual replenishment cost per ATM does not have a significant

mpact on the results. Furthermore, Table 5 shows that varying the

aximum number of customers has a different impact per region.

or Region 1 the results are similar for all values of k M 

, while

or Region 2, increasing the maximum number of customers to

 M 

= 13 leads to higher costs for the DJRP-AT, compared with the

JRP B . For Region 2, the lower cost solution for k M 

= 13 than for

 M 

= 12 of the DJRP B can be explained by the fact that many cus-

omers in the region are located in close proximity and a few cus-

omers are located further away from these clustered customers. In

he DJRP-AT solutions, the customers not in the cluster are served

n the same day, for all values of k M 

. In the DJRP B solution, for

 M 

= 12 , the customers outside the cluster are not all served on

ne day, which results in high transportation cost, but if k M 

= 13 ,
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these customers are served on the same day, which lowers the to-

tal costs of the DJRP B substantially, as opposed to k M 

= 12 . 

The results of DJRP 0 , DJRP B and DJRP −AT are visualized for Re-

gion 1 in Fig. 3 , with k M 

= 11 , m = 100 , and h = 0 . 2 . The cost im-

provements for this instance are 29.6% and 10.8%, respectively. The

results show that, as expected, the DJRP B gives cheaper solutions

than the DJRP 0 and that the routes given by the DJRP-AT are much

more efficient than the routes given by the DJRP B . Overall, the re-

sults of the case study show that using a DJRP cost structure could

provide significant savings, and the DJRP-AT results in similar im-

provements for the real-life case as for the artificial benchmark in-

stances. 

7. Conclusion 

In practice it is regularly the case that a supplier outsources

customer deliveries to a Logistics Service Provider (LSP); the sup-

plier often pays a fixed transportation fee to the LSP for this ser-

vice. Hence, when deciding on the timing of customer replenish-

ments, the supplier often does not take efficiency of the delivery

routes into account. To optimize costs, suppliers can use joint re-

plenishment models, such as the Dynamic-Demand Joint Replen-

ishment Problem (DJRP) ( Boctor et al., 2004 ) in case of dynamic

demand. The DJRP minimizes inventory holding and replenishment

costs while ensuring that customers do exhaust their stock. The re-

plenishment costs consist of fixed fees that are independent of the

actual routing costs. As a result, we argue that the DJRP is inca-

pable of proposing efficient solutions from a transportation point

of view. Although the fee per delivery is fixed, the costs of the inef-

ficient routes are indirectly paid by the supplier via the negotiated

delivery fees in the following contract. Inspired by the practical rel-

evance of the DJRP, this paper proposes the Dynamic-Demand Joint

Replenishment Problem with Approximated Transportation Costs

(DJRP-AT) in which transportation costs are included by approxi-

mating the optimal tour length for given subsets of customers. Us-

ing the DJRP-AT will result in lower total costs and will increase

resource utilization. 

We propose a mathematical model for the DJRP-AT which is

enriched with two different types of constraints. First, the tour

duration is restricted to resemble the limitations encountered in

practice. Second, the number of customers served per period is

bounded, resulting in the opportunity to investigate the improve-

ment of the proposed DJRP-AT compared with the existing DJRP.

The Dantzig–Wolfe decomposition is applied to the proposed com-

pact formulation and the resulting Master and Pricing Problems

are solved in a Branch-and-Cut-and-Price framework. The Master

Problem defines which subset of customers to replenish per period

of the planning horizon and determines the delivery quantities of

the customers served. The Pricing Problem generates, via a spe-

cially designed labeling algorithm, subsets of customers that can

be served in one period and the transportation costs are then ap-

proximated for these customer subsets. To increase efficiency, la-

bels need to be discarded during the labeling algorithm. However,

existing sufficient dominance rules for shortest path problems are

not adequate for discarding labels in the Pricing Problem of the

DJRP-AT. Therefore, we introduce novel sufficient dominance con-

ditions that make label discarding possible. Costs of the DJRP and

DJRP-AT are compared by computing the optimal traveling sales-

man tours for the subsets of customers selected in the solutions of

both models. 

To assess the value of the DJRP-AT formulation and solution

framework, existing problem instances from the Inventory Routing

Problem (IRP) are adjusted for our experiments. The effectiveness

of two types of valid inequalities that were proposed for the IRP

( Archetti et al., 2007 ) is tested for both types of extra constraints.
he results show that both inequalities are effective for the DJRP-

T, which differs from the results obtained from the IRP. Compu-

ational experiments show average improvements of total trans-

ortation and inventory holding costs of 3.4% to 5%, respectively.

epending on the individual fixed fee charged in the DJRP, maxi-

um improvements around 14.4% are obtained. The DJRP outper-

ormed the DJRP-AT for only a few instances, due to the approxi-

ation of the tour length. The DJRP-AT solutions are also compared

o the equivalent IRP solutions for which a different Pricing Prob-

em is implemented. The results show that for the solved instances,

he costs of the IRP solutions are on average only 0.77% lower than

he costs of the DJRP-AT solutions. The computation times for the

RP are orders of magnitude higher than for the DJRP-AT. Analysis

f a real-life case in ATM replenishment shows that significant cost

eductions can be achieved for both the LSP and the supplier when

sing the DJRP-AT. 

Computational results with the DJRP-AT show that calculat-

ng transportation costs, instead of using fixed fees, in joint re-

lenishment is worthwhile and that approximation of transporta-

ion costs works well. Future research could focus on developing

ovel formulations for this problem, possibly inspired by formula-

ions discussed in Narayanan and Robinson (2006) , that may im-

rove the integrality gaps. Moreover, new valid inequalities can

e proposed to strengthen the linear relaxation of DJRP-AT mod-

ls. 
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ppendix A. Tour length approximations 

Several models to approximate the length of a traveling sales-

an tour have been proposed in the literature. The first type of

odel assumes that no information is available on the customer’s

xact location; the second type assumes that the locations are

nown. Within the first type of models, Beardwood, Halton, and

ammersley (1959) presented a simple formula to approximate

he length of a tour and they showed that their approximation

s asymptotically equal to the shortest traveling salesman tour for

andom points in a given area. The tour length D for an area A and

 uniformly distributed points is approximated by: 

 ≈ φ
√ 

AM (14)

n which φ is a constant, approximately 0.75 for the Euclidean

pace. Eilon, Watson-Gandy, and Christofides (1971) presented a

ore accessible proof for this formula. An extension was proposed

y Daganzo (1984a) for the case in which the depot is not po-

itioned in the same area as the customers. Therefore, a term

or the line-haul distance from the depot to the customer’s area

s included. A variant of this formula was studied by Daganzo

1984b) who introduced a strip-strategy. In this method, non-

verlapping strips of an optimized width cover the area in which

he customers are located. The expected length of a route in one

trip is easy to compute, hence, the routes for all strips together

rovide a tour length approximation. 

Chien (1992) tested seven different approximations for the trav-

ling salesman tour length that have the same functional form as

14) . The author compared approximations that vary in the calcula-

ion of the area A and considered models both with and without an

xtra term for the depot. The considered shapes for the area were

he smallest rectangle covering the customers, the smallest rectan-

le that covers both the depot and the customers, a circular sector

https://doi.org/10.13039/501100003246
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hat covers both the depot and the customers and finally a lune

haped area covering all the customers. For these models the best

alues for the constants were derived by testing the models on in-

tances up to 30 customers. The approximations of Chien (1992) al-

ow for a comparison between subsets of customers that have the

ame cardinality. In comparison, the approximation by Beardwood

t al. (1959) in Eq. (14) assumes the same area ( A ) for each subset

nd therefore cannot be used to compare equally sized subsets of

ustomers. 

The parameters of formula (14) and Chien ’s model (1992) , that

ncludes a term for the depot, were reassessed by Kwon, Golden,

nd Wasil (1995) by considering instances with up to 80 customers

ocated in rectangular areas having different length-to-width ratios.

wo new models were introduced that include this ratio and the

erformance of these newly introduced models seems good. How-

ver, the models have only been tested for rectangular areas and

ery specific information on the input, the ratio between length

nd width of the area, has to be known for these tour length ap-

roximations limiting their practical use. Hindle and Worthington

2004) used simulation to refine Eq. (14) for a 100 x 100 square

rea by including a term with the natural logarithm of the number

f customers. The results indicated that the formula by Beardwood

t al. (1959) could be improved by using a different functional

orm, however, this new result was not generalized for other sizes

nd shapes of areas. More recently, Çavdar and Sokol (2015) tested

everal existing tour length approximations, including those of

eardwood et al. (1959) and Chien (1992) , and introduced a new

odel incorporating the standard deviation of the horizontal and

ertical customer coordinates. The tested instances have different

ode dispersions and the areas in which the customers are located

ave different shapes. The computations for the newly introduced

pproximation are more complicated than the models proposed by

eardwood et al. (1959) and Chien (1992) . Moreover, the exper-

ments showed that the new model accurately approximates the

ctual tour length for large numbers of customers, however, the

pproximation deviates significantly from the optimal tour length

or small numbers of customers. 

The previous mentioned models are all approximations for the

ength of a single tour. Extensions to multiple, capacitated, vehi-

les can be found in Daganzo (1984a) ; Figliozzi (2008) ; Langevin

nd Soumis (1989) and Turkensteen and Klose (2012) . These pub-

ications include similar ideas as in the single tour approximation

odels and they are extended to handle multiple tours. Note that

angevin and Soumis (1989) also considered a time constraint on

he tours. 

Applications of the above mentioned tour length approxima-

ion models are mainly found in optimization of passenger trans-

ortation systems ( Langevin, Mbaraga, & Campbell, 1996 ) and in

ocation optimization models ( Shen & Qi, 2007 ). Shen and Qi

2007) used an approximation for the Vehicle Routing Problem

VRP) by Haimovich and Rinnooy Kan (1985) that requires the

ength of a tour as input, which in turn is approximated by (14) .

ther applications include fleet composition models, e.g., Jabali,

endreau, and Laporte (2012) who applied a VRP approximation,

nd production and distribution system design, e.g., Dasci and

erter (2001) who used the approximation in Eq. (14) . For a more

laborate overview of continuous approximation models and appli-

ations we refer to Franceschetti, Jabali, and Laporte (2017) . 

ppendix B. Complexity 

Consider problem formulation (3a) –(3h) with the following

unction for the approximated transportation cost: 

f (s ) = B + φ
√ 

AM (15) 
b  
n which A is the area of the predefined rectangle in which all cus-

omers and the depot in the instance are located and M is the

umber of points in the tour (depot and customers). This means

 is identical for every subset of customers s . Furthermore, assume

he inventory holding rates are zero and that B = 0 . The objective

unction of the DJRP-AT becomes 
∑ 

t∈ T φ
√ 

AM t = 

∑ 

t∈ T φ′ √ 

M t with

 t the number of points visited in period t ∈ T ( φ′ = φ
√ 

A ). This

bjective is minimized if �t M t is minimal. 

Now, consider two different types of subset composition con-

traints: limited tour duration and a maximum on the number of

ustomers in the subset. For this cost structure, these two side

onstraints are equivalent. The maximum number of customers in

 set is imposed by M t ≤ k M 

+ 1 . The duration is computed by the

econd part of (15) , hence, given the fixed value of A the constraint
′ √ 

M t ≤ k ′ D can be written as M t ≤ k D = (k ′ D /φ′ ) 2 . Therefore the

tructure of the constraint is the same for a maximum on the tour

uration and on the number of customers. 

Considering the functional forms of the objective and the con-

traints, the problem is to minimize the sum of the number of

isits per period under the constraints that a maximum number

f customers can be visited per period and that customers cannot

un out of stock. A special case of this problem is when only one

ustomer can be visited per period ( k M 

= 1 ), also known as the

o-called Pinwheel Scheduling Problem (or Windows Scheduling

roblem). In the Pinwheel Scheduling Problem, a feasible sched-

le must be found to repeatedly process a set of jobs; for each job

 a time limit between two executions is given which is the pe-

iod of a job p j . This is similar to replenishing customers in such

 way that they do not run out of stock: after a replenishment,

alculations can determine the latest possible timing of the next

elivery. That Pinwheel Scheduling is a special case of the DJRP-

T can be seen by assuming that inventory holding costs are zero,

 = 0 and by introducing customers who must be replenished ev-

ry period, whose locations define the rectangle containing all cus-

omers. Then, the area in the transportation cost function is the

ame in every period, which means that selecting which customers

o replenish is based solely on inventory levels and the maximum

umber of customers to replenish. This requires finding a feasi-

le replenishment schedule, which is equivalent to the Pinwheel

cheduling Problem. 

It was recently shown by Jacobs and Longo (2014) that the

inwheel Scheduling Problem cannot be solved in pseudopolyno-

ial time, unless there is a randomized algorithm solving the clas-

ical problem Satisfiability in quasipolynomial time. Since this is

nlikely, it is plausible that the Pinwheel Scheduling Problem is

ot solvable in polynomial time. Therefore, a final conclusion on

he complexity of the DJRP-AT with cost function (15) cannot be

iven, but it is very unlikely that this problem is mathematically

asy. 

Now consider the case in which the area in the cost function

 ( s ) is the smallest rectangle that covers the depot and the cus-

omers in the subset. Then R ( s ) is dependent on the specific subset

 that must be visited. The problem with A equal to the complete

rea, is a special case of the problem with the smallest rectangle

 ( s ). This can be easily seen by creating some customers in the cor-

ers of the complete area requiring replenishment every period;

hen the smallest rectangle is equal to the complete area in ev-

ry period, resulting in a reduction from one problem to the other.

herefore, if the problem is NP-complete with A (the whole area),

hen the problem is also NP-complete with R ( s ) (the smallest rect-

ngle covering the points). 

ppendix C. Derivation �( L , L ′ ) 

The value of �( L , L ′ ) in condition P.3 of Proposition 1 should

e such that for every possible extension P ⊆ N \ s ′ condition D.2
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holds. Therefore, we examine c̄ t (L � P ) and c̄ t (L ′ � P ) . For ease of

notation denote s ( L ) by s and let R ( s ) denote the area of the small-

est rectangle covering the depot and the customers in s . Further-

more, define π j := π1 
jt 

and πt := π2 
t . 

c̄ t (L � P ) = φ
√ 

R (s ∪ P ) | s ∪ P | + 

∑ 

j∈ s 
u j π j + 

∑ 

j∈ P 
u j π j − πt 

= φ
√ 

(R (s ∪ P ) − R (s )) | s ∪ P | + R (s ) | s | + R (s ) | P | 
+ 

∑ 

j∈ s 
u j π j + 

∑ 

j∈ P 
u j π j − πt 

≤ φ
√ 

(R (s ∪ P ) − R (s )) | s ∪ P | + φ
√ 

R (s ) | s | 
+ φ

√ 

R (s ) | P | + 

∑ 

j∈ s 
u j π j + 

∑ 

j∈ P 
u j π j − πt 

= c̄ t (L ) + φ
√ 

(R (s ∪ P ) − R (s )) | s ∪ P | 
+ φ

√ 

R (s ) | P | + 

∑ 

j∈ P 
u j π j (16)

and similarly 

c̄ t (L ′ � P ) ≤ c̄ t (L ′ ) + φ
√ 

(R (s ′ ∪ P ) − R (s ′ )) | s ′ ∪ P | 
+ φ

√ 

R (s ′ ) | P | + 

∑ 

j∈ P 
u j π j (17)

Hence, we can express c̄ t (L � P ) and c̄ t (L ′ � P ) in terms of c̄ t (L )

and c̄ t (L ′ ) . It is already known that c̄ t (L ) < c̄ t (L ′ ) , for dominance

also c̄ t (L � P ) ≤ c̄ t (L ′ � P ) has to hold. 

c̄ t (L � P ) − c̄ t (L ′ � P ) 

= c̄ t (L ) + φ
√ 

(R (s ∪ P ) − R (s )) | s ∪ P | + φ
√ 

R (s ) | P | + 

∑ 

j∈ P 
u j π j 

− c̄ t (L ′ ) −φ
√ 

(R (s ′ ∪ P ) −R (s ′ )) | s ′ ∪ P | −φ
√ 

R (s ′ ) | P | − ∑ 

j∈ P 
u j π j 

= c̄ t (L ) − c̄ t (L ′ ) + φ
√ 

(R(s ∪ P ) − R(s )) | s ∪ P | 
−φ

√ 

(R(s ′ ∪ P ) − R(s ′ )) | s ′ ∪ P | 
+ φ

√ 

R(s ) | P | − φ
√ 

R(s ′ ) | P | (18)

To find a dominance rule, an upper bound (UB) on the bold

part in the last expression must be determined to guarantee
Table 6 

Results per instance for duration constraint for T = 3 and

Time DJRP-AT 

Instance N T k D (s) Solution Tre

abs1n5 5 3 600 0 2868 12

abs2n5 5 3 600 0 2628 6 

abs3n5 5 3 600 0 4310 2 

abs4n5 5 3 600 0 2657 4 

abs5n5 5 3 600 0 1753 0 

abs1n5 5 3 800 0 2798 8 

abs2n5 5 3 800 0 1704 0 

abs3n5 5 3 800 1 3330 6 

abs4n5 5 3 800 0 1746 0 

abs5n5 5 3 800 0 1753 0 

abs1n5 5 3 10 0 0 0 1892 0 

abs2n5 5 3 10 0 0 0 1704 0 

abs3n5 5 3 10 0 0 0 3330 20

abs4n5 5 3 10 0 0 0 1746 0 

abs5n5 5 3 10 0 0 0 1753 0 

abs1n5 5 3 1200 0 1892 0 

abs2n5 5 3 1200 0 1704 0 

abs3n5 5 3 1200 0 2240 0 

abs4n5 5 3 1200 0 1746 0 

abs5n5 5 3 1200 0 1753 0 
ominance. 

B = φ
√ 

(R (s ∪ P ) − R (s )) | s ∪ P | − φ
√ 

(R (s ′ ∪ P ) − R (s ′ )) | s ′ ∪ P | 
+ φ

√ 

R (s ) | P | − φ
√ 

R (s ′ ) | P | 
≤ φ

√ 

(R (s ∪ P ) − R (s )) | s ∪ P | − φ
√ 

(R (s ′ ∪ P ) − R (s ′ )) | s ′ ∪ P | 
≤ φ

√ 

(R (s ∪ P ) − R (s )) | s ∪ P | − (R (s ′ ∪ P ) − R (s ′ )) | s ′ ∪ P | 
= φ

√ 

R (s ∪ P ) | s ∪ P | −R (s ′ ∪ P ) | s ′ ∪ P | + R (s ′ ) | s ′ ∪ P | −R (s ) | s ∪ P

≤ φ
√ 

R (s ′ ) | s ′ ∪ P | − R (s ) | s ∪ P | (19

he first inequality follows from R (s ) − R (s ′ ) < 0 and the sec-

nd inequality follows from 

√ 

a −
√ 

b ≤ √ 

a − b given that a ≥ b ≥ 0.

hen, by rearranging terms the equality is found and the

ast inequality follows from R ( s ∪ P ) ≤ R ( s ′ ∪ P ) and | s ∪ P | < | s ′ ∪ P |.

ence, 

(L, L ′ ) = φ
√ 

R (s ′ ) | s ′ ∪ P | − R (s ) | s ∪ P | . (20)

ppendix D. Results per instance 

Tables 6–12 show the results per instance for the DJRP-AT. In

ables 6–9 results are presented for the model with a constraint on

he duration; the remaining tables show the results of the model

ith limit on the number of customers served per period. In all ta-

les, the instance number, number of customers N , number of pe-

iods T , and the upper bound k on the extra constraint are given.

urthermore, the solution time (‘Time (s)’) in seconds, the objec-

ive value (‘DJRP-AT Solution’), the size of the branch-and-bound

ree (‘Tree’), the number of columns in the final model (‘Cols’)

nd the integrality gap (‘Gap (%)’) are presented. For all tables,

he total costs computed with the traveling salesman tour solution

re given in the column indicated by ‘TSP Solution’. For Tables 6–

 the final column ‘Difference’ indicates the percentage differ-

nce between the model objective value and the actual costs

ith the tour costs. This difference indicates the cost underesti-

ation of the route length approximation, as opposed to the ac-

ual shortest tour. In Tables 10–12 a comparison with the solu-

ion of the DJRP is shown for individual replenishment costs m =
5 , 100 , prop , zones , quad by giving the total costs and the per-

entage difference with the DJRP-AT solution (‘TSP Sol’). In Table 13

he results per instance of the comparison between the DJRP-AT

nd the equivalent IRP are presented. 
 N = 5 , 10 . 

Gap TSP Difference 

e Columns (%) Solution (%) 

 65 15 3471 −17.4 

58 24 3146 −16.5 

30 21 5250 −17.9 

52 21 3050 −12.9 

40 0 2030 −13.7 

68 22 3391 −17.5 

44 0 1975 −13.7 

53 12 4169 −20.1 

30 0 1983 −11.9 

40 0 2030 −13.7 

59 0 2225 −15.0 

44 0 1975 −13.7 

 64 24 4169 −20.1 

30 0 1983 −11.9 

40 0 2030 −13.7 

59 0 2225 −15.0 

44 0 1975 −13.7 

37 0 2592 −13.6 

30 0 1983 −11.9 

40 0 2030 −13.7 

( continued on next page ) 
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Table 6 ( continued ) 

Time DJRP-AT Gap TSP Difference 

Instance N T k D (s) Solution Tree Columns (%) Solution (%) 

abs1n10 10 3 600 1 4802 18 311 12 5935 −19.1 

abs2n10 10 3 600 0 x 2 144 − − −
abs3n10 10 3 600 0 4272 6 205 9 5485 −22.1 

abs4n10 10 3 600 0 x 2 199 − − −
abs5n10 10 3 600 1 4736 78 468 23 5481 −13.6 

abs1n10 10 3 800 0 3642 6 306 3 4332 −15.9 

abs2n10 10 3 800 2 5192 40 401 25 6422 −19.1 

abs3n10 10 3 800 0 3429 0 304 0 4073 −15.8 

abs4n10 10 3 800 1 4974 94 660 29 6128 −18.8 

abs5n10 10 3 800 1 4678 24 668 30 5442 −14.0 

abs1n10 10 3 10 0 0 0 3642 14 808 13 4332 −15.9 

abs2n10 10 3 10 0 0 1 3938 12 750 9 4585 −14.1 

abs3n10 10 3 10 0 0 0 3429 6 760 8 4073 −15.8 

abs4n10 10 3 10 0 0 1 4820 38 1210 34 5783 −16.7 

abs5n10 10 3 10 0 0 1 3591 12 847 19 4107 −12.6 

abs1n10 10 3 1200 0 3474 8 1077 18 4406 −21.2 

abs2n10 10 3 1200 1 3830 20 1051 16 4452 −14.0 

abs3n10 10 3 1200 0 3429 6 1238 12 4073 −15.8 

abs4n10 10 3 1200 1 3572 20 1350 22 4237 −15.7 

abs5n10 10 3 1200 0 2520 0 1034 0 2728 −7.6 

x: instance infeasible. 

Table 7 

Results per instance for duration constraint for T = 3 and N = 15 , 20 . 

Time DJRP-AT Gap TSP Difference 

Instance N T k D (s) Solution Tree Columns (%) Solution (%) 

abs1n15 15 3 600 0 x 2 607 − − −
abs2n15 15 3 600 1 x 2 541 − − −
abs3n15 15 3 600 0 x 2 531 − − −
abs4n15 15 3 600 0 x 2 484 − − −
abs5n15 15 3 600 1 x 2 491 − − −
abs1n15 15 3 800 10 5361 108 2901 19 6208 −13.6 

abs2n15 15 3 800 5 5498 50 1991 17 6182 −11.1 

abs3n15 15 3 800 1 x 14 1082 − − −
abs4n15 15 3 800 1 x 6 1047 − − −
abs5n15 15 3 800 3 5411 46 1888 15 6067 −10.8 

abs1n15 15 3 10 0 0 6 5159 28 6395 26 5698 −9.5 

abs2n15 15 3 10 0 0 8 5387 124 6223 25 5972 −9.8 

abs3n15 15 3 10 0 0 7 5480 52 2389 15 6580 −16.7 

abs4n15 15 3 10 0 0 11 5438 200 3914 27 6061 −10.3 

abs5n15 15 3 10 0 0 12 5401 164 6278 24 6038 −10.5 

abs1n15 15 3 1200 11 4194 80 21348 18 4873 −13.9 

abs2n15 15 3 1200 3 4477 14 12174 16 4753 −5.8 

abs3n15 15 3 1200 1 4394 10 4647 6 5035 −12.7 

abs4n15 15 3 1200 12 5401 78 13773 31 5824 −7.3 

abs5n15 15 3 1200 6 4234 24 15278 15 4588 −7.7 

abs1n20 20 3 600 1 x 2 490 − − −
abs2n20 20 3 600 0 x 2 1393 − − −
abs3n20 20 3 600 0 x 2 776 − − −
abs4n20 20 3 600 1 x 2 603 − − −
abs5n20 20 3 600 0 x 2 450 − − −
abs1n20 20 3 800 1 x 2 1373 − − −
abs2n20 20 3 800 22 5755 110 7714 10 6518 −11.7 

abs3n20 20 3 800 1 x 2 1909 − − −
abs4n20 20 3 800 1 x 2 2137 − − −
abs5n20 20 3 800 1 x 2 1520 − − −
abs1n20 20 3 10 0 0 34 x 94 8085 − − −
abs2n20 20 3 10 0 0 268 5648 530 33518 19 6228 −9.3 

abs3n20 20 3 10 0 0 18 6161 36 12315 16 7073 −12.9 

abs4n20 20 3 10 0 0 4 x 10 9090 − − −
abs5n20 20 3 10 0 0 1 x 2 9487 − − −
abs1n20 20 3 1200 2122 6312 984 107421 27 6944 −9.1 

abs2n20 20 3 1200 138 5546 34 72993 20 6160 −10.0 

abs3n20 20 3 1200 248 5979 148 63819 25 6649 −10.1 

abs4n20 20 3 1200 1235 6532 984 71117 26 7341 −11.0 

abs5n20 20 3 1200 4479 6714 3540 145401 20 7592 −11.6 

x: instance infeasible. 
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Table 8 

Results per instance for duration constraint for T = 6 and N = 5 , 10 . 

Time DJRP-AT Gap TSP Difference 

Instance N T k D (s) Solution Tree Columns (%) Solution (%) 

abs1n5 5 6 600 1 6252 28 106 3 7518 −16.8 

abs2n5 5 6 600 1 5527 52 145 16 6694 −17.4 

abs3n5 5 6 600 0 9178 0 36 0 11474 −20.0 

abs4n5 5 6 600 0 6061 18 82 5 7255 −16.5 

abs5n5 5 6 600 0 4481 2 109 0 5281 −15.1 

abs1n5 5 6 800 1 6032 26 117 12 7305 −17.4 

abs2n5 5 6 800 0 4565 0 74 0 5462 −16.4 

abs3n5 5 6 800 0 8163 46 97 9 10328 −21.0 

abs4n5 5 6 800 0 5126 2 91 1 5916 −13.3 

abs5n5 5 6 800 0 4481 2 109 0 5281 −15.1 

abs1n5 5 6 10 0 0 0 5156 2 109 1 6124 −15.8 

abs2n5 5 6 10 0 0 0 4565 0 74 0 5462 −16.4 

abs3n5 5 6 10 0 0 1 7223 58 129 11 9033 −20.0 

abs4n5 5 6 10 0 0 0 5126 2 91 1 5916 −13.3 

abs5n5 5 6 10 0 0 0 4481 2 109 0 5281 −15.1 

abs1n5 5 6 1200 0 5156 2 109 1 6124 −15.8 

abs2n5 5 6 1200 0 4565 0 74 0 5462 −16.4 

abs3n5 5 6 1200 0 6149 0 69 0 7235 −15.0 

abs4n5 5 6 1200 0 5126 2 91 1 5916 −13.3 

abs5n5 5 6 1200 1 4481 2 109 0 5281 −15.1 

abs1n10 10 6 600 6 x 28 479 − − −
abs2n10 10 6 600 1 x 2 194 − − −
abs3n10 10 6 600 39 x 280 759 − − −
abs4n10 10 6 600 1 x 2 255 − − −
abs5n10 10 6 600 39 9785 266 899 8 11330 −13.6 

abs1n10 10 6 800 16 8699 170 974 7 10203 −14.7 

abs2n10 10 6 800 20 10435 132 854 12 12832 −18.7 

abs3n10 10 6 800 3 8456 34 752 5 9997 −15.4 

abs4n10 10 6 800 4 10044 36 653 5 12388 −18.9 

abs5n10 10 6 800 105 9681 678 1546 17 11303 −14.3 

abs1n10 10 6 10 0 0 8 7832 66 1384 7 8828 −11.3 

abs2n10 10 6 10 0 0 26 9225 208 1343 11 11047 −16.5 

abs3n10 10 6 10 0 0 9 7674 58 2090 6 8790 −12.7 

abs4n10 10 6 10 0 0 13 9988 102 1307 16 12187 −18.0 

abs5n10 10 6 10 0 0 30 7904 184 2207 10 8885 −11.0 

abs1n10 10 6 1200 16 7672 152 2182 14 8951 −14.3 

abs2n10 10 6 1200 20 8174 130 2084 9 9510 −14.0 

abs3n10 10 6 1200 5 7467 72 2729 11 8670 −13.9 

abs4n10 10 6 1200 19 8095 148 2179 9 9334 −13.3 

abs5n10 10 6 1200 1 6785 10 1698 3 7526 −9.8 

x: instance infeasible. 

Table 9 

Results per instance for duration constraint for T = 6 and N = 15 , 20 . 

Time DJRP-AT Gap TSP Difference 

Instance N T k D (s) Solution Tree Columns (%) Solution (%) 

abs1n15 15 6 600 2 x 2 906 − − −
abs2n15 15 6 600 0 x 2 665 − − −
abs3n15 15 6 600 2 x 2 650 − − −
abs4n15 15 6 600 1 x 2 707 − − −
abs5n15 15 6 600 1 x 2 565 − − −
abs1n15 15 6 800 7201 + 12454 29997 − − −
abs2n15 15 6 800 123 x 392 4239 − − −
abs3n15 15 6 800 1 x 2 1338 − − −
abs4n15 15 6 800 2 x 2 1499 − − −
abs5n15 15 6 800 23 x 76 3169 − − −
abs1n15 15 6 10 0 0 7201 + 17038 32513 − − −
abs2n15 15 6 10 0 0 154 11027 532 7814 11 12274 −10.2 

abs3n15 15 6 10 0 0 7201 + 19738 18391 − − −
abs4n15 15 6 10 0 0 48 11018 156 6099 9 12132 −9.2 

abs5n15 15 6 10 0 0 259 11106 602 11452 11 12379 −10.3 

abs1n15 15 6 1200 1851 9194 3610 47858 13 10180 −9.7 

abs2n15 15 6 1200 7201 + 15552 42386 − − −
abs3n15 15 6 1200 7203 + 11598 46260 − − −
abs4n15 15 6 1200 3312 11018 7030 37617 15 12132 −9.2 

abs5n15 15 6 1200 132 9322 334 23432 9 9682 −3.7 

abs1n20 20 6 600 1 x 2 591 − − −
abs2n20 20 6 600 3 x 2 2306 − − −
abs3n20 20 6 600 2 x 2 758 − − −
abs4n20 20 6 600 1 x 2 605 − − −

( continued on next page ) 
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Table 9 ( continued ) 

Time DJRP-AT Gap TSP Difference 

Instance N T k D (s) Solution Tree Columns (%) Solution (%) 

abs5n20 20 6 600 0 x 2 342 − − −
abs1n20 20 6 800 2 x 2 1617 − − −
abs2n20 20 6 800 127 x 170 21133 − − −
abs3n20 20 6 800 3 x 2 2933 − − −
abs4n20 20 6 800 3 x 2 2822 − − −
abs5n20 20 6 800 2 x 2 1550 − − −
abs1n20 20 6 10 0 0 4 x 2 8483 − − −
abs2n20 20 6 10 0 0 7201 + 4702 121980 − − −
abs3n20 20 6 10 0 0 1850 x 1716 35683 − − −
abs4n20 20 6 10 0 0 4 x 2 9973 − − −
abs5n20 20 6 10 0 0 6 x 2 14757 − − −
abs1n20 20 6 1200 7202 + 1596 151670 − − −
abs2n20 20 6 1200 7203 + 1010 240387 − − −
abs3n20 20 6 1200 7202 + 1862 233434 − − −
abs4n20 20 6 1200 7201 + 2894 1454 4 4 − − −
abs5n20 20 6 1200 7201 + 2788 239743 − − −

x: instance infeasible. +: instance not solved within two hours. 

Table 10 

Results per instance for maximum on number of customers constraint for T = 3 and N = 5 , 10 . 

DJRP Solution Difference (%) 

Time DJRP-AT Gap TSP m m 

Instance N T k M (s) Solution Tree Cols (%) Sol 25 100 prop zones quad 25 100 prop zones quad 

abs1n5 5 3 3 0 2868 12 62 11 3471 3581 3581 3581 3581 3581 3.1 3.1 3.1 3.1 3.1 

abs2n5 5 3 3 0 2628 6 59 9 3146 3413 3413 3413 3413 3413 7.8 7.8 7.8 7.8 7.8 

abs3n5 5 3 3 0 3330 8 53 10 4169 4568 4169 4169 4140 4140 8.7 0.0 0.0 −0.7 −0.7 

abs4n5 5 3 3 0 3740 10 63 36 4335 4335 4335 4335 4335 4335 0.0 0.0 0.0 0.0 0.0 

abs5n5 5 3 3 0 2673 6 57 11 3260 3246 3246 3246 3246 3246 −0.4 −0.4 −0.4 −0.4 −0.4 

abs1n5 5 3 4 1 2798 8 68 22 3391 3581 3581 3583 3581 3581 5.3 5.3 5.4 5.3 5.3 

abs2n5 5 3 4 0 2628 6 58 24 3146 3392 3392 3392 3392 3392 7.2 7.2 7.2 7.2 7.2 

abs3n5 5 3 4 0 3330 20 64 24 4169 4563 4169 4169 4127 4127 8.6 0.0 0.0 −1.0 −1.0 

abs4n5 5 3 4 0 2657 4 55 24 3050 3050 3050 3050 3050 3050 0.0 0.0 0.0 0.0 0.0 

abs5n5 5 3 4 0 2668 6 67 25 3187 3187 3187 3187 3187 3187 0.0 0.0 0.0 0.0 0.0 

abs1n10 10 3 5 0 3737 4 531 2 4315 4315 4315 4315 4315 4315 0.0 0.0 0.0 0.0 0.0 

abs2n10 10 3 5 1 4045 6 675 5 4842 4842 4842 4842 4842 4842 0.0 0.0 0.0 0.0 0.0 

abs3n10 10 3 5 0 3429 0 676 0 4073 4502 4502 4502 4502 4502 9.5 9.5 9.5 9.5 9.5 

abs4n10 10 3 5 1 5003 58 979 28 6163 6297 6654 6032 6032 6124 2.1 7.4 −2.2 −2.2 −0.6 

abs5n10 10 3 5 1 3859 8 545 6 4351 4351 4351 4351 4351 4351 0.0 0.0 0.0 0.0 0.0 

abs1n10 10 3 6 0 3642 8 707 8 4332 4315 4315 4315 4315 4315 −0.4 −0.4 −0.4 −0.4 −0.4 

abs2n10 10 3 6 1 3939 16 788 11 4559 4830 4842 4842 4830 4842 5.6 5.8 5.8 5.6 5.8 

abs3n10 10 3 6 0 3429 6 962 3 4073 4386 4386 4386 4386 4386 7.1 7.1 7.1 7.1 7.1 

abs4n10 10 3 6 1 4820 18 1061 32 5783 5785 6258 5665 5785 5665 0.0 7.6 −2.1 0.0 −2.1 

abs5n10 10 3 6 0 3652 12 820 10 4192 4436 4351 4351 4431 4374 5.5 3.7 3.7 5.4 4.2 

abs1n10 10 3 7 1 3642 16 1035 14 4332 4315 4315 4315 4315 4315 −0.4 −0.4 −0.4 −0.4 −0.4 

abs2n10 10 3 7 1 3830 16 1018 15 4452 4830 4842 4842 4830 4842 7.8 8.1 8.1 7.8 8.1 

abs3n10 10 3 7 0 3429 6 1598 9 4073 4399 4386 4386 4386 4386 7.4 7.1 7.1 7.1 7.1 

abs4n10 10 3 7 1 3716 16 1178 18 4336 4339 4336 4336 4339 4339 0.1 0.0 0.0 0.1 0.1 

abs5n10 10 3 7 0 3591 10 961 15 4107 4458 4351 4351 4431 4374 7.9 5.6 5.6 7.3 6.1 

abs1n10 10 3 8 0 3545 8 1117 18 4299 4315 4315 4315 4315 4315 0.4 0.4 0.4 0.4 0.4 

abs2n10 10 3 8 1 3719 14 1080 18 4430 4830 4842 4842 4830 4842 8.3 8.5 8.5 8.3 8.5 

abs3n10 10 3 8 0 3429 6 1366 13 4073 4399 4386 4386 4386 4386 7.4 7.1 7.1 7.1 7.1 

abs4n10 10 3 8 1 3572 22 1262 20 4237 4339 4336 4336 4339 4339 2.3 2.3 2.3 2.3 2.3 

abs5n10 10 3 8 0 3543 8 1080 19 3962 4458 4351 4351 4431 4374 11.1 8.9 8.9 10.6 9.4 

Table 11 

Results per instance for maximum on number of customers constraint for T = 3 and N = 15 , 20 . 

DJRP Solution Difference (%) 

Time DJRP-AT Gap TSP m m 

Instance N T k M (s) Solution Tree Cols (%) Sol 25 100 prop zones quad 25 100 prop zones quad 

abs1n15 15 3 7 20 5228 178 5765 19 5843 6422 6571 6108 6225 6108 9.0 11.1 4.3 6.1 4.3 

abs2n15 15 3 7 15 5396 146 5061 19 5965 6793 6316 6674 6405 6397 12.2 5.6 10.6 6.9 6.8 

abs3n15 15 3 7 7 5419 66 2974 16 6006 6729 6729 6729 6729 6729 10.8 10.8 10.8 10.8 10.8 

abs4n15 15 3 7 22 5499 154 6378 21 5972 6781 6703 6645 6756 6799 11.9 10.9 10.1 11.6 12.2 

abs5n15 15 3 7 24 5465 186 10481 21 5996 6646 6555 6561 6521 6455 9.8 8.5 8.6 8.1 7.1 

abs1n15 15 3 8 7 4198 46 9429 10 4862 4836 4862 4836 4836 4836 −0.5 0.0 −0.5 −0.5 −0.5 

abs2n15 15 3 8 4 4477 18 12731 9 4753 4763 4753 4753 4753 5019 0.2 0.0 0.0 0.0 5.3 

abs3n15 15 3 8 2 4416 14 7909 3 4967 5323 4989 4989 4989 4989 6.7 0.4 0.4 0.4 0.4 

( continued on next page ) 
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Table 11 ( continued ) 

DJRP Solution Difference (%) 

Time DJRP-AT Gap TSP m m 

Instance N T k M (s) Solution Tree Cols (%) Sol 25 100 prop zones quad 25 100 prop zones quad 

abs4n15 15 3 8 25 5453 188 14584 27 5957 6112 6164 5978 6120 6120 2.5 3.4 0.4 2.7 2.7 

abs5n15 15 3 8 12 5282 102 11395 23 6155 6550 6303 5975 60 0 0 60 0 0 6.0 2.3 −3.0 −2.6 −2.6 

abs1n15 15 3 9 14 4198 100 17735 15 4636 4863 4862 4836 4863 4836 4.7 4.6 4.1 4.7 4.1 

abs2n15 15 3 9 5 4403 24 14836 13 4735 5017 4753 4753 4753 5019 5.6 0.4 0.4 0.4 5.7 

abs3n15 15 3 9 5 4400 16 12516 8 4994 5193 4921 4921 4984 4984 3.8 −1.5 −1.5 −0.2 −0.2 

abs4n15 15 3 9 6 4478 26 17787 16 4813 4918 4813 4813 4927 4927 2.1 0.0 0.0 2.3 2.3 

abs5n15 15 3 9 5 4265 16 16694 9 4655 4729 4655 4655 4719 4692 1.6 0.0 0.0 1.4 0.8 

abs1n15 15 3 10 2 3911 16 17735 13 4394 4863 4862 4836 4863 4836 9.6 9.6 9.1 9.6 9.1 

abs2n15 15 3 10 3 4272 16 22755 14 4463 5017 4753 4753 4753 5019 11.0 6.1 6.1 6.1 11.1 

abs3n15 15 3 10 4 4370 16 14612 11 4970 5188 4921 4921 4965 4965 4.2 −1.0 −1.0 −0.1 −0.1 

abs4n15 15 3 10 14 4451 60 24897 19 4767 4918 4813 4813 4927 4927 3.1 1.0 1.0 3.2 3.2 

abs5n15 15 3 10 8 4234 32 26594 14 4588 4706 4655 4655 4719 4692 2.5 1.4 1.4 2.8 2.2 

abs1n15 15 3 11 4 3894 26 24961 15 4164 4863 4862 4836 4863 4836 14.4 14.3 13.9 14.4 13.9 

abs2n15 15 3 11 4 4221 20 27849 16 4417 5017 4753 4753 4753 5019 12.0 7.1 7.1 7.1 12.0 

abs3n15 15 3 11 7 4348 24 19962 15 5054 5169 4921 4921 4897 4897 2.2 −2.7 −2.7 −3.2 −3.2 

abs4n15 15 3 11 10 4285 42 21741 20 4627 4918 4813 4813 4927 4927 5.9 3.9 3.9 6.1 6.1 

abs5n15 15 3 11 6 4135 26 21417 16 4410 4706 4655 4655 4719 4692 6.3 5.3 5.3 6.5 6.0 

abs1n20 20 3 10 1536 5980 196 257354 27 6257 6837 6837 6257 6696 6257 8.5 8.5 0.0 6.6 0.0 

abs2n20 20 3 10 55 4661 4 159085 3 4760 5211 5211 5211 5211 5211 8.7 8.7 8.7 8.7 8.7 

abs3n20 20 3 10 207 4886 22 321432 8 5418 5496 5496 5496 5496 5496 1.4 1.4 1.4 1.4 1.4 

abs4n20 20 3 10 4121 6033 640 282808 21 7157 7768 7604 7100 7209 7129 7.9 5.9 −0.8 0.7 −0.4 

abs5n20 20 3 10 2116 6202 296 671812 16 6929 7502 6929 6929 7247 7247 7.6 0.0 0.0 4.4 4.4 

abs1n20 20 3 11 2060 5090 146 294071 9 5158 5172 5158 5158 5172 5172 0.3 0.0 0.0 0.3 0.3 

abs2n20 20 3 11 322 4655 18 160968 8 4815 5157 5202 5202 5247 5247 6.6 7.4 7.4 8.2 8.2 

abs3n20 20 3 11 612 4870 38 237531 9 5416 5550 5543 5543 5543 5543 2.4 2.3 2.3 2.3 2.3 

abs4n20 20 3 11 7206 + 492 506631 − − − − − − − − − − − −
abs5n20 20 3 11 425 5108 28 425524 5 5746 5717 5746 5746 5746 5746 −0.5 0.0 0.0 0.0 0.0 

abs1n20 20 3 12 3686 5038 146 723553 12 5150 5172 5158 5158 5172 5172 0.4 0.1 0.1 0.4 0.4 

abs2n20 20 3 12 899 4655 38 244041 8 4815 5261 5082 5082 5238 5238 8.5 5.2 5.2 8.1 8.1 

abs3n20 20 3 12 1283 4870 48 397099 11 5416 5597 5540 5540 5540 5540 3.2 2.2 2.2 2.2 2.2 

abs4n20 20 3 12 1550 5153 58 713459 15 5707 5819 5707 5707 5707 5707 1.9 0.0 0.0 0.0 0.0 

abs5n20 20 3 12 1454 5106 64 833293 9 5743 5693 5746 5746 5746 5746 −0.9 0.0 0.0 0.0 0.0 

abs1n20 20 3 13 3388 4991 112 990314 14 5151 5172 5158 5158 5172 5172 0.4 0.1 0.1 0.4 0.4 

abs2n20 20 3 13 559 4632 16 253365 10 4721 5252 5082 5082 5118 5118 10.1 7.1 7.1 7.8 7.8 

abs3n20 20 3 13 423 4690 14 280999 10 5051 5594 5540 5540 5540 5540 9.7 8.8 8.8 8.8 8.8 

abs4n20 20 3 13 1673 5068 58 486108 17 5654 5819 5707 5707 5707 5707 2.8 0.9 0.9 0.9 0.9 

abs5n20 20 3 13 3730 5106 136 901660 13 5743 5693 5746 5746 5746 5746 −0.9 0.0 0.0 0.0 0.0 

+: instance not solved within two hours. 

Table 12 

Results per instance for maximum on number of customers constraint for T = 6 and N = 5 , 10 , 15 . 

DJRP Solution Difference (%) 

Time DJRP-AT Gap TSP m m 

Instance N T k M (s) Solution Tree Cols (%) Sol 25 100 prop zones quad 25 100 prop zones quad 

abs1n5 5 6 3 0 6161 6 91 1 7430 7783 7518 7783 7783 7783 4.5 1.2 4.5 4.5 4.5 

abs2n5 5 6 3 0 5527 18 99 5 6694 7052 7052 7052 7052 7052 5.1 5.1 5.1 5.1 5.1 

abs3n5 5 6 3 0 8059 28 94 6 9866 11246 9866 10396 10398 10398 12.3 0.0 5.1 5.1 5.1 

abs4n5 5 6 3 1 8031 26 113 16 9510 10125 10107 10182 10182 10182 6.1 5.9 6.6 6.6 6.6 

abs5n5 5 6 3 1 5460 20 112 6 6680 6750 6721 6721 6750 6750 1.0 0.6 0.6 1.0 1.0 

abs1n5 5 6 4 0 6032 26 117 12 7305 7789 7623 7619 7623 7623 6.2 4.2 4.1 4.2 4.2 

abs2n5 5 6 4 0 5527 52 145 16 6694 6932 6941 6941 6932 6941 3.4 3.6 3.6 3.4 3.6 

abs3n5 5 6 4 1 7223 58 129 11 9033 94 4 4 9019 9045 9020 9020 4.3 −0.2 0.1 −0.1 −0.1 

abs4n5 5 6 4 1 6061 26 113 7 7255 7352 7352 7150 7150 7150 1.3 1.3 −1.5 −1.5 −1.5 

abs5n5 5 6 4 0 5459 24 140 17 6566 6602 6558 6558 6527 6633 0.5 −0.1 −0.1 −0.6 1.0 

abs1n10 10 6 5 11 8980 54 1022 4 10421 10631 10631 10631 10631 10631 2.0 2.0 2.0 2.0 2.0 

abs2n10 10 6 5 11 9547 48 1162 4 11283 11731 11731 11731 11731 11731 3.8 3.8 3.8 3.8 3.8 

abs3n10 10 6 5 6 8456 52 1395 4 9997 11155 10856 10856 10889 11155 10.4 7.9 7.9 8.2 10.4 

abs4n10 10 6 5 5 10116 38 771 6 12517 13317 13317 13317 13317 13317 6.0 6.0 6.0 6.0 6.0 

abs5n10 10 6 5 22 9243 124 1206 8 10529 10992 10992 10992 10992 10992 4.2 4.2 4.2 4.2 4.2 

abs1n10 10 6 6 10 8629 102 1475 10 10126 10674 10631 10631 10589 10631 5.1 4.8 4.8 4.4 4.8 

abs2n10 10 6 6 34 9211 254 1947 11 10875 11655 11738 11646 11655 11740 6.7 7.4 6.6 6.7 7.4 

abs3n10 10 6 6 20 7846 146 2019 3 8956 9116 9116 9255 9255 9305 1.8 1.8 3.2 3.2 3.8 

abs4n10 10 6 6 40 9988 260 1675 13 12187 12896 12980 13076 12896 12858 5.5 6.1 6.8 5.5 5.2 

abs5n10 10 6 6 68 8761 484 2173 15 10097 11160 11018 10992 11086 10971 9.5 8.4 8.1 8.9 8.0 

abs1n10 10 6 7 16 7774 120 1753 7 8773 8877 8871 8854 8877 8854 1.2 1.1 0.9 1.2 0.9 

abs2n10 10 6 7 13 8174 84 1985 6 9510 9457 9701 9564 9552 9731 −0.6 2.0 0.6 0.4 2.3 

abs3n10 10 6 7 8 7662 52 2360 6 8805 9461 9027 9104 9134 9344 6.9 2.5 3.3 3.6 5.8 

abs4n10 10 6 7 12 8321 74 1600 4 9483 9620 9650 9588 9586 9586 1.4 1.7 1.1 1.1 1.1 

abs5n10 10 6 7 21 7904 136 2011 10 8885 9471 9386 9360 9279 9291 6.2 5.3 5.1 4.2 4.4 

( continued on next page ) 
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Table 12 ( continued ) 

DJRP Solution Difference (%) 

Time DJRP-AT Gap TSP m m 

Instance N T k M (s) Solution Tree Cols (%) Sol 25 100 prop zones quad 25 100 prop zones quad 

abs1n10 10 6 8 25 7698 200 2271 13 8826 9001 8865 8919 8922 8930 1.9 0.4 1.0 1.1 1.2 

abs2n10 10 6 8 18 8114 120 2504 11 9294 9599 9773 9828 9783 9801 3.2 4.9 5.4 5.0 5.2 

abs3n10 10 6 8 14 7583 126 2572 11 8727 9441 8907 8950 8888 9451 7.6 2.0 2.5 1.8 7.7 

abs4n10 10 6 8 17 8095 124 2010 8 9334 9528 9420 9583 9527 9493 2.0 0.9 2.6 2.0 1.7 

abs5n10 10 6 8 33 7809 244 2336 13 8857 9526 9278 9278 9313 9495 7.0 4.5 4.5 4.9 6.7 

abs1n15 15 6 8 3592 10140 7730 35017 9 11601 12163 12215 12163 12163 12163 4.6 5.0 4.6 4.6 4.6 

abs2n15 15 6 8 7201 + 736 110588 − − − − − − − − − − − −
abs3n15 15 6 8 7201 + 13558 45565 − − − − − − − − − − − −
abs4n15 15 6 8 5014 11146 8704 41826 12 12287 13846 12933 13276 13846 13846 11.3 5.0 7.4 11.3 11.3 

abs5n15 15 6 8 722 11084 1568 26574 15 12269 13613 13069 13136 13231 13231 9.9 6.1 6.6 7.3 7.3 

abs1n15 15 6 9 7201 + 10642 61282 − − − − − − − − − − − −
abs2n15 15 6 9 3313 10281 6384 46828 11 10993 124 4 4 12111 11749 11953 12434 11.7 9.2 6.4 8.0 11.6 

abs3n15 15 6 9 247 9536 512 27663 7 10833 11231 11143 11176 11231 11231 3.5 2.8 3.1 3.5 3.5 

abs4n15 15 6 9 134 10133 286 29297 10 10920 12309 12072 12035 12036 12035 11.3 9.5 9.3 9.3 9.3 

abs5n15 15 6 9 934 10145 1864 40232 14 10846 11535 11662 11724 11708 11699 6.0 7.0 7.5 7.4 7.3 

abs1n15 15 6 10 193 8895 390 43861 8 9734 10334 10361 10384 10266 10378 5.8 6.1 6.3 5.2 6.2 

abs2n15 15 6 10 191 9422 388 35056 7 9859 10270 10207 10212 10203 10176 4.0 3.4 3.5 3.4 3.1 

abs3n15 15 6 10 1472 9504 2476 54081 13 10690 11385 10775 10808 11264 11264 6.1 0.8 1.1 5.1 5.1 

abs4n15 15 6 10 6231 9728 9122 72982 8 10206 10367 10336 10252 10368 10382 1.6 1.3 0.4 1.6 1.7 

abs5n15 15 6 10 795 9311 1536 33943 9 9664 9785 9732 9716 9732 9741 1.2 0.7 0.5 0.7 0.8 

abs1n15 15 6 11 592 8848 1096 53819 13 9735 10306 10279 10114 10351 10236 5.5 5.3 3.7 5.9 4.9 

abs2n15 15 6 11 231 9300 478 33939 10 9830 10414 10330 10324 10326 10407 5.6 4.8 4.8 4.8 5.5 

abs3n15 15 6 11 1851 9407 3214 62292 12 10569 11443 10965 10898 11015 11015 7.6 3.6 3.0 4.0 4.0 

abs4n15 15 6 11 2479 9370 4216 58445 10 9776 10180 10017 10 0 08 10189 10158 4.0 2.4 2.3 4.1 3.8 

abs5n15 15 6 11 546 9160 932 41385 12 9520 9781 9817 9682 9785 9799 2.7 3.0 1.7 2.7 2.8 

+: instance not solved within two hours. 

Table 13 

Results per instance comparison DJRP-AT and IRP. 

DJRP-AT IRP Difference Time Time 

Instance N T k M Solution Solution (%) DJRP-AT (s) IRP (s) 

abs1n5 5 3 3 3471 3471 0.00 0 1 

abs2n5 5 3 3 3146 3146 0.00 0 1 

abs3n5 5 3 3 4169 4140 −0.70 0 1 

abs4n5 5 3 3 4335 4335 0.00 0 1 

abs5n5 5 3 3 3260 3237 −0.69 0 1 

abs1n5 5 3 4 3391 3358 −0.96 1 2 

abs2n5 5 3 4 3146 3031 −3.67 0 1 

abs3n5 5 3 4 4169 4127 −1.01 0 4 

abs4n5 5 3 4 3050 3050 0.00 0 0 

abs5n5 5 3 4 3187 3160 −0.85 0 1 

abs1n10 10 3 5 4315 4315 0.00 0 324 

abs2n10 10 3 5 4842 4842 0.00 1 960 

abs3n10 10 3 5 4073 4073 0.00 0 81 

abs4n10 10 3 5 6163 5996 −2.70 1 3800 

abs5n10 10 3 5 4351 4351 0.00 1 614 

abs1n10 10 3 6 4332 4296 −0.84 0 11567 

abs2n10 10 3 6 4559 4533 −0.56 1 9625 

abs3n10 10 3 6 4073 4038 −0.85 0 5763 

abs4n10 10 3 6 5783 + − 1 −
abs5n10 10 3 6 4192 4192 0.00 0 10440 

abs1n10 10 3 7 4332 + − 1 −
abs2n10 10 3 7 4452 + − 1 −
abs3n10 10 3 7 4073 + − 0 −
abs4n10 10 3 7 4336 + − 1 −
abs5n10 10 3 7 4107 + − 0 −
abs1n5 5 6 3 7430 7430 0.00 0 1 

abs2n5 5 6 3 6694 6694 0.00 0 4 

abs3n5 5 6 3 9866 9866 0.00 0 4 

abs4n5 5 6 3 9510 9510 0.00 1 5 

abs5n5 5 6 3 6680 6603 −1.16 1 9 

abs1n5 5 6 4 7305 7299 −0.07 0 25 

abs2n5 5 6 4 6694 6556 −2.07 0 10 

abs3n5 5 6 4 9033 8844 −2.09 1 18 

abs4n5 5 6 4 7255 7150 −1.44 1 5 

abs5n5 5 6 4 6566 6456 −1.69 0 9 

abs1n10 10 6 5 10421 10421 0.00 11 2577 

abs2n10 10 6 5 11283 11283 0.00 11 12021 

( continued on next page ) 
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Table 13 ( continued ) 

DJRP-AT IRP Difference Time Time 

Instance N T k M Solution Solution (%) DJRP-AT (s) IRP (s) 

abs3n10 10 6 5 9997 9944 −0.54 6 1759 

abs4n10 10 6 5 12517 12201 −2.53 5 3422 

abs5n10 10 6 5 10529 10529 0.00 22 4941 

abs1n10 10 6 6 10126 + − 10 −
abs2n10 10 6 6 10875 + − 34 −
abs3n10 10 6 6 8956 8849 −1.19 20 13738 

abs4n10 10 6 6 12187 + − 40 −
abs5n10 10 6 6 10097 + − 68 −

+: instance not solved within four hours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H  

H  

 

H  

 

 

 

J  

K  

 

K  

 

 

L  

 

L  

L  

 

L  

 

L  

 

 

N  

 

 

O  

 

R  

 

 

R  

 

R  

 

S  

 

 

S  

S  

 

T

References 

Absi, N. , Archetti, C. , Dauzère-Pérès, S. , & Feillet, D. (2015). A two-phase iterative

heuristic approach for the production routing problem. Transportation Science,
49 (4), 784–795 . 

Andersson, H. , Hoff, A. , Christiansen, M. , Hasle, G. , & Løkketangen, A. (2010). Indus-
trial aspects and literature survey: Combined inventory management and rout-

ing. Computers & Operations Research, 37 (9), 1515–1536 . 
Anily, S. , & Tzur, M. (2005). Shipping multiple items by capacitated vehicles: An

optimal dynamic programming approach. Transportation Science, 39 (2), 233–248 .

Archetti, C. , Bertazzi, L. , Laporte, G. , & Speranza, M. G. (2007). A Branch-and-Cut
algorithm for a vendor-managed inventory-routing problem. Transportation Sci-

ence, 41 (3), 382–391 . 
Archetti, C. , Bianchessi, N. , Irnich, S. , & Speranza, M. G. (2014). Formulations for

an inventory routing problem. International Transactions in Operational Research,
21 (3), 353–374 . 

Arkin, E. , Joneja, D. , & Roundy, R. (1989). Computational complexity of uncapacitated

multi-echelon production planning problems. Operations Research Letters, 8 (2),
61–66 . 

Beardwood, J. , Halton, J. H. , & Hammersley, J. M. (1959). The shortest path through
many points. Mathematical Proceedings of the Cambridge Philosophical Society,

55 (4), 299–327 . 
Boctor, F. F. , Laporte, G. , & Renaud, J. (2004). Models and algorithms for the dy-

namic-demand joint replenishment problem. International Journal of Production

Research, 42 (13), 2667–2678 . 
Çavdar, B. , & Sokol, J. (2015). A distribution-free TSP tour length estimation model

for random graphs. European Journal of Operational Research, 243 (2), 588–598 . 
Chien, T. W. (1992). Operational estimators for the length of a traveling salesman

tour. Computers & Operations Research, 19 (6), 469–478 . 
Coelho, L. C. (n.d.). Problem instances inventory routing. Accessed: 24 May 2016

http://www.leandro-coelho.com/instances/inventory-routing/ . 
Coelho, L. C. , Cordeau, J.-F. , & Laporte, G. (2014). Thirty years of inventory routing.

Transportation Science, 48 (1), 1–19 . 

Cordeau, J.-F. , Laganà, D. , Musmanno, R. , & Vocaturo, F. (2015). A decomposi-
tion-based heuristic for the multiple-product inventory-routing problem. Com-

puters & Operations Research, 55 , 153–166 . 
Cunha, J. O. , & Melo, R. A. (2016). On reformulations for the one-warehouse multi-

-retailer problem. Annals of Operations Research, 238 (1), 99–122 . 
Daganzo, C. F. (1984a). The distance traveled to visit N points with a maximum of C

stops per vehicle: An analytic model and an application. Transportation science,

18 (4), 331–350 . 
Daganzo, C. F. (1984b). The length of tours in zones of different shapes. Transporta-

tion Research Part B: Methodological, 18 (2), 135–145 . 
Dasci, A. , & Verter, V. (2001). A continuous model for production–distribution sys-

tem design. European Journal of Operational Research, 129 (2), 287–298 . 
Desrosiers, J. , & Lübbecke, M. E. (2005). A primer in column generation. In G. De-

saulniers, J. Desrosiers, & M. M. Solomon (Eds.), Column generation (pp. 1–32).

Springer . 
Eilon, S. , Watson-Gandy, C. D. T. , & Christofides, N. (1971). Distribution management:

Mathematical modelling & practical analysis . Griffin London . 
Federgruen, A. , Meissner, J. , & Tzur, M. (2007). Progressive interval heuristics for

multi-item capacitated lot-sizing problems. Operations Research, 55 (3), 490–502 .
Feillet, D. , Dejax, P. , Gendreau, M. , & Gueguen, C. (2004). An exact algorithm for

the elementary shortest path problem with resource constraints: Application to

some vehicle routing problems. Networks, 44 (3), 216–229 . 
Figliozzi, M. (2008). Planning approximations to the average length of vehicle rout-

ing problems with varying customer demands and routing constraints. Trans-
portation Research Record: Journal of the Transportation Research Board, 2089 , 

1–8 . 
Franceschetti, A. , Jabali, O. , & Laporte, G. (2017). Continuous approximation models

in freight distribution management. TOP, 25 (3), 413–433 . 

Haimovich, M. , & Rinnooy Kan, A. H. G. (1985). Bounds and heuristics for ca-
pacitated routing problems. Mathematics of Operations Research, 10 (4), 527–

542 . 
Hariga, M. , Gumus, M. , Daghfous, A. , & Goyal, S. K. (2013). A vendor managed in-

ventory model under contractual storage agreement. Computers & Operations Re-
search, 40 (8), 2138–2144 . 
 

emmelmayr, V. , Doerner, K. F. , Hartl, R. F. , & Savelsbergh, M. W. P. (2009). Delivery

strategies for blood products supplies. OR Spectrum, 31 (4), 707–725 . 
indle, A. , & Worthington, D. (2004). Models to estimate average route lengths in

different geographical environments. Journal of the Operational Research Society,
55 (6), 662–666 . 

oque, M. A. (2006). An optimal solution technique for the joint replenishment

problem with storage and transport capacities and budget constraints. European
Journal of Operational Research, 175 (2), 1033–1042 . 

Jabali, O. , Gendreau, M. , & Laporte, G. (2012). A continuous approximation model for
the fleet composition problem. Transportation Research Part B: Methodological,

46 (10), 1591–1606 . 
acobs, T., & Longo, S. (2014). A new perspective on the windows scheduling prob-

lem. arXiv: 1410.7237 . 

ang, H.-Y. , Lee, A. H. I. , Wu, C.-W. , & Lee, C.-H. (2017). An efficient method for dy-
namic-demand joint replenishment problem with multiple suppliers and mul-

tiple vehicles. International Journal of Production Research, 55 (4), 1065–1084 . 
houja, M. , & Goyal, S. (2008). A review of the joint replenishment problem litera-

ture: 1989–2005. European Journal of Operational Research, 186 (1), 1–16 . 
Kwon, O. , Golden, B. , & Wasil, E. (1995). Estimating the length of the optimal TSP

tour: An empirical study using regression and neural networks. Computers &
Operations Research, 22 (10), 1039–1046 . 

angevin, A. , Mbaraga, P. , & Campbell, J. F. (1996). Continuous approximation models

in freight distribution: An overview. Transportation Research Part B: Methodolog-
ical, 30 (3), 163–188 . 

angevin, A. , & Soumis, F. (1989). Design of multiple-vehicle delivery tours satisfy-
ing time constraints. Transportation Research Part B: Methodological, 23 (2), 123–

138 . 
arrain, H. , Coelho, L. C. , & Cataldo, A. (2017). A variable MIP neighborhood descent

algorithm for managing inventory and distribution of cash in automated teller

machines. Computers & Operations Research, 85 , 22–31 . 
arsen, C. , & Turkensteen, M. (2014). A vendor managed inventory model using con-

tinuous approximations for route length estimates and Markov chain modeling
for cost estimates. International Journal of Production Economics, 157 , 120–132 . 

übbecke, M. E. , & Desrosiers, J. (2005). Selected topics in column generation. Oper-
ations Research, 53 (6), 1007–1023 . 

Narayanan, A. , & Robinson, E. P. (2006). More on ‘models and algorithms for the dy-

namic-demand joint replenishment problem’. International Journal of Production
Research, 44 (2), 383–397 . 

arayanan, A. , & Robinson, P. (2010). Efficient and effective heuristics for the coor-
dinated capacitated lot-size problem. European Journal of Operational Research,

203 (3), 583–592 . 
Nemhauser, G. L. , & Park, S. (1991). A polyhedral approach to edge coloring. Opera-

tions Research Letters, 10 (6), 315–322 . 

lsen, A. L. (2008). Inventory replenishment with interdependent ordering costs: An
evolutionary algorithm solution. International Journal of Production Economics,

113 (1), 359–369 . 
ahmouni, M. , & Hennet, J.-C. (2015). Determining the optimal routes in the

multi-product multi-site joint delivery problem. In Proceedings of the inter-
national conference on industrial engineering and systems management (IESM)

(pp. 1361–1366). IEEE . 

obinson, E. P. , Narayanan, A. , & Gao, L.-L. (2007). Effective heuristics for the dy-
namic demand joint replenishment problem. Journal of the Operational Research

Society, 58 (6), 808–815 . 
obinson, P. , Narayanan, A. , & Sahin, F. (2009). Coordinated deterministic dynamic

demand lot-sizing problem: A review of models and algorithms. Omega, 37 (1),
3–15 . 

enoussi, A. , Mouss, N. K. , Penz, B. , Brahimi, N. , & Dauzère-Pérès, S. (2016). Model-

ing and solving a one-supplier multi-vehicle production-inventory-distribution
problem with clustered retailers. The International Journal of Advanced Manufac-

turing Technology, 85 (5), 971–989 . 
hen, Z.-J. M. , & Qi, L. (2007). Incorporating inventory and routing costs in strate-

gic location models. European Journal of Operational Research, 179 (2), 372–
389 . 

olyalı, O. , & Süral, H. (2012). The one-warehouse multi-retailer problem: Reformu-
lation, classification, and computational results. Annals of Operations Research,

196 (1), 517–541 . 

urkensteen, M. , & Klose, A. (2012). Demand dispersion and logistics costs in one–
to-many distribution systems. European Journal of Operational Research, 223 (2),
499–507 . 

http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0008
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0008
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0008
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0008
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0008
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0010
http://www.leandro-coelho.com/instances/inventory-routing/
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0014
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0014
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0028
http://arxiv.org/abs/1410.7237
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0041
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0041
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0041
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0041
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0047


A.C. Baller, S. Dabia and W.E.H. Dullaert et al. / European Journal of Operational Research 276 (2019) 1013–1033 1033 

V  

 

V  

 

W  

 

W  

 

an Anholt, R. G. , Coelho, L. C. , Laporte, G. , & Vis, I. F. A. (2016). An inventory-rout-
ing problem with pickups and deliveries arising in the replenishment of auto-

mated teller machines. Transportation Science, 50 (3), 1077–1091 . 
entura, J. A. , Valdebenito, V. A. , & Golany, B. (2013). A dynamic inventory model

with supplier selection in a serial supply chain structure. European Journal of
Operational Research, 230 (2), 258–271 . 
ang, L. , He, J. , Wu, D. , & Zeng, Y.-R. (2012). A novel differential evolution algorithm
for joint replenishment problem under interdependence and its application. In-

ternational Journal of Production Economics, 135 (1), 190–198 . 
ebb, I. R. , Buzby, B. R. , & Campbell, G. M. (1997). Cyclical schedules for the joint

replenishment problem with dynamic demands. Naval Research Logistics (NRL),
44 (6), 577–589 . 

http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30105-5/sbref0051

	The Dynamic-Demand Joint Replenishment Problem with Approximated Transportation Costs
	1 Introduction
	2 Literature review
	3 Problem description
	4 Column generation
	5 Branch-and-Cut-and-Price
	5.1 Labeling algorithm for the pricing problem
	5.2 Valid inequalities
	5.3 Branching

	6 Computational results
	6.1 Effectiveness of valid inequalities
	6.2 Comparison DJRP-AT and DJRP
	6.2.1 Illustrative result for one instance
	6.2.2 Aggregated results

	6.3 Comparison DJRP-AT and IRP
	6.4 Case study ATM replenishment in Amsterdam

	7 Conclusion
	Acknowledgements
	Appendix A Tour length approximations
	Appendix B Complexity
	Appendix C Derivation &#x0394;(L, L&#x2032;)
	Appendix D Results per instance
	References


