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Abstract Understanding how genes regulate each other and how gene
expression is controlled in living cells is crucial to cure genetic diseases
such as cancer and represents a fundamental step towards personalised
medicine. The complexity and the high concurrency of gene regulatory
networks require the use of formal techniques to analyse the dynamical
properties that control cell proliferation and differentiation. However,
for these techniques to be used and be useful, they must be accessible to
biologists, who are currently not trained to operate with abstract formal
models of concurrency. Petri nets, owing to their appealing graphical
representation, have proved to be able to bridge this interdisciplinary
gap and provide an accessible framework for the construction and ex-
ecution of biological networks. In this paper, we propose a novel Petri
net representation, tightly designed around the classic basic definition of
the formalism by introducing only a small number of extensions while
making the framework intuitively accessible to a biology-trained audi-
ence with no expertise in concurrency theory. Finally, we show how this
Petri net framework has been successfully applied in practice to capture
haematopoietic stem cell differentiation, and the value of this approach
in understanding the heterogeneity of a stem cell population.

Keywords: Petri nets, biology, gene regulatory networks

1 Introduction

Cancer causes the second largest proportion of noncommunicable (i.e. nonin-
fective) disease deaths (21%) worldwide. It is projected that the annual number
of deaths due to cancer will increase worldwide from 7.6 million to 13 million
in 2030 [1]. Cancer and other genetic diseases are caused by abnormalities in
genes which lead to changes in gene expression (i.e. the amount of information
transcribed from genes in gene products such as RNAs and proteins) and/or
in the structure of gene products. Understanding how gene expression is regu-
lated is a necessary step to cure genetic illnesses. Gene expression, however, is
a complex and tightly regulated process in which multiple regulatory elements
interact concurrently to produce a global state which, in turn, determines the
composite of a cell’s observable characteristics (i.e. its phenotype, which in-
cludes the cell’s shape, function, and health condition). The collection of the
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interactions that controls gene expression can be encoded as a network. Gene
regulatory networks (GRNs) are often represented as directed graphs in which
nodes represent regulatory elements and arcs represent the effect of the presence
of these elements (i.e. expression or repression) on the target node. However,
simple directed graphs are not expressive enough to encode the complex inter-
play between different regulatory elements. In fact, the expression (or repression)
of a single gene is controlled by the coordinated effort of multiple regulatory ele-
ments which sometimes compete to achieve opposite effects. The more nodes are
included in a GRN, the more it becomes prohibitive, even for the experts in the
field, to mentally associate with each set of arcs the complex interplay between
the source nodes that cooperate to achieve gene expression (or repression). It
seems therefore convenient to encode GRNs with a formalism which represents
the prerequisites of each regulatory transition in an explicit way. Petri nets with
their intuitive and explicit graphical notation already serve to model biological
processes [2,3,4,5] and GRN in particular. Since the basic place-transition (PT)
formalism has limitations that are incompatible with fundamental GRN prop-
erties, many extensions have been proposed during the years to model GRN
[6,7,8,9]. However, while these extensions enable the use of Petri nets for GRN
modelling, often they also pose an insurmountable obstacle for experimental bio-
logists that are not used to handle complex formal methods and relate better
to the simplicity of the original formalism. Therefore, we decided to address the
limitation of the basic PT definition using only a small number of extensions
and creating a representation intuitively accessible for experimental biologists,
providing a way to fold (and unfold) the new network formalism into a tradi-
tional PT network. In collaboration with a team of experimental biologists led
by Dr. Berthold Göttgens at the Cambridge Institute for Medical Research, we
modelled the haematopoietic stem cells differentiation using our Petri net frame-
work. The use of this framework (described for the first time in the following
Sections) was instrumental to discover the inhibitory role of Gata1 on Fli1 – two
crucial genes involved in blood cell differentiation and leukemia. The biological
significance of this result and its implications are discussed in depth in a com-
panion paper [10]. This paper was recently presented at ISMB 2013 (the largest
and most prestigious Bioinformatics meeting), where it received the Award for
Best Paper in Translational Bioinformatics. We view this prize as a token of
appreciation from the biological community towards a framework that aims to
bridge computer science and biology with an intuitive but powerful formalism.

The current paper, rather than focusing on theoretical advancements, aims
to be an experience report describing the successful application of Petri nets to
real-world experimental biology. The paper is structured as follows. In Sect. 2
we define a novel Petri net representation for GRNs based on the seminal work
of Chaouiya and colleagues [7]. Section 3 elaborates on how one can interpret
relevant state space properties in a biological sense. In Sect. 4 we provide an
experience report on the application of our framework in the experimental lab
directed by Dr. Berthold Göttgens, at the Wellcome Trust Institute/MRC in



3

Cambridge, UK. In Sect. 5 we discuss related work, and we present our conclu-
sions in Sect. 6.

2 Gene regulatory networks as Petri nets

Gene regulatory networks are usually grounded on different assumptions relat-
ive to other biological networks such as signalling networks. Gene regulatory
networks are based on two elements: a set of genes and a set of interactions
between them. In turn, interactions can be either positive or negative, when a
gene product has an enhancing or repressive effect, respectively, on the expres-
sion of another gene. A directed graph can not capture the cooperative interac-
tions that are essential to correctly reproduce the behaviour observed during in
vivo experiments. Intuitively, we want to be able to express, without ambiguity,
whether a single gene (de facto its gene product) or multiple genes are required
for a specific interaction.

An elegant way to avoid ambiguities is to use Petri nets to encode GRNs.
In this framework, places represent genes, transitions represent interactions, and
the marking of a place models the level of gene expression. Unfortunately, this
simple construction, based on the standard definition of PT nets, conflicts with
three main assumption of GRNs; in a GRN (i) the gene products (tokens) are not
consumed by the interactions (transitions); (ii) interactions might have negative
effects on the gene products (tokens can be removed from post-set places); (iii)
the absence of a gene product (a place not marked) can be a prerequisite for an
interaction. Instead of redefining enabling conditions and a marking function,
we decided to build simple Petri nets modules that satisfy these assumptions by
construction, and then use these modules to build larger GRNs.

Based on the above specification, and building on previous work by Chaouiya
et al. [7], we represent each gene g in a GRN using two complementary places
{pg, p̄g} ⊆ P where pg represents g being expressed, and p̄g represents g being
repressed. The sum of tokens in pg and p̄g always equals N ∈ Z>0, with N the
maximum gene expression level. Each interaction is modelled by a transition.
Let i be a positive interaction of the GRN. The set of genes Ri defines the gene
products necessary for the occurrence of i, Si defines the set of genes that block
the occurrence of i, and g is the gene activated by the occurrence of i. Thus, it
is possible to define a transition ti modelling i such that the pre-set of ti is

•ti = {pr ∈ P | r ∈ Ri} ∪ {p̄s ∈ P | s ∈ Si} ∪ {p̄g}, (1)

and the post-set of ti is

ti
• = {pr ∈ P | r ∈ Ri} ∪ {p̄s ∈ P | s ∈ Si} ∪ {pg}. (2)

Intuitively, we want to enforce that ti can be enabled if all the required gene
products are available and all gene products blocking interaction i are absent.
As a result of an occurrence of ti, a token is moved from p̄g to pg, while all
the tokens consumed in the places belonging to •ti are replaced by new ones.
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Figure 1. Petri net modules used to model positive (a) and negative (b) gene inter-
actions in GRNs. R is the set of genes required for the occurrence of the interaction.
S is the set of genes that block the interaction. Places p represent genes in expressed
state while places p̄ represent genes in repressed state. Arcs with a double arrow head
denote arcs in both directions.

This construction, depicted in Fig. 1(a), complies with assumption (i) and (iii).
Similarly, we can define a transition tj that represents a negative interaction j
on a gene g by moving a token from pg to p̄g. Thus, the pre-set of tj is

•tj = {pr ∈ P | r ∈ Rj} ∪ {p̄s ∈ P | s ∈ Sj} ∪ {pg}, (3)

and the post-set of tj is

tj
• = {pr ∈ P | r ∈ Rj} ∪ {p̄s ∈ P | s ∈ Sj} ∪ {p̄g}. (4)

This construction, depicted in Fig. 1(b), models the negative effect of j on g gene
products (see assumption (ii)), and also complies with assumptions (i) and (iii).
Therefore, by combining these constructions, and inferring F from the pre- and
post-sets, it is possible to build a full GRN that satisfies all three assumptions
using the basic PT net formalism.

One limitation of this approach is that the graphical representation of non-
trivial GRNs loses its intuitiveness. Indeed, the number of places and arcs neces-
sary to model an interesting GRN explodes. Since an intuitive graphical repres-
entation is one of our goals, we tried to compress our construction by enriching
the formalism. A minimal enrichment is sufficient to achieve an elegant formal-
ism and an intuitive graphical representation. The extended formalism includes
just an additional distinction between “positive” and “negative” arcs. Hence, our
new framework is defined as a tuple B = 〈Π,T, F,A, I〉. Π is a set of places
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such that there exists a single place in Π for every gene in the GRN. T is the
set of transitions. F is the set of flow relations as defined for PT nets. A ⊆ F
and I ⊆ F are disjoint sets of positive and negative arcs respectively such that
F = A ∪ I. Given a transition t ∈ T , we call

•t = {π ∈ Π | (π, t) ∈ A} positive pre-set of t,
•t̄ = {π ∈ Π | (π, t) ∈ I} negative pre-set of t,
t• = {π ∈ Π | (t, π) ∈ A} positive post-set of t, and
t̄• = {π ∈ Π | (t, π) ∈ I} negative post-set of t.

(5)

Note that, by definition, there exists a surjective function γ : P → Π that
associates with each place p ∈ P the place π ∈ Π that corresponds to the same
gene. Now, it is possible to fold the constructions of Fig. 1 into our new Petri net
definition using Alg. 1. This algorithm has two steps. The first step, intuitively,
generates the set of places Π by compressing each couple of complementary
places of P into a single place. The second step generates the set of arcs A and
I. For each bidirectional arc from a positive place p to a transition t we create the
arc (γ(p), t) in A. For each bidirectional arc from a negative place p̄ to a transition
t we create the arc (γ(p̄), t) in I. Finally, given the effect, positive or negative,
of the transition on a gene g we create an arc (t, γ(pg)) in A or I, respectively.
The unfolding procedure is similar. Each network B = 〈Π,T, F,A, I〉 can be
graphically represented with great parsimony of elements as shown in Fig. 2.
This representation is intuitive as well as formally rigorous.

Algorithm 1 fold(N,m), where the input N = 〈P, T, F 〉 is a PT Petri net
marked by a vector m

1: Π ← ∅, A← ∅, I ← ∅, m’← ∅
2: for all pairs of complementary places pg, p̄g′ ∈ P such that g = g′ do
3: Π ← Π ∪ new(π) . where π is a new place corresponding to gene g
4: m’[π]← m[pg]
5: end for
6: for all t ∈ T do . see Fig. 1 notation
7: for all pr ∈ P such that r ∈ Rt do
8: A← A ∪ {(γ(pr), t)}
9: end for
10: for all p̄s ∈ P such that s ∈ St do
11: I ← I ∪ {(γ(p̄s), t)}
12: end for
13: if t models a positive interaction then
14: A← A ∪ {(t, γ(pg))}
15: else
16: I ← I ∪ {(t, γ(pg))}
17: end if
18: end for
19: return B = 〈Π,T,A, I,m′〉
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Figure 2. Graphical representation of the positive (a) and negative (b) gene interac-
tions depicted in Fig. 1 using the folded network definition B = 〈Π,T, F,A, I〉. Negative
arcs belonging to I have a flat arrowhead. Both transitions are enabled by the depicted
markings. In practice, R and S are small, further simplifying the representation.

Although it is possible to unfold a network in its basic PT form where the tra-
ditional enabling conditions and marking transformations apply, it is convenient
to lift these conditions and transformations. Thus, given a Petri net in the form
B = 〈Π,T, F,A, I〉, a transition t ∈ T is said to be pre-enabled by a marking m
if every place in •t is marked by m, and every place in •t̄ is not marked by m;
it is said to be post-enabled if m(π) < N for each place π ∈ t•, and m(π) > 0
for each place π ∈ t̄•. Finally, t is said to be enabled by a marking m if it is pre-
and post-enabled by m. The occurrence of t transforms the marking m into a
mapping m’ defined as

m’(π) =

m(π)− 1 if π ∈ t̄•,
m(π) + 1 if π ∈ t•,
m(π) otherwise.

(6)

This formalisation can be extended to use arc weights as shown before. However,
by preserving this simple definition and assigning N = 1, it is still possible
to generate biologically meaningful networks as demonstrated in [10]. These
networks behave in a Boolean fashion, i.e. each gene can either be expressed or
repressed.

In order to build biologically faithful networks, an additional fourth assump-
tion must hold: if transcription is suspended, all gene products should, eventu-
ally, degrade over time. In Petri net terms, although tokens are not consumed by
gene interactions, they must be consumed whenever the conditions that enable
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their production cease to hold. Intuitively, if a gene product g was produced in
a previous step, but currently there are no more pre-enabled transitions that
could have a positive effect on πg, then gene product g should be degraded. This
behaviour is achieved by adding new ad hoc transitions enabled when the condi-
tions for gene activation are not met. Fortunately, this new set of transitions D
and their pre- and post-sets can be inferred from the initial network topology,
dispensing the user with the task of manually specifying them.

Formally, given a place π ∈ Π it is possible to define

TπA = {t | t ∈ T ∧ (t, π) ∈ A} ⊆ T, (7)

as the set of transitions that have a positive effect on π. Then, we represent TπA
as a Boolean formula in disjunctive normal form (DNF). Each conjunctive clause
of the DNF defines a transition t ∈ TπA. More specifically, each conjunctive clause
uses as variables the places in •t, and the places in •t̄ as negated variables. For
instance, the network in Fig. 2(a) corresponds to the formula (πr ∧ πr′ ∧ . . . ∧
πs ∧ πs′ ∧ . . .). Thus, the Boolean formula corresponding to a generic TπA =
{t1, t2, . . . , tk} is

B(TπA) =(πrt1 ∧ πr′t1 ∧ . . . ∧ πst1 ∧ πs′t1 ∧ . . .)

∨ (πrt2 ∧ πr′t2 ∧ . . . ∧ πst2 ∧ πs′t2 ∧ . . .) (8)

∨ . . . ∨ (πrtk ∧ πr′tk ∧ . . . ∧ πstk ∧ πs′tk ∧ . . .).

Similarly, it is possible to reconstruct the network topology starting from a
formula in DNF. A variable of (8) is true if the corresponding place is marked,
false otherwise. Hence, if all preconditions of a transition are met, i.e. it is
pre-enabled, then all the literals of the corresponding conjunctive clause, and
the whole formula itself, evaluate as true. Therefore, for a generic place π, (8)
evaluates as true if there exists a pre-enabled transition that has a positive effect
on π.
B(TπA), the negation of (8) in DNF, is true if at least one of its conjunctive

clauses evaluates to true. By constructing Dπ, the set of degradations of π,
from the conjunctive clauses of B(TπA), it is guaranteed that at least one of the
transitions in Dπ will be enabled if and only if none of the transitions with a
positive effect on π is pre-enabled, satisfying the fourth assumption. For example,
given the simple network of Fig. 3(a), B(T

πg

A ) equals πa ∧ πb ∧ πc; therefore,
B(T

πg

A ) is πa ∨ πb ∨ πc. Fig. 3(b) shows the degradation transitions built from
the conjunctive clauses of B(T

πg

A ).

3 State space analysis

For the analysis of GRNs we focus on computing the attractors of the model
state space. The state space (or marking graph) is a directed multigraph where
each node identifies a marking, and each arc represents the occurrence of a
transition. An attractor is a forward invariant subset of the state space, i.e. a
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Figure 3. The network on the right (b) shows the set of transitions D (dashed lines)
necessary to model the degradation of πg. Notice that at least one transition in D is
enabled if t is not pre-enabled. Since D can be automatically inferred from the gene
interactions in the initial topology (a), it is safe and usually convenient to omit the
transitions of D from the graphical representation to avoid cluttering.

set such that if a marking m belongs to it, then each marking reachable from m
also belongs to this set. In a biologically faithful model, each attractor should
correspond to an observable biological steady state. Intuitively, as in a biological
steady state the recently observed behaviour of the system will continue into
the future, likewise, in the state space the model execution will keep cycling
between the same states in the attractor set. Since we are particularly interested
in steady states, we can abstract from time. Therefore, we can compute the state
space using a fully asynchronous semantics as shown in Alg. 2. The algorithm
works in two steps. First, it generates all vertices of the state space graph by
computing the ensemble of all possible initial markings, i.e. all bit vectors of size
|Π|. Second, for each bit vector the algorithm fires all enabled transitions one by
one. For each transition fired, an arc from the current bit vector to the vector
generated by the occurrence of the transition is added to the state space.

The strategy we choose to identify the attractors is to compute the terminal
strongly connected components (TSCCs) of the state space. TSCCs are a par-
ticular class of strongly connected components (SCCs). The SCCs of a directed
graph are its maximal strongly connected subgraphs, i.e. the induced subgraphs
formed by the equivalence classes defined on the vertices by the relation of mutual
reachability. Two vertices u and v are said to be mutually reachable if and only if
there exist a path from u to v and from v to u. A TSCC T is a SCC such that if
u ∈ T , then v ∈ T for each directed arc (u, v). Thus, a TSCC is a SCC that does
not have outgoing arcs to other SCCs. Therefore, by trapping the execution in a
subset of states, each TSCC is an attractor of the the dynamical system. Given
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Algorithm 2 computeStateSpace(B), where B = 〈Π,T, F,A, I〉
1: E ← ∅
2: D ← computeDegradations(B)
3: T ← T ∪D
4: V ← computeAllMarkings(|Π|) . compute all possible bit vectors of size |Π|
5: for all v ∈ V do
6: E ← computeAllEnabledTransitions(T, v)
7: for all e ∈ E do
8: v′ ← fireTransition(v, e) . compute the marking obtained by firing e in

marking v
9: E ← E ∪ (v, v′) . add the new edge (v, v′)
10: end for
11: end for
12: return G = 〈V,E〉

a graph G = 〈V,E〉, the TSCCs can be easily computed by the Tarjan algorithm
[11] in O(|V |+ |E|). The complexity of this analysis lies in the generation of the
state space. The size of the multigraph G is exponential in the number of places;
|V | = N |Π|, where we recall that N is the maximal gene expression level. For
our case studies [5,10], based on the Boolean-like approach explained above, |V |
is 211, therefore, still tractable. Despite the complexity, building and exploring
the whole state space instead of identifying single attractors may be valuable
since the state space graph contains more information about the model dynam-
ics that can be interpreted in a biological fashion. This information can lead
to significative biological discoveries, as shown in [10]. However, more efficient
strategies should be devised to further extend the formalism to multiple gene
expression levels. Some strategies to cope with state space graphs with millions
of nodes are presented in [12].

4 Modelling haematopoietic stem cell differentiation: An
experience report

The Petri net framework defined in Sect. 2, has been specifically designed to
be easily accessible to a biology-trained audience. We had the opportunity to
test the applicability of our framework in the Haematopoietic Stem Cell Lab,
directed by Dr. Berthold Göttgens, at the Wellcome Trust Institute/MRC in
Cambridge, UK. The long term research goal of the Göttgens group is to de-
cipher the regulatory networks responsible for blood stem cell development (i.e.
haematopoiesis). Understanding the transcriptional control during blood cell dif-
ferentiation and maturation is a necessary milestone to cure leukaemia and other
types of cancer of the blood. Haematopoietic stem/progenitor cells (HSPC) have
long served as a model for studying stem cells, i.e. cells able to differentiate, in a
tree-like fashion, from a single stem (i.e. the stem cell) into multiple cells that ac-
complish different physiological functions (i.e. “mature” cells), such as red blood
cells, white blood cells, and platelets.
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Figure 4. The first attempt to draw the GRN that controls the haematopoietic stem
cell differentiation using the Petri net formalism explained in Sect. 2. Haematopoietic
Stem Cell Lab, Wellcome Trust Institute, Cambridge, UK.

The first challenge we had to face, in order to model haematopoiesis (i.e.
blood cell differentiation), was to encode all the expertise and knowledge ac-
quired over many years of methodical experimentation into a single formal rep-
resentation. This encoding procedure is traditionally done by bioinformaticians
with little experience in the application domain (in our case haematology) but
good knowledge of the theoretical framework used to model biological processes.
However, when the application domain is extensive and exceedingly complex,
as it is often the case in biology, it becomes likely that the resulting models no
longer represent faithfully the current status of the knowledge domain. There-
fore, instead of trying ourselves to assimilate and interpret the enormous amount
of information available in the Göttgens group or the literature, we decided to
explain the basics of our framework to the experimental biologists, leveraging
on the simplicity of our formalism, enabling them to encode their knowledge
directly using our Petri net representation.

Although the members of the Göttgens group had no previous experience
whatsoever with Petri nets or other models of concurrency, they were able to
draw on the whiteboard (see Fig. 4) a first draft of the GRN that regulates the
haematopoietic stem/progenitor cell differentiation in a matter of minutes. The
formalisation process proved useful as well for spotting latent ambiguities in the
knowledge shared within the field, such as controversial hypotheses regarding
the effect of certain interactions between regulatory elements. After only a few
iterative drawing and discussion cycles, the Göttgens group members were able



11

to draw the current state of the art of the haematopoietic differentiation GRN
[10]. We could then easily implement the GRN sketched on the whiteboard using
our custom-made tools. The resulting Petri net (Fig. 5) comprises 11 densely
connected genes. At the heart of the network lies the triad of Scl, Gata2 and
Fli1, which is characterized by extensive positive feedback loops, albeit negative
regulatory interactions are common outside this central triad.

In our experience, the possibility to draw the network model on a white-
board (Fig. 4), which then directly provides a formal and full specification of the
underlying model (Fig. 5) lowered significantly the access barrier to the form-
alism, compared to a model that can only be formally specified using sets of
equations. The consistent use of transitions nodes in Fig. 4 shows the appreci-
ation of the additional value provided by Petri net transitions over more classic
gene regulatory graphs. Being able to visualize the model on the whiteboard in
the form of a graph rather than a system of equations was instrumental also to
identify patterns that guided biological intuitions (such as the functional simil-
arities between Gata2 and Fli1) which were explored later using computational
approaches. Furthermore, the one-to-one correspondence between Boolean for-
mulas and network topologies allows to rapidly re-encode the model in other
formulas-based boolean formalisms such as GenYsis [13] as shown in [10].

In order for a network model to be useable as a predictive tool, its behaviour
needs to be assessed using available experimental data. We therefore explored
the expression patterns of the 11 regulatory genes and related these patterns
to the various haematopoietic cell types. We computed the state space of our
model and we performed a TSCC analysis as described in Sect. 3. Our ex-
perimentally validated network allows for three biologically sound TSCCs (i.e.
TSCCs composed by states which markings resemble the gene expression of real
blood cell types): (i) all genes are off, (ii) only Gata1 and Scl are expressed and
(iii) a TSCC formed by 32 interconnected markings with multiple genes act-
ive but Gata1 always repressed. TSCC (i) corresponds to a non-haematopoietic
cell. TSCC (ii) matches the erythroid cell profile. Most interesting, however, is
TSCC (iii), which is composed of 32 interconnected internal states, including
a state that matches the expected pattern for HSPCs. This analysis, therefore,
not only demonstrates that our knowledge-driven network topology is compat-
ible with expression patterns observed in HSPCs in vivo, but also suggests that
the HSPC is not a homogeneous cell population; instead it is composed from
cells in different stages of activation, as proved experimentally [13]. Traditional
networks derived from gene expression data provide a population average which
offers little insight into cellular heterogeneity and the regulatory processes likely
to be critical for lineage commitment. Therefore, characterization and modelling
of single cell heterogeneity is a necessary step to understand differentiation not
only at intra-cellular level but also at population level, where a heterogenous
population of stem cells is responsible for macroscopic changes at the level of an
organism.

Analysis of transitions between different states in the model state space can
be useful to predict experimental conditions for cells to differentiate out of the
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Figure 5. Petri net of the haematopoietic gene regulatory network. Activating inter-
actions are shown as blue arrows, repressing interactions in red with flat arrow heads.
All regulatory information encoded in this model can be found in [10].
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HSPC state. Therefore we performed a reachability analysis between each state
and each state matching a mature cell types in the developmental tree. Although
there are no paths out of the HSPC state, which is consistent with the HSPC
being a TSCC, we determined which are the closest states to the HSPC con-
nected to a state matching a mature cell type. For example, the closest state
to the HSPC that can reach the the state matching the erythrocyte cell type is
at a distance of two from the HSPC, where distances are measured using the
Hamming distance between state bit vectors. This observation corresponds to
the notion that the transition from HSPC to erythrocyte would need at least to
change the marking of two genes in the HSPC marking in order to be in a state
able to reach the erythrocyte state.

Of note, experimental evidence suggests that a single change (e.g. ectopic
expression of Gata1) would be sufficient to drive immature blood progenitors
towards an erythroid fate. However, as noted above, our modelling results suggest
that HSPC cells need to change at least the marking of two genes from the
HSPC state. We therefore considered potentially missing network links from our
current topology. In particular, we extended our model by introducing a new
transition, the possible repression of Fli1 by Gata1, based on the rationale that
the Fli1 regulatory element is structurally similar to the Gata2 element, which
is known to be repressed by Gata1 [14]. Interestingly, just introducing this single
additional repressive transition the reachability analysis of the updated network
revealed that a single change in the HSPC marking (i.e. Gata1 marking, from 0
to 1) would be sufficient to reach the erythrocyte state.

Following on from this modelling result, an experiment was conducted in Göt-
tgens lab which confirmed the novel inhibition on the haematopoietic progenitor
cell line HPC7.

Our Petri net framework, therefore, allowed us to predict a previously un-
recognized network link, which we were able to validate experimentally. Due to
their preeminent biological nature, these results are discusses in more details in
a companion publication [10].

5 Related work

Formal models can be an excellent way to store and share knowledge on biological
systems, and to reason about such systems [15]. Petri nets in particular are
among the most used formal frameworks; for a review see [16,17]. Petri nets
can be used to build both qualitative and quantitative biological models [18].
However, due to the lack of biochemical parameters, GRNs are usually described
in qualitative terms. The seminal work of Kauffman et al. [19] showed that GRNs
can be abstracted as Boolean networks, while Chaouiya et al. [7] showed how to
encode Logical Regulatory Graphs [20] using different Petri net dialects. We built
on the fundamental work of Chaouiya and colleagues. We aimed to build a simple
formal representation based on PT nets that would resemble the cartoons used in
experimental labs, and in which preconditions are explicitly shown (as opposed
to Logical Regulatory Graphs). We followed these design principles in order to
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facilitate the collaboration between computer scientists and biologists and foster
the use of formal methods in the experimental biology practice. Furthermore,
in Sect. 2 we introduced a novel method to capture and automatically derive
degradation processes in GRNs that, in our experience, proved to be crucial to
faithfully simulate the regulation of gene expression.

The biological questions that drove the investigation of the haematopoietic
stem cell differentiation were addressed using the state space analysis described
in Sect. 3. However, it is reasonable to think that traditional analysis techniques
applied to PT nets (e.g. T- and P-invariants analysis) could also be lifted within
our framework. Some of these techniques have been shown to be useful also in
the context of GRNs [8].

Although we used ad hoc tools for our analysis, several Petri net based tools,
designed specifically for biological purposes, became recently available. Some of
the most complete, popular, and stable are [21,22,23], and some interesting case
studies have been already explored with these tools [8,24,25]. This is a crucial
first step towards the adoption of formal models in the every day workflow of
experimental labs. However, in our experience, Petri net tools can also be too
general or too technical.

6 Conclusions

Biology, like computer science, is a very broad field in which each sub-community
has profoundly diverse interests and a specialised terminology. Therefore, frame-
works and tools that aim to be too general, targeting too many types of biological
processes, tend to have an excessive complexity and therefore be unpractical.
Furthermore, sometimes, tools use a computer science jargon which does not
relate with the specialised vocabulary used by experimental biologists. We ar-
gue that the next generation of formalism and tools should be designed around
specific biology domains (e.g. gene regulation, or signal transduction, or gen-
ome analysis) and their terminology should be adapted to that specific domain,
allowing a natural transition from the lab bench to the computer model. To
achieve this objective it will be essential to cooperate with experimental biolo-
gists through all phases of development; from the definition of the formalism to
the conception of the user interface.
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