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Modeling Cultural Segregation
of the Queer Community Through
an Adaptive Social Network Model

Pieke Heijmans, Jip van Stijn and Jan Treur

Abstract In this study, the forming of social communities and segregation is exam-
ined through a case study on the involvement in the queer community. This is exam-
ined using a temporal-causal network model. In this study, several scenarios are
proposed to model this segregation and a small questionnaire is set up to collect
empirical data to validate the model. Mathematical verification provides insight into
the model’s expected behavior.

Keywords Queer community · Temporal-causal network · Social hardship ·
Social contagion · Homophily principle · Social network · Cultural segregation

1 Introduction

In a developed world that contains increasingly pluralistic and diverse societies, the
establishment of subcultures seems inevitable. In the West, subcultures are associ-
ated with an increased identification with in-group individuals, leading to a caring
environment. However, subcultures are at risk of a high degree of segregation and
misunderstanding of and by out-group individuals, possibly leading to discrimina-
tion and aggression. In view of stimulating and maintaining peaceful and democratic
processes in these societies, it can be useful to investigate this behavior. This can be
performed through network-oriented modeling, which describes the behaviors and
opinions of people in relation to the connections among them. In graphical represen-
tations of social networks, individuals and their states are depicted by nodes which
are connected by uni- or bidirectional links.
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In this paper, firstly some background about cultural segregation of the queer com-
munity is discussed. Next, the network model is explained including the homophily
and social contagion principle. In addition, some different scenarios for themodel are
set up and different simulations with the model are discussed. It will be shown how
mathematical verification clarifies how different parameters influence the outcomes
of the model. The current paper investigates subculture identification and cultural
segregation of the queer community. Being born differently from the heteronormative
society that they grow up in, queer people have to deal with a number of factors that
contribute to a permanent level of distress. Meyer [9] frames this psychological dis-
tress as minority stress. Due to a continuous internalized homophobia, stigma, which
relates to society’s expectations, and experiencing actual discrimination or violence,
minority stress is established. She found a strong connection between experiencing
minority stress and dealing with psychological distress. She adds that hiding and
concealing, expectation of rejection, and ameliorative coping processes contribute
to this psychological minority stress as well [10].

To dealwith psychological distress, a social support system can help. For example,
successful coming-out stories of other queer people can help reduce the anxiety of
getting negative reactions from friends and family. Wright and Perry claim that
support systems are necessary as they influence the development of young people’s
self-concept and self-esteem [10]. Queer community and queer community spaces
can function as this social support system. Beemyn [2] examines the historical role
of queer spaces and states that queer people needed their own space, not only to
escape from governmental pressures such as police harassment, but also to not deal
with constant territorial struggle, a place where they could escape the dominant
cultural order. These processes lead to cultural segregation, as consequently queers
will distantiate themselves from the dominant cultural order by collectively grouping
together in their own communities. Another strong reason to get involved in such a
community is collectivism, in the sense that people want to benefit their group. The
more you are involved with and identify with this subgroup, the greater your sense
of collectivism [1], and thus, the stronger the effect of cultural segregation will be.

From these theories, we expect queer people with a greater experience of hard-
ship and psychological distress to get involved more in the queer community as the
community serves as a support system, resulting in a stronger cultural segregation.
In contrast, queer people that experience no to little hardship are not inclined to look
for a social support system; however, they may be involved with the community
for other reasons, for example, relating to their peers. Finally, straight people that
experience hardship may look for community support, but not necessarily for the
queer community as they do not particularly identify with this group and do not have
a strong sense of collectivism. Resulting from these conclusions, it can be expected
that a certain group of queer people will get involved with their community, finding
comfort, support, and finding equals. In contrast, straight people will not share these
needs and will not identify strongly with the queer community. The result is cultural
segregation, in which queer people’s identification with their community is opposed
to straight people’s identification.
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These processeswere analyzed computationally by designing an adaptive network
model based on the homophily principle that describes bonding between persons
that consider each other similar in some respect(s); see, for example, [8]. This prin-
ciple works in combination with the principle of social contagion [3] in a circular
mutual causal relationship, also called co-evolution [5, 18]. In Sect. 2, the adap-
tive temporal-causal network model based on these two principles is introduced.
Section 3 illustrates the model by example simulations. In Sect. 4, it is shown that
the simulation outcomes are in accordance with what is predicted by a mathematical
analysis of the model. Section 5 describes validation of the model by comparing
simulation outcomes to empirical data and applies parameter tuning. Finally, Sect. 6
is a conclusion.

2 The Adaptive Temporal-Causal Network Model

Thus, the following difference and differential equation for state Y are obtained:A
network-orientedmodeling approach based on temporal-causal networks [13, 14, 17]
was used to analyze the type of processes described in Sect. 1. This approach can be
considered as a branch in the causal modeling area which has a long tradition in AI;
e.g., see [6, 7, 11]. It distinguishes itself by a dynamic perspective on causal relations,
according to which causal relations exert causal effects over time, and these causal
relations themselves can also change over time. The type of networkmodels that form
the basis is called a temporal-causal network model. These network models can be
used to translate informally described theories from a variety of human-directed
disciplines into adaptive and dynamical numerical models. It takes into account
states and their causal effects on other states. The strengths of causal relations from
a state X to a state Y are indicated by differences in connection weights ωX,Y . These
connection weights can be combined with activation levels Y (t) of states Y and used
as input for combination functions cY (…) to determine the aggregated impacts on
the states. The precise dynamics of the network are also defined using speed factors
ηY of states Y. The network becomes adaptive when connection weights are dynamic
as well. The conceptual representation basically is a graph of states and their causal
relations; a graphical overview of the network is represented as depicted in Fig. 2.
The numerical representation is a translation of this conceptual representation in the
way described in Table 1.

Y (t + �t) = Y (t) + ηY

[
cY

(
ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)

) − Y (t)
]
�t

dY (t)/dt = ηY

[
cY

(
ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)

) − Y (t)
]

(1)

The adaptive social networkmodel used here is based on two fundamental principles.
Firstly, the notion of social contagion is used to explain the causal influence of one
state on another through the connection between the two [3]. This principle accounts
for the change of state values over time, and its numerical representation is (where
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Table 1 From conceptual representation to numerical representation of a temporal-causal network
model; adopted from [17]

Concept Representation Explanation

State values over time
t

Y (t) At each time point t, each
state Y in the model has a
real number value in [0, 1]

Single causal impact impactX,Y (t) = ωX,Y X(t) At t, state X with connection
to state Y has an impact on Y,
using connection weight
ωX,Y

Aggregating multiple
impacts

aggimpactY (t) Y (impactX1,Y (t),…,
impactXk,Y (t)) = cY (ωX1,YX1(t),
…, Xk,YXk(t))

The aggregated causal
impact of multiple states Xi
on Y at t is determined using
combination function cY (..)

Timing of the causal
effect

Y (t + �t) = Y (t) + ηY
[aggimpactY (t) − Y(t)] �t = Y (t)
+ ηY [cY (ωX1,YX1(t), …,
ωXk,YXk(t)) − Y (t)] �t

The causal impact on Y is
exerted over time gradually,
using speed factor ηY ; here,
the Xi are all states with
connections to state Y

XAi and XB are the states of persons Ai and B):

dXB/dt = ηB

[
cB

(
ωA1,B XA1 , . . . ,ωAk ,B XAk

)−XB
]

XB(t + �t) = XB(t) + ηB[cB
(
ωA1,B XA1(t), . . . ,ωAk ,B XAk (t)

)−XB(t)]�t (2)

One option for the combination functions for modeling the aggregated impact of
multiple states on another is the scaled sum function:

ssumλ(V1, . . . Vk) = (V1 + · · · + Vk)/λ (3)

Usually, a normalized scaled sum is used: The value of λ is the sumof all incoming
weights ωXi ,Y . In cases that these connection weights change over time an adaptive
version of the scaled sum can be used:

adapssumλ(V1, . . . Vk) = (V1 + · · · + Vk)/λ(t) (4)

where λ(t) is the sum of all incoming weights ωXi ,Y (t) at t. This version was used to
model social contagion in the work reported here. Another function used for social
contagion in this research is the advanced logistic sum function:

alogisticσ,τlog
(V1, . . . Vk) =

[
1

1+ e−σ(V1+···+Vk−τlog)
− 1

(1+ eστlog)

]

(1+ e−στlog) (5)
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Fig. 1 A conceptual
representation of the
homophily principle

where σ is the steepness factor and τlog the logistic threshold.
Secondly, the principle of homophily describes the change of connection weights

between the statesXA andXB of two personsA andB; e.g., [8]. According to this prin-
ciple,when the values of twonodes are similar, the connectionbetween thembecomes
stronger (represented by a higher connection weight). Conversely, the lower the sim-
ilarity between the (values of) the two nodes, the smaller their connection weight. In
Fig. 1, the homophily principle is depicted by the striped arrows. Numerically, this
principle can be represented as follows:

ωA,B(t + �t) = ωA,B(t) + ηA,B[cA,B(XA(t), XB(t),ωA,B(t)) − ωA,B(t)]�t

dωA,B/dt = ηA,B[cA,B(XA, XB,ωA,B) − ωA,B] (6)

in which XA and XB represent the states of person A and person B.
In the current paper, the combination function cA,B(V 1, V 2, W ) used for the

homophily principle is the following:

slhomτhom ·α(V1, V2,W ) = W + α W (1−W )(τhom − |V1−V2|) (7)

3 Simulations of Example Scenarios

In this section, the adaptive networkmodel is described for three scenarios. In the first
example Scenario 1 for this model, a social network of 10 nodes is used, consisting
of three communities of three or four nodes. Each community contains one node that
is the so-called bridge node, which has connections to the two bridge nodes of the
other communities. Within the three communities, there is maximal connectedness:
All nodes are connected to the other nodes within the community. As the connections
represent social interactions, they are all assumed to be bidirectional. All connections
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are presumed to be relatively strong, so all connection weights were set initially to
0.8. The state values represent the individual’s identification with the queer culture,
with 0 being minimal identification and 1 being maximal identification. The initial
values of identification with the queer culture are assumed to be spread evenly on
the spectrum of 0.1–1, as depicted in Fig. 2. For social contagion, in this scenario the
adaptive normalized scaled sum function was used, with a dynamic scaling factor
of the sum of all the connection weights per state at that time. Table 2 shows the
values used for the parameters. In this scenario, two simulations were carried out
using two different state speed factors. The simulation of this model shows a classic
example of the interplay of social contagion and homophily; sometimes also called
co-evolution [5, 18]. In Scenario 1.1, a speed factor of 0.2 was used for all states, and
the three communities all converged to their own equilibrium value. The connection
weights of the within-community connections converged to 1, while the weights of
the bridge connections converged to 0. This result is illustrated in Fig. 3.

Fig. 2 Left hand: conceptual representation of the network in Scenario 1. Middle: for Scenario 2.
Right hand: for scenario 3. Each node represents an individual, with the initial state value illustrated
in the node. Each line represents a bidirectional connection. The three communities are labeled with
different colors

Table 2 Parameters and their values used in the simulation of Scenarios 1 and 2

Parameters Scenario 1 Values Parameters Scenarios 2 and 3 Values

State speed factor ηY 0.2/0.8 State speed factor ηY 0.2

ω speed factor ηω 0.5 ω speed factor ηω 0.5

slhom threshold factor τhom 0.1 slhom threshold factor τhom 0.08

slhom amplification factor α 8.0 slhom amplification factor α 8.0

Alogistic steepness factor σ 2.5

Alogistic threshold factor τlog 0.18

Except for the initial connection weights mentioned above, all parameters are equal for all states
and connections. (ω = connection weight, slhom = simple logistic homophily function, alogistic
= advanced logistic function as defined above)
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Fig. 3 A graphical representation of the state values in the simulation of Scenarios 1.1 resp. 1.2 for
state speed factors 0.2 resp. 0.8. The y-axis represents the state values, while the x-axis represents
time. Every community converges to its own equilibrium value. Social contagion is quicker in
Scenario 1.2 than in Scenario 1.1. This leads to the fact that the first two communities converge
toward each other. The third community still converges to its own equilibrium

The final example Scenario 3 concerns a fully connected network in which each
node is connected to every other node. Figure 5 shows a conceptual representation of
this network. Again, the advanced logistic function is used to model social contagion
between the nodes, and the simple homophily function alters the connection weights
over time. This scenario is somewhat more life-like than the previous examples, as
it is reasonable to assume that, in a group of 10 people, every person knows all
others to some degree. All initial connection weights are set to 0.8. In Scenario 1.2,
when the state speed factor of 0.8 was used, two of the communities first converge
within themselves, and then converged to a shared equilibrium state value. The third
community converged to its own equilibrium value. The bridge connection between
states 3 and 4 now converged to 1 instead of 0. This shows that the effect of the
social contagion function is now quicker than in simulation 1.1 and influences the
homophily of the connection weights.

Note that in case that no homophily principle is applied but only the social conta-
gion, according to Theorems 3 and 4 in [15] for the so-called strongly connected
network using normalized scaled sum combination functions (which are strictly
monotonically increasing and scalar-free [15]) all states will converge to the same
value, and this value lies between the minimal and maximal initial state value. The
emergence of communities is a result of the homophily, and the faster the contagion
in comparison with the homophily principle, the lower the number of communities
that emerge, as shown here in Fig. 3.

In the example Scenario 2, the number of nodes and their connectedness is equal
to the first scenario. However, the initial values range from 0.1 to 0.4 and this time the
advanced logistic function is used for social contagion. The results of this scenario
shows that, when using the advanced logistic function to model social contagion, the
equilibrium values can end up higher or lower than any initial values of the states,
in contrast to what holds for normalized scaled sum functions; see [15]. Most of the
states converge to an equilibrium of 1 or 0.982, whereas all the initial values lay
between 0.1 and 0.4. This may represent a real-life process in which a sentiment is
strengthened and amplified beyond its original level, because it is shared with others.
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Fig. 4 A graphical representation of the state values in the simulation of Scenarios 2 and 3. The
y-axis represents the state values, while the x-axis represents time. The initial values of all states
range between 0.1 and 0.4, while most of the values converge to 1 or 0.982. However, state 4 and
5 converge to 0.415

Yet, the equilibrium values of state 5 and 6 (initial values 0.2 and 0.3) converge to
a different, much lower equilibrium of 0.415. The connection weights of all initial
connections converge to 1, except for those of state X4 with X5 and X6. This shows
that: (1) when using the advanced logistic function in combination with homophily,
the initial value of a state does not necessarily determine in which equilibrium it ends
up; and (2) that this combination function can strongly influence the connectivity in
a network, possibly leading to the change or dissolvement of communities over time.
Thus, this simulation demonstrates the phenomenon of segregation within a network
(and in a specific community within the network) regardless of a similarity in initial
values of the states. Figure 4 shows these results in a graphical representation.

Again, the simulation resulted in the separating behavior into two groups. The
seven states with the highest initial values all converge to a value of 0.8, spiraling
past their original values. The remaining three states converge to a value of 0.036,
well below their initial values. The connection weights within the groups all con-
verge to 1, while the intergroup connections end up with a weight value of 0. This
simulation not only shows separating behavior of one group into two communities,
as with the previous scenario. It also hints at a notion of extremism, in which the two
groups increasingly push each other off. This may be comparable to the process of
‘othering’, in which the shaping of an identity depends on the supposition with other
people’s behavior or convictions. This combined with group behavior can then lead
to polarization, which can be observed in many social and political situations.

4 Model Verification by Mathematical Analysis

In order to verify the model, first a mathematical analysis of stationary points was
performed, in particular for the third scenario. A stationary point of a state Y at time
t occurs when dY (t)/dt = 0. A stationary point of a connection weight ω at time t
occurs when dω(t)/dt= 0. The networkmodel is in an equilibrium at t when all states
and all connection weights have a stationary point at t. As described in Sect. 2, in
a temporal-causal network model the differential equation for all states is: dY (t)/dt
= ηY [aggimpactY (t) – Y (t)]. As all speed factors in the model are nonzero, all
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stationary points must follow the criterion: aggimpactY (t) = Y (t) also formulated
as: In a temporal-causal network model, there is a stationary point for state Y at t if
and only if ηY = 0 or cY (ωX1,YX1(t), …, ωXk,YXk(t)) = Y (t).

From themodeled data in Scenario 3, stationary points were gathered from several
states, and the aggregated impact at that time was calculated per state using the
advanced logistic function described earlier. If the state values and the calculated
aggregated impact are equal, the stationary point equation above is fulfilled. This
mathematically verifies the model. The results are presented in Table 3. As appears
in the table, the deviations between the observed state values and the calculated
aggregated impact on that state at that time are very low. This indicates that themodel
does what is expected; it calculates the expected state values with high precision.

When the stationary point Eq. (9) mentioned above applies to all network states
and connection weights at a single time, the model is in equilibrium. In the third
scenario, the model appears to be in equilibrium at t = 300. The state values at
this time were read, and the aggregated impact at that moment was calculated per
state. The results are presented in Table 4. As is visible in the table, the deviation
between the state values and the aggregated impact of all states at t = 300 is very
low, indicating again that the model calculates the state values in a proper way with
high precision.

Additionally, the dynamic connectionweightswere analyzed.Recall the following
combination function for the homophily principle (7):

slhomτ.α(V1, V2,W ) = W + αW (1−W ) (τhom − |V1−V2|) (8)

The stationary point criterion of slhomτhom.α(V 1, V 2,W ) = 0 provides the equa-
tion:

W (1−W )(τhom − |V1−V2|) = W (9)

meaning that

|V1−V2| = τhom or ωA,B = 0 orωA,B = 1 (10)

Table 3 An overview of stationary point values and the aggregated impact values in the simulation
of Scenario 3

State X1 X2 X3 X8 X9 X10

Time point 3.95 3.55 2.10 4.65 3.10 2.55

State value 0.387 0.397 0.397 0.261 0.197 0.145

Aggregated impact 0.388 0.396 0.397 0.262 0.197 0.145

Deviation 0.001 0.001 0 0.001 0 0

States 4–7 did not have a temporary stationary point at the considered time interval. The bottom
row shows the deviation between these values
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However, the solution |V1 – V2| = τhom turns out non-attracting, eliminating this
solution as a possible stationary point in the simulation. This corresponds to the
connection weight values at t = 300 in the simulation of Scenario 3: All connections
eventually are either 1 or 0. These connections define the two clusters that appeared,
with full connectivity within the communities, and no connection to nodes outside
the community.

In a wider context, such an analysis of limit behavior for some classes of
homophily combination functions has been presented in [16]. The above analysis
fits in that more general approach. In addition to the 0 or 1 values as limit for connec-
tion weights, one of the results is that independent of the size of the network there
can be at most 1+ 1/τhom groups; see [16], Theorem 1a). Indeed, the actual number
of the groups in the simulations is less than that predicted maximal number.

5 Validation Using Empirical Data1

To validate the proposed model, we acquired a data set for which we set up a ques-
tionnaire that participants had to fill out online. The questionnaire consisted of some
general introductory questions like age, gender, education, andmost importantly sex-
ual orientation. Secondly, the participant had to indicate to what extent they agreed
to statements (using a Likert scale, from 1 till 5, 1 indicating ‘strongly disagree’ and
5 indicating ‘strongly agree’). The first 10 questions related to how involved they are
in the queer community now. The second 10 questions related to how involved they
were in the queer community 5 years ago. A final 10 questions related to how much
social hardship the participant experienced in their youth, based both on a general
level and in relation to their sexuality.

To explore the suitability of our data, we used SPSS to perform a statistical
analysis regarding the following hypotheses: (1) that queer people would generally
score higher on involvement in the queer scene than straight people, (2) that queers
would be involved more in the community now than 5 years ago, and finally (3) that
hardship would make up for explaining this difference between involvement in the
queer community now versus 5 years ago.

By exploring the differences in scores on involvement in the queer scene between
queer people and straight people, two of our hypotheses were confirmed: Queer peo-
ple generally score higher on involvement in the queer scene than straight people, and
queers are involved more in the community now than 5 years ago. Another analysis
was needed to check the assumption that differences in scores were dependent on
the hardship that people experienced by verifying a (possible) a correlation of the
scores with the scores on the hardship questions. However, Pearson’s correlation r
of 0,056 indicated no correlation for the variables. This refutes the hypothesis that
the increase in identification with the queer community is mediated by the degree of
social hardship experienced when young.

1A more detailed account of this section can be requested from the third author.



244 P. Heijmans et al.

Next, the empirical data were reshaped in a format compatible with the format of
the simulation outcomes so that parameter tuning would provide the best possible
solution for the model and the empirical data to fit together. Scenario 3 was chosen
for the parameter tuning as it would be the best possible fit for real-life scenarios:
as a case where each individual knows each other individual resembles a real-world
scenario most. The connection weights for the model were set under the assumption
that some segregation was already in place: Straight people were set to a connection
weight of 0.8 to other straight people, knowing mostly other straight people and a
connection weight of 0.3 to queers. For queers, it was the other way around, setting
connection weights to other queers at 0.8 and to straights at 0.3. This leaves some
parameters of the model to still be tuned: the speed factor ηX for each state X, the
steepness σ of the alogistic combination function, the threshold τlog of the alogistic
combination function, the threshold τhom,X,Y of the simple linear homophily, and the
amplification factor αX,Y of the simple linear homophily.

The way we estimated these parameters was through exhaustive search. The
exhaustive search method is a problem-solving technique in which all possible can-
didate solutions for parameter values are investigated on how well they make the
model fit to the data. Because testing each parameter with a grain size of 0.05 would
lead to combinatorial explosion, the way to execute the exhaustive search was by
iterative refinement, starting with larger grain sizes, for example, 0.5 or 0.1 (depend-
ing on the parameter) and narrowing down the grain sizes until the model fits the
empirical data best. Speed factors, steepness, and thresholds were investigated with
grain size 0.1, and then in a second phase tuned with a grain size of 0.05; however,
amplification was investigated with a grain size of 1 and then further tuned with a
grain size of 0.5. The values found are σ = 0.53, τlog = 0.2, τhom = 0.1, α = 3.5,
and ηX1

= 0.1, ηX2
= 0.1, ηX3

= 0.1, ηX4
= 0.35, ηX5

= 0.3, ηX6
= 0.3, ηX7

= 0.3,
ηX8

= 0.3, ηX9
= 0.3, ηX10

= 0.3. Simulation outcomes for the tuned parameters
are depicted in Fig. 5. An overview of the remaining errors is shown in Table 5.

Fig. 5 Simulation modeling of the empirical data. The X-axis represents time, and the Y-axis
represents the identification with the community



Modeling Cultural Segregation of the Queer Community … 245

Ta
bl

e
5

C
al
cu
la
te
d
er
ro
r:
av
er
ag
e
ab
so
lu
te
de
vi
at
io
n
an
d
ro
ot

m
ea
n
sq
ua
re

St
at
e

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

To
ta
l

E
m
pi
ri
ca
le
qu

ili
br
iu
m

0.
35
7

0.
59
7

0.
58
3

0.
60
1

0.
69
4

0.
71
8

0.
77
8

0.
85
6

0.
74
5

0.
88

M
od
el
eq
ui
lib

ri
um

0
0

0
0

0.
74
7

0.
74
7

0.
74
7

0.
74
7

0.
74
7

0.
74
7

A
bs
ol
ut
e
de
vi
at
io
n

0.
35
7

0.
59
7

0.
58
3

0.
60
1

0.
05
3

0.
02
9

0.
03
1

0.
10
9

0.
00
2

0.
13
3

0.
24
95

A
ve
ra
ge

de
vi
at
io
n

Sq
ua
re

of
de
vi
at
io
n

0.
12
7

0.
35
6

0.
34
0

0.
36
1

0.
00
3

0.
00
1

0.
00
1

0.
01
2

0.
00
0

0.
01
8

1.
21
9

SS
R

R
oo
tm

ea
n
sq
ua
re

0.
34
92



246 P. Heijmans et al.

Naturally, some variances exist between the proposed model and the empirical data.
Using the root mean square to calculate the differences between the values of the
model equilibria and equilibria of the empirical data (the final state of involvement
in the queer community), this difference should be kept to a minimum in tuning
the parameters. The achieved results of the calculated average (absolute) deviation
(0.2495) and root mean square (0.3492) are depicted in Table 5, last column.

6 Conclusion

This paper investigated the interplay or co-evolution of the social contagion princi-
ple and the homophily principle in their application in an adaptive temporal-causal
network model. Both principles were modeled and applied in three model scenarios.
State values represented personal convictions, while the connections between states
represented real-life social interaction, leading to influencing behavior.

The first scenario used an adaptive normalized scaled sum function tomodel social
contagion. It showed the segregation behavior of a group of ten people into either
two or three communities, depending on parameters such as speed factors, threshold
factors, and steepness factors. The second scenario used the advanced logistic sum
function and showed a separation into two communities that were not entirely defined
by the initial grouping of connections. Furthermore, it demonstrated the spiraling of
values beyond the range of initial values: a pattern that is not achievable with linear
functions such as scaled sum functions. This pattern is sometimes called ‘emotion
amplification’ [3], where emotions or opinions are amplified through sharing them.

The simulation of the third scenario also used the advanced logistic sum function,
with the addition of connections to all other nodes in the network. This scenario is
slightly more life-like. This scenario showed the segregation into two groups, and
the amplifying behavior as discussed in Scenario 2. Furthermore, the third scenario
showed a pattern of polarization, in which the values of the two groups increasingly
move apart. In social terms, this can be compared to group identification, in which
the more the other team disagrees with you, the stronger your opinion gets. It also
shows signs of a process called ‘othering’, in which an individual’s or group’s iden-
tity strongly depends on what they are not. These phenomena can be observed in
many social situations, with the political system of the USA being a classic exam-
ple. This process may well contribute to segregating behavior, including political
‘echo chamber’ that is online social media [12], or the taking shape of subgroups or
communities.

The final section of this paper described our attempt to gather empirical data
regarding the shaping of the queer community, and the segregating behavior that it
relates to. Before using the data in the network model, a statistical analysis showed
that there was a significantly higher identification with the queer community of
sexual queers than heterosexual participants. It also revealed that queer people had
a higher number of queer friends and showed a higher increase in identification
with the queer community than heterosexuals. The hypothesis stating that the level
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of identification increase is mediated by social hardship experienced in youth was
rejected. The empirical data were transformed to fit the model (based on Scenario
3), and an exhaustive search tuning method was performed in order to tune the
parameters to best fit the empirical data. The lowest average linear deviation was
found to be 0.386. This is relatively high, which can partly be attributed to the fact
that the empirical data used an average of scores, leading to values that lie relatively
close to one another but are still significantly different. In the model, however, every
state represented the average of a group of 5 or 6 people. Moreover, the combination
of the advanced logistic sum function and the simple homophily function has a
polarizing tendency (as described in Scenario 2), which was not clearly visible in the
empirical data.

The current researchmay be improved by usingmore than 10 nodes, preferably 50
or more. Not only would this overcome the limitation of having to group participants
together and losing their unique trends, but it alsomight be expected that the interplay
between 50 nodes is vastly different from that of 10 nodes, in theway that a classroom
with fifty children acts different than one with ten.

Additionally, the empirical data regarding the correlation between youth social
hardship and connectedness to the queer community did not show a correlation (or
even a trend). This may be due to the survey used, in which only 10 questions were
focused on the general social hardship, while a focus on sexuality-related hardship
would have been more useful. Secondly, the survey answers are strongly constrained
by the snowball effect that was used for gathering the data: Many people who filled
in the questionnaire knew others, which results in bias when attempting to study the
formation of communities.

Finally, the studywould be highly improved if the individual connections between
people would be investigated over time. Now, questions about the number of queer
people in the individual’s networkwere used to approximate the average effect, while
the combination of using the real individual interactions in a network of 50 nodes
would give deeper insight into the workings of human group behavior.

Overall this research might be considered as a step in the direction of understand-
ing more about segregation and polarizing behavior. Especially, the adaptiveness,
using homophily, is indispensable for the future of creating temporal-causal models
of human interactions and their consequences. The work reported here contributes
by exploring the use of variants of such network models in the specific real-world
context addressed.
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