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A Floer Homology Approach to Traveling Waves in Reaction-Diffusion Equations
on Cylinders\ast 

Bente Bakker\dagger , Jan Bouwe van den Berg\dagger , and Rob Vandervorst\dagger 

Abstract. Traveling waves form a prominent feature in the dynamics of scalar reaction-diffusion equations
on unbounded cylinders. The traveling waves can be identified with the bounded solutions of the

elliptic PDE

\Biggl\{ 
\partial 2
t u - c\partial tu+\Delta u+ f(x, u) = 0, t \in \bfR , x \in \Omega ,

B(u) = 0, t \in \bfR , x \in \partial \Omega ,
where c \not = 0 is the wave speed,

\Omega \subset \bfR d is a bounded domain, \Delta is the Laplacian on \Omega , and B denotes Dirichlet, Neumann, or
periodic boundary data. We develop a new homological invariant for the dynamics of the bounded
solutions of the above elliptic PDE. Restrictions on the nonlinearity f are kept to a minimum; for
instance, any nonlinearity exhibiting polynomial growth in u can be considered. In particular, the
set of bounded solutions of the traveling wave PDE may not be uniformly bounded. Despite this, the
homology is invariant under lower order (but not necessarily small) perturbations of the nonlinearity
f , thus making the homology amenable for computation. Using the new invariant we derive lower
bounds on the number of bounded solutions of our PDE, thus obtaining existence and multiplicity
results for traveling wave solutions of reaction-diffusion equations on unbounded cylinders.

Key words. Floer homology, gradient-like structure, infinite dimensional dynamics, nonlocal equation, strongly
indefinite equation, reaction-diffusion equations, traveling waves

AMS subject classifications. Primary, 35J20, 57R58; Secondary, 35K57, 37B30, 37B35

DOI. 10.1137/17M1162019

1. Introduction. A prominent feature of reaction-diffusion equations is the formation of
spatial and temporal patterns. The formation of spatial patterns is often observed to be in
the form of a traveling wave invading one state (e.g., a homogeneous distribution) and leaving
behind another (more complicated) state (e.g., a spatial pattern). In this paper we develop
a topological invariant based on a Floer homology construction. This gives insight into the
structure of the solutions of the reaction-diffusion equations. Furthermore, it demonstrates
emphatically that Floer homology has applications to a broad class of evolutionary PDEs, far
beyond the realm of symplectic topology where it is traditionally employed.

Historically Floer homology is defined for the Hamilton action functional in order to
develop a Morse type theory for contractible period-1 orbits. In particular, this approach has
led to the resolution of the Arnol'd conjecture in many settings; see [Arn89, Flo89, FO99, LT98]
and the references therein. In the classical context Floer homology gives an algebraic invariant
which is related to a weighted count of critical points of the Hamilton action and is isomorphic
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FLOER HOMOLOGY FOR TRAVELING WAVES IN RDEs 2635

to the singular homology of the symplectic manifold. Floer homology has been developed for
numerous nonclassical settings, including [AvdV99, Fab15a, HNS09, IM17]. The basic idea
in the construction is that solutions of a differential equation can be organized using gradient
dynamical systems.

The main message of this paper is that such an approach works for the much larger class of
gradient-like dynamical systems, including strongly indefinite ones, and may be regarded as an
extension of the Conley index for elliptic partial differential equations. Indeed, in the theory
of pattern formation the differential equations in question often display canonical gradient-like
behavior.

In this introduction we will start off with an overview of the main results and explain the
advantages of the Floer homology approach, followed by a summary of the Floer construction.
We conclude the introduction with an example of a classical traveling wave problem using the
Conley index and point out the analogues with the Floer homology approach.

1.1. Main results. We consider a scalar reaction-diffusion equation on an unbounded
cylindrical domain R\times \Omega 

\partial s\varphi = \Delta \=x\varphi + f(\=x, \varphi ) for s \in R, \=x \in R\times \Omega ,(RDE)

together with Dirichlet, Neumann, or periodic boundary conditions for \=x \in R \times \partial \Omega . Here u
is a scalar function, and \Omega \subset Rd is a bounded domain with smooth boundary. The operator
\Delta \=x denotes the Laplacian on R\times \Omega , that is,

\Delta \=x = \partial 2x0
+ \partial 2x1

+ \cdot \cdot \cdot + \partial 2xd
for \=x = (x0, x) = (x0, x1, . . . , xd) \in R\times \Omega .

We will also be using the Laplacian on \Omega , which we will denote by \Delta , that is,

\Delta = \partial 2x1
+ \cdot \cdot \cdot + \partial 2xd

for x = (x1, . . . , xd) \in \Omega .

Suppose the nonlinearity f is homogeneous in the (unbounded) x0 variable. Then a
natural class of solutions (often observed experimentally) of (RDE) to consider are of the
form \varphi (s, \=x) = u(x0+ cs, x1, . . . , xd) for some c \not = 0 (without loss of generality we will assume
c > 0). Then u(t, x) (where t \in R, x \in Rd) satisfies the elliptic PDE

(1) \partial 2t u - c\partial tu+\Delta u+ f(x, u) = 0 for t \in R, x \in \Omega ,

together with Dirichlet, Neumann, or periodic boundary conditions at x \in \partial \Omega .
If u is a solution of (1), then \varphi (s, \=x) = u(x0+cs, x1, . . . , xd) is called a traveling wave (but

we will also refer to u as such) if it converges (locally uniformly in x) as s\rightarrow \pm \infty to stationary
solutions of (RDE). To make this more precise we first need to define \alpha - and \omega -limit sets.
Let \alpha (u) denote the set of all accumulation points in the C1

\mathrm{l}\mathrm{o}\mathrm{c} topology of the shifts u(\cdot + \tau , \cdot )
as \tau \rightarrow  - \infty . Similarly, let \omega (u) denote all those accumulation points of shifts u(\cdot + \tau , \cdot ) as
\tau \rightarrow \infty . Then u is a traveling wave when \alpha (u) \cap \omega (u) = \emptyset , and \alpha (u) and \omega (u) consist solely
of stationary solutions of (1), i.e., each z \in \alpha (u) \cup \omega (u) satisfies \Delta z + f(x, z) = 0 and the
same boundary conditions as were chosen in (1). Later on we will see that, under suitable
conditions on the nonlinearity f , any bounded solution of (1) is either a stationary solution
or a traveling wave.D
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2636 B. BAKKER, J. B. VAN DEN BERG, AND R. VANDERVORST

In section 2 we will formulate precise conditions on the nonlinearity f for which our theory
works. Special instances of such nonlinearities are of the form

(2) f\mathrm{o}\mathrm{d}\mathrm{d},\pm (x, u) = \pm \alpha (x)| u| p - 1u+ h(x, u)

or

(3) f\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},\pm (x, u) = \pm \alpha (x)| u| p + h(x, u).

Here \alpha \in C4
b (\Omega ) is such that infx\in \Omega \alpha (x) > 0, and the lower order term h \in C4(\Omega \times R) is such

that

lim sup
| u| \rightarrow \infty 

sup
x\in \Omega 

| h(x, u)| 
| u| p

= 0.

It should be stressed that although the names f\mathrm{o}\mathrm{d}\mathrm{d},\pm and f\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},\pm are suggestive, we do not
assume any symmetry of the lower order term h. For the power p we restrict attention to the
``subcritical range"": 1 < p < \infty if dim\Omega = 1, and 1 < p \leqslant 3 if dim\Omega = 2. Extension of the
theory which also deals with higher dimensional domains and bigger p are subjects for future
research; see also Remark 2.2 in section 2.

Stationary solutions of (1), i.e., solutions which are independent of t, solve a semilinear
elliptic problem on a bounded domain \Omega . We say that a stationary solution z is hyperbolic if
the only solution of

\Delta v + fu(x, z)v = 0 for x \in \Omega 

together with the same boundary condition considered in (1) is v \equiv 0.
In this paper we develop an algebraic/topological invariant which takes into account solu-

tions of (1) which are stationary, as well as certain solutions which connect stationary solutions
(i.e., certain traveling waves). In terms of applications, the main result from this paper is the
following theorem.

Theorem A (Theorem 10.2 from section 10). Consider any wave speed c \not = 0, and let k \geqslant 1.
Then the following holds:

\bullet If f = fodd, - and (1) has at least 2k distinct hyperbolic stationary solutions, then
(RDE) has at least k distinct traveling wave solutions of wave speed c. More precisely,
to each given hyperbolic stationary solution z (but with the possible exception of at most
one of them), there corresponds at least one traveling wave u such that \alpha (u) = \{ z\} or
\omega (u) = \{ z\} (but it is possible that \omega (u), resp., \alpha (u), consist of nonhyperbolic stationary
solutions).
\bullet If either f = fodd,+, or f = feven, - , or f = feven,+, and (1) has at least 2k  - 1
distinct hyperbolic stationary solutions, then (RDE) has at least k distinct traveling
wave solutions of wave speed c. More precisely, to each given hyperbolic stationary
solution z, there corresponds at least one traveling wave u such that \alpha (u) = \{ z\} or
\omega (u) = \{ z\} (but it is possible that \omega (u), resp., \alpha (u), consist of nonhyperbolic stationary
solutions).

Furthermore, in each of these cases there exists at least one more stationary solution (which
might be nonhyperbolic).

Here we consider two traveling wave solutions \varphi 1, \varphi 2 of (RDE) to be distinct from each
other if \varphi 1(s1, \cdot ) \not = \varphi 2(s2, \cdot ) for all s1, s2 \in R, i.e., they are not simply time translates of oneD
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another. We note that the problem of establishing hyperbolic stationary solutions is amenable
to computer-assisted proof techniques, making the assumptions in Theorem A verifiable in
practice (see, e.g., [AK15, vdBGLvdV17]).

When f = f\mathrm{o}\mathrm{d}\mathrm{d}, - , (1) is dissipative, meaning that the set of all bounded solutions is
compact. In that case, similar results have previously been obtained using different methods.
See, for example, [Gar86, Mie94, FSV98, GIP99]. However, the methods used there break
down when the set of bounded solutions is not compact.

We point out that for suitable conditions on f (e.g., demanding that f = f\mathrm{o}\mathrm{d}\mathrm{d},+ has the
symmetry f(x, - u) =  - f(x, u)), (1) has infinitely many stationary solutions. This is well
known (see, for example, [BL92, Yan98, RTZ09, Yu14, HHM15]), although this can also be
deduced from Theorem A directly. Now Theorem A implies that if all the stationary solutions
are hyperbolic (a condition which can be ensured by adding a small perturbation), for such
antisymmetric nonlinearities f = f\mathrm{o}\mathrm{d}\mathrm{d},+ there exist infinitely many traveling wave solutions
of (RDE) with any given nonzero wave speed.

When \Omega is zero-dimensional, a classical approach to proving the existence of connecting
orbits in (1) is by using Conley index theory; see also subsection 1.4. However, since (1) is
a strongly indefinite problem, arguments based on Conley index theory cannot be applied
directly. Indeed, any index pair for a stationary solution is homotopy equivalent to a pointed
infinite dimensional sphere, hence the Conley index of any rest point is trivial. In [FSV98] this
problem was circumvented by, roughly speaking, assigning an index to isolated invariant sets
via the limit of Conley indices of finite dimensional approximations of (1). In order for this
limit to make sense, one needs global compactness results on the set of all bounded solutions
of (1), i.e., this method is applicable only for dissipative nonlinearities f .

Previous work by various authors has shown that Floer homology is capable of dealing
with a larger class of problems than the analogous Conley index approach: compare, e.g.,
[CZ83, CZ84] with [Flo89, Sal99], and [IR02] with [AvdV99]. Inspired by this, we construct
a Floer-type homology theory for (1). This construction only requires a local compactness
result on the space of bounded solutions of (1), hence our results also apply to nondissipative
nonlinearities (e.g., f = f\mathrm{o}\mathrm{d}\mathrm{d},+).

1.2. Comparison to classical Floer theory. We want to point out here that this work is not
a straightforward application of the standard Floer theory for Hamiltonian systems. Equation
(1) takes over the role of the (perturbed) Cauchy--Riemann equation in the standard Floer
theory. Although both (1) and the Cauchy--Riemann equation are elliptic, there are some
important differences.

Equation (1) is not a (formal) gradient flow (but it is gradient-like), and it is not imme-
diately clear whether the construction of the homology still works for gradient-like equations.
For example, the index theory for this problem becomes more involved. The obtained index
can be related to the classical Morse index of a related parabolic equation, thus making the
index amendable for computations. The existence of a Lyapunov function for (1) guaran-
tees that, just as in the classical situation, the moduli spaces of connecting orbits can be
compactified by adding broken orbits.

In the case of standard Floer theory, transversality can be obtained by perturbing the
Hamiltonian and the almost complex structure. Thus the perturbed equation is again a PDE.D
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2638 B. BAKKER, J. B. VAN DEN BERG, AND R. VANDERVORST

However, to us it seems that a natural way to achieve generic transversality is by adding a
nonlocal term to (1). Of course, the downside of this approach is that the perturbed equation
is then no longer a PDE.

To illustrate why this is a sensible choice, it is best to rewrite (1) as a dynamical system

(4) \partial tU = A(U).

Here U = (u, \partial tu), and A(U) is a differential operator acting on U plus a nonlinear term
f(x, u). But from a different viewpoint, A is a (densely defined) vector field on a function
space X (consisting of functions depending on x \in \Omega ). To obtain generic transversality,
one should allow for perturbations of (4) which are localized in the ``phase space"" X. In
general, there seems to be no reason to assume such a perturbation can be chosen to be a
differential operator. The fact that this is possible in classical Floer theory is because solutions
of perturbed Cauchy--Riemann equations share most properties with holomorphic functions;
see [FHS95].

The choice to perturb (1) out of the class of PDEs does introduce a number of new technical
obstacles. The biggest hurdle turns out to be the unique continuation theory developed in
section 4. To deal with the nonlocal perturbation we had to develop a new variety of Carleman
estimates.

Finally, we note that with classical Floer theory one is interested in the generators of the
homology. The boundary operator, which counts connecting orbits for the gradient flow, is
merely introduced in order to define the homology. In contrast to this, we are interested in
the connecting orbits of a gradient-like equation. Hence the boundary operator encodes the
information we are actually interested in. The latter is comparable to the connection matrix
in Conley index theory.

1.3. Future work. We have chosen to present the theory only for \Omega of dimensions 1
and 2. This allows us to work solely over Hilbert spaces. The advantage of this becomes
apparent especially in sections 3 and 4. By replacing the various Sobolev spaces by their Lp

counterparts, one should be able to obtain similar results for higher dimensional \Omega .
We restrict to spaces \Omega which are either tori or smooth domains in Rd. It appears to

be straightforward to generalize the current results to work for more general spaces \Omega . A
natural requirement would be that \Omega is an orientable Riemannian manifold, either closed or
with cylindrical ends. It would then be natural to allow for mixed boundary conditions at the
cylindrical ends.

Another aim for future work is to extend the invariant to higher order equations. One of
the main technical hurdles will then be the extension of the unique continuation theory from
section 4.

In this article we only consider traveling waves in a scalar reaction-diffusion equation.
However, the same construction will work, essentially without modifications, for systems of
reaction-diffusion equations, provided that the reaction term is of the form f = \nabla F .

The invariant that we develop only incorporates index 1 connecting orbits for any wave
speed c \not = 0. However, a similar invariant can be developed to detect index 0 orbits for a
specific wave speed c = c\ast . For this, one should incorporate a slow drift on the wave speed
c, which connects a slow wave speed system with a fast wave speed system. Using similarD
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techniques as presented here the existence of nontrivial orbits for such systems can be shown.
By combining this with a priori estimates on the solutions, we are convinced that one can
prove the existence of index 0 orbits for a specific wave speed c = c\ast ; see [MM02, Smo94].

In [Fab15b] (and, using different methods, in [AM15]) symplectic nonsqueezing results are
developed in the setting of Hamiltonian PDEs. These rigidity properties are derived using
the analysis of J-holomorphic curves. The current paper demonstrates that Floer homology
can be constructed using traveling waves instead of J-holomorphic curves. This suggests the
PDEs dealt with in this paper possess additional rigidity properties which are worth exploring
in more detail.

1.4. A classical example. To illustrate how a topological invariant can be used to deduce
the existence of solutions of (1), we now briefly recall how this problem can be tackled using
standard tools when \Omega is zero-dimensional. In that setting (1) reduces to the ODE

(5) u\prime \prime  - cu\prime + f(u) = 0.

A topological approach to existence of solutions of this ODE dates back to work by Conley
and Gardner; see [CG80, Gar84].

We first recall the definition of the Conley index. Given a flow (\varphi t)t on a metric space X,
a pair (N,L) is called an index pair if, roughly speaking, L \subset N \subset X are compact subsets,
such that N and N\smallsetminus L are isolating neighborhoods of the flow with Inv(N) = Inv(N\smallsetminus L), and
all orbits which leave N must do so through L without reentering N \smallsetminus L. The (homological)
Conley index of (N,L) is then defined as the relative (singular) homology of the pair (N,L).
In this example we will use Z2 coefficients for the homology. It can be shown that any isolated
invariant set S for the flow (\varphi t)t admits an index pair (N,L), i.e., an index pair for which
Inv(N) = S. Moreover, if (N1, L1) and (N2, L2) are two index pairs for the same isolated
invariant set S, then the relative (singular) homologies of those pairs are isomorphic via a
natural isomorphism. Thus one can define the (homological) Conley index HC\ast (S, \varphi ), up to
natural isomorphism, as the relative homology of an index pair (N,L) for S. That is to say,
HC\ast (S, \varphi ) should be interpreted as an equivalence class of relative homologies. This notion
of defining HC\ast (S, \varphi ) up to natural isomorphisms can be formalized by defining HC\ast (S, \varphi ) as
the inverse limit over all index pairs (N,L) with Inv(N) = S.

A crude way to apply Conley index theory to (5) makes use of the direct sum property
of the index. This property states that if an isolated invariant set S for the flow (\varphi t)t can be
written as the disjoint union of S1 and S2, then

HC\ast (S, \varphi ) \sim = HC\ast (S1, \varphi )\oplus HC\ast (S2, \varphi ).

Consider (5) as a dynamical system on R2, and let S \subset R2 consist of all bounded orbits of
this dynamical system. Now note that for c = 0 the dynamical system is Hamiltonian, and
for c > 0 the system displays gradient-like behavior, with the original Hamiltonian function
now strictly decreasing along nonstationary orbits. This gradient-like behavior implies that S
consists of stationary solutions and heteroclinic orbits.

Using the invariance property of the Conley index it can be seen that HC\ast (S, \varphi ) is isomor-
phic to HC\ast (\{ 0\} , \psi ), where (\psi t)t is the flow of (5) with f(u) =  - u3  - u. Since 0 is a saddleD
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u

u\prime 

Figure 1. Sketch of an index pair (N,L) for the set of all bounded solutions of (5), with f(u) = (u  - 
a)(1  - u2), where 0 < a < 1 and c > 0. The lightly shaded area indicates a possible choice of an isolating
neighborhood N , while the dark shaded area indicates a possible choice for an exit set L. The number of
heteroclinic connections depends on choices of a and c.

point for (\psi t)t, it follows that HC\ast (\{ 0\} , \psi ) is isomorphic to the reduced singular homology of
a 1-sphere. Hence

HCn(S, \varphi ) \sim = HCn(\{ 0\} , \psi ) \sim = Hn(S
1,pt;Z2) \sim =

\Biggl\{ 
Z2 if n = 1,

0 otherwise.

This is further illustrated in Figure 1.
Now suppose the system does not possess any connecting orbits. The gradient-like behav-

ior then implies that S consists solely of rest points of the flow, hence the direct sum property
implies

HC\ast (S, \varphi ) \sim = HC\ast (\{ ( - 1, 0)\} , \varphi )\oplus HC\ast (\{ (a, 0)\} , \varphi )\oplus HC\ast (\{ (1, 0)\} , \varphi ).

But local phase plane analysis shows that all of the rest points have a nontrivial Conley index.
Hence the rank of the direct sum is at least 3, while HC\ast (S, \varphi ) is of rank 1. This contradiction
allows us to conclude that S contains at least one connecting orbit.

1.5. Outline of the paper. As was already indicated, the proof of Theorem A is of the
same spirit as the example sketched in the previous section. Note that one of the essential
ingredients in this approach is the gradient-like behavior, i.e., that the set of bounded solutions
consists of stationary solutions and connecting orbits. The other essential ingredient is the
existence of an algebraic object associated to isolating neighborhoods, such that the following
hold:

1. It is amenable to computation, which follows from the invariance of the algebraic object
under (not necessarily small) perturbations of the nonlinearity f . In other words, it is
a topological invariant.

2. It encodes dynamical information. In particular, it should satisfy a direct sum prop-
erty.D
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Since the equation we consider is infinite dimensional the Conley index is not applicable. In
this paper we develop a new topological invariant, which we call the traveling wave homology.

Let us now sketch the construction of the traveling wave homology as well as give an
outline of the paper. We begin by assigning an index \mu f (Z) to hyperbolic stationary solutions
Z of (1). This index can be thought of as a generalization of the classical Morse index. The
existence of this (relative) index in our strongly indefinite setting relies on a version of the
Fredholm alternative for (1), for which the hyperbolicity of the stationary solutions is needed,
and which is discussed in section 5.

The construction of the invariant then relies on a careful analysis of the spaces\scrM (Z - , Z+)
of connecting orbits between fixed stationary solutions Z - , Z+. One important observation
is that these spaces are compact modulo ``broken trajectories."" In section 7 we give precise
definitions as well as a proof of this property. Essential ingredients are the local compactness
results from section 3, as well as the existence of a Lyapunov function \scrE .

Using the rapid decay of connecting orbits toward stationary solutions (discussed in section
6) the spaces \scrM (Z - , Z+) can be described as the zero set of a differential operator defined
between certain affine Hilbert spaces. Thus, roughly speaking, if the image of this differential
operator intersects the zero section transversely, the implicit function theorem (making use
of the Fredholm theory from section 5) gives us a manifold structure on\scrM (Z - , Z+). In fact,
this manifold is finite dimensional, with dimension equal to \mu (Z - ) - \mu (Z+).

As it turns out, the natural way to ensure transversality holds generically is by perturb-
ing (1) using a small nonlocal term. The perturbed equation takes the form

(6) \partial 2t u(t, x) - c\partial tu(t, x) + \Delta u(t, x) + f(x, u(t, x)) + g(x, (u(t, \cdot ), \partial tu(t, \cdot ))) = 0.

We stress that the perturbation g depends on u(t, \cdot ) and \partial tu(t, \cdot ) as functions on \Omega . A typical
example of such a perturbation is of the form displayed in (41). One particular part where
this nonlocal term prevents us from applying known results is the unique continuation theory
developed in section 4. There we prove that if two solutions (u, \partial tu) and (v, \partial tv) of (6)
coincide at a certain time t = t0, they must in fact coincide for all t \in R, i.e., u \equiv v. In
the absence of the term g this would follow from classical Carleman estimates [Car39, Aro56,
AKS62, Ken86, Tat04, CGT06]. To deal with the nonlocal perturbation g, in section 4 we have
derived a version of the Carleman estimates where the function is not required to be localized
except for the t-direction. This is possible, at the cost of the Carleman estimates no longer
holding uniformly over all localized functions (as in the classical case), but the way in which
the estimates depend on the chosen function works well together with localizing a solution
of (1) in the t-direction using cutoff functions. This allows us to prove the desired uniqueness
result. In the end, we are able to show that for generic choices of g the transversality condition
is satisfied (see section 8).

Of particular interest is then the case when\scrM (Z - , Z+) is of dimension 2 and noncompact.
A careful analysis shows that this space can be compactified by adding, for each noncompact
connected component of\scrM (Z - , Z+), precisely two broken trajectories. In the definition of the
homology we shall also make use of isolating neighborhoods (the precise definition of which
will be given in section 9), which will play a similar role as in Conley theory. Then, if one
lets Cn denote the group which is Z2-generated by index n stationary solutions contained in
a fixed isolating neighborhood N , and define homomorphisms \partial n : Cn \rightarrow Cn - 1 by countingD
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2642 B. BAKKER, J. B. VAN DEN BERG, AND R. VANDERVORST

(modulo 2) connecting orbits which are contained in N , it follows that \partial n \circ \partial n+1 \equiv 0. This
way we arrive at the following theorem.

Theorem B (Theorem 9.1 from section 9). One has \partial n \circ \partial n+1 = 0, and consequently,

HTWn(N, f, g, c) := Hn(C\ast , \partial \ast ) =
ker \partial n
im \partial n+1

is well-defined.

The resulting homology HTW\ast (N, f, g, c) is independent (up to natural isomorphisms) of
the particular choice of g (for small g). Thus we obtain an invariant HTW\ast (N, f, c) for (1).
Furthermore, if (f\lambda , c\lambda ) is a homotopy between nonlinearities (f0, c0) and (f1, c1), and N
satisfies an appropriate stability property with respect to this homotopy (see section 9 for
precise details), then HTW\ast (N, f0, c0) \sim = HTW\ast (N, f1, c1). In particular, when N is the
entire phase space and the nonlinearity f is of the form given in (2) or (3), then the homology
is invariant under homotopy on the lower order term h and the coefficient \alpha , as long as
infx\in \Omega \alpha \lambda (x) > 0 uniformly in the homotopy parameter \lambda . This is what allows us to determine
explicitely the homology of the global dynamics in all four cases; see Theorem 10.1.

The invariant HTW satisfies a direct sum property similar to that of the Conley index. If
N = A \cup B, where A and B are disjoint isolating neighborhoods for the dynamics, then

HTW\ast (N, f, c) \sim = HTW\ast (A, f, c)\oplus HTW\ast (B, f, c).

This allows us to prove Theorem A in a way analogous to the simplified example involving
Conley index theory in section 1.4.

2. The extended problem. In this section we set up the extended problem into which our
original problem can be embedded. In later sections we will see that for generic choices from
this class of extended problems we can set up the desired transversality theory. It appears
that this is not possible without considering the extended problem.

2.1. Perturbations. Let either \Omega \subset Rd be a bounded domain with smooth boundary or
\Omega = Td = Rd/Zd. We will restrict ourselves to d \in \{ 1, 2\} ; see Remark 2.2. Since we want to
consider (1) as a dynamical system we are going to rewrite it as a system of equations which
involve first order derivatives of t only. We choose to incorporate the boundary conditions in
the phase space.

We denote by Hk(\Omega ) the L2 Sobolev space, defined as the closure of C\infty (\Omega ) in the norm

\| u\| Hk(\Omega ) =

\left(  \sum 
| \alpha | \leqslant k

\| \partial \alpha u\| 2L2(\Omega )

\right)  1/2

.

When \Omega \subset Rd is a domain, let B : C\infty (\Omega ) \rightarrow C\infty (\partial \Omega ) be given by either B(u) = u| \partial \Omega 
(Dirichlet) or B(u) = \partial \nu u| \partial \Omega (Neumann), where \nu denotes the outward pointing unit normal
on \partial \Omega . When \Omega is a torus (corresponding to periodic boundary conditions), we set B = 0.
For any k \in N0 we now define

Hk
B(\Omega ) := clHk(\Omega )

\bigl\{ 
u \in C\infty (\Omega ) : B(u) = 0

\bigr\} 
.D
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FLOER HOMOLOGY FOR TRAVELING WAVES IN RDEs 2643

Whenever it is convenient, the operator B shall also be identified with its extension to Sobolev
spaces Hk(\Omega ).

We can now introduce the phase spaces

Xk := Hk+1
B (\Omega )\times Hk

B(\Omega ), k \in N0.

Together with the norms

\| (u, v)\| 2Xk :=
\bigl( 
\| u\| 2Hk+1(\Omega ) + \| v\| 

2
Hk(\Omega )

\bigr) 1/2
, (u, v) \in Xk,

these become separable Hilbert spaces.
Given a possibly unbounded open subset J \subset R define

W k,2
\mathrm{l}\mathrm{o}\mathrm{c} (J ;X

0, . . . , Xk) :=W k,2
\mathrm{l}\mathrm{o}\mathrm{c} (J,X

0) \cap W k - 1,2
\mathrm{l}\mathrm{o}\mathrm{c} (J,X1) \cap \cdot \cdot \cdot \cap W 1,2

\mathrm{l}\mathrm{o}\mathrm{c} (J,X
k - 1) \cap L2

\mathrm{l}\mathrm{o}\mathrm{c}(J,X
k).

We endow these spaces with the compact-open topology. Convergence in this topology, which
in fact makesW k,2

\mathrm{l}\mathrm{o}\mathrm{c} (J ;X
0, . . . , Xk) into a Fr\'echet space, is characterized as follows: a sequence

(Un)n \subset W k,2
\mathrm{l}\mathrm{o}\mathrm{c} (J ;X

0, . . . , Xk) converges toward U\infty if and only if for any bounded open subset
J \prime \subset J it holds that

(7) max
0\leqslant \ell \leqslant k

max
0\leqslant j\leqslant k - \ell 

\int 
J \prime 
\| \partial jtUn(t) - \partial jtU\infty (t)\| 2X\ell dt\rightarrow 0 as n\rightarrow \infty .

The spaces Wm,2(J ;X0, . . . , Xm) are defined in a similar fashion, where now J \prime in (7) is
replaced by J . The spaces Cm(J ;X0, . . . , Xm) are defined by

Cm(J ;X0, . . . , Xm) := Cm(J,X0) \cap Cm - 1(J,X1) \cap \cdot \cdot \cdot \cap C1(J,Xm - 1) \cap C0(J,Xm),

where the topology is defined by uniform convergence of functions and their derivatives on
compact subsets of J . The spaces of bounded differentiable functions Cm

b (J ;X0, . . . , Xm) are
defined in an analogous manner, where now the convergence is uniform over J itself.

Lemma 2.1. One has the continuous embeddings

Wm,2(J ;X0, . . . , Xm) \lhook \rightarrow Cm - 1
b (J ;X0, . . . , Xm - 1),

Wm,2
loc (J ;X0, . . . , Xm) \lhook \rightarrow Cm - 1(J ;X0, . . . , Xm - 1).

Furthermore, the embeddings

Wm,2(J ;X0, . . . , Xm) \lhook \rightarrow Wm - 1,2(J ;X0, . . . , Xm - 1) with J bounded,

Wm,2
loc (J ;X0, . . . , Xm) \lhook \rightarrow Wm - 1,2

loc (J ;X0, . . . , Xm - 1) for any J

are compact.

Proof. We give a sketch here; for more details we refer to [Ama95]. The first two state-
ments are a consequence Morrey's inequality. This relies on the integral representation
U(t) = U(t0) +

\int t
t0
\partial sU(s) ds, which is well-defined since the spaces Xi are separable. The

compact embeddings follow from the Rellich--Kondrachov theorem for vector-valued Sobolev
spaces. Here one uses that Xi are seperable Banach spaces and the embeddings Xi \lhook \rightarrow Xi - 1

are compact.D
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2644 B. BAKKER, J. B. VAN DEN BERG, AND R. VANDERVORST

Let Af,g,c : X
1 \rightarrow X0 be the nonlinear operator defined by

Af,g,c(u, v)(x) :=

\biggl( 
 - v(x)

\Delta u(x) + f(x, u(x)) - cv(x) + g(x, (u, v))

\biggr) 
for (u, v) \in X1. We stress here that the term g(x, (u, v)) depends on the functions u and v,
not on the point (u(x), v(x)). We assume f : \Omega \times R \rightarrow R is of class Cm with m \geqslant 1, and
g : \Omega \times X0 \rightarrow R is Cm (in the Fr\'echet sense), and c > 0. At each point in the development of
the theory we will point out exactly how big m needs to be, but we already want to point out
that all theorems hold for m \geqslant 4. The nonlocal term g will typically be a very small term.
Additional restrictions on f and g will be formulated in the next section. For brevity we shall
write A instead of Af,g,c whenever this does not give rise to ambiguity.

We will study the behavior of the dynamical system

\partial tU +Af,g,c(U) = 0, U \in W 1,2
\mathrm{l}\mathrm{o}\mathrm{c} (J ;X

0, X1).(TWE)

Note that U = (u, v) is a solution of (TWE) if and only if v = \partial tu, and

\partial 2t u - c\partial tu+\Delta u+ f(x, u) + g(x, (u, \partial tu)) = 0 on J \times \Omega ,

and for each t \in J the boundary condition B(u(t, \cdot )) = 0 is satisfied. Unless mentioned
otherwise, we assume that J = R. Note that as a consequence of the nonlocal perturbation g
(TWE) is in general not a PDE.

2.1.1. Conditions on \bfitf , \bfitg , and \bfitc . Henceforth we shall assume that (f, g) \in Cm(\Omega \times R)\times 
Cm(\Omega \times X0) and c > 0 satisfy the following hypotheses:

(f1) There exists Cf \geqslant 0 such that f satisfies the growth bounds

sup
x\in \Omega 
| f(x, u)| \leqslant Cf (1 + | u| p),

where 1 \leqslant p <\infty if dim\Omega = 1 and 1 \leqslant p \leqslant 3 if dim\Omega = 2.
(f2) There exist some  - 1 < \theta < 1 and C \prime 

f \geqslant 0 such that f satisfies

| F (x, u)| \leqslant C \prime 
f +

\theta 

2
f(x, u)u.

Here F (x, u) =
\int u
0 f(x, s) ds.

As an alternative to (f2) we can also consider (see also Remark 2.3) the following:
(f2\prime ) There exist some  - 1 < \theta < 1 and C \prime 

f \geqslant 0 such that f satisfies

| F (x, u)| \leqslant C \prime 
f +

\theta 

2
f(x, u)| u| .

When dealing with Neumann or periodic boundary conditions, we need an additional restric-
tion on the nonlinearity, given by (f3).

(f3) When considering Neumann or periodic boundary data, assume f satisfies the super-
linear growth condition

lim inf
| u| \rightarrow \infty 

inf
x\in \Omega 

\bigm| \bigm| \bigm| \bigm| f(x, u)u

\bigm| \bigm| \bigm| \bigm| > 0.
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Besides these restrictions on f we need to put a few restrictions on g:
(g1) There exists a constant C0,g such that

sup
x\in \Omega , U\in X0

| g(x, U)| \leqslant C0,g,

and for each k \in \{ 1, . . . ,m\} there exists a constant Ck,g such that

sup
x\in \Omega , U\in X0

\| dkg(x, U)\| \scrL ((\bfR \times X0)k,\bfR ) \leqslant Ck,g.

(g2) The perturbation g satisfies the Lipschitz condition

sup
x\in \Omega , u\in H1

B(\Omega )

| g(x, u, v)| \leqslant c

2
\sqrt{} 
Vol(\Omega )

\| v\| L2(\Omega ).

Note the dependence of the Lipschitz constant on the wave speed c.
(g3) The perturbation g satisfies

dg(x, u, 0) = 0 for all x \in \Omega , u \in H1
B(\Omega ).

Remark 2.2. We want to stress here that both the dimensional restriction d = dim\Omega \leqslant 2
and the growth restriction (f1) are merely technical. The dimensional restriction ensures that
the Sobolev embedding H2(J \times \Omega ) \lhook \rightarrow C0(J \times \Omega ) holds, where J \subset R is a domain. This fact
is used in order to obtain the compactness results in section 3. The choice of p in hypothesis
(f1) ensures that the Sobolev embedding H1(J \times \Omega ) \lhook \rightarrow L2p(J \times \Omega ) holds. Consequently, the
growth bound on f ensures that the map Af,g,c : X

1 \rightarrow X0 is indeed well-defined, bounded,
and continuous (see [AZ90]). Both these conditions can be relaxed by replacing all the spaces
Hk = W k,2 by W k,q spaces for appropriately chosen q. Since we mainly want to convey the
idea that Floer theory can be applied to traveling wave problems in (RDE), we have chosen to
stick with the Hilbert space theory in order to reduce the technicality of the estimates, which
tend to complicate the spirit of the arguments.

Remark 2.3. Conditions (g1)--(g3) could seem restrictive, but recall that the nonlinear
term g is only introduced to put the equation (TWE) into ``general position"" (i.e., to achieve
transversality). In the application of the theory we are eventually interested in the case where
g = 0, hence conditions (g1)--(g3) are not particularly restricting.

On the other hand, conditions (f1)--(f3) clearly put restrictions on the types of nonlineari-
ties to which the theory is applicable. Examples (but not exhausting all possibilities) of such
nonlinearities are f = f\mathrm{o}\mathrm{d}\mathrm{d},\pm and f = f\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},\pm , which were introduced in (2) and (3). Then
clearly hypotheses (f1) and (f3) are satisfied. The appropriate choice between hypotheses (f2)
and (f2\prime ) and the corresponding value of  - 1 < \theta < 1 can be summarized as follows:

\sigma =  - \sigma = +

f\mathrm{o}\mathrm{d}\mathrm{d},\sigma (f2) \theta <  - 2/(p+ 1) \theta > 2/(p+ 1)
f\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},\sigma (f2\prime ) \theta <  - 2/(p+ 1) \theta > 2/(p+ 1)

As was already indicated in the introduction, the difference between the various choices of
f is also reflected in the possible dynamics, a fact which we will return to once we discuss
applications of the theory in section 10.D

ow
nl

oa
de

d 
01

/2
5/

21
 to

 1
45

.1
08

.2
52

.1
30

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2646 B. BAKKER, J. B. VAN DEN BERG, AND R. VANDERVORST

2.1.2. Conditions on the nonautonomous equation. In order to develop continuation of
the Floer homology groups, we need to allow (f, g, c) to depend explicitly on t, i.e., consider
a nonautonomous version of (TWE). We shall assume that t-dependent (f, g, c) \in Cm(R \times 
\Omega \times R)\times Cm(R\times \Omega \times X0)\times Cm(R, (0,\infty )) satisfy the following hypotheses:
(n1) For each t \in R, the triple (f(t, \cdot , \cdot ), g(t, \cdot , \cdot ), c(t)) satisfy hypotheses (f1)--(f3) and (g1)--

(g3), with the constants Cf , C
\prime 
f , \theta , and Ck,g uniform in t \in R.

(n2) There exists an \ell > 0 and t-independent triples (f - , g - , c - ), (f+, g+, c+) such that\Biggl\{ \bigl( 
f(t, \cdot , \cdot ), g(t, \cdot , \cdot ), c(t)

\bigr) 
=
\bigl( 
f - , g - , c - 

\bigr) 
for t \leqslant  - \ell ,\bigl( 

f(t, \cdot , \cdot ), g(t, \cdot , \cdot ), c(t)
\bigr) 
=
\bigl( 
f+, g+, c+

\bigr) 
for t \geqslant +\ell .

The final hypothesis makes use of a sufficiently small constant \Theta . How small this \Theta should
really be depends on \theta , inft\in \bfR c(t), and \ell and will be dictated by Theorems 3.3 and 3.5.
(n3) There exist \Theta \geqslant 0 sufficiently small, and C \prime \prime 

f \geqslant 0, such that

| \partial tF (t, x, u)| \leqslant C \prime \prime 
f +\Theta | F (t, x, u)| .

2.2. Auxiliary definitions.

2.2.1. The energy/Lyapunov functional. Recall from hypothesis (f2) that F : \Omega \times Rd \rightarrow 
R is chosen such that F (\cdot , 0) = 0, \nabla uF (x, u) = f(x, u). By hypothesis (f1) and the continuous
embedding H1(\Omega ) \lhook \rightarrow Lp+1(\Omega ), it follows that the induced Nemytskii operator

F : H1(\Omega )\rightarrow L1(\Omega ), u(x) \mapsto \rightarrow F (x, u(x))

is bounded and C1; see, e.g., [AZ90]. We can therefore define energy functional \scrE f \in C1(X0,R)
by

\scrE f (u, v) =
\int 
\Omega 
 - 1

2
| v(x)| 2 + 1

2
| \nabla u(x)| 2  - F (x, u(x)) dx.

Here | \cdot | denotes the Euclidean norm. When the choice of f is clear from the context, we shall
sometimes abbreviate \scrE f by \scrE .

Note that, in light of the continuous embedding W 1,2
\mathrm{l}\mathrm{o}\mathrm{c} (R;X0, X1) \lhook \rightarrow C0(R, X0), the map

\scrE f :W 1,2
\mathrm{l}\mathrm{o}\mathrm{c} (R;X0, X1)\rightarrow C0(R), U \mapsto \rightarrow \scrE f (U(\cdot ))

is C1. Let \scrA consist of all U = (u, \partial tu) that solve (TWE). Elliptic regularity theory combined
with hypothesis (f1) implies that in particular \scrA \subset Cm(R;X0, X1). Therefore \scrE f restricts to
a continuous map

\scrE f : \scrA \rightarrow Cm(R), U \mapsto \rightarrow \scrE f (U(\cdot )).

Remark 2.4. Details on the regularity of \scrA can be found in the proof of Theorem 3.1.
Although step 1 of the proof depends on the regularity of the map \scrE f , Steps 2 to 4 do not rely
on such properties of \scrE f . The argument given in Steps 2 to 4 of the proof can be modified to
show that \scrA \subset Cm(R;X0, . . . , Xm) whenever f is of class Cm.D
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The derivative of \scrE f along U \in \scrA has the form

d\scrE f (U(t))

dt
=

\int 
\Omega 

\biggl( 
 - \partial 2t u(t, x) - \Delta u(t, x) - f(x, u(t, x))

\biggr) 
\partial tu(t, x) dx

=  - c\| \partial tu(t, \cdot )\| 2L2(\Omega ) + \langle g(\cdot , U(t)), \partial tu(t, \cdot )\rangle L2(\Omega ).

Hypothesis (g2) then implies that

(8)
d\scrE f (U(t))

dt
\leqslant  - c

2
\| \partial tu(t, \cdot )\| 2L2(\Omega );

thus \scrE f is a Lyapunov function for (TWE).

Remark 2.5. In fact, from our regularity theory (section 3) and the unique continuation
theorem (Theorem 4.3) it will follow that \scrE f is a strict Lyapunov function. That is, inequality
(8) is strict unless \partial tu(t) = 0 for all t.

2.2.2. Stationary solutions and hyperbolicity. Denote by \scrS (f) \subset X1 the collection of
stationary solutions (also referred to as rest points) of (TWE), i.e., \scrS = A - 1

f (0). Given

 - \infty \leqslant a \leqslant b \leqslant \infty , we define \scrS ba(f) := \scrS (f) \cap \scrE  - 1
f ([a, b]). Whenever the choice of f is clear

from the context, it will be suppressed in the notation.
Given Z = (z, 0) \in \scrS (f), we will see in section 3 (more specifically, see Theorem 3.6) that

the Nemytskii operator

f : H1
B(\Omega )\rightarrow L2(\Omega ), u(x) \mapsto \rightarrow f(x, u(x))

is m times continuously differentiable near z whenever f : \Omega \times R \rightarrow R is of class Cm. In
particular, the operator A : X1 \rightarrow X0 is differentiable near Z. By hypothesis (g3) the
linearized operator looks like

dA(Z) : X1 \rightarrow X0,

dA(Z) =

\biggl( 
0  - 1

\Delta + fu(x, z)  - c

\biggr) 
.

To do spectral theory we shall consider the linear extension of this operator to the complexified
Banach spaces Xk

\bfC := Xk \times iXk. We will say that Z is hyperbolic if the linearized operator
dA(Z), considered as an unbounded operator on X0

\bfC with domain \scrD (dA(Z)) = X1
\bfC , has its

spectrum disjoint from the imaginary axis, i.e., \sigma (dA(Z)) \cap iR = \emptyset . Denote by \scrS \mathrm{h}\mathrm{y}\mathrm{p}(f) the
collection of all hyperbolic rest points. A nonlinearity f for which all rest points are hyperbolic
shall be called regular.

Note that dA(Z) is a compact perturbation of the operator (u, v) \mapsto \rightarrow ( - v,\Delta u), hence it is
Fredholm of index 0. Hence, if Z is hyperbolic, the inverse function theorem can be applied,
thus ensuring that hyperbolic rest points are isolated in X1. Later on, in section 8, we will
see that hyperbolicity can always be acquired by a slight perturbation of the nonlinearity f .D
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2.2.3. Connecting orbits and transversality. A solution U of (TWE) is called a connect-
ing orbit if there exist Z - \in \scrS (f - ), Z+ \in \scrS (f+) such that \| U(t)  - Z\pm \| X0 \rightarrow 0 as t \rightarrow \pm \infty .
We will later on see that any bounded solution of (TWE) is in fact either an equilibrium or
a connecting orbit. Also note that, in light of the existence of the Lyapunov function \scrE f ,
connecting orbits in the autonomous equation are heteroclinic orbits, i.e., Z - \not = Z+. Thus
(TWE) is a gradient-like system.

We need to introduce another technical condition. A connecting orbit U is said to be
transversal provided that the linearized operator \partial t +dA(U(t)) (which according to Theorem
3.6 is well-defined) is surjective when considered as an operator from W 1,2(R;X0, X1) to
L2(R;X0).

In section 5 it is shown that there is a natural way to assign an index to connecting orbits
between hyperbolic rest points. Equation (TWE) is said to satisfy the transversality condition
up to order k if all connecting orbits of index at most k are transversal. In section 8 we will
see that, whenever f is of class Cm, transversality up to order m - 1 can always be obtained
by choosing generic nonlocal perturbations g. Such a g shall then be called regular.

3. Regularity and compactness. In this section we will see that the collection of solutions
of (TWE) is locally compact. The relatively compact neighborhoods are determined by sub-
superlevel sets of the energy functional. These results, in a way, replace the Palais--Smale
condition which appears in classical Morse theory and will form one of the cornerstones in
defining the Floer boundary operator.

Throughout this section we let J = (j - , j+), where  - \infty \leqslant j - < j+ \leqslant +\infty . Given numbers
a, b \in R, define

\scrA b
a(J, f, g, c) :=

\left\{   U \in W 1,2
\mathrm{l}\mathrm{o}\mathrm{c} (J ;X

0, X1) :

\partial tU +Af,g,c(U) = 0 on J,
a \leqslant lim inft\nearrow j+ \scrE f(t,\cdot ,\cdot )(U(t)),

lim supt\searrow j - \scrE f(t,\cdot ,\cdot )(U(t)) \leqslant b

\right\}   ,

where \scrE f is as defined in section 2.2.1. Note that when f , g, and c are independent of t
and hypothesis (g2) is satisfied, then the set \scrA b

a(J, f, g, c) consists of all solutions to (TWE)
whose energy remains between a and b. Whenever the choices of f , g, and c are clear we shall
suppress them from the notation. We will also write \scrA b

a instead of \scrA b
a(R, f, g, c).

3.1. Compactness of \bfscrA \bfitb 
\bfita (\bfitJ , \bfitf , \bfitg , \bfitc ) with Dirichlet boundary data.

3.1.1. The autonomous case. We have the following compactness result.

Theorem 3.1. Consider Dirichlet boundary data. Let (f, g) be of class Cm with m \geqslant 1.
Suppose hypotheses (f1), either (f2) or (f2\prime ), (g1), and (g2) are satisfied. Then for any J =
(j - , j+) \subset R and J \prime \subset J \prime \subset J , the set \scrA b

a(J, f, g, c)
\bigm| \bigm| 
J \prime is bounded in Cm

b (J \prime ;X0, . . . , Xm) and

compact in Wm,2
loc (J \prime ;X0, . . . , Xm).

Here \scrA b
a(J, f, g, c)

\bigm| \bigm| 
J \prime =

\bigl\{ 
U | J \prime : U \in \scrA b

a(J, f, g, c)
\bigr\} 
. Note that we cannot obtain compact-

ness of \scrA b
a(J, f, g, c) itself, since solutions may blow up as t approaches j - or j+. However, if

J = R we do retrieve compactness of the full space \scrA b
a(R, f, g, c).

Proof of Theorem 3.1. The proof is split into four steps. In the first step we will use
hypotheses (g1), (g2), and either (f2) or (f2\prime ) to obtain a local H1 bound on the solutions.D
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In the second step we combine these bounds together with hypothesis (f1) and a regularity
argument to obtain a local L\infty bound. This argument does not immediately extend to higher
degrees of regularity, since the Nymetskii operator induced by f potentially does not possess
the required regularity. To circumvent this problem, in the third step a new nonlinearity \widetilde f
is constructed which possesses the required regularity, in such a way that solutions of the
original equation (TWE) are also solutions of the equation with this new nonlinearity. In the
fourth and final step, the desired compactness result are derived from the preceding steps.

Step 1. We will first construct a convenient family of test functions. Let

\delta :=
1

2
min\{ inf J \prime  - j - , j+  - sup J \prime \} .

Then let \varphi 0 : R \rightarrow R be a C2 function such that supp(\varphi 0) \subset [ - \delta , \delta ], and \varphi 0(t) \geqslant 0 for all
t \in R, and \varphi 0(t) \geqslant C1,\varphi > 0 for t \in [ - \delta /2, \delta /2], and | \varphi \prime (t)| \leqslant C2,\varphi \varphi (t)

1/2 for all t \in R, for
some C2,\varphi > 0. For any \tau \in J \prime we then define \varphi \tau (t) := \varphi 0(t - \tau ). Note that the definition of
\delta ensures that supp(\varphi \tau ) \subset J .

Fix any U = (u, \partial tu) \in \scrA b
a(J, f, g, c). We shall henceforth identify u with the R-valued

function on J \times \Omega given by u(t, x) = u(t)(x). Pick any \tau \in J \prime , and for the moment abbreviate
\varphi \tau by \varphi . Letting Q = J \times \Omega , we now list some estimates.

(a) Observe that since U = (u, \partial tu) is a solution to (TWE) and hypothesis (g2) is satisfied,
estimate (8) holds, hence

(9)

\int 
Q
| \partial tu| 2 dx dt \leqslant  - 

2

c

\int 
J

d\scrE (U(t))

dt
dt \leqslant 

2

c
(b - a).

(b) Note that

(10)

\int 
Q
\varphi | \nabla u| 2 dx dt = 2

\int 
J
\varphi (t)\scrE (U(t)) dt+2

\int 
Q
\varphi | \partial tu| 2 dx dt+2

\int 
Q
\varphi F (x, u) dx dt.

By hypothesis (g2) and since J is connected, t \mapsto \rightarrow \scrE (U(t)) is a monotone function, so
that in particular \scrE (U(t)) \leqslant b for all t \in J . Therefore the first term in (10) is bounded
from above. By estimate (9) the second term in (10) is also bounded from above.
Hence \int 

Q
\varphi | \nabla u| 2 dx dt \leqslant C + 2

\int 
Q
\varphi | F (x, u)| dx dt,

where C \geqslant 0 is independent of U \in \scrA b
a(J, f, g, c). We will now continue estimating

the last term.
(c) If f satisfies hypothesis (f2), using the fact that U = (u, \partial tu) solves (TWE) and partial

integration we obtain

2

\int 
Q
\varphi | F (x, u)| dx dt \leqslant 2C \prime 

f + \theta 

\int 
Q
\varphi f(x, u)udx dt

= 2C \prime 
f  - \theta 

\int 
Q
\varphi 
\bigl( 
\partial 2t u+\Delta u - c\partial tu+ g(x, U(t))

\bigr) 
udx dt

= 2C \prime 
f + \theta 

\int 
Q
\varphi \prime u\partial tu+ \varphi 

\bigl( 
| \partial tu| 2 + | \nabla u| 2 + cu\partial tu - g(x, U(t))u

\bigr) 
dx dt

D
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\leqslant 2Cf + | \theta | 
\int 
Q
\varphi | \partial tu| 2 dx dt+ | \theta | 

\int 
Q
\varphi | \nabla u| 2 dx dt

+ | \theta | 
\int 
Q
(| \varphi \prime | + c\varphi )| u| | \partial tu| dx dt+ | \theta | 

\int 
Q
\varphi | g(x, U(t))| | u| dx dt.(11)

We will now bound the last two terms in (11). In light of Cauchy's inequality, for any
\mu > 0 there exists a 0 < C\mu <\infty \int 

Q
\varphi | g(x, U(t))| | u| dx dt \leqslant \mu 

\int 
Q
\varphi | u| 2 dx dt+ C\mu 

\int 
Q
\varphi | g(x, U(t))| 2 dx dt.

Using hypothesis (g1), the last term can be estimated from above by some constant\widetilde C\mu . Now recall that | \varphi \prime (t)| \leqslant C2,\varphi \varphi (t)
1/2. Hence, by again using Cauchy's inequality,

for any \nu > 0 there exists a 0 < C\nu <\infty such that\int 
Q
(| \varphi \prime | + c\varphi )| u| | \partial tu| dx dt \leqslant 

\int 
Q

\bigl( 
\varphi 1/2| u| 

\bigr) \bigl( 
(C2,\varphi + c\varphi 1/2)| \partial tu| 

\bigr) 
dx dt

\leqslant \nu 
\int 
Q
\varphi | u| 2 dx dt+ C\nu 

\int 
Q
(C2,\varphi + c\varphi 1/2)2| \partial tu| 2 dx dt

\leqslant \nu 
\int 
Q
\varphi | u| 2 dx dt+ \widetilde C\nu 

\int 
Q
| \partial tu| 2 dx dt,

where \widetilde C\nu = C\nu \| C2,\varphi + c\varphi 1/2\| 2L\infty (\bfR ).

Combining these estimates with (11), we obtain

2

\int 
Q
\varphi | F (x, u)| dx dt \leqslant 2Cf + \widetilde C\mu + | \theta | (1 + \widetilde C\nu )

\int 
Q
| \partial tu| 2 dx dt

+ | \theta | 
\int 
Q
\varphi | \nabla u| 2 + (\mu + \nu )\varphi | u| 2 dx dt.

(12)

Using estimate (9) the first integral is bounded from above by a constant which is
independent of U \in \scrA b

a(J, f, g, c). Hence we have found that there exists a constant
C\theta ,\mu ,\nu independent of U \in \scrA b

a(J, f, g, c) such that

(13) 2

\int 
Q
\varphi | F (x, u)| dx dt \leqslant C\theta ,\mu ,\nu + | \theta | 

\int 
Q
\varphi | \nabla u| 2 + (\mu + \nu )\varphi | u| 2 dx dt.

(c\prime ) If on the other hand hypothesis (f2\prime ) holds, we still get the same estimate as above.
Care needs to be taken to avoid the nondifferentiability of u \mapsto \rightarrow | u| around u = 0,
which prevents us from applying integration by parts. As a workaround, we first select
a function \eta \in C1(R) such that \eta (u) = | u| for | u| \geqslant 1, and | \eta (u)| \leqslant 1 for | u| \leqslant 1, and
| \eta \prime (u)| \leqslant 1 for all u. For example, one can consider

\eta (u) =

\Biggl\{ 
1
2u

2 + 1
2 if | u| \leqslant 1,

| u| if | u| \geqslant 1.D
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Then, after updating the constant C \prime 
f , we have

| F (x, u)| \leqslant C \prime 
f +

\theta 

2
f(x, u)\eta (u).

Then we estimate

2

\int 
Q
\varphi | F (x, u)| dx dt \leqslant 2C \prime 

f + \theta 

\int 
Q
\varphi f(x, u)\eta (u) dx dt

\leqslant 2C \prime 
f + | \theta | 

\int 
Q
\varphi | \eta \prime (u)| | \partial tu| 2 + \varphi | \eta \prime (u)| | \nabla u| 2 dx dt

+ | \theta | 
\int 
Q
(| \varphi \prime | + c\varphi )| \eta (u)| | \partial tu| dx dt+ | \theta | 

\int 
Q
\varphi | g(x, U(t))| | \eta (u)| dx dt

\leqslant 2C \prime 
f + | \theta | 

\int 
Q
\varphi | \partial tu| 2 + \varphi | \nabla u| 2 dx dt

+ | \theta | 
\int 
Q
(| \varphi \prime | + c\varphi )| u| | \partial tu| dx dt+ | \theta | 

\int 
Q
\varphi | g(x, U(t))| | u| dx dt

+ | \theta | 
\int 
Q| u| \leqslant 1

(| \varphi \prime | + c\varphi )| \eta (u)| | \partial tu| dx dt+ | \theta | 
\int 
Q| u| \leqslant 1

\varphi | g(x, U(t))| | \eta (u)| dx dt,

where Q| u| \leqslant 1 = \{ (t, x) \in Q : | u(t, x)| \leqslant 1\} . Now by using that | \eta (u)| \leqslant 1 for | u| \leqslant 1,
and the observation that the L2-norm of \partial tu is bounded by a constant independent of
U \in \scrA b

a(J, f, g, c), we see that the last two integrals in the above estimate are bounded
by a constant independent of U \in \scrA b

a(J, f, g, c). Therefore, proceeding as before we
again arrive at estimate (12) and consequently (13).

Combining all these estimates, we obtain the following gradient bound. For any U = (u, \partial tu) \in 
\scrA b

a(J, f, g, c) we have

(14)

\int 
Q
\varphi | \partial tu| 2 + \varphi | \nabla u| 2 dx dt \leqslant C\theta ,\mu ,\nu + | \theta | 

\int 
Q
\varphi | \nabla u| 2 + (\mu + \nu )\varphi | u| 2 dx dt,

where C\theta ,\mu ,\nu \geqslant is independent of U \in \scrA b
a.

Now we use the Dirichlet boundary data to apply Poincar\'e's inequality (with constant
CP (\Omega )), which yields\int 

Q
\varphi | \partial tu| 2 + \varphi | \nabla u| 2 dx dt \leqslant C\theta ,\mu ,\nu + | \theta | 

\bigl( 
1 + (\mu + \nu )CP (\Omega )

\bigr) \int 
Q
\varphi | \nabla u| 2 dx dt.

By choosing \mu , \nu > 0 sufficiently small and using the fact that 0 \leqslant | \theta | < 1, the integral on the
right-hand side can be absorbed into the left-hand side. Finally, we use that \varphi (t) = \varphi \tau (t) \geqslant 
C1,\varphi > 0 for t \in [\tau  - \delta /2, \tau + \delta /2] to obtain

(15)

\int 
Q\tau 

| \partial tu| 2 + | \nabla u| 2 dx dt \leqslant C for all U = (u, \partial tu) \in \scrA b
a(J, f, g, c).

Here Q\tau = [\tau  - \delta /2, \tau + \delta /2]\times \Omega . Note that the only way that this constant depends on \tau is
via \| \varphi \tau \| W 1,\infty (\bfR ) and Vol(supp(\varphi \tau )), which are in fact independent of \tau .D
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Step 2. For any U = (u, \partial tu) \in \scrA b
a(J, f, g, c), note that

\partial 2t (\varphi \tau u) + \Delta (\varphi \tau u) = \varphi \prime \prime 
\tau u+ 2\varphi \prime 

\tau \partial tu+ c\varphi \tau \partial tu - \varphi \tau f(x, u) - \varphi \tau g(x, U).

By G\r arding's inequality (see, e.g., [Eva98]) applied to the Laplacian \Delta t,x = \partial 2t + \Delta , and
writing Hk = Hk(Q) as shorthand, we have

\| \varphi \tau u\| Hk+2 \leqslant C
\bigl( 
\| \varphi \prime \prime 

\tau u+ 2\varphi \prime 
\tau \partial tu+ c\varphi \tau \partial tu - \varphi \tau f(x, u) - \varphi \tau g(x, U)\| Hk + \| \varphi \tau u\| Hk

\bigr) 
\leqslant C

\bigl( 
\| \varphi \prime \prime 

\tau u\| Hk + \| \varphi \tau u\| Hk + 2\| \varphi \prime 
\tau \partial tu\| Hk + c\| \varphi \tau \partial tu\| Hk

+ \| \varphi \tau f(x, u)\| Hk + \| \varphi \tau g(x, U)\| Hk

\bigr) 
.

(16)

We note here that by shift invariance of \Delta t,x the constant C can be chosen independent of
\tau \in J \prime .

First we consider the case k = 0. Using (15) and hypothesis (g1) we obtain an upper
bound for the first four terms and the last term. Hypothesis (f1) implies that the Nemytskii
operator f : L2p(Q\tau )\rightarrow L2(Q\tau ) is bounded and continuous, hence by the Sobolev embedding
H1(Q\tau ) \lhook \rightarrow L2p(Q\tau ) the map f : H1(Q\tau ) \rightarrow L2(Q\tau ) is bounded and continuous; see [AZ90].
Again using (15), we see that also the fifth term in (16) is bounded above by some constant.
Note that this upper bound is independent of \tau \in J \prime and U \in \scrA b

a(J, f, g, c). Since \varphi \tau (t) \geqslant 
C1,\varphi > 0 for t \in [\tau  - \delta /2, \tau + \delta /2], we find that there exists some constant M such that

\| u\| H2(Q\tau ) \leqslant M for all \tau \in J \prime , (u, \partial tu) \in \scrA b
a(J, f, g, c).

Using a Sobolev embedding it then follows that the set

D :=
\Bigl\{ 
u| J \prime \times \Omega : (u, \partial tu) \in \scrA b

a(J, f, g, c)
\Bigr\} 

is bounded in C0
b (J

\prime \times \Omega ).
Step 3. Estimate (16) cannot be directly employed for k \geqslant 1, since it is not clear whether

the Nemytskii operator f : Hk+1(Q\tau ) \rightarrow Hk(Q\tau ) is bounded (indeed, (f1) only ensures that
the Nemytskii operator is bounded and C0 for k = 0). To circumvent this problem we will
consider modified nonlinearities \widetilde f . Set

\rho := sup
u\in D
\| u\| L\infty (J \prime \times \Omega ),

which in light of Step 2 is a finite number. The definition of \rho implies that if \widetilde f is another
nonlinearity which coincides with f on \Omega \times [ - \rho , \rho ], then clearly

\partial tU(t) +A \widetilde f (U(t)) = 0 and \scrE \widetilde f (U(t)) = \scrE f (U(t)) for U \in \scrA b
a(J, f, g, c), t \in J \prime ,

hence \scrA b
a(J, f, g, c)

\bigm| \bigm| 
J \prime \subset \scrA b

a(J
\prime , \widetilde f, g, c).

Let \eta \in C\infty (R) be such that \eta (u) = 1 for | u| \leqslant \rho and \eta (u) = 0 for | u| \geqslant 2\rho . Now set

\widetilde f(x, u) := \eta (u)f(x, u) + (1 - \eta (u))u3.D
ow

nl
oa

de
d 

01
/2

5/
21

 to
 1

45
.1

08
.2

52
.1

30
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FLOER HOMOLOGY FOR TRAVELING WAVES IN RDEs 2653

Then \widetilde f satisfies hypotheses (f1)--(f3) and (g1)--(g3). Furthermore, \widetilde f induces a bounded Cm - k

Nemytskii operator from Hk+1(Q\tau ) into H
k(Q\tau ); see [AZ90]. After choosing a further subin-

terval J \prime \prime \subset J \prime \prime \subset int J \prime , the argument from Steps 1 and 2 can be repeated to obtain estimate
(16), now with f replaced by \widetilde f , and this time for \tau \in J \prime \prime . Inductively we can then obtain a
bound for \| \varphi \tau f(x, u)\| Hk with k \in \{ 0, . . . ,m\} . Consequently, there exists some constant M
such that

(17) \| u\| Hm+2(Q\tau ) \leqslant M for all \tau \in J \prime \prime , (u, \partial tu) \in \scrA b
a(J

\prime , \widetilde f, g, c);
in particular this estimate holds for (u, \partial tu) \in \scrA b

a(J, f, g, c).
Step 4. Henceforth without loss of generality replace J \prime \prime by J \prime in (17). Note then that (17)

combined with a Sobolev embedding implies that \scrA b
a(J, f, g, c)

\bigm| \bigm| 
J \prime is bounded in the topology

of Cm
b (J \prime ;X0, . . . , Xm). Since the embedding Hm+2(Q\tau ) \lhook \rightarrow Hm+1(Q\tau ) is compact it follows

that \scrA b
a(J, f, g, c)

\bigm| \bigm| 
J \prime is relatively compact in Wm,2

\mathrm{l}\mathrm{o}\mathrm{c} (J \prime ;X0, . . . , Xm). Moreover, hypotheses
(f1) and (g1) imply that the nonlinear operator

\partial t +A(\cdot ) :Wm,2
\mathrm{l}\mathrm{o}\mathrm{c} (J \prime ;X0, . . . , Xm)\rightarrow L2

\mathrm{l}\mathrm{o}\mathrm{c}(J
\prime ;X0)

is continuous. Hence the limit point U of a sequence (Un)n in \scrA b
a(J, f, g, c)

\bigm| \bigm| 
J \prime is a solution

of (TWE) on J \prime . To see that such a limit point has an extension to a solution of (TWE)
on J , apply Steps 1 through 3 with J \prime replaced by J \prime \prime , where J \prime \subset J \prime \prime \subset J \prime \prime \subset J . We
then find that Un converges over a subsequence to U \prime in Wm,2

\mathrm{l}\mathrm{o}\mathrm{c} (J \prime \prime ;X0, . . . , Xm), and U \prime 

solves (TWE) on J \prime \prime . By uniqueness of the limits one has U \prime | J \prime \prime = U . Since this holds
for any such J \prime \prime , we find that U \in \scrA +\infty 

 - \infty (J, f, g, c)
\bigm| \bigm| 
J \prime . By continuity of the energy functional

\scrE :Wm,2
\mathrm{l}\mathrm{o}\mathrm{c} (J ;X0, X1)\rightarrow C0(J) we find that in fact U \in \scrA b

a(J, f, g, c)
\bigm| \bigm| 
J \prime . Hence \scrA b

a(J, f, g, c)
\bigm| \bigm| 
J \prime 

is compact in Wm,2
\mathrm{l}\mathrm{o}\mathrm{c} (J \prime ;X0, X1). This proves the theorem.

Remark 3.2. Note that the estimates in the proof of Theorem 3.1 do not depend explicitly
on (f, g, c) but only on the constants appearing in hypotheses (f1)--(f3) and (g1)--(g3). Hence, if
((fn, gn, cn))n is a sequence of triplets satisfying hypotheses (f1)--(f3) and (g1)--(g3), with con-
tants uniform in n, then Steps 1 through 3 of the proof show that the sets \scrA b

a(J, fn, gn, cn)
\bigm| \bigm| 
J \prime 

are bounded in Cm
b (J \prime ;X0, . . . , Xm), uniformly in n. Suppose (f, g, c) is another triples sat-

isfying hypotheses (f1)--(f3) and (g1)--(g3), and (fn, gn, cn) \rightarrow (f, g, c) as n \rightarrow \infty , where the
convergence takes place in Cm

\mathrm{l}\mathrm{o}\mathrm{c}(\Omega \times R)\times Cm
b (\Omega \times X0)\times (0,\infty ). For each n select a solution

Un \in \scrA b
a(J, fn, gn, cn). Then a slight adaptation of Step 4 of the proof shows that there ex-

ists a subsequence (Unk
)k of (Un)n and a solution U \in \scrA b

a(J, f, g, c) such that Unk
\rightarrow U as

k \rightarrow \infty with convergence inWm,2
\mathrm{l}\mathrm{o}\mathrm{c} (J \prime ;X0, . . . , Xm). The same result applies when considering

different boundary conditions and/or the nonautonomous equations.

3.1.2. The nonautonomous case. For t-dependent (f, g, c) we have the following com-
pactness result.

Theorem 3.3. Consider Dirichlet boundary data. Given \theta \in ( - 1, 1), \gamma > 0, and \ell > 0,
there exists \Theta = \Theta (\theta , \gamma , \ell ) > 0 for which the following is true. Let (f, g, c) be of class Cm

(m \geqslant 1) for which hypotheses (n1)--(n3) are satisfied with the chosen constants \theta , \ell , \Theta , and
inft\in \bfR c(t) \geqslant \gamma . Fix J = (j - , j+) \subset R and J \prime \subset J \prime \subset J with [ - \ell , \ell ] \subset J \prime . Then the set
\scrA b

a(J, f, g, c)
\bigm| \bigm| 
J \prime is bounded in Cm

b (J \prime ;X0, . . . , Xm) and compact in Wm,2
loc (J \prime ;X0, . . . , Xm).D

ow
nl

oa
de

d 
01

/2
5/

21
 to

 1
45

.1
08

.2
52

.1
30

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2654 B. BAKKER, J. B. VAN DEN BERG, AND R. VANDERVORST

Proof. The argument from the autonomous case cannot be directly applied to the nonau-
tonomous case, because along a solution U of the nonautonomous equation the energy t \mapsto \rightarrow 
\scrE f(t,\cdot ,\cdot )(U(t)) may increase. This is the reason why we introduce hypothesis (n3). Concep-
tually, this condition allows us to extract an a priori bound for the amount the energy can
increase along a solution U , provided that the energy is asymptotically bounded as t\rightarrow j\pm .

We will now explain in detail how the proof of Theorem 3.1 can be adapted for the
nonautonomous case. First note that since the problem is autonomous outside ( - \ell , \ell ), there
is no loss of generality in assuming that J \prime = ( - \ell  - \varepsilon , \ell + \varepsilon ), where \varepsilon > 0 is small enough
so that J \prime \subset J . Indeed, suppose the conclusion of the theorem holds for this choice of J \prime , so
that in particular \scrA b

a(J, f, g, c)
\bigm| \bigm| 
J \prime is bounded in Cm

b (J \prime ;X0, . . . , Xm). Hypothesis (n1) then
ensures that the map t \mapsto \rightarrow \scrE f(t,\cdot ,\cdot )(U(t)) is bounded for t \in J \prime , with a bound which is uniform

in U \in \scrA b
a(J, f, g, c)

\bigm| \bigm| 
J \prime . In particular, there exists an M \geqslant 0 such that

| \scrE f+(U(\ell )) - \scrE f - (U( - \ell ))| \leqslant M for all U \in \scrA b
a(J, f, g, c).

Now consider J \prime \subset J \prime \subset J chosen arbitrarily. Set J - := (j - , - \ell ) and J \prime 
 - := J \prime \cap (j - , - \ell  - \varepsilon );

here we need the \varepsilon > 0 in order to ensure that J \prime 
 - \subset J - . Then

\scrA b
a(J, f, g, c)

\bigm| \bigm| \bigm| 
J \prime 
 - 
\subset \scrA b

a - M (J - , f - , g - , c - )
\bigm| \bigm| \bigm| 
J \prime 
 - 
.

Similarly, with J+ := (\ell , j+) and J
\prime 
+ := J \prime \cap (\ell + \varepsilon , j+) it holds that

\scrA b
a(J, f, g, c)

\bigm| \bigm| \bigm| 
J \prime 
+

\subset \scrA b+M
a (J+, f+, g+, c+)

\bigm| \bigm| \bigm| 
J \prime 
+

.

For J \prime 
\pm the conclusion of the theorem thus follows from the analogous result for the autonomous

case. The result for general J \prime then follows by combining the results for the autonomous and
nonautonomous parts.

Henceforth assume J \prime = ( - \ell  - \varepsilon , \ell + \varepsilon ). Compared to the proof of Theorem 3.1 we will
use a slightly modified test function \varphi \in C2(R), namely, assume 0 \leqslant \varphi (t) \leqslant 1 for all t \in R,
and \varphi (t) = 1 for t \in J \prime , and supp(\varphi ) \subset J is compact, and | \varphi \prime (t)| \leqslant C2,\varphi \varphi (t)

1/2 for all t \in R,
for some C2,\varphi > 0. Then, using hypothesis (n3), it follows that

(18) | \partial tF (t, x, u)| \leqslant C \prime \prime 
f1\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\varphi )(t) + \Theta \varphi (t)| F (t, x, u)| .

Here we used that \varphi (t) = 1 for t \in ( - \ell , \ell ) and that the left-hand side vanishes for | t| \geqslant \ell , in
light of hypothesis (n2).

We will now point out how estimates (a)--(c) from Step 1 of the proof of Theorem 3.1
can be modified to the nonautonomous case. Throughout these estimates, let U = (u, \partial tu) \in 
\scrA b

a(J, f, g, c).
(a) Note that by hypotheses (n1) and (n3) the map t \mapsto \rightarrow \scrE f(t,\cdot ,\cdot )(U(t)) is C1, and

d\scrE f(t,\cdot ,\cdot )(U(t))

dt
=  - \langle c(t)\partial tu(t, \cdot ), \partial tu(t, \cdot )\rangle L2(\Omega ) + \partial s\scrE f(s,\cdot ,\cdot )(U(t))

\bigm| \bigm| 
s=t

+ \langle g(t, \cdot , U(t)), \partial tu(t, \cdot )\rangle L2(\Omega )

\leqslant  - 1

2
\langle c(t)\partial tu(t, \cdot ), \partial tu(t, \cdot )\rangle L2(\Omega ) + \partial s\scrE f(s,\cdot ,\cdot )(U(t))

\bigm| \bigm| 
s=t

\leqslant  - \gamma 
2
\| \partial tu(t, \cdot )\| 2L2(\Omega ) +

\int 
\Omega 
| \partial sF (s, x, u(t, x))| s=t | dx.

(19)
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Here the penultimate inequality holds since for each t the pair (g(t, \cdot , \cdot ), c(t)) satisfies
hypothesis (g2). Therefore, using (18),\int 

Q
| \partial tu| 2 dx dt \leqslant  - 

2

\gamma 

\int 
J

d\scrE f(t,\cdot ,\cdot )(U(t))

dt
dt+

2

\gamma 

\int 
Q
| \partial sF (s, x, u(t, x))| s=t | dx dt

\leqslant 
2

\gamma 

\bigl( 
b - a+ C \prime \prime 

f Vol(supp(\varphi )\times \Omega )
\bigr) 
+\Theta 

2

\gamma 

\int 
Q
\varphi | F (t, x, u)| dx dt.

(20)

(b) Estimate (19) implies that

d\scrE f(t,\cdot ,\cdot )(U(t))

dt
\leqslant 
\int 
\Omega 
| \partial sF (s, x, u(t, x))| s=t | dx,

so that

\scrE f(t,\cdot ,\cdot )(U(t)) \leqslant b+
\int t

j - 

\int 
\Omega 
| \partial sF (s, x, u(t, x))| s=t | dx dt

\leqslant b+
\int 
Q
| \partial sF (s, x, u(t, x))| s=t | dx dt

\leqslant b+ C \prime \prime 
f Vol(supp(\varphi )\times \Omega ) + \Theta 

\int 
Q
\varphi | F (t, x, u)| dx dt,

where we again used (18). Hence\int 
J
\varphi \scrE f(t,\cdot ,\cdot )(U(t)) dt \leqslant C +\Theta \| \varphi \| L1(\bfR )

\int 
Q
\varphi | F (t, x, u)| dx dt

for some constant C \geqslant 0 independent of U \in \scrA b
a(J, f, g, c). Plugging this into (10)

and combining with (20), after increasing the constant C we find\int 
Q
\varphi | \nabla u| 2 dx dt \leqslant C + 2C1,\Theta 

\int 
Q
\varphi | F (t, x, u)| dx dt,

where

C1,\Theta := \Theta 

\biggl( 
2

\gamma 
\| \varphi \| L\infty (\bfR ) + \| \varphi \| L1(\bfR )

\biggr) 
+ 1.

(c) If for each t the function f(t, \cdot , \cdot ) satisfies hypothesis (f2), the same computation as in
the autonomous case leads to estimate (12). Combining this with estimate (20) results
in

2

\int 
Q
\varphi | F (t, x, u)| dx dt \leqslant C\theta ,\mu ,\nu +\Theta 

2| \theta | (1 + \widetilde C\nu )

\gamma 

\int 
Q
\varphi | F (t, x, u)| dx dt

+ | \theta | 
\int 
Q
\varphi | \nabla u| 2 + (\mu + \nu )\varphi | u| 2 dx dt
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for some C\theta ,\mu ,\nu independent of U \in \scrA b
a(J, f, g, c). Consequently,

2

\int 
Q
\varphi | F (t, x, u)| dx dt \leqslant C2,\Theta C\theta ,\mu ,\nu + | \theta | C2,\Theta 

\int 
Q
\varphi | \nabla u| 2 + (\mu + \nu )\varphi | u| 2 dx dt,

where

C2,\Theta =

\biggl( 
1 - \Theta 

| \theta | (1 + \widetilde C\nu )

\gamma 

\biggr)  - 1

.

The modifications needed in (c\prime ) are similar to those made for (c).
Combining these estimates, we obtain\int 

Q
\varphi | \partial tu| 2 + \varphi | \nabla u| 2 dx dt \leqslant C + 2C3,\Theta 

\int 
Q
\varphi | F (t, x, u)| dx dt

\leqslant C\Theta ,\theta ,\mu ,\nu + | \theta | C2,\Theta C3,\Theta 

\int 
Q
\varphi | \nabla u| 2 + (\mu + \nu )\varphi | u| 2 dx dt,

where C3,\Theta = \Theta \gamma  - 1\| \varphi \| L\infty (\bfR ) + C1,\Theta , and C,C\Theta ,\theta ,\mu ,\nu \geqslant 0 are some constants independent of

U \in \scrA b
a(J, f, g, c). Now observe that for \Theta > 0 sufficiently small (depending upon \theta , \gamma , and \ell 

only) we have | \theta | C2,\Theta C3,\Theta < 1. Therefore, if hypothesis (n3) is satisfied with a small enough
\Theta , one can proceed as in the autonomous case to arrive at estimate (15). Steps 2, 3, and 4
in the proof of Theorem 3.1 are also valid for the nonautonomous case. Hence the theorem is
proven.

3.2. Compactness of \bfscrA \bfitb 
\bfita (\bfitJ , \bfitf , \bfitg , \bfitc ) with Neumann or periodic boundary data.

3.2.1. The autonomous case. When dealing with Neumann or periodic boundary con-
ditions, the question of compactness becomes more delicate. We can no longer use Poincar\'e's
inequality in order to bound the L2-norm of u in terms of the L2-norm of \nabla u. To obtain such
a bound, we will need the superlinear growth condition (f3) on f .

Theorem 3.4. Consider Neumann or periodic boundary data. Let (f, g) be of class Cm

with m \geqslant 1. Assume hypotheses (f1)--(f3), (g1), and (g2) are satisfied. Then for any J =
(j - , j+) \subset R and J \prime \subset J \prime \subset J , the set \scrA b

a(J, f, g, c)
\bigm| \bigm| 
J \prime is bounded in Cm

b (J \prime ;X0, . . . , Xm) and

compact in Wm,2
loc (J \prime ;X0, . . . , Xm).

Proof. First note that we can split hypothesis (f3) into four cases:

lim inf
| u| \rightarrow \infty 

inf
x\in \Omega 

f(x, u)

| u| 
> 0, lim inf

| u| \rightarrow \infty 
inf
x\in \Omega 

f(x, u)

u
> 0,

lim sup
| u| \rightarrow \infty 

sup
x\in \Omega 

f(x, u)

| u| 
< 0, lim sup

| u| \rightarrow \infty 
sup
x\in \Omega 

f(x, u)

u
< 0.

We will assume that the first case holds; the proof for the other three cases goes in a similar
fashion. There exist \varepsilon > 0 and K \geqslant 0 such that

\varepsilon | u| 2 \leqslant f(x, u)| u| for all x \in \Omega , | u| \geqslant K.D
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Let \eta \in C1(R) be as defined in estimate (c\prime ) in the proof of Theorem 3.1. Then there exists
a constant M such that

\varepsilon | u| 2 \leqslant M + f(x, u)\eta (u) for all x \in \Omega , | u| \geqslant K.

Fix any U = (u, \partial tu) \in \scrA b
a(J, f, g, c). For a.e. t we have

\varepsilon \| u(t, \cdot )\| 2L2(\Omega ) = \varepsilon 

\int 
\{ x\in \Omega : | u(t,x)| <K\} 

| u(t, x)| 2 dx+ \varepsilon 

\int 
\{ x\in \Omega : | u(t,x)| \geqslant K\} 

| u(t, x)| 2 dx

\leqslant (\varepsilon K2 +M)Vol(\Omega ) +

\int 
\{ x\in \Omega : | u(t,x)| \geqslant K\} 

f(x, u(t, x))\eta (u(t, x)) dx

\leqslant 

\Biggl( 
\varepsilon K2 +M + sup

x\in \Omega , | v| \leqslant K
| f(x, v)\eta (v)| 

\Biggr) 
Vol(\Omega ) + \langle f(\cdot , u(t, \cdot ), \eta (u(t, \cdot ))\rangle L2(\Omega ).

Now multiply this inequality by the test function \varphi from Theorem 3.1 and integrate over
t \in J . First we note that computations similar to the ones in the proof of Theorem 3.1 yield\int 

J
\varphi (t)\langle f(\cdot , u(t, \cdot )), \eta (u(t, \cdot ))\rangle L2(\Omega ) dt \leqslant C\mu +

\int 
Q
\varphi | \nabla u| 2 dx dt+ \mu 

\int 
Q
\varphi | u| 2 dx dt

for any \mu > 0. We then find that

\varepsilon 

\int 
Q
\varphi | u| 2 dx dt \leqslant CK,\mu +

\int 
Q
\varphi | \nabla u| 2 dx dt+ \mu 

\int 
Q
\varphi | u| 2 dx dt,

where CK,\mu is independent of U = (u, \partial tu) \in \scrA b
a(J, f, g, c). Choosing \mu sufficiently small, the

last integral can be absorbed into the left-hand side. Thus we obtain the desired bound\int 
Q
\varphi | u| 2 dx dt \leqslant C1 + C2

\int 
Q
\varphi | \nabla u| 2 dx dt for any U = (u, \partial tu) \in \scrA b

a(J, f, g, c).

This estimate can now replace the Poincar\'e inequality in the proof of Theorem 3.1. The
remainder of the proof of Theorem 3.1 remains valid without further modifications.

3.2.2. The nonautonomous case. In the nonautonomous case we can now readily com-
bine the ideas from the preceding paragraphs to conclude the following.

Theorem 3.5. Consider Neumann or periodic boundary data. Given \theta \in ( - 1, 1), \gamma > 0,
and \ell > 0, there exists \Theta = \Theta (\theta , \gamma , \ell ) > 0 for which the following is true. Let (f, g, c) be of
class Cm (m \geqslant 1) for which hypotheses (n1)--(n3) are satisfied with the chosen constants \theta , \ell ,
\Theta , and inft\in \bfR c(t) \geqslant \gamma . Fix J = (j - , j+) \subset R, and J \prime \subset J \prime \subset J with [ - \ell , \ell ] \subset J \prime . Then the
set \scrA b

a(J, f, g, c)
\bigm| \bigm| 
J \prime is bounded in Cm

b (J \prime ;X0, . . . , Xm) and compact in Wm,2
loc (J \prime ;X0, . . . , Xm).

3.3. Regularity of the map \bfpartial \bfitt + \bfitA \bfitf ,\bfitg ,\bfitc (\cdot ). Consider the map

\partial t +Af,g,c(\cdot ) :W 1,2
\mathrm{l}\mathrm{o}\mathrm{c} (J ;X

0, X1)\rightarrow L2
\mathrm{l}\mathrm{o}\mathrm{c}(J ;X

0).

Smoothness of g and hypothesis (g1) imply that the map U \mapsto \rightarrow (0, g(x, U(t))) induces a smooth
map fromW 1,2

\mathrm{l}\mathrm{o}\mathrm{c} (J ;X
0, X1) into L2

\mathrm{l}\mathrm{o}\mathrm{c}(J ;X
0). Hence the regularity class of this map is the sameD
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as that of the Nemytskii operator f : H1(J \prime \prime \times \Omega )\rightarrow L2(J \prime \prime \times \Omega ), for bounded subsets J \prime \prime \subset J .
As we already remarked in the proofs of the compactness theorems, hypothesis (f1) implies
that the Nemytskii operator f : H1(J \times \Omega ) \rightarrow L2(J \times \Omega ) is bounded and continuous but in
general does not possess additional regularity. However, the failure to be more regular only
stems from the behavior of f(t, x, u) for large u. Since we have seen that \scrA b

a(J, f, g, c)
\bigm| \bigm| 
J \prime is

bounded in C1
b (J

\prime ;X0, X1), the map does have additional regularity near solutions of (TWE).
For clarity these observations are summarized in form of a theorem.

Theorem 3.6. Suppose f is of class Cm with m \geqslant 1. Given J = (j - , j+) \subset R, and
J \prime \subset J \prime \subset J , and a, b \in R, the maps

Af,g,c(\cdot ) : X1 \rightarrow X0

and
\partial t +Af,g,c(\cdot ) :W 1,2

loc (J
\prime ;X0, X1)\rightarrow L2

loc(J
\prime ;X0)

are bounded and of class Cm in neighborhoods of \scrS ba(f) and \scrA b
a(J, f, g, c)

\bigm| \bigm| 
J \prime , respectively.

3.4. Energy bounds. The following lemma shows that the energy is bounded from below
on the collection \scrS of stationary solutions. Observe that by the implicit function theorem
hyperbolic stationary points are isolated in \scrS with respect to the topology of X1. Hence
combining this energy bound with our compactness result shows that if (TWE) is hyperbolic,
then for arbitrary a \in R the collection \scrS a - \infty is a finite set. We will need this fact later on
when defining the Floer boundary operator.

Lemma 3.7. Suppose either hypothesis (f2) or (f2\prime ) is satisfied. There exists a constant
M \in R such that \scrE (Z) \geqslant M whenever Z \in \scrS . In particular, \scrS a - \infty is finite for hyperbolic
nonlinearities f .

Proof. We will first prove the statement when hypothesis (f2) is satisfied. For any Z =
(z, 0) \in \scrS , we then have

\scrE (Z) \geqslant 
\int 
\Omega 

1

2
| \nabla z(x)| 2  - | F (x, z(x))| dx

\geqslant 
\int 
\Omega 

1

2
| \nabla z(x)| 2  - \theta 

2
f(x, z(x))z(x) dx - C \prime 

f Vol(\Omega )

\geqslant 
\int 
\Omega 

1

2
| \nabla z(x)| 2  - | \theta | 

2
f(x, z(x))z(x) dx - C \prime 

f Vol(\Omega )

=

\int 
\Omega 

1

2
| \nabla z(x)| 2 + | \theta | 

2
\Delta z(x)z(x) dx - C \prime 

f Vol(\Omega )

=

\int 
\Omega 

1 - | \theta | 
2
| \nabla z(x)| 2 dx - C \prime 

f Vol(\Omega )

\geqslant  - C \prime 
f Vol(\Omega ),

where we used that 0 \leqslant | \theta | < 1.
When on the other hand hypothesis (f2\prime ) holds, we let \eta \in C1(R) be as defined in estimate

(c\prime ) in the proof of Theorem 3.1. Then, after updating the constant C \prime 
f , we have

| F (x, u)| \leqslant C \prime 
f +

\theta 

2
f(x, u)\eta (u),D
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and consequently it again holds that

\scrE (Z) \geqslant 
\int 
\Omega 

1 - | \theta | | \eta \prime (z(x))| 
2

| \nabla z(x)| 2 dx - C \prime 
f Vol(\Omega ) \geqslant  - C \prime 

f Vol(\Omega ).

4. Unique continuation. The initial value problem associated with (TWE) is ill-posed.
However, in this section we will show that if a solution through some initial value exists, then
it must be unique. This implies that time shifting defines a dynamical system on the space
of all heteroclinic solutions to (TWE), and this dynamical system posesses a strict Lyapunov
function given by the energy functional. For second order elliptic equations such a uniqueness
result is relatively well known; it follows, for example, from Aronszajn's unique continuation
theorem (see [Aro56, AKS62]). However, the nonlocal term appearing in (TWE) prohibits
application of this theory. Therefore we present a new continuation result, tailored toward
(TWE).

4.1. Carleman estimates. Here we generalize the Carleman estimates (see [Car39]) for
the Laplacian. More precisely, instead of only considering compactly supported functions, we
allow for Dirichlet, Neumann, or periodic boundary conditions in the variables which are not
being controlled by the weight function. We can do so at the expense of having the lower
bound on the weight \tau depend on \| u(t, \cdot )\| L2(\Omega ) and \| \nabla u(t, \cdot )\| L2(\Omega ).

For notational convenience we write \nabla t,x = (\partial t,\nabla ) and \Delta t,x = \partial 2t +\Delta .

Lemma 4.1. Let \varphi (t) := t+t2/2. For each 0 < \varepsilon < 1 there exists C > 0 so that the following
holds. For each u \in H3(R\times \Omega ) with B(u(t, \cdot )) = 0 for each t \in R and supp(u) \subset ( - \varepsilon , \varepsilon )\times \Omega 
one has the following Carleman estimate: there exists \tau 0(u) > 0 such that for all \tau \geqslant \tau 0(u)
one has

\tau 4\| e\tau \varphi u\| 2L2(\bfR \times \Omega ) + \tau \| e\tau \varphi \nabla t,xu\| 2L2(\bfR \times \Omega ) \leqslant C\| e
\tau \varphi \Delta t,xu\| 2L2(\bfR \times \Omega ).

Furthermore, if \widetilde u \in H3(R\times \Omega ) is another function satisfying the above mentioned hypotheses,
and for all t \in R one has

\| \nabla \widetilde u(t, \cdot )\| L2(\Omega )

\| \widetilde u(t, \cdot )\| L2(\Omega )
\leqslant 
\| \nabla u(t, \cdot )\| L2(\Omega )

\| u(t, \cdot )\| L2(\Omega )
,

then \tau 0(\widetilde u) \leqslant \tau 0(u).
Proof. Let us abbreviate \| \cdot \| = \| \cdot \| L2(\bfR \times \Omega ) and \langle \cdot , \cdot \rangle = \langle \cdot , \cdot \rangle L2(\bfR \times \Omega ). Set v = e\tau \varphi u and

observe that

\| e\tau \varphi \partial tu\| 2 = \| \partial tv  - \tau \.\varphi v\| 2 \leqslant 2\| \partial tv\| 2 + 2\| \tau \.\varphi v\| 2 \leqslant 2\| \partial tv\| 2 + 2(1 + \varepsilon )2\tau 2\| v\| 2.
Hence it suffices to see that for all v \in H3(R\times \Omega ) with B(v) = 0 and supp(v) \subset ( - \varepsilon , \varepsilon )\times \Omega 

(21) \tau 4\| v\| 2 + \tau \| \nabla t,xv\| 2 \leqslant C\| Pv\| 2 for all \tau \geqslant \tau 0(u),

where P = e\tau \varphi \Delta t,xe
 - \tau \varphi .

We now decompose P into a symmetric part and an antisymmetric part:

P = PS + PA,

PS = \Delta t,x + \tau 2(1 + t)2  - \tau ,
PA =  - 2\tau (1 + t)\partial t.D
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2660 B. BAKKER, J. B. VAN DEN BERG, AND R. VANDERVORST

Then
\| Pv\| 2 = \| PSv\| 2 + \| PAv\| 2 + \langle [PS , PA]v, v\rangle ,

where [\cdot , \cdot ] denotes the commutator bracket. At this point we used that v is of class H3, so
that it lies in the domain of the definition of [PS , PA].

We are now ready to make the estimates. Note that

\| PSv\| 2 = \| \Delta t,xv\| 2 + 2\langle \Delta t,xv, (\tau 
2(1 + t)2  - \tau )v\rangle + \| (\tau 2(1 + t)2  - \tau )v\| 2

\geqslant 2\langle \Delta t,xv, (\tau 
2(1 + t)2  - \tau )v\rangle + \| (\tau 2(1 + t)2  - \tau )v\| 2

= 2\tau \| \nabla t,xv\| 2  - 
1

2
\| PAv\| 2  - 2\tau 2\| (1 + t)\nabla v\| 2  - 4\langle \partial tv, \tau 2(1 + t)v\rangle 

+ \tau 4\| (1 + t)2v\| 2  - 2\tau 3\| (1 + t)v\| 2 + \tau 2\| v\| 2

\geqslant 
(1 - \varepsilon )4

2
\tau 4\| v\| 2 + 2\tau \| \nabla t,xv\| 2  - 

1

2
\| PAv\| 2

 - 2\tau 2(1 + \varepsilon )2\| \nabla v\| 2  - 4\langle \partial tv, \tau 2(1 + t)v\rangle 

for \tau \geqslant 2(1 + \varepsilon )2/(1 - \varepsilon )4. Here we used that supp(v) \subset ( - \varepsilon , \varepsilon )\times \Omega . Hence

\| PSv\| 2 + \| PAv\| 2 \geqslant (1 - \varepsilon )4

2
\tau 4\| v\| 2 + 2\tau \| \nabla t,xv\| 2

 - 2\tau 2(1 + \varepsilon )2\| \nabla v\| 2  - 4\langle \partial tv, \tau 2(1 + t)v\rangle .
(22)

To estimate the last term in (22), note that

[PS , PA] =  - 4\tau \partial 2t + 4\tau 3(1 + t)2.

Hence

 - 4\langle \partial tv, \tau 2(1 + t)v\rangle =  - 4\langle \tau 1/2\partial tv, \tau 3/2(1 + t)v\rangle 
\geqslant  - 2\tau \| \partial tv\| 2  - 2\tau 3\| (1 + t)v\| 2

= 2\tau \langle \partial 2t v, v\rangle  - 2\tau 3\| (1 + t)v\| 2

=  - 1

2
\langle [PS , PA]v, v\rangle .

Therefore, since
\langle [PS , PA]v, v\rangle = 4\tau \| \partial tv\| 2 + 4\tau 3\| (1 + t)v\| 2 \geqslant 0,

we find that

(23) \| Pv\| 2 \geqslant (1 - \varepsilon )4

2
\tau 4\| v\| 2 + 2\tau \| \nabla t,xv\| 2  - 2\tau 2(1 + \varepsilon )2\| \nabla v\| 2.

To get rid of the last term in (23) we need to take a u-dependent lower bound \tau 0. Since
\| v\| = 0 implies \| \nabla v\| = 0, for a fixed v we can always find \tau 0 \geqslant 2(1 + \varepsilon )2/(1 - \varepsilon )4 such that

(24)
(1 - \varepsilon )4

2
\tau 4\| v\| 2  - 2(1 + \varepsilon )2\tau 2\| \nabla v\| 2 \geqslant (1 - \varepsilon )4

4
\tau 4\| v\| 2 for all \tau \geqslant \tau 0.D
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FLOER HOMOLOGY FOR TRAVELING WAVES IN RDEs 2661

If \widetilde u is as in the hypotheses of the lemma, and \widetilde v = e\tau \varphi \widetilde u, then since the exponential factors
through the inequalities, also

\| \nabla \widetilde v(t, \cdot )\| 
\| \widetilde v(t, \cdot )\| \leqslant \| \nabla v(t, \cdot )\| \| v(t, \cdot )\| 

for all t \in R. Therefore, if \tau 0(u) denotes the smallest constant \tau 0 for which (24) holds, it is
readily seen that \tau 0(\widetilde u) \leqslant \tau 0(u). Hence

\| Pv\| 2 \geqslant (1 - \varepsilon )4

4
\tau 4\| v\| 2 + 2\tau \| \nabla t,xv\| 2 for all \tau \geqslant \tau 0(u),

from which (21) follows.

4.2. Continuation for an integro-differential inequality. The following lemma is in a
sense an integrated version of Aronszajn's continuation theorem.

Lemma 4.2. Let J \subset R be an open interval, and let u \in H3(J \times \Omega ) with B(u(t, \cdot )) = 0 for
all t \in J . Assume that it satisfies the integro-differential inequality

(25)

\int 
\Omega 
| \Delta t,xu(t, x)| 2 dx \leqslant C

\int 
\Omega 
| u(t, x)| 2 + | \nabla t,xu(t, x)| 2 dx

for almost every t in some neighborhood of t0, for a certain t0 \in J . Assume furthermore that
u satisfies the following decay conditions around t0:\int t0+\delta 

t0 - \delta 

\int 
\Omega 
| u(t, x)| 2 dx dt = O(\delta 5) as \delta \downarrow 0,\int t0+\delta 

t0 - \delta 

\int 
\Omega 
| \partial tu(t, x)| 2 dx dt = O(\delta 3) as \delta \downarrow 0.

(26)

Then u \equiv 0 in a neighborhood of \{ t0\} \times \Omega .

Proof. The strategy is as follows. First we note there is no loss of generality in assuming
that t0 = 0. We localize on the left side of the hyperplane t = 0. The Carleman estimates
are still valid for these localized solutions, at the cost of some error terms. One of the error
terms stems from the behavior of our localized solution away from t = 0. This error term
can be made to decay at an exponential rate, precisely because the localized solution vanishes
on the right side of the hyperplane t = 0. The other error terms stem from the behavior
of the localization near t = 0. To deal with these terms, we actually consider a sequence of
localizations. The decay conditions (26) allow us to take the limit in which the error terms
disappear. Combining this extension of the Carleman estimates with estimate (25), we are
left with a family of exponentially weighted inequalities, which forces the localization to be
zero near t = 0. This just means that our original function must be zero for small negative t.
Then considering a time reversal, the same must be true for small positive t.

We will now first construct the sequence of localizations. Let \varepsilon > 0 be sufficiently small
such that ( - \varepsilon , \varepsilon ) \subset J , and let \varphi be as in Lemma 4.1. Let 0 < \ell < \varepsilon /2 be such that \varphi is
increasing on [ - 2\ell , 0] and such that (25) holds for a.e. t \in ( - 2\ell , 2\ell ). Given 0 < \delta < \ell , let \chi \delta \in 
C3(R) be such that \chi \delta (t) = 0 for t \not \in [ - 2\ell , 0], and \chi \delta (t) = 1 for t \in [ - \ell , - \delta ]. Furthermore,D
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2662 B. BAKKER, J. B. VAN DEN BERG, AND R. VANDERVORST

we demand that | \partial kt \chi \delta (t)| = O(\delta  - k) uniformly for t \in [ - \delta , 0] and k \in \{ 0, 1, 2\} and also that
\partial \delta \chi \delta (t) = 0 for t \in [ - 2\ell , - \ell ]. Now set V\delta (t, x) := \chi \delta (t)u(t, x). Then V\delta \in H3(R \times \Omega ), and
moreover B(V\delta (t, \cdot )) = 0 for each t \in R, and supp(V\delta ) \subset ( - \varepsilon , \varepsilon ) \times \Omega , hence the Carleman
estimates apply to V\delta .

We will again abbreviate \| \cdot \| = \| \cdot \| L2(\bfR \times \Omega ). Observe

\| \chi \delta e
\tau \varphi \partial tu\| 2 = \| e\tau \varphi \partial tV\delta  - \.\chi \delta e

\tau \varphi u\| 2

\leqslant 2\| e\tau \varphi \partial tV\delta \| 2 + 2\| \.\chi \delta e
\tau \varphi u\| 2

\leqslant 2\| e\tau \varphi \partial tV\delta \| 2 + 2

\int  - \ell 

 - 2\ell 

\int 
\Omega 
| \.\chi \delta | 2e2\tau \varphi | u| 2 dx dt

+ 2 sup
 - \delta \leqslant t\leqslant 0

| \.\chi \delta (t)| 2
\int 0

 - \delta 

\int 
\Omega 
| u| 2 dx dt

\leqslant 2\| e\tau \varphi \partial tV\delta \| 2 + 2e2\tau \varphi ( - \ell ) sup
 - 2\ell \leqslant t\leqslant  - \ell 

| \.\chi \delta (t)| 
\int  - \ell 

 - 2\ell 

\int 
\Omega 
| u| 2 dx dt+O(\delta 3),

where we used the decay condition (26) and the monotonicity of \varphi . Thus we have

(27)
\sum 
| \alpha | \leqslant 1

\| \chi \delta e
\tau \varphi \partial \alpha u\| 2 \leqslant 2

\sum 
| \alpha | \leqslant 1

\| e\tau \varphi \partial \alpha V\delta \| 2 + C1e
2\tau \varphi ( - \ell ) +O(\delta 3).

Here C1 depends on \| u\| but is independent of \delta and \tau . We use the multi-index notation
\alpha = (\alpha 0, . . . , \alpha d) \in Nd+1

0 , and | \alpha | = \alpha 0 + \cdot \cdot \cdot + \alpha d, and

\partial \alpha = \partial \alpha 0
t \partial \alpha 1

x1 \cdot \cdot \cdot \partial \alpha d

xd .

In a similar fashion, we compute

\| e\tau \varphi \Delta t,xV\delta \| 2 \leqslant 3\| \chi \delta e
\tau \varphi \Delta t,xu\| 2 + 3\| 2 \.\chi \delta e

\tau \varphi \partial tu\| 2 + 3\| \"\chi \delta e
\tau \varphi u\| 2

\leqslant 3\| \chi \delta e
\tau \varphi \Delta t,xu\| 2 + 3

\int  - \ell 

 - 2\ell 

\int 
\Omega 
e2\tau \varphi (| 2 \.\chi \delta \partial tu| 2 + | \"\chi \delta u| 2) dx dt

+ 12 sup
 - \delta \leqslant t\leqslant 0

| \.\chi \delta (t)| 2
\int 0

 - \delta 

\int 
\Omega 
| \partial tu| 2 dx dt

+ 3 sup
 - \delta \leqslant t\leqslant 0

| \"\chi \delta (t)| 2
\int 0

 - \delta 

\int 
\Omega 
| u| 2 dx dt

\leqslant 3\| \chi \delta e
\tau \varphi \Delta t,xu\| 2 + C2e

2\tau \varphi ( - \ell ) +O(\delta ),

(28)

where we again used the decay condition (26) and the monotonicity of \varphi . The constant C2

depends on \| u\| and \| \partial tu\| but is independent of \delta and \tau .
Combining estimates (27) and (28) with the Carleman estimates from Lemma 4.1, we find

that

(29) \tau 
\sum 
| \alpha | \leqslant 1

\| \chi \delta e
\tau \varphi \partial \alpha u\| 2 \leqslant C3\| \chi \delta e

\tau \varphi \Delta t,xu\| 2 + C3(1 + \tau )e2\tau \varphi ( - \ell ) +O(\delta ) +O(\tau \delta 3)
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for all \tau \geqslant \tau 0(V\delta ). Since | V\delta (t, x)| /| \nabla V\delta (t, x)| = | V\delta \prime (t, x)| /| \nabla V\delta \prime (t, x)| for any two 0 < \delta , \delta \prime < \ell ,
from Lemma 4.1 it follows that the lower bound \tau 0 := \tau 0(V\delta ) on \tau is independent of \delta .
Therefore, using the dominated convergence theorem, we can send \delta to 0 in (29) and obtain

(30) \tau 
\sum 
| \alpha | \leqslant 1

\| \chi 0e
\tau \varphi \partial \alpha u\| 2 \leqslant C3\| \chi 0e

\tau \varphi \Delta t,xu\| 2 + C3(1 + \tau )e2\tau \varphi ( - \ell ) for all \tau \geqslant \tau 0.

Here

\chi 0(t) =

\Biggl\{ 
1 for t \in [ - \ell , 0],
\chi 1(t) for t \not \in [ - \ell , 0].

Using (25) we have

\| \chi 0e
\tau \varphi \Delta t,xu\| 2 \leqslant C

\int 
\bfR 
| \chi 0(t)| 2e2\tau \varphi (t)

\int 
\Omega 
| u(t, x)| 2 + \| \nabla t,xu(t, x)\| 2 dx dt

= C\| \chi 0e
\tau \varphi u\| 2 + C\| \chi 0e

\tau \varphi \nabla t,xu\| 2.

Combining this inequality with (30) yields

\tau 
\sum 
| \alpha | \leqslant 1

\| \chi 0e
\tau \varphi \partial \alpha u\| 2 \leqslant C4

\sum 
| \alpha | \leqslant 1

\| \chi 0e
\tau \varphi \partial \alpha u\| 2 + C3(1 + \tau )e2\tau \varphi ( - \ell ) for all \tau \geqslant \tau 0.

After increasing \tau 0 if need be, the sum over | \alpha | \leqslant 1 on the right-hand side can be absorbed
by the left-hand side, hence

\tau 
\sum 
| \alpha | \leqslant 1

\| \chi 0e
\tau \varphi \partial \alpha u\| 2 \leqslant C5(1 + \tau )e2\tau \varphi ( - \ell ) for all \tau \geqslant \tau 0.

Since \chi 0 = 1 on [ - \ell , 0] and \varphi is increasing on [ - \ell , 0], this implies that

\| u\| 2L2([t\ast ,0]\times \Omega ) \leqslant C5
1 + \tau 

\tau 
e2\tau (\varphi ( - \ell ) - \varphi (t\ast )) \rightarrow 0 as \tau \rightarrow \infty 

for any t\ast \in ( - \ell , 0]. Hence u \equiv 0 on ( - \ell , 0]\times \Omega .

4.3. Uniqueness of the IVP.

Theorem 4.3. Let J \subset R be an open interval, assume f is of class C3, and suppose U, V \in 
W 1,2

loc (J ;X
0, X1) are both solutions of (TWE). Suppose that U(t0) = V (t0) for some t0 \in J .

Then U(t) = V (t) for t \in J .
Proof. Let J \prime \subset J \prime \subset J be a bounded open interval such that t0 \in J \prime . Let us introduce

the set
\scrZ (J \prime ) :=

\bigl\{ 
t \in J \prime : \| U(t) - V (t)\| X0 = 0

\bigr\} 
.

By assumption \scrZ (J \prime ) \not = \emptyset . By the regularity theory from section 3 we know that U, V \in 
C3(J \prime ;X0, . . . , Xm), hence \scrZ (J \prime ) is closed in J \prime . Thus by connectedness of J \prime we can conclude
that \scrZ (J \prime ) = J \prime if we are able to prove that \scrZ (J \prime ) is open in J \prime . Since J can be written as the
union of bounded open intervals J \prime \subset J \prime \subset J , the conclusion of the theorem will then follow.D
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Pick any t\ast \in \scrZ (J \prime ). Write U = (u, \partial tu) and V = (v, \partial tv), and setW = (w, \partial tw) := U - V .
We will prove that w is zero in a neighborhood of \{ t\ast \} \times \Omega . To do so, we shall invoke Lemma
4.2. We thus have to check that w satisfies the hypotheses of said lemma.

Note that by the regularity theory of section 3, w \in H3(J \prime \times \Omega ), and B(w(t, \cdot )) = 0 for
each t \in J \prime , and w satisfies

\Delta t,xw = f(x, v) - f(x, u) + c\partial tw + g(x, V ) - g(x, U)

=

\int 1

0
\partial sf(x, u - sw) ds+ c\partial tw +

\int 1

0
\partial sg(x, U  - sW ) ds

= \alpha (t, x)w + c\partial tw + L(t)[W (t)].

Here \alpha : J \prime \times \Omega \rightarrow R is given by

\alpha (t, x) =  - 
\int 1

0
fu(x, u(t, x) - sw(t, x)) ds,

and note that by the regularity results from section 3 this \alpha is a continuous function. Fur-
thermore, L : J \prime \rightarrow \scrL (X0, L2(\Omega )) is given by\bigl( 

L(t)\xi 
\bigr) 
(x) =  - 

\int 1

0
d2g(x, U(t) - sW (t))\xi ds.

We note here that this integral is indeed well-defined, since the map

s \mapsto \rightarrow I(s) := d2g(x, U(t) - sW (t))

is continuous from [0, 1] to \scrL (X0, L2(\Omega )) with its uniform operator topology. Hence s \mapsto \rightarrow I(s)
is absolutely continuous and therefore strongly measurable, and since by hypothesis (g1) one
has

\int 1
0 \| I(s)\| \scrL ds <\infty , it follows that I is Bochner integrable. By the regularity results from

section 3 we know that U and V form continuous curves in X0, hence t \mapsto \rightarrow L(t) is continuous.
Hence \| L(t)\| \scrL (X0,L2(\Omega )) \leqslant C uniformly for t in a neighborhood of t\ast , and consequently w
satisfies an inequality of the form (25).

All that is left is to check that w satisfies the decay conditions (26) around t\ast . Let
\delta > 0 be sufficiently small such that [t\ast  - \delta , t\ast + \delta ] \subset J \prime . Since f is of class C3, it follows
from section 3 that W = (w, \partial tw) \in C3

b ([t\ast  - \delta , t\ast + \delta ];X0, . . . , X3), hence in particular
w \in C4

b ([t\ast  - \delta , t\ast + \delta ];L2(\Omega )). Now consider the function \eta : (t\ast  - \delta , t\ast + \delta )\rightarrow R given by

\eta (t) =

\int 
\Omega 
| w(t, x)| 2 dx.

It is C4 and the first three derivatives are given by

\eta \prime (t) = 2

\int 
\Omega 
w(t, x)\partial tw(t, x) dx,

\eta \prime \prime (t) = 2

\int 
\Omega 
w(t, x)\partial 2tw(t, x) dx+ 2

\int 
\Omega 
| \partial tw(t, x)| 2 dx,

\eta \prime \prime \prime (t) = 2

\int 
\Omega 
w(t, x)\partial 3tw(t, x) dx+ 6

\int 
\Omega 
\partial tw(t, x)\partial 

2
tw(t, x) dx.
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Since w(t\ast , \cdot ) = \partial tw(t\ast , \cdot ) = 0, we have \eta (k)(t\ast ) = 0 for k \in \{ 0, . . . , 3\} . By the mean value
theorem it follows that | \eta (t)| \leqslant C \prime \delta 4, hence\int t\ast +\delta 

t\ast  - \delta 

\int 
\Omega 
| w(t, x)| 2 dx dt \leqslant C\delta 5 for | t - t\ast | \leqslant \delta .

A similar computation shows that\int t\ast +\delta 

t\ast  - \delta 

\int 
\Omega 
| \partial tw(t, x)| 2 dx dt \leqslant C\delta 3 for | t - t\ast | \leqslant \delta .

Hence Lemma 4.2 applies, proving that w \equiv 0 in a neighborhood of \{ t\ast \} \times \Omega . Therefore
U(t) = V (t) for t in a neighborhood E \subset J \prime of t\ast . Hence E \subset \scrZ (J \prime ), and since this holds for
any t\ast \in \scrZ (J \prime ) it follows that \scrZ (J \prime ) is open in J \prime , thus proving the theorem.

5. Fredholm theory. Let \frakL consist of all L \in \scrL (X1, X0) of the form

L =

\biggl( 
0  - 1

\Delta + L1 L2,

\biggr) 
,

where L1 \in \scrL (H1
B(\Omega ), L

2(\Omega )) and L2 \in \scrL (L2(\Omega )). Let \frakL \mathrm{h}\mathrm{y}\mathrm{p} consist of those L \in \frakL which are
hyperbolic, i.e., \sigma (L) \cap iR = \emptyset .

In this section we will study Fredholm properties of the linear operator

\scrD L :W 1,2(R;X0, X1)\rightarrow L2(R;X0),

\scrD LW = \partial tW + L(t)W,

where L \in C0(R;\frakL ) is such that the limits L\pm = limt\rightarrow \pm \infty L(t) exist in the uniform operator
topology on \scrL (X1, X0), and L\pm \in \frakL \mathrm{h}\mathrm{y}\mathrm{p}. The study of Fredholm properties of this class of
operators is motivated by the following lemma.

Lemma 5.1. Let Z - \in \scrS (f - ) and Z+ \in \scrS (f+) be hyperbolic rest points of (TWE), and
suppose U is a path connecting Z - with Z+. Then the linearization \partial t+dAf,g,c(U) of (TWE)
along U is Fredholm, with index given by ind(\scrD Lc,f

), where

Lc,f (t) =

\biggl( 
0  - 1

\Delta + fu(t, x, u(t, x))  - c(t)

\biggr) 
.

Proof. Note that the linearization of (TWE) along U takes the form

(31) \partial tW + Lc,f (t)W +K(t)W,

where

K(t) =

\biggl( 
0 0

\partial 1g(x, U(t)) \partial 2g(x, U(t))

\biggr) 
.

Here \partial 1g(x, (u, v)) =
\partial g(x,(u,v))

\partial u and \partial 2g(x, (u, v)) =
\partial g(x,(u,v))

\partial v . For each t,K(t) \in \scrL (X0), hence
K(t) : X1 \rightarrow X0 is compact. Furthermore, K \in C0(R,\scrL (X1, X0)) and \| K(t)\| \scrL (X1,X0) \rightarrow 0 as
t\rightarrow \pm \infty by hypothesis (g3). This implies that the multiplication operatorK :W 1,2(R;X1, X0)
\rightarrow L2(R;X0) is compact; see [RS95]. Therefore the Fredholm properties of (31) are the same
as those of \scrD Lc,f
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2666 B. BAKKER, J. B. VAN DEN BERG, AND R. VANDERVORST

The Fredholm properties which will be derived allow us to assign a (normalized) Morse
index to hyperbolic rest points, even though the operators dAc - ,f - ,g - (Z - ) and dAc+,f+,g+(Z+)
are strongly indefinite.

5.1. Fredholm alternative for \bfscrD \bfitL . Before discussing the Fredholm alternative for \scrD L,
let us first consider a resolvent estimate for the operator L(t).

Lemma 5.2. Let L \in C0(R;\frakL ) such that the limits L\pm = limt\rightarrow \pm \infty L(t) exist in the uniform
operator topology on \scrL (X1, X0). Then one has the following resolvent estimate: there exist
M > 0, R0 > 0 such that

\| \lambda (L(t) - i\lambda ) - 1\| \scrL (X0) \leqslant M for t \in R, | \lambda | \geqslant R0.

Proof. First consider the unbounded operator P on X0 with domain \scrD (P ) = X1, given by

P =

\biggl( 
0  - 1
\Delta 0

\biggr) 
.

Note that i\lambda \not \in \sigma (P ) whenever \lambda \in R\smallsetminus \{ 0\} , and

(P  - i\lambda ) - 1 =

\biggl( 
i\lambda  - 1

\bigl( 
1 - (\Delta  - \lambda 2) - 1

\bigr) 
(\Delta  - \lambda 2) - 1

 - (\Delta  - \lambda 2) - 1  - i\lambda (\Delta  - \lambda 2) - 1

\biggr) 
.

Now, since

\| (\Delta  - \mu ) - 1\| \scrL (L2(\Omega ),Hk
B(\Omega )) \leqslant 

C\biggl( 
1 + d

\bigl( 
\mu , \sigma (\Delta )

\bigr) \biggr) (2 - k)/2

for k \in \{ 0, 1, 2\} , we find that

\| (P  - i\lambda ) - 1\| X0 \leqslant 
C

1 + | \lambda | 
for \lambda \in R\smallsetminus \{ 0\} .

Now let K(t) be defined by

K(t) :=

\biggl( 
0 0

L1(t) L2(t)

\biggr) 
,

so that L(t) = P+K(t). Note thatK(t) is a bounded operator onX0, andK \in C0(R,\scrL (X0)).
Using a perturbative argument (see, e.g., [Kat66]) one has that

(32) i\lambda \not \in \sigma (L(t)) when \| K(t)\| \scrL (X0)\| (P  - i\lambda ) - 1\| \scrL (X0) < 1,

and for such \lambda one has

\| (L(t) - i\lambda ) - 1\| \scrL (X0) \leqslant 
1

1 - \| K(t)\| \scrL (X0)\| (P  - i\lambda ) - 1\| \scrL (X0)
\| (P  - i\lambda ) - 1\| \scrL (X0).

We have already argued that \| (P  - i\lambda ) - 1\| \scrL (X0) = O(| \lambda |  - 1) as | \lambda | \rightarrow \infty . Hence for each fixed
t \in R, condition (32) is satisfied for | \lambda | sufficiently big, say, | \lambda | \geqslant R0(t). Since K depends
continuously on t, and K(t) converges as t\rightarrow \pm \infty , the constant R0 can be chosen uniformly
in t.D
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FLOER HOMOLOGY FOR TRAVELING WAVES IN RDEs 2667

Combining this lemma with the results from [Rab04], we obtain the following theorem
(see Appendix A for details).

Theorem 5.3. Let L \in C0(R;\frakL ) be such that L(t) \rightarrow L\pm as t \rightarrow \pm \infty in the uniform
operator topology on \scrL (X1, X0), where L\pm \in \frakL hyp. Then the map \scrD L is Fredholm from
W 1,2(R;X0, X1) to L2(R;X0), and its index depends on the endpoints L - , L+ only.

This allows us to define a relative index:

\nu : \frakL \mathrm{h}\mathrm{y}\mathrm{p} \times \frakL \mathrm{h}\mathrm{y}\mathrm{p} \rightarrow Z,

\nu (L - , L+) = ind(\scrD L).

The relative index has the following transitivity property.

Lemma 5.4. Let L\alpha , L\beta , L\gamma \in \frakL hyp. Then

\nu (L\alpha , L\beta ) =  - \nu (L\beta , L\alpha ) (antisymmetry),
\nu (L\alpha , L\gamma ) = \nu (L\alpha , L\beta ) + \nu (L\beta , L\gamma ) (cyclicity).

The proof of the lemma uses an algebraic trick similar to the one employed in [RS95]. See
Appendix A for details.

5.2. Computing the index. Consider L \in C0
b (R,\scrL ) with limt\rightarrow \pm \infty L(t) \in \scrL \mathrm{h}\mathrm{y}\mathrm{p}, given by

(33) L(t) =

\biggl( 
0  - 1

\Delta + L1(t)  - c(t)

\biggr) 
.

Here we assume c \in C\infty (R, (0,\infty )), and L1 \in C0(R,\scrL (H1
B(\Omega ), L

2(\Omega ))), and for each t \in R the
operator L1(t) is symmetric when considered as an unbounded operator on L2(\Omega ). Consider
the operator

\Psi L1 :W 1,2(R;H1
B(\Omega ), H

2
B(\Omega ))\rightarrow L2(R;L2(\Omega )),

\Psi L1w = \partial tw +\Delta w + L1(t)w.

The following lemma relates the Fredholm index of the elliptic operator \scrD L with that of the
parabolic operator \Psi L1 .

Lemma 5.5. Let L, L1 be as in (33). Then \scrD L and \Psi L1 are Fredholm operators, and

ind(\scrD L) = ind(\Psi L1).

Proof. The Fredholm property of \scrD L was discussed in Theorem 5.3. Moreover, Theorem
A.1 is also applicable to the operator \Psi L1 , thus establishing the Fredholm property of that
operator as well. To relate the two indices we will make use of spectral flows.

Loosely speaking, the spectral flow SF(A) of a curve of (densely defined unbounded)
operators t \mapsto \rightarrow A(t) is an algebraic count of the number of eigenvalues of A(t) that cross the
imaginary axis as t increases from  - \infty to +\infty . More precisely, we define

SF(A) :=  - 
\sum 
t\ast 

\sum 
i

sgnRe\lambda \prime i(t\ast ).
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2668 B. BAKKER, J. B. VAN DEN BERG, AND R. VANDERVORST

Here t\ast are those t where a spectral crossing takes place, i.e., \sigma (A(t\ast ))\cap iR \not = \emptyset , and t \mapsto \rightarrow \lambda i(t)
are differentiable curves defined near t\ast which parametrize the spectrum, i.e., \sigma (A(t)) =\bigcup 

i\{ \lambda i(t)\} for t near t\ast . This definition only makes sense if there is no ambiguity in counting
the crossings of eigenvalues: the operators A(t) should have pure point spectrum near the
imaginary axis, there should be finitely many crossings, the crossings should be transverse to
iR, and the crossing eigenvalues should be algebraically simple. This is generically achieved
by perturbing the curve t \mapsto \rightarrow A(t) of operators.

Recall from [RS95] that we can choose a perturbation S1 \in C0(R,\scrL (H2
B(\Omega ), L

2(\Omega ))), with
limt\rightarrow \pm \infty \| S(t)\| \scrL (X1,X0) = 0, such that SF( - (\Delta + L1 + S1)) is well-defined, and

ind(\Psi L1) = SF( - (\Delta + L1 + S1)).

Furthermore, one can ensure that for any t \in R the operator S1(t) is symmetric when con-
sidered as an unbounded operator on L2(\Omega ), and given \varepsilon > 0 (to be specified in the next
paragraph), supt\in \bfR \| S1(t)\| \scrL (X1,X0) < \varepsilon .

Now let

S(t) =

\biggl( 
0 0

S1(t) 0

\biggr) 
.

Suppose for the moment that SF( - (L+S)) is well-defined. It then follows from [Rab04] that,
provided that supt\in \bfR \| S(t)\| \scrL (X1,X0) is sufficiently small, one has

ind(\scrD L) = SF( - (L+ S)).

The proof of the lemma is then completed if we can show that SF( - (L + S)) = SF( - (\Delta +
L1 + S1)). We will do so by demonstrating that any spectral crossing of  - (\Delta + L1 + S1) is
in one-to-one correspondence with a spectral crossing of  - (L+S). This then also shows that
SF( - (L+ S)) is indeed well-defined.

Note that \mu \in \sigma ( - (L(t)+S(t))) if and only there exists a nonzero vector (u, v) \in X1 such
that \Biggl\{ 

 - \mu u+ v = 0,

 - \Delta u - L1(t)u - S1(t)u+ c(t)v  - \mu v = 0.

This can happen only if \mu 2  - c(t)\mu \in \sigma ( - (\Delta + L1(t) + S1(t))). Because the operator  - (\Delta +
L1(t)+S1(t)) is self-adjoint, it has real-valued spectrum. Since c(t) > 0, the only \mu \in iR which
can satisfy \mu 2 - c(t)\mu \in R is \mu = 0. Collecting these observations, we conclude that eigenvalues
of  - (L(t)+S(t)) which cross the imaginary axis as t increases must do so through the origin.
Furthermore, if an eigenvalue of  - (L(t) + S(t)) crosses the imaginary axis (i.e., the origin)
from left to right as t increases, then (since c(t\ast ) > 0) an eigenvalue of  - (\Delta + L1(t) + S1(t))
passes the origin from left to right as t increases, and vice versa. From this we conclude that
the spectral flow of  - (L+ S) is well-defined for generic S1, and

SF( - (L+ S)) = SF( - (\Delta + L1 + S1)).

Combined with our previous observations this complete the proof.D
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5.3. Normalized Morse indices. Given a regular nonlinearity f satisfying hypothesis (f1),
and m0 \in Z, we define a normalized Morse index \mu f (Z) of Z = (z, 0) \in \scrS (f) as

\mu f (Z) := m0  - mf (z), where mf (z) := \#
\bigl( 
\sigma (\Delta + fu(x, z)) \cap (0,\infty )

\bigr) 
.(34)

See Remark 5.7 after the next theorem for the rationale behind the sign convention. Whenever
the choice of nonlinearity f is clear from the context we shall drop the subscript.

Theorem 5.6. Let Z - \in \scrS (f - ) and Z+ \in \scrS (f+) be hyperbolic rest points of (TWE), and
suppose U is a path connecting Z - with Z+. Then

ind(\partial t + dAf,g,c(U)) = \mu f - (Z - ) - \mu f+(Z+).

Proof. Define the multiplication operator

L1(t) : H
1
B(\Omega )\rightarrow L2(\Omega ), w(x) \mapsto \rightarrow fu(x, u(t, x))w(x).

Combining Lemmas 5.1 and 5.5, we find

ind(\partial t + dAf,g,c(U)) = ind(\Psi L1).

From [RS95] it follows that

ind(\Psi L1) = mf+(z+) - mf - (z - ).

Combined with the definition of \mu f this concludes the proof.

Remark 5.7. The reason for choosing a minus sign in the definition of the normalized
Morse index is to ensure that the index can only decrease along heteroclinic connections. One
can drop the minus sign in (34) and arrive at a cohomology theory instead.

6. Exponential decay. In this section we will show that a solution of (TWE) which
converges in forward time (or, similarly, in backward time) toward some hyperbolic fixed
point will in fact converge at an exponential rate.

Theorem 6.1. Let f be of class C4. Let U be a solution of (TWE) on J = [\tau 0,\infty ) for
which it holds that limt\rightarrow \infty \| U(t) - Z\| X0 = 0. Suppose hypotheses (f1)--(f3) and (g1)--(g3) are
satisfied. Let Z be a hyperbolic rest point of (TWE). Then there exist constants C, \gamma , \varepsilon > 0
such that the following holds. Then

\| U  - Z\| W 1,2((T,T+1);X0,X1) \leqslant Ce
 - \gamma (T - T0) for all T \geqslant T0 + 1,

where T0 \geqslant \tau 0 + 1 is chosen such that \| U(T0) - Z\| X0 < \varepsilon .

A similar statement holds for solutions U of (TWE) on J = ( - \infty , - \tau 0] which converge
toward a hyperbolic rest point in backward time.

Proof of Theorem 6.1. First note that from Lemma 5.2, the unique continuation Theorem
4.3 (using that f is C4), and [PSS97], the following follows: there exists \gamma > 0 and K > 0
such that any W \in C0(J ;X1) \cap C1(int J ;X0, X1) which satisfies

\partial tW + dA(U)W = 0D
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2670 B. BAKKER, J. B. VAN DEN BERG, AND R. VANDERVORST

and supt\in J \| W (t)\| X0 <\infty satisfies the exponential decay estimate

(35) \| W (t)\| X0 \leqslant Ke - \gamma | t - \tau | \| W (\tau )\| X0 for t \geqslant \tau \geqslant \tau 0.

See Appendix A.2 for details.
We know that U \in C4

b (J ;X
0, X1, . . . , X4), hence W := \partial tU satisfies supt\in J \| W (t)\| X0 <

\infty and also \partial tW + dA(U)W = 0 on J . From (35) it then follows that W \in L1(J ;X0), and
for any t, T0 \in J with t \geqslant T0 we have

(36) \| U(t) - Z\| X0 =

\bigm\| \bigm\| \bigm\| \bigm\|  - \int \infty 

t
W (s) ds

\bigm\| \bigm\| \bigm\| \bigm\| 
X0

\leqslant 
\int \infty 

t
\| W (s)\| X0 ds \leqslant 

K

\gamma 
e - \gamma | t - T0| \| W (T0)\| X0 .

Now let

\scrL Z :W 1,2(R;X0, X1)\rightarrow L2(R;X0),

\scrL ZW = \partial tW + dA(Z)W.

By hyperbolicity of Z this operator has a continuous inverse; this follows using Lemma 5.2 and
the results from [Rab03]. Let \eta 0 \in C\infty 

c (R) be such that \eta 0(t) = 1 for t \in [0, 1] and \eta 0(t) = 0
for t \not \in [ - 1, 2]. Then set \eta T (t) := \eta 0(t - T ). Now fix T0, T \in J such that [T - 1, T+2] \subset [T0,\infty )
(i.e., T \geqslant T0 + 1). Note that

\scrL Z(\eta T (t)(U(t) - Z)) = \.\eta T (t)
\bigl( 
U(t) - Z

\bigr) 
+ \eta T (t)

\bigl( 
\partial tU(t) + dA(Z)(U(t) - Z)

\bigr) 
= \.\eta T (t)

\bigl( 
U(t) - Z

\bigr) 
+ \eta T (t)

\bigl( 
dA(Z)(U(t) - Z) - (A(U(t)) - A(Z))

\bigr) 
+ \eta T (t)

\bigl( 
\partial tU(t) +A(U(t))

\bigr) 
 - \eta T (t)A(Z)

= \.\eta T (t)
\bigl( 
U(t) - Z

\bigr) 
+ \eta T (t)

\bigl( 
dA(Z)(U(t) - Z) - (A(U(t)) - A(Z))

\bigr) 
= \.\eta T (t)

\bigl( 
U(t) - Z

\bigr) 
+ \eta T (t)

\biggl( 
0

fu(x, z)(u(t) - z) - f(x, u) + f(x, z)

\biggr) 
+ \eta T (t)

\biggl( 
0

g(x, U(t))

\biggr) 
,

(37)

where U = (u, \partial tu) and Z = (z, 0).
Since the map f : H1(\Omega )\rightarrow L2(\Omega ) is differentiable near z we have\bigm\| \bigm\| \bigm\| \bigm\| \biggl( 0

fu(x, z)(u(t) - z) - f(x, u) + f(x, z)

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
X0

= o(\| U(t) - Z\| X0) as t\rightarrow \infty .

By hypotheses (g1), (g2), and a mean value estimate, we find that for all t \in J one has\bigm\| \bigm\| \bigm\| \bigm\| \biggl( 0
g(x, U(t))

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
X0

=

\bigm\| \bigm\| \bigm\| \bigm\| \int 1

0

d

ds
g(x, Z + s(U(t) - Z)) ds

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\Omega )

\leqslant C1,g

\sqrt{} 
Vol(\Omega )\| U(t) - Z\| X0 .

Combining these observations with estimate (37), we find that

\| \scrL Z(\eta T (t)(U(t) - Z))\| X0 = O(\| U(t) - Z\| X0) for t \in J, uniform in T.D
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Since supp(\eta T ) \subset [T0,\infty ) we can now apply estimate (36) to obtain

\| \scrL Z(\eta T (t)(U(t) - Z))\| X0 \leqslant Ce - \gamma | t - T0| \| W (T0)\| X0

for some constant C which is independent of T . By invertibility of \scrL Z : W 1,2(R;X0, X1) \rightarrow 
L2(R;X0) we then find

\| U  - Z\| W 1,2((T,T+1);X0,X1) \leqslant \| \eta T \cdot (U  - Z)\| W 1,2(\bfR ;X0,X1)

\leqslant \| \scrL  - 1
Z \| \| \scrL Z(\eta T \cdot (U  - Z))\| L2(\bfR ;X0)

\leqslant 
C\| \scrL  - 1

Z \| 
\gamma 

e - \gamma | T - T0| \| W (T0)\| X0 .

The above estimate already proves the exponential decay of the single solution U toward
Z. Next, we will argue why the constant \| W (T0)\| X0 = \| \partial tU(T0)\| X0 can be bounded in-
dependently of U , as long as T0 is chosen big enough such that U(T0) lies in some given
X0-neighborhood of Z. Let a := \scrE (Z), and choose any b > a. From section 3 it follows
that \scrA b

a(J, f, g, c)
\bigm| \bigm| 
[\tau 0+1,\infty )

is bounded in the norm topology on C1
b ([\tau 0 + 1,\infty );X0, X1). De-

note this upper bound by M . By continuity of \scrE : X0 \rightarrow R, there exists some \varepsilon > 0 such
that if T0 \geqslant \tau 0 + 1 is such that \| U(T0)  - Z\| X0 < \varepsilon , then a \leqslant \scrE (U(T0)) \leqslant b. If we define\widetilde U(t) := U(t - \tau 0  - 1 + T0), then \widetilde U \in \scrA b

a(J, f, g, c)
\bigm| \bigm| 
[\tau 0+1,\infty )

, hence

\| \partial tU(T0)\| X0 = \| \partial t \widetilde U(\tau 0 + 1)\| X0 \leqslant M.

7. Moduli spaces. At this point we are ready to define the moduli spaces of heteroclinic
orbits. Given two hyperbolic rest points Z - , Z+ \in \scrS \mathrm{h}\mathrm{y}\mathrm{p}, we define

\scrM (Z - , Z+) =

\biggl\{ 
U \in W 1,2

\mathrm{l}\mathrm{o}\mathrm{c} (R;X0, X1) : U solves (TWE), lim
t\rightarrow \pm \infty 

\| U(t) - Z\pm \| X0 = 0

\biggr\} 
.

We will now discuss two useful modes of convergence on this space and the interplay between
these two. For conciseness we will do this only for the autonomous case. We refer to Remark
7.7 at the end of this section for details on how to adapt the arguments to the nonautonomous
setting.

7.1. The manifold structure. Let Z \in C1(R;X0, X1) be such that Z(t) = Z - for t \leqslant  - 1
and Z(t) = Z+ for t \geqslant 1. We then define the affine space of paths between Z - and Z+,

\scrP (Z - , Z+) := Z +W 1,2(R;X0, X1).

By the exponential decay of solutions toward hyperbolic rest points we have \scrM (Z - , Z+) \subset 
\scrP (Z - , Z+). Therefore, if we introduce the nonlinear operator

\Phi Z - ,Z+ : \scrP (Z - , Z+)\rightarrow L2(R;X0),

\Phi Z - ,Z+(U) = \partial tU +A(U),D
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2672 B. BAKKER, J. B. VAN DEN BERG, AND R. VANDERVORST

we find that
\scrM (Z - , Z+) = \Phi  - 1

Z - ,Z+
(0).

The linearization of \Phi Z - ,Z+ around any U \in \scrP (Z - , Z+) is Fredholm with ind(d\Phi Z - ,Z+(U)) =
\mu (Z - )  - \mu (Z+). This index is independent of the chosen U \in \scrP (Z - , Z+), thus \Phi Z - ,Z+ is a
Fredholm map with ind(\Phi Z - ,Z+) = \mu (Z - ) - \mu (Z+).

Recall from section 2.2.3 the definition of transversality up to order k. We now assume
that the transversality condition up to order \mu (Z - ) - \mu (Z+) is satisfied. If the nonlinearity f
is of class Cm, then the map \Phi Z - ,Z+ is of class Cm in a neighborhood of\scrM (Z - , Z+) (recall
Theorem 3.6); hence the implicit function theorem implies that\scrM (Z - , Z+) with the topology
inherited from \scrP (Z - , Z+) is again a Cm manifold of finite dimension \mu (Z - ) - \mu (Z+).

Since we study the autonomous case, time translations s \mapsto \rightarrow U(\cdot + s) induce an R-action
on\scrM (Z - , Z+). We will denote the equivalence class of U \in \scrM (Z - , Z+) with respect to this
R-action by [U ] and write \widehat \scrM (Z - , Z+) :=\scrM (Z - , Z+)/R

for the quotient space.

Lemma 7.1. Assume the transversality condition up to order \mu (Z - )  - \mu (Z+) is satisfied.

Then the space \widehat \scrM (Z - , Z+) is a Cm manifold of dimension \mu (Z - ) - \mu (Z+) - 1.

Proof. We verify that the R-action of time translations on \scrM (Z - , Z+) is Cm, free, and
proper. The lemma then follows from the quotient manifold theorem [Lee03]. The Cm smooth-
ness of the action, where we consider\scrM (Z - , Z+) to be endowed with the topology inherited
from \scrP (Z - , Z+), follows from the regularity results stated in section 3. Since the energy
functional \scrE is strictly decreasing with time translations (see also Remark 2.5), the action is
free. Finally, properness follows from the compactness estimates in section 3.

7.2. Geometric convergence. In general\scrM (Z - , Z+) will not be compact in the topology
of \scrP (Z - , Z+); just considering a sequence of time translations of a nonconstant solution, this
cannot have a convergent subsequence in this topology. In order to better understand exactly
how\scrM (Z - , Z+) fails to be compact, we introduce the notion of geometric convergence.

Definition 7.2. Let Z0, . . . , Zk+1 be hyperbolic stationary solutions of (TWE). Pick any

([U0], [U1], . . . , [Uk - 1], [Uk]) \in \widehat \scrM (Z0, Z1)\times \widehat \scrM (Z1, Z2)\times \cdot \cdot \cdot \times \widehat \scrM (Zk - 1, Zk)\times \widehat \scrM (Zk, Zk+1).

We will call such a k-tuple ([V0], . . . , [Vk]) a k-fold broken orbit.

Given ([Un])n \subset \widehat \scrM (Z0, Zk+1), we will say that ([Un])n converges geometrically to the k-
fold broken orbit ([V0], . . . , [Vk]) if the following holds. For each j \in \{ 0, . . . , k\} there exists a
sequence (sj,n)n \subset R so that

Un(\cdot + sj,n)\rightarrow Vj in W 1,2
loc (R;X0, X1) as n\rightarrow \infty ,

and this k-fold broken orbit is maximal in the sense that for each sequence (s\prime n)n \subset R and V \prime 

such that Un(\cdot + s\prime n)\rightarrow V \prime in W 1,2
loc (R;X0, X1) as n\rightarrow \infty it holds that [V \prime ] \in \{ [V0], . . . , [Vn]\} .

In this case we will also write

[Un]\rightsquigarrow ([V0], . . . , [Vk]) as n\rightarrow \infty .

See also Figure 2(a).D
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\scrE 

(a) Convergence toward a broken trajectory.

2

1 1

1 1

Z - 

Y Y \prime 

Z+

(b) Noncompact connected component of dimen-
sion 2 of\scrM (Z - , Z+).

Figure 2. Analysis of the moduli spaces \scrM (Z - , Z+) in the autonomous setting.

To arrive at the main result regarding geometric convergence, we will first discuss a prop-
erty which was already hinted at in the introduction. First, given a solution U of (TWE),
let \alpha (U) denote the set of accumulation points in the topology of W 1,2

\mathrm{l}\mathrm{o}\mathrm{c} (R;X0, X1) of the
sequence (U(\cdot + \tau ))\tau , where \tau \rightarrow  - \infty . Similarly, let \omega (U) denote the set of accumulation
points of the sequence (U(\cdot +\tau ))\tau , where \tau \rightarrow \infty . In other words, these are the \alpha - and \omega -limit
sets of the shift dynamics on the set of solutions to (TWE).

Lemma 7.3 (gradient-like behavior). Consider a t-independent triple (f, g, c) satisfying
(f1)--(f3) and (g1)--(g3). Let U be a bounded solution of (TWE). Then the limit sets \alpha (U) and
\omega (U) are both nonempty and connected, and \alpha (U), \omega (U) \subset \scrS . Moreover, if \alpha (U)\cap \omega (U) \not = \emptyset ,
then U is a stationary solution of (TWE). If in addition we assume that f is regular, then
\alpha (U) and \omega (U) each consist of a single point, hence any bounded solution of (TWE) is either
a rest point or a heteroclinic orbit.

Proof. Let U \in W 1,2
\mathrm{l}\mathrm{o}\mathrm{c} (R;X0, X1) be a solution of (TWE) with supt\in \bfR \| U(t)\| X0 < \infty .

Then there exist a, b \in R such that a \leqslant \scrE (U(t)) \leqslant b for all t \in R. Endow \scrA b
a with the

topology inherited from W 1,2
\mathrm{l}\mathrm{o}\mathrm{c} (R;X0, X1). Then note that time translation s \mapsto \rightarrow U(\cdot + s)

defines a continuous dynamical system on \scrA b
a. The compactness results from section 3 imply

that the \alpha - and \omega -limit sets of any U \in \scrA b
a are nonempty. The dynamical system also

posesses a Lyapunov function given by \scrL (U) = \scrE (U(0)), with \scrE as defined in section 2.2.1.
In light of Theorem 4.3 this Lyapunov function is stricly decreasing along nonstationary
trajectories. Since the Lyapunov function must be constant on the limit sets, this implies that
\alpha (U), \omega (U) \subset \scrS ba. Futhermore, this implies that \alpha (U) \cap \omega (U) = \emptyset when U is a nonstationary
solution of (TWE).

If we in addition assume that f is regular, the hyperbolicity implies that \scrS ba is totally
disconnected. On the other hand, since \alpha (U) and \omega (U) are the limit sets of a continuous
dynamical system, they are both connected. Hence each of these limit sets must consist of a
single point.D
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With this settled, a standard argument shows that \widehat \scrM (Z - , Z+) is compact up to broken
orbits. Roughly speaking, any sequence (Un)n \subset \scrM (Z - , Z+) must have some convergent
subsequence by the results from section 3, and by Lemma 7.3 the limit point must then
again belong to some moduli space \scrM (Zi, Zj). If Zi \not = Z - or Zj \not = Z+, using the energy
functional \scrE defined in section 2.2.1 we can then find a sequence (tn)n \subset R such that the
time-translated sequence (Un(tn + \cdot ))n converges over a subsequence toward a limit point in
yet another moduli space \scrM (Zk, Zl). This iterative procedure must terminate after a finite
number of steps, since hyperbolicity implies there are only a finite number of rest points with
bounded energy. See Figure 2(a), and also see [Sch93] for additional details. Note that in this
reference only gradient flows are considered, but the particular argument relies only on the
existence of a strict Lyapunov function. Summarizing, we have the following result.

Theorem 7.4. Consider (TWE) with t-independent (f, g, c). Suppose all rest points of

(TWE) are hyperbolic. Then the space \widehat \scrM (Z - , Z+) is compact up to broken orbits, i.e., for

each ([Un])n \subset \widehat \scrM (Z - , Z+) there exists a k \in N0, intermediate points Z1, . . . , Zk \in \scrS , a
broken orbit

([V0], [V1], . . . , [Vk - 1], [Vk]) \in \widehat \scrM (Z - , Z1)\times \widehat \scrM (Z1, Z2)\times \cdot \cdot \cdot \times \widehat \scrM (Zk - 1, Zk)\times \widehat \scrM (Zk, Z+),

and a subsequence ([Unj ])j such that

[Unj ]\rightsquigarrow ([V0], . . . , [Vk]) as j \rightarrow \infty .

See also Figure 2(a).

7.3. Relating the modes of convergence. The following theorem highlights an important
link between geometric convergence and the topology inherited from \scrP (Z - , Z+). An important
consequence will be that for generic choices of f and g one can count index 1 orbits.

Theorem 7.5. Consider (TWE) with t-independent (f, g, c). Let Z - and Z+ be hyperbolic

rest points of (TWE), and suppose \widehat \scrM (Z - , Z+) is compact up to 0-fold broken orbits. Then\widehat \scrM (Z - , Z+) is sequentially compact in the quotient topology inherited from \scrP (Z - , Z+). In

particular, if \mu (Z - ) - \mu (Z+) = 1, then \widehat \scrM (Z - , Z+) is sequentially compact.

Proof. Without loss of generality we can assume \scrE (Z+) < \scrE (Z - ), because otherwise either
\scrM (Z - , Z+) = \emptyset (if Z - \not = Z+) or \scrM (Z - , Z+) = \{ Z - \} (if Z - = Z+). Select any ([Un])n \subset \widehat \scrM (Z - , Z+). For each n fix a representative Un of [Un]. By assumption we may find a
subsequence (U \prime 

n)n, a sequence (tn)n \subset R, and a limit point V0 \in \scrM (z - , z+) such that
U \prime 
n(\cdot + tn)\rightarrow V0 inW

1,2
\mathrm{l}\mathrm{o}\mathrm{c} (R;X0, X1) as n\rightarrow \infty . After replacing U \prime 

n by U \prime 
n(\cdot + tn), i.e., choosing

a different representative for [U \prime 
n], we may as well assume that U \prime 

n \rightarrow V0 in W 1,2
\mathrm{l}\mathrm{o}\mathrm{c} (R;X0, X1)

as n\rightarrow \infty . To ease notation, we shall henceforth denote the subsequence (U \prime 
n)n by just (Un)n.

We claim that Un(t) converges uniformly in n toward Z\pm as t\rightarrow \pm \infty , i.e.,

(38) for all \varepsilon > 0 \exists T0 > 0 for all n \in N for all t \geqslant T0 : \| Un(t) - Z\pm \| X0 \leqslant \varepsilon .

Suppose for the moment that this is true. Choosing \varepsilon as small as needed, we may now apply
the exponential decay, Theorem 6.1, to find \delta 0 > 0, C > 0, and T0 > 0 such thatD
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\| Un  - V0\| W 1,2((T,T+1);X0,X1) \leqslant \| Un  - Z\pm \| W 1,2((T,T+1);X0,X1)

+ \| V0  - Z\pm \| W 1,2((T,T+1);X0,X1)

\leqslant Ce - \delta 0T

for all T \geqslant T0. Consequently,

\| Un  - V0\| W 1,2(\bfR \smallsetminus [ - T,T ];X0,X1) \rightarrow 0 as T \rightarrow \infty , uniformly in n \in N.

Since we also have that Un \rightarrow V0 in W 1,2
\mathrm{l}\mathrm{o}\mathrm{c} (R;X0, X1) as n \rightarrow \infty , we in particular find that

for each T > 0 it holds that

\| Un  - V0\| W 1,2(( - T,T );X0,X1) \rightarrow 0 as n\rightarrow \infty .

Together these estimates imply that \| Un  - V0\| W 1,2(\bfR ;X0,X1) \rightarrow 0 as n\rightarrow \infty , so that Un \rightarrow V0

in \scrP (Z - , Z+) as n \rightarrow \infty . Hence \widehat \scrM (Z - , Z+) is compact in the quotient topology inherited
from \scrP (Z - , Z+).

It remains to prove the claim (38). We will only discuss the uniform convergence toward
Z+ = (z+, 0) as t \rightarrow \infty ; the case for t \rightarrow  - \infty is obtained analogously. We shall first show
that \| \partial tun(t)\| L2(\Omega ) \rightarrow 0 uniformly in n as t \rightarrow \infty , where Un = (un, \partial tun). Assume on the
contrary that we can find a sequence (tk)k \subset R with tk \rightarrow \infty , (nk)k \subset N with nk \rightarrow \infty , and
\varepsilon > 0 such that

(39) \| \partial tunk
(tk)\| L2(\Omega ) > \varepsilon for all k \in N.

Recall from section 3 that\scrM (Z - , Z+) is uniformly bounded in C1
b (R;X0, X1). From this we

obtain the following equicontinuity condition: there exists an M \in R such that\bigm| \bigm| \bigm| \bigm| \| \partial tw(s)\| 2L2(\Omega )  - \| \partial tw(t)\| 
2
L2(\Omega )

\bigm| \bigm| \bigm| \bigm| \leqslant \int s

t

\bigm| \bigm| \partial \tau \| \partial tw(\tau )\| 2L2(\Omega )

\bigm| \bigm| d\tau 
= 2

\int t

s
| \langle \partial 2tw(\tau ), \partial tw(\tau )\rangle L2(\Omega )| d\tau 

\leqslant 2

\int t

s
\| \partial 2tw(\tau )\| L2(\Omega )\| \partial tw(\tau )\| L2(\Omega ) d\tau 

\leqslant M | s - t| 

for all s, t \in R andW = (w, \partial tw) \in \scrM (Z - , Z+). Combining this with (39), we may find \delta > 0
such that

\| \partial tunk
(s)\| 2L2(\Omega ) \geqslant \varepsilon 

2/2 whenever | tnk
 - s| \leqslant \delta .

In turn, this gives

\scrE (Unk
(tk)) - \scrE (unk

(tk + \delta )) =  - 
\int tk+\delta 

tk

\partial \tau \scrE (Unk
(\tau )) d\tau 

\geqslant 
c

2

\int tk+\delta 

tk

\| \partial tunk
(\tau )\| 2L2(\Omega ) d\tau 

\geqslant c\delta \varepsilon 2/4 =: \varepsilon 0.D
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Since t \mapsto \rightarrow \scrE (Unk
(t)) is a decreasing function, this finally implies that for all k

\scrE (Unk
(tk)) - \scrE (Z+) \geqslant \varepsilon 0.

But we can find s0 \in R such that \scrE (V0(s0)) - \scrE (Z+) = \varepsilon 0/2, and since tk \rightarrow \infty we then find
that for k large enough

\scrE (Unk
(s0)) - \scrE (Z+) \geqslant \scrE (Unk

(tk)) - \scrE (Z+) \geqslant \varepsilon 0.

However, Unk
\rightarrow V0 in W 1,2

\mathrm{l}\mathrm{o}\mathrm{c} (R;X0, X1), so we in particular have \scrE (Unk
(s0)) \rightarrow \scrE (V0(s0)).

Hence the left-hand side of the last inequality tends to \varepsilon 0/2 as k \rightarrow \infty over a subsequence,
which is impossible since \varepsilon 0 > 0. This contradiction shows that \| \partial tun(t)\| L2(\Omega ) \rightarrow 0 uniformly
in n as t\rightarrow \infty .

Next, we will show that from this it also follows that \| un(t) - z+\| H1(\Omega ) \rightarrow 0 uniformly in
n as t \rightarrow \infty , thus completing the proof of (38). Suppose on the contrary that we can find a
sequence (tk)k \subset R with tk \rightarrow \infty , (nk)k \subset N with nk \rightarrow \infty , and \varepsilon > 0 such that

\| unk
(tk, \cdot ) - z+\| H1(\Omega ) > \varepsilon for all k \in N.

From section 3 we know that, after selecting a further subsequence, Unk
(tk+\cdot )\rightarrow W = (w, \partial w)

in W 1,2
\mathrm{l}\mathrm{o}\mathrm{c} (R;X0, X1) as k \rightarrow \infty . The assumed inequality ensures that w \not = z+. Yet since

\| \partial tun(t)\| L2(\Omega ) \rightarrow 0 uniformly in n as t \rightarrow \infty , it holds that \partial tw = 0. Since \scrM (Z - , Z+) is
assumed compact up to 0-fold broken orbits, we thus must have W = Z - . Hence for any
\delta > 0 and s0 > 0 we can choose k large enough so that

\scrE (Z+) < \scrE (Z - ) \leqslant \scrE (Unk
(tk)) +

\delta 

2
\leqslant \scrE (Unk

(s0)) +
\delta 

2
\leqslant \scrE (V0(s0)) + \delta .

However, \scrE (V0(s0)) \rightarrow \scrE (Z+) as s0 \rightarrow \infty . So we find that for any \delta > 0 we have \scrE (Z+) <
\scrE (Z - ) \leqslant \scrE (Z+) + \delta . Hence \scrE (Z - ) = \scrE (Z+), in contradiction with the assumption that
\scrE (Z+) < \scrE (Z - ).

7.4. The gluing map. The following ``gluing theorem"" allows us to understand the struc-
ture of the boundary of the two-dimensional moduli spaces.

Theorem 7.6. Suppose Z0, Z1, Z2 are hyperbolic stationary solutions of (TWE), where
\mu (Z0) = \mu (Z1)+1 = \mu (Z2)+2. Assume the transversality condition up to order 2 is satisfied.
Let (U, V ) \in \scrM (Z0, Z1)\times \scrM (Z1, Z2). Then there exists an immersion

\# : [T0,\infty )\rightarrow \scrM (Z0, Z2),

T \mapsto \rightarrow U\#TV,

such that [U\#TV ] \rightsquigarrow ([U ], [V ]) as T \rightarrow \infty . Moreover, any sequence in \widehat \scrM (Z0, Z2) which
converges geometrically toward ([U ], [V ]) eventually lies within the range of [U\#V ].

The ideas in this construction are fairly standard; see, e.g., [Flo89, Sch95, Sch93, AD14].
We will only give a sketch here. First define a pregluing map\bigl( 

U\#0
TV
\bigr) 
(t) :=

\biggl( 
1 - \eta 

\biggl( 
t

T

\biggr) \biggr) 
U(t+ 2T ) + \eta 

\biggl( 
t

T

\biggr) 
V (t - 2T ),
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where \eta \in C\infty (R) is such that 0 \leqslant \eta \leqslant 1, \eta (t) = 0 for t \leqslant  - 1, and \eta (t) = 1 for t \geqslant 1. Note
that U\#0

TV \in \scrP (Z0, Z2), and U\#0
TV converges geometrically toward ([U ], [V ]) as T \rightarrow \infty .

However, the pregluing is in general not a solution of (TWE), but a brief computation yields\bigm\| \bigm\| \Phi Z0,Z2(U\#0
TV )

\bigm\| \bigm\| 
L2(\bfR ;X0)

\rightarrow 0 as T \rightarrow \infty ,

which suggest there must be a true solution nearby the pregluing. The aim is to find this true
solution using a contraction mapping argument.

Define

FT :W 1,2(R;X0, X1)\rightarrow L2(R;X0),

FT (\gamma ) = \Phi Z0,Z2(U\#0
TV + \gamma ).

By hyperbolicity and transversality, the maps d\Phi Z0,Z1(U) and d\Phi Z1,Z2(V ) are surjective Fred-
holm operators, hence they have bounded right inverses M01 and M12, respectively. We then
patch these operators together to obtain an ``approximate right inverse"" for dFT (0):

MT := \zeta  - T \tau 2TM01\tau  - 2T \zeta 
 - 
T + \zeta +T \tau  - 2TM12\tau 2T \zeta 

+
T .

Here \tau a denotes the operator induced by time translation t \mapsto \rightarrow t+ a, and \zeta \pm T \in C\infty (R) is such
that \zeta  - T (t)2 + \zeta +T (t)2 = 1, \zeta +T (t) = 0 for t \leqslant  - T , \zeta  - T (t) = \zeta +T ( - t), \zeta \pm T (t) = \zeta \pm 1 (t/T ). This is an
approximate right inverse in the sense that dFT (0) \circ MT \rightarrow I in \scrL (L2(R;X0)) as T \rightarrow \infty . In
turn, this implies the existence of a true right inverse GT of dFT (0); in addition the operator
norm of GT can be bounded independent of T . This allows us to define a Newton-like operator

NT :W 1,2(R;X0, X1)\rightarrow im(GT ),

NT = GT \circ 
\bigl( 
dFT (0) - FT

\bigr) 
.

Since FT (0) \rightarrow 0 as T \rightarrow \infty and the norm of GT can be bounded independent of T , this
operator turns out to be a contraction for T large enough. Consequently, there exists an \varepsilon > 0
such that, for large T , there exists a unique \gamma T \in B\varepsilon (0) \cap im(GT ) such that FT (\gamma T ) = 0.
Furthermore, one can show that \| \gamma T \| W 1,2(\bfR ;X0,X1) \rightarrow 0 as T \rightarrow \infty . Hence, if we set

(40) U\#TV := U\#0
TV + \gamma T ,

then U\#TV \in \scrM (Z0, Z2) and [U\#TV ]\rightsquigarrow ([U ], [V ]) as T \rightarrow \infty .

7.5. The geometric picture. Now assume that both f and g are regular. Pick any
Z - , Z+ \in \scrS with \mu (Z - )  - \mu (Z+) \leqslant 2. Suppose \scrM (Z - , Z+) \not = \emptyset , and pick U \in \scrM (Z - , Z+).
Then

\mu (Z - ) - \mu (Z+) = dimker(d\Phi Z - ,Z+(U)) \geqslant 0.

Hence transversality implies that the Morse index can never increase along orbits.
We now combine the various results from this chapter to get a detailed picture of geometric

properties of the trajectory spaces. We present this in the following list.
\mu (Z - ) = \mu (Z+). Assume that\scrM (Z - , Z+) \not = \emptyset . In this case\scrM (Z - , Z+) is a zero-dimensional

manifold, i.e., a discrete set. If U \in \scrM (Z - , Z+), then s \mapsto \rightarrow U(s+\cdot ) defines a continuous
curve in\scrM (Z - , Z+). This curve has to be constant since\scrM (Z - , Z+) is discrete. Hence
U is t-independent, and since U(t) \rightarrow Z\pm as t \rightarrow \pm \infty , we find that Z - = Z+. We
conclude that the space of index 0 trajectories\scrM (Z - , Z+) is a finite set.
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\mu (Z - ) = \mu (Z+) + 1. Let ([Un])n \subset \widehat \scrM (Z - , Z+) and suppose that [Un] \rightsquigarrow ([V0], . . . , [Vk]), a
k-fold broken orbit. Since the index can never increase along orbits, we find that all
except one of the Vj 's is of index 0. But as we just saw, index 0 orbits are stationary
solutions, hence all but one of the Vj 's equal either Z - or Z+. So ([Un])n converges

geometrically to a 0-fold broken orbit, i.e., an element of \widehat \scrM (Z - , Z+) itself. From this

and Theorem 7.4 we deduce that \widehat \scrM (Z - , Z+) is compact up to 0-fold broken orbits.

We then conclude from Theorem 7.5 that \widehat \scrM (Z - , Z+) is sequentially compact in the

quotient topology. We also know that \widehat \scrM (Z - , Z+) is a 0-dimensional manifold with

this quotient topology. Consequently \widehat \scrM (Z - , Z+) is a finite set. This means that
modulo time shifts,\scrM (Z - , Z+) consists of finitely many trajectories.

\mu (Z - ) = \mu (Z+) + 2. Let O be a connected component of\scrM (Z - , Z+). Arguing as above, we
find that O is either compact up to 0-fold broken orbits or compact up to 1-fold broken
orbits.
We can also study \widehat O := O/R, the one-dimensional manifold obtained by dividing out
the time shifts. Since\scrM (Z - , Z+) is obtained as a regular level 0 set via the implicit
function theorem, it is a manifold without boundary. Therefore also O and hence \widehat O
are manifolds without boundary. It follows from the classification of one-dimensional
spaces that \widehat O is homeomorphic to either S1 or (0, 1). The former corresponds to the
case where \widehat O is compact up to 0-fold broken orbits. In the latter case, we obtain a
one-parameter family ([Us])s\in (0,1) \subset \widehat O such that [Us] \rightsquigarrow ([V  - 

0 ], [V  - 
1 ]) as s \downarrow 0 and

[Us] \rightsquigarrow ([V +
0 ], [V +

1 ]) as s \uparrow 1. These broken orbits ([V  - 
0 ], [V  - 

1 ]) and ([V +
0 ], [V +

1 ]) are
distinct; otherwise we would have two sequences which are separated by open sets, yet
converging geometrically to the same 1-fold broken trajectory. However, the latter is
impossible in light of the gluing theorem. See Figure 2(b) for a schematic depiction of
this situation.

Remark 7.7. In this section we analyzed the geometry of (the compactification of) the
moduli spaces in the autonomous case. We now indicate how this analysis can be adapted
to the nonautonomous case. The main technical difference is that one needs the compactness
estimates for the nonautonomous case, as given in section 3. The other difference is the lack
of translational invariance of (TWE). In this case we can therefore use the classification of
one-dimensional manifolds only when the index difference is \mu (Z - )  - \mu (Z+) = 1. What one
obtains is, much the same as in the autonomous setting, that any connected component of
\scrM (Z - , Z+) either is compact or can be compactified by two pairs of broken trajectories. Here,
a nonautonomous trajectory can break into either one of the following (using notation as in
hypothesis (n2)):

\bullet a concatenation of an index 0 nonautonomous trajectory corresponding to (f, g, c),
and an index 1 autonomous trajectory corresponding to (f+, g+, c+), or
\bullet a concatenation of an index 1 autonomous trajectory corresponding to (f - , g - , c - ),

and an index 0 nonautonomous trajectory corresponding to (f, g, c).
Hence, accounting for multiplicity, there are three possible boundaries for any noncompact
connected component of\scrM (Z - , Z+) when \mu (Z - ) - \mu (Z+) = 1; see Figure 3, and see [Sch93]
for more detail.
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1

0 0

1 1

Z - 

Y Y \prime 

Z+

(a)

1

1 1

0 0

Z - 

Y Y \prime 

Z+

(b)

1

0

0

1

1

Z - 

Y Y \prime 

Z+

(c)

Figure 3. Geometric closures of index 1 connected component of \scrM (Z - , Z+) in the nonautonomous setting.
Double arrow heads indicate autonomous trajectories, single arrow heads indicate nonautonomous trajectories,
and numbers indicate their indices.

8. Generic properties. In this section we show that for generic choices of f and g, all rest
points are hyperbolic and connecting orbits up to order m - 1 are transversal. In other words,
we will show that regular f and g are generic. Thus, the results from the preceding sections
apply in generic cases.

8.1. Hyperbolicity. As already indicated, hyperbolicity of all rest points of (TWE) can
always be achieved by perturbing the nonlinearity f . We shall now first construct a space
from which our generic perturbations of the nonlinearity can be chosen. Since we will apply
the Sard--Smale theorem to a map defined on this space, it must be constructed in such a way
that it is a Banach manifold.

Given m \in N, let Cm
0 (\Omega \times R) consist of those functions \varphi 0 \in Cm

b (\Omega \times R) such that
limu\rightarrow \pm \infty \varphi 0(x, u) = 0 uniformly in x \in \Omega , and \varphi 0| \partial \Omega \times \bfR = 0. Equipped with the norm

inherited from Cm
b (\Omega \times R), this becomes a separable Banach space. Now let \scrF m consist of

those functions \varphi of the form

\varphi (x, u) = e - | u| 2\varphi 0(x, u), where \varphi 0 \in Cm
0 (\Omega \times R).

Define a norm on \scrF m by setting \| \varphi \| \scrF m := \| \varphi 0\| Cm
b
. As such, \scrF m is isometric to Cm

0 (\Omega \times R),
hence \scrF m is a separable Banach space. Note that the rapid decay of \varphi \in \scrF m implies that
f + \varphi satisfies hypotheses (f1)--(f3) whenever f does.

Recall that a subset of a topological space is called residual if it can be written as the
countable intersection of open and dense subsets. Since \scrF m is a Baire space, any residual
subset of \scrF m is also dense in \scrF m.

Theorem 8.1. Fix a nonlinearity f \in Cm(\Omega \times R), with m \geqslant 1, satisfying hypotheses (f1)--
(f3). Then there exists a residual set \scrF m

reg \subset \scrF m such that for each \varphi \in \scrF m
reg equation (TWE)

with the perturbed nonlinearity f + \varphi has only hyperbolic rest points.

Proof. Given a nonlinearity f , for notational convenience we will write Af instead of Af,g,c

(the construction of \scrF m
\mathrm{r}\mathrm{e}\mathrm{g} will in fact be independent of g and c). Consider the mapD
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\Psi : \scrF m \times X1 \rightarrow X0,

\Psi (\varphi ,Z) = Af+\varphi (Z).

Note that this \Psi is of class Cm.
We claim that 0 is a regular value of \Psi , i.e., for any (\psi ,Z) \in \Psi  - 1(0) the linear operator

d\Psi (\psi ,Z) \in \scrL (\scrF m\times X1, X0) has a continuous right inverse. Assume without loss of generality
that \Psi  - 1(0) \not = \emptyset , and pick any (\varphi ,Z) \in \Psi  - 1(0). For any (\psi ,W ) \in \scrF m \times X1, one has

d\Psi (\varphi ,Z)(\psi ,W ) = dAf+\varphi (Z)W +B(Z)\psi ,

where

B(Z)\psi (x) =

\biggl( 
0

\psi (x, z(x))

\biggr) 
, where Z = (z, 0).

Note that by the Rellich--Kondrachov theorem the operator dAf+\varphi (Z) is a compact per-
turbation of (u, v) \mapsto \rightarrow ( - v,\Delta u) \in \scrL (X1

\bfC , X
0
\bfC ). The latter is Fredholm of index 0, hence

dAf+\varphi (Z) is also Fredholm of index 0. Hence d\Psi (\varphi ,Z) is the direct sum of a Fredholm
map and a bounded map; therefore the existence of a bounded right inverse will follow from
surjectivity of d\Psi (\varphi ,Z).

Note that imd\Psi (\varphi ,Z) \supset im dAf+\varphi (Z) is finite codimensional, and consequently d\Phi (\psi , z)
has closed range. It thus suffices to see that imd\Psi (\varphi ,Z) is dense in X0. For this, we note
that by the compactness results from section 3 the function z is continuous and uniformly
bounded. Thus with \psi defined by \psi (x, u) = \xi (x)\eta (u), where we choose \xi \in C\infty 

c (\Omega ) and
\eta \in C\infty 

c (R) with \eta (u) = 1 on supp(z), it follows that B(Z)\psi = (0, \xi ). Hence \{ 0\} \times C\infty 
c (\Omega ) \subset 

im d\Psi (\varphi ,Z). Also, because of the shape of dAf+\varphi (Z), there exists a subspace E \subset L2(\Omega )
such that H1

B(\Omega )\times E \subset im d\Psi (\varphi ,Z). From this we see that imd\Psi (\varphi ,Z) is dense in X0, thus
showing that 0 is a regular value of \Psi .

Let Z \in \scrS (f + \varphi ) be a stationary solution of (TWE) with nonlinearity f + \varphi . We claim
that dAf+\varphi (Z) is surjective precisely when Z is a hyperbolic solution of (TWE). Indeed, for
any \mu \in C it follows by the Rellich--Kondrachov theorem that dAf+\varphi (Z)  - \mu is a compact
perturbation of dAf+\varphi (Z), hence Fredholm of index 0. Therefore the spectrum of dAf+\varphi (Z)
consists solely of eigenvalues. Consequently, \mu \in \sigma (dAf+\varphi (Z)) if and only if \mu 2 - c\mu \in \sigma p(P ),
where P = \Delta +fu(x, z)+\varphi u(x, z) as an unbounded operator on L2(\Omega )\bfC with domain \scrD (P ) =
H2

B(\Omega )\bfC . As such P is symmetric, hence it has real-valued point spectrum, i.e., \sigma p(P ) \subset R.
If \mu = i\lambda \in iR \smallsetminus \{ 0\} , then \mu 2  - c\mu \not \in R, thus proving that iR \smallsetminus \{ 0\} \cap \sigma (dA(Z)) = \emptyset . From
this the claim follows.

Now let \scrF m
\mathrm{r}\mathrm{e}\mathrm{g} consist of those \varphi \in \scrF m for which 0 is a regular value of \Psi (\varphi , \cdot ). We will now

argue that \scrF m
\mathrm{r}\mathrm{e}\mathrm{g} is residual in \scrF m. By the implicit function theorem, \scrZ := \Psi  - 1(0) is a Cm

manifold. Let \pi : \scrZ \rightarrow \scrF m be the restriction to \scrZ of the projection Pr1 : \scrF m \times X1 \rightarrow \scrF m,
i.e., \pi = Pr1| \Psi  - 1(0), and note that this is a Cm map. Moreover note that \varphi is a regular value
of \pi = Pr1| \Psi  - 1(0) if and only if 0 is a regular value of \Psi (\varphi , \cdot ) = \Psi | \mathrm{P}\mathrm{r} - 1

1 (\varphi ). Pick any \varphi \in \scrF m,

and note that \varphi is a regular value of Pr1. The linearization of \Psi | \mathrm{P}\mathrm{r} - 1
1 (\varphi ) = \Psi (\varphi , \cdot ) around Z

equals dAf+\varphi (Z), hence the former map is Fredholm of index 0. Then also \pi is Fredholm of
index 0. Consequently, the Sard--Smale theorem [Sma65] implies that the regular values of \pi 
are residual in \scrF m, thus proving the claim.D
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8.2. Transversality. We will show here that there is an abundance of g for which the
transversality condition up to order m  - 1 is satisfied. To do so we must first introduce a
separable Banach manifold \scrG m(c) from which our perturbations g can be chosen.

The following lemma indicates how we can build localized perturbations g. We stress that
the proof of the lemma relies heavily on the unique continuation theorem (Theorem 4.3).

Lemma 8.2. Fix any \psi \in C\infty 
c (R) with

\int \infty 
0 \psi (t) dt \not = 0. Suppose f is of class C4 and sup-

pose hypotheses (f1)--(f3) are satisfied. Let U be a nonstationary bounded solution of (TWE).
For any \varepsilon > 0 and t\ast \in R, define \Lambda \varepsilon \in C1

b (R) by

\Lambda \varepsilon (t) := \varepsilon  - 1\psi 
\bigl( 
\varepsilon  - 1\| U(t) - U(t\ast )\| X0

\bigr) 
.

Set C := 2\| \partial tU(t\ast )\|  - 1
X0

\int \infty 
0 \psi (t) dt. Then for any \chi \in C0(R) one has

lim
\varepsilon \rightarrow 0

C - 1

\int 
\bfR 
\chi (t)\Lambda \varepsilon (t) dt = \chi (t\ast ).

Proof. Let a > 0 be such that supp(\psi ) \subset [ - a, a]. Given \varepsilon > 0, consider the function
\xi +\varepsilon : [t\ast ,\infty )\rightarrow [0,\infty ), defined by \xi +\varepsilon (t) := \varepsilon  - 1\| U(t) - U(t\ast )\| X0 . Note that, for t \in (t\ast ,\infty ),

d

dt
\xi +\varepsilon (t) =

1

\varepsilon 

\langle \partial tU(t), U(t) - U(t\ast )\rangle X0

\| U(t) - U(t\ast )\| X0

,

where \langle \cdot , \cdot \rangle X0 denotes the Hilbert space inner product on X0. We claim that there exists \delta > 0
and \varepsilon 0 > 0 such that

(1) \mathrm{d}
\mathrm{d}t\xi 

+
\varepsilon (t) > 0 for t \in (t\ast , t\ast + \delta ) and 0 < \varepsilon \leqslant \varepsilon 0, and

(2) \xi +\varepsilon (t) \geqslant a for any t \in [t\ast + \delta ,\infty ) and 0 < \varepsilon \leqslant \varepsilon 0.
To see why 1 holds, note that

d

dt
\xi +\varepsilon (t) =

1

\varepsilon 

\biggl\langle 
\partial tU(t),

U(t) - U(t\ast )

t - t\ast 

\biggr\rangle 
X0\bigm\| \bigm\| \bigm\| \bigm\| U(t) - U(t\ast )

t - t\ast 

\bigm\| \bigm\| \bigm\| \bigm\| 
X0

\rightarrow 1

\varepsilon 
\| \partial tU(t\ast )\| X0 as t \downarrow t\ast .

Since U is assumed to be nonstationary, the unique continuation Theorem 4.3 (here we use
that f is C4) ensures that \| \partial tU(t\ast )\| X0 > 0. Hence, by continuity, there must exist a \delta > 0
such that claim 1 holds (with any \varepsilon > 0).

We will now consider claim 2. Let \delta > 0 be as in the preceding paragraph, and suppose
an \varepsilon 0 such that claim 2 holds does not exist. Then we would be able to find sequences
(tn)n \subset [t\ast + \delta ,\infty ) and (\varepsilon n)n \subset (0,\infty ) with \varepsilon n \rightarrow 0 as n \rightarrow \infty , such that \xi +\varepsilon n(tn) < a for all
n. Hence \| U(tn) - U(t\ast )\| X0 < a\varepsilon n \rightarrow 0 as n\rightarrow \infty .

We claim that the sequence (tn)n is convergent, with limn\rightarrow \infty tn = t\ast . This is obviously
in contradiction with the construction of the sequence, hence this will prove claim 2. To
see why tn \rightarrow t\ast as n \rightarrow \infty , we first note that (tn)n must be bounded. Indeed, since we
assume U to be bounded, Lemma 7.3 implies that it is a connecting orbit. Hence if we couldD
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find an unbounded subsequence (t\prime n)n of (tn)n, then U(t\prime n) \rightarrow Z \in \scrS (f). But by assumption
U(tn) \rightarrow U(t\ast ), hence U(t\ast ) = Z. The unique continuation Theorem 4.3 would then imply
that U(t) = Z for all t \in R, which contradicts our assumption that U is nonstationary. We
have thus proved that (tn)n is bounded. Given any subsequence, select a further subsequence
(t\prime n)n which is convergent, say, t\prime n \rightarrow t\infty \in R. Then U(t\infty ) = limn\rightarrow \infty U(t\prime n) = U(t\ast ); hence if
t\infty \not = t\ast the unique continuation Theorem 4.3 would imply that U is periodic. However, such
behavior is excluded by the gradient-like structure of (TWE). Hence t\infty = t\ast , which proves
that (tn)n is convergent, with limn\rightarrow \infty tn = t\ast . This proves claim 2.

The implicit function theorem now ensures the existence of a family of maps t+\varepsilon : [0, a)\rightarrow 
[t\ast , t\ast + \delta ) (with 0 < \varepsilon \leqslant \varepsilon 0), which restrict to C1 diffeomorphisms from (0, a) onto their
image, such that

\xi +\varepsilon \circ t+\varepsilon = id[0,a),\bigl( 
t+\varepsilon 
\bigr)  - 1

(t\ast ) = 0,

and

\xi +\varepsilon 
\bigl( 
[t\ast ,\infty )\smallsetminus t+\varepsilon ([0, a))

\bigr) 
\cap [0, a) = \emptyset .

Furthermore, since \xi +\varepsilon (t)\rightarrow \infty as \varepsilon \rightarrow 0 when t \not = t\ast , and \xi 
+
\varepsilon (t\ast ) = 0, it follows that t+\varepsilon (s) \downarrow t\ast 

as \varepsilon \rightarrow 0.
Similarly, we define the family of maps \xi  - \varepsilon : ( - \infty , t\ast ] \rightarrow [0,\infty ) by \xi  - \varepsilon (t) := \varepsilon  - 1\| U(t)  - 

U(t\ast )\| X0 . The same argument as above then proves the existence of a family t - \varepsilon : [0, a) \rightarrow 
( - \infty , t\ast ] with the same properties as the maps t+\varepsilon .

At this point we are prepared to compute the limit of \Lambda \varepsilon as \varepsilon \rightarrow 0. Fix any \chi \in C0(R).
Then, since \Lambda \varepsilon (t) = 0 for t \not \in t - \varepsilon ([0, a)) \cup t+\varepsilon ([0, a)), one has\int 

\bfR 
\chi (t)\Lambda \varepsilon (t) dt =

\int 
\bfR \smallsetminus \{ 0\} 

\chi (t)\Lambda \varepsilon (t) dt =

\int 
t - \varepsilon ((0,a))

\chi (t)\Lambda \varepsilon (t) dt+

\int 
t+\varepsilon ((0,a))

\chi (t)\Lambda \varepsilon (t) dt

=

\int a

0
\chi (t - \varepsilon (s))\Lambda \varepsilon (t

 - 
\varepsilon (s))

dt - \varepsilon (s)

ds
ds+

\int a

0
\chi (t+\varepsilon (s))\Lambda \varepsilon (t

+
\varepsilon (s))

dt+\varepsilon (s)

ds
ds.

Consider, for example, the last integral. Filling in the definition of \Lambda \varepsilon gives\int a

0
\chi (t+\varepsilon (s))\Lambda \varepsilon (t

+
\varepsilon (s))

dt+\varepsilon (s)

ds
ds =

\int a

0
\chi (t+\varepsilon (s))\psi (s)

\| U(t+\varepsilon (s)) - U(t\ast )\| X0

\langle \partial tU(t\ast ), U(t+\varepsilon (s)) - U(t\ast )\rangle X0

ds.

Since t+\varepsilon (s) \downarrow t\ast as \varepsilon \rightarrow 0, we have

\chi (t+\varepsilon (s))\rightarrow \chi (t\ast )

as \varepsilon \rightarrow 0, and

\| U(t+\varepsilon (s)) - U(t\ast )\| X0

\langle \partial tU(t\ast ), U(t+\varepsilon (s)) - U(t\ast )\rangle X0

=

\bigm\| \bigm\| \bigm\| \bigm\| U(t+\varepsilon (s)) - U(t\ast )

t+\varepsilon (s) - t\ast 

\bigm\| \bigm\| \bigm\| \bigm\| 
X0\biggl\langle 

\partial tU(t\ast ),
U(t+\varepsilon (s)) - U(t\ast )

t+\varepsilon (s) - t\ast 

\biggr\rangle 
X0

\rightarrow \| \partial tU(t\ast )\|  - 1
X0
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as \varepsilon \rightarrow 0. Using the dominated convergence theorem it follows that\int a

0
\chi (t+\varepsilon (s))\Lambda \varepsilon (t

+
\varepsilon (s))

dt+\varepsilon (s)

ds
ds\rightarrow C

2
\chi (t\ast ) as \varepsilon \rightarrow 0.

Similarly, we find that\int a

0
\chi (t - \varepsilon (s))\Lambda \varepsilon (t

 - 
\varepsilon (s))

dt - \varepsilon (s)

ds
ds\rightarrow C

2
\chi (t\ast ) as \varepsilon \rightarrow 0.

This concludes the proof of the lemma.

Let \widetilde \scrG m consist of all g \in Cm
b (\Omega \times X0) which vanish on X0

S := \Omega \times (H1
B(\Omega ) \times \{ 0\} ).

Equipped with the Cm
b (\Omega \times X0)-norm \widetilde \scrG m becomes a Banach space. We now construct a

suitable separable subspace of \widetilde \scrG m. Fix \psi \in C\infty 
c (R) as in Lemma 8.2. Consider g \in \widetilde \scrG m of the

form

(41) g(x, U) = \varphi (x)\psi 

\biggl( 
1

\varepsilon 
\| U  - U0\| X0

\biggr) 
,

where \varphi \in C\infty (\Omega ), U0 \in X0 \smallsetminus X0
S , and \varepsilon > 0 is sufficiently small (depending on U0). Denote

by \scrG m the smallest closed subspace of \widetilde \scrG m which contains all maps of this form. Since Cm
b (\Omega ),

R, and X0 are all separable, and the map

Cm
b (\Omega )\times R\times X0 \rightarrow \widetilde \scrG m,

(\varphi , \varepsilon , U0) \mapsto \rightarrow g

is continous, the space \scrG m is a separable Banach space.
Now let \scrG m(c) consist of those g \in \scrG m for which

sup
x\in \Omega , u\in H1

B(\Omega )

| g(x, u, v)| < c

2
\sqrt{} 

Vol(\Omega )
\| v\| L2(\Omega ) whenever v \not = 0.

Note that \scrG m(c) is an open subspace of \scrG m. Also note that any g \in \scrG m(c) satisfies hypotheses
(g1)--(g3).

Theorem 8.3. Let f be of class Cm with m \geqslant 4 and suppose hypotheses (f1)--(f3) are
satisfied. Furthermore, assume that each stationary solution of (TWE) is hyperbolic. Then
there exists a residual set \scrG mreg \subset \scrG m(c) such that for any g \in \scrG mreg the transversality condition
up to order m - 1 is satisfied.

Proof. Fix Z - , Z+ \in \scrS with \mu (Z - ) - \mu (Z+) \leqslant m - 1, and consider the map

\Psi Z - ,Z+ : \scrG m(c)\times \scrP (Z - , Z+)\rightarrow L2(R;X0),

\Psi Z - ,Z+(g, U) = \partial tU +Af,g,c(U).

Here \scrP (Z - , Z+) is the affine space defined in section 7. With the aid of Theorem 3.6 we see
that \Psi Z - ,Z+ is of class Cm in a neighborhood of \Psi  - 1

Z - ,Z+
(0).D
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We will argue that 0 is a regular value of \Psi Z - ,Z+ . Assume without loss of generality that
\Psi  - 1

Z - ,Z+
(0) \not = \emptyset , and pick any (g, U) \in \Psi  - 1

Z - ,Z+
(0). Then

d\Psi Z - ,Z+(g, U)(\gamma , V ) = d2\Psi Z - ,Z+(g, U)V +B(U)\gamma ,

where B(U) \in \scrL (\scrG m, L2(R;X0)) is given by

B(U)\gamma =

\biggl( 
0

\gamma (\cdot , U)

\biggr) 
.

We know from section 5 that d2\Psi Z - ,Z+(g, U) \in \scrL (W 1,2(R;X0, X1), L2(R;X0)) is Fredholm
of index \mu (Z - ) - \mu (Z+). Therefore d\Psi Z - ,Z+(g, U) has a bounded right inverse as soon as it is
surjective. Furthermore, imd\Psi Z - ,Z+(g, U) is finite codimensional hence closed in L2(R;X0).
So it suffices to check that imd\Psi Z - ,Z+(g, U) is dense in L2(R;X0).

Select any (\xi 1, \xi 2) \in (imd\Psi Z - ,Z+(g, U))\bot . Then\biggl\langle \biggl( 
\xi 1
\xi 2

\biggr) 
,d2\Psi Z - ,Z+(g, U)V

\biggr\rangle 
L2(\bfR ;X0)

= 0 for all V \in W 1,2(R;X0, X1),(42) \biggl\langle \biggl( 
\xi 1
\xi 2

\biggr) 
, B(U)\gamma 

\biggr\rangle 
L2(\bfR ;X0)

= 0 for all \gamma \in \scrG m.(43)

Set \xi \ast 1(t) := \langle \xi 1(t), \cdot \rangle H1
B(\Omega ) and \xi \ast 2(t) := \langle \xi 2(t), \cdot \rangle L2(\Omega ), so that \xi \ast 1 \in L2(R;H1

B(\Omega )
\ast ) and

\xi \ast 2 \in L2(R;L2(\Omega )\ast ). Combining (42) with the regularity results from [Rab04] shows that

(\xi \ast 1 , \xi 
\ast 
2) \in W 1,2(R;H2

B(\Omega )
\ast \times H1

B(\Omega )
\ast , H1

B(\Omega )
\ast \times L2(\Omega )\ast )

and
(\xi \ast 1 , \xi 

\ast 
2) \in ker

\bigl( 
 - \partial t + dAf,g,c(U)\ast 

\bigr) 
,

which means that

(44)

\Biggl\{ 
 - \partial t\xi \ast 1 +\Delta \ast \xi \ast 2 + f \prime (\cdot , u)\ast \xi \ast 2 + \partial 1g(\cdot , U)\ast \xi \ast 2 = 0,

 - \partial t\xi \ast 2  - \xi \ast 1  - c\xi \ast 2 + \partial 2g(\cdot , U)\ast \xi \ast 2 = 0.

Here the adjoints are to be considered as the dual operators of bounded operators between
Banach spaces, where \Delta : H2

B(\Omega ) \rightarrow L2(\Omega ), f \prime (\cdot , u) : H1
B(\Omega ) \rightarrow L2(\Omega ), \partial 1g(\cdot , (u, v)) =

\partial g(\cdot ,(u,v))
\partial u : H1

B(\Omega )\rightarrow L2(\Omega ), and \partial 2g(\cdot , (u, v)) = \partial g(\cdot ,(u,v))
\partial v : L2(\Omega )\rightarrow L2(\Omega ). We shall be using

this observation later on.
Equation (43) implies that for all \gamma \in \scrG m it holds that\int 

\bfR 

\int 
\Omega 
\gamma (x, U(t))\xi 2(t, x) dx dt = 0.

In particular, consider \gamma = \gamma \varepsilon of the form

\gamma \varepsilon (x, V ) := \varphi (x)\psi 

\biggl( 
1

\varepsilon 
\| V  - U(t0)\| X0

\biggr) 
,
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where t0 \in R, and \varphi \in C\infty 
c (\Omega ), and \psi is as in (41). Since \xi \ast 2 \in W 1,2(R;H1

B(\Omega )
\ast , L2(\Omega )\ast ) it

follows that \xi \ast 2 \in C0
b (R;L2(\Omega )\ast ), hence the map

t \mapsto \rightarrow 
\int 
\Omega 
\varphi (x)\xi 2(t, x) dx

is continuous. By Lemma 8.2

0 = lim
\varepsilon \rightarrow 0

\varepsilon  - 1

\int 
\bfR 

\int 
\Omega 
\gamma \varepsilon (x, U(t))\xi 2(t, x) dx dt =

2

\int \infty 

0
\psi (s) ds

\| \partial tU(t0)\| X0

\int 
\Omega 
\varphi (x)\xi 2(t0, x) dx.

This holds for all t0 \in R and \varphi \in C\infty 
c (\Omega ), hence \xi 2 = 0. Consequently, (44) implies that

\xi 1 = 0 as well. This shows that (imd\Psi Z - ,Z+(g, U))\bot = \{ 0\} , hence E is dense in L2(R, X0),
as desired.

By the implicit function theorem the regular level set \scrZ := \Psi  - 1
Z - ,Z+

(0) is a Cm smooth
submanifold of \scrG m(c)\times \scrP (Z - , Z+). The projection \pi : \scrZ \rightarrow \scrG m(c) is Cm smooth and Fredholm
of index ind(\pi ) = \mu (Z - ) - \mu (Z+) \leqslant m - 1. Applying the Sard--Smale theorem [Sma65] to this
map (here we use that m \geqslant max\{ 0, ind(\pi )\} + 1) and using a transversality argument similar
to the one in the proof of Theorem 8.1 we find a residual subset \scrG m\mathrm{r}\mathrm{e}\mathrm{g}(c;Z - , Z+) \subset \scrG m(c) such
that for each g \in \scrG m\mathrm{r}\mathrm{e}\mathrm{g}(c;Z - , Z+) orbits connecting Z - and Z+ are transversal. Now set

\scrG m\mathrm{r}\mathrm{e}\mathrm{g}(c) :=
\bigcap 

Z - ,Z+\in \scrS 
\mu (Z - ) - \mu (Z+)\leqslant m - 1

\scrG m\mathrm{r}\mathrm{e}\mathrm{g}(c;Z - , Z+).

By the compactness results from section 3 and hyperbolicity of the rest points, this is a
countable intersection, hence \scrG m\mathrm{r}\mathrm{e}\mathrm{g}(c) is residual.

9. The traveling wave homology.

9.1. The homology for generic perturbations. Given N \subset X0, denote by BInv(N ; f, g, c)
the set of all points U(t) \in X0, with t \in R, where U is a solution of (TWE) for which U(t) \in N
for all t \in R, and for which supt\in \bfR \| U(t)\| X0 <\infty . We will call BInv(N ; f, g, c) the bounded
invariant set of N . In light of Lemma 7.3, if f is a regular nonlinearity the set BInv(N ; f, g, c)
will consist solely of stationary solutions and connecting orbits. The set N shall be called an
isolating neighborhood if

(1) N is closed in X0,
(2) BInv(N ; f, g, c) \subset intN , i.e., N isolates the rest points and connecting orbits.

Note that our definition of an isolating neighborhood differs from the usual one since we allow
N to be unbounded. Let \scrS (N, f) := \scrS (f)\cap N , and given a normalized Morse index \mu , define

\scrS k(N, f) := \{ Z \in \scrS (N, f) : \mu f (Z) = k\} .

An isolating neighborhood N shall be called finitely generating provided that for each k \in Z,
the set \scrS k(N, f) is finite. Note that this notion is independent of the chosen normalized Morse
index \mu .D
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The chain complex will depend on the choices of a finitely generating isolating neighbor-
hood N , a triplet (f, g, c) satisfying hypotheses (f1)--(f3) and (g1)--(g3) and for which f and g
are both regular (henceforth (f, g, c) shall also be called a regular triplet), the chosen boundary
data B, and the chosen normalized Morse index \mu . Assume f and g are at least C4 smooth;
this ensures that all the results from preceding sections can be applied in this setting.

Define the graded Z2-module

C :=
\bigoplus 
n\in \bfZ 

Cn, where Cn :=
\bigoplus 

X\in \scrS n(N,f)

Z2\langle X\rangle .

Since the chain groups Cn are finitely generated, we can define a homomorphism \partial n : Cn \rightarrow 
Cn - 1 by declaring its action on the generators of Cn as follows: for each X \in \scrS n(N, f), we set

\partial nX :=
\sum 

Y \in \scrS n - 1(N,f)

i(X,Y )Y,

where
i(X,Y ) := \#

\Bigl\{ 
[U ] \in \widehat \scrM (X,Y ) : U(t) \in N for all t \in R

\Bigr\} 
(mod 2).

From section 7 we know that \widehat \scrM (X,Y ) is a finite collection, hence the number i(X,Y ) is
well-defined. The sum in the definition of \partial n is always finite since N is finitely generating.

We now arrive at one of our main theorems.

Theorem 9.1. One has \partial n \circ \partial n+1 = 0, and consequently,

HTWn(N, f, g, c) := Hn(C\ast , \partial \ast ) =
ker \partial n
im \partial n+1

is well-defined.

Proof. The homomorphism \partial n\circ \partial n+1 counts (modulo 2) the 1-fold broken orbits, consisting
of two index 1 orbits, which are entirely contained in N . We have seen that 1-fold broken
orbits consisting of two index 1 orbits are always the limit of a 1-parameter family of index 2
orbits and therefore always appear in pairs. Since N is an isolating neighborhood, 1-parameter
families of solutions with fixed endpoints are trapped by N , hence pairs of 1-fold broken orbits
are also trapped by N . Since all counting is done modulo 2, it follows that \partial n \circ \partial n+1 \equiv 0.

We will call HTW\ast (N, f, g, c) the traveling wave homology.

9.2. Invariance. We now want to study what happens to the chain complex and the
homology if we perturb N , f , g, or c. First we introduce conditions under which perturbations
of N do not change the homology. We will then show that the homology is independent of
the choice of g, thus allowing the definition of HTW\ast (N, f, c). Finally, we give criteria under
which a homotopy t \mapsto \rightarrow (ft, ct) induces an isomorphism on the level of homology.

9.2.1. Perturbing \bfitN . Let N , f , g, and c satisfy the same conditions as in the pre-
vious section. Clearly the construction of the homology does not depend explicitly on N
but depends only on BInv(N ; f, g, c). Hence if \widetilde N is another isolating neighborhood such that
BInv(N ; f, g, c) = BInv( \widetilde N ; f, g, c), then HTW\ast ( \widetilde N, f, g, c) is well-defined and HTW\ast (N, f, g, c) =
HTW\ast ( \widetilde N, f, g, c).D
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9.2.2. Independence of \bfitg . Begin by fixing a regular nonlinearity f which satisfies hy-
potheses (f1)--(f3). Also fix c > 0. Assume N \subset X0 is a finitely generating isolating neighbor-
hood for (f, 0, c). Since N is finitely generating, the set

\scrE f (\scrS (N, f)) =
\bigcup 
k\in \bfZ 
\scrE f (\scrS k(N, f))

is countable, hence the set of regular energy levels

E\mathrm{r}\mathrm{e}\mathrm{g}(N, f) := R\smallsetminus \scrE f (\scrS (N, f))

is dense in R. Then, for each E \in E\mathrm{r}\mathrm{e}\mathrm{g}(N, f), the set

NE := N \cap \scrE  - 1
f (( - \infty , E])

is also a finitely generating isolating neighborhood for (f, 0, c).
Recall from section 8 the definition of the space \scrG m(c). Denote by \scrB (\delta ) the set of those

g \in \scrG m(c) for which \| g\| Cm
b (\Omega \times X0) < \delta . The following lemma now guarantees that NE remains

an isolating neighborhood when we consider small perturbations in g.

Lemma 9.2. Let N , f , and c be as described above. Then for each E \in Ereg(N, f) there
exists \delta E > 0 such that the following is true: for any curve t \mapsto \rightarrow gt with values in \scrB (\delta E)
which is constant on ( - \infty , - 1) and on (1,\infty ), the set NE is an isolating neighborhood for the
nonautonomous equation (TWE) associated with (f, gt, c).

Proof. Suppose the claim is false. Then one could find a E \in E\mathrm{r}\mathrm{e}\mathrm{g}(N, f), a sequence
(\delta n)n with limn\rightarrow \infty \delta n = 0, and a sequence of curves t \mapsto \rightarrow gnt with values in \scrB (\delta n) which are
constant for t \in ( - \infty , - 1) and for t \in (1,\infty ), such that the following holds: for each n there
is a bounded solution Un to the nonautonomous equation associated to (f, gnt , c) such that
Un(t) \in NE for all t \in R, but Un(tn) \in \partial NE for a certain tn.

Combining Lemmas 3.7 and 7.3 it follows that there exists anM \geqslant E such that | \scrE f (Un(t))| \leqslant 
M for all n \in N and t \in R. As discussed in Remark 3.2 one then finds that Un(\cdot + tn) con-
verges in W 1,2

\mathrm{l}\mathrm{o}\mathrm{c} (R;X0, X1) over a subsequence to a bounded solution U of the autonomous
equation associated with (f, 0, c). This solution is entirely contained in NE , but U(0) \in \partial NE .
Since E was chosen to be a regular energy level, this contradicts the assumption that N is an
isolating neighborhood for (TWE) with (f, 0, c).

Let us fix, for the moment, a value E \in E\mathrm{r}\mathrm{e}\mathrm{g}(N, f) and a corresponding \delta E > 0 as dictated
by Lemma 9.2. Since \scrB (\delta E) is open in \scrG m(c), it follows from Theorem 8.3 that the collection
\scrB \mathrm{r}\mathrm{e}\mathrm{g}(\delta E) of regular g \in \scrB (\delta E) is dense in \scrB (\delta E). For each g \in \scrB \mathrm{r}\mathrm{e}\mathrm{g}(\delta E), the triplet (f, g, c)
is regular, and NE is a finitely generating isolating neighborhood for (f, g, c). Hence, the
homology HTW\ast (N

E , f, g, c) is well-defined.
The isomorphism induced by homotopies of g. Let \lambda \mapsto \rightarrow g\lambda be a smooth homotopy between

regular endpoints in \scrB (\delta E), i.e., \lambda \mapsto \rightarrow g\lambda \in C\infty ([0, 1],\scrB (\delta E)) and g0, g1 \in \scrB \mathrm{r}\mathrm{e}\mathrm{g}(\delta E). After
choosing a suitable reparameterization t \mapsto \rightarrow \lambda (t), we obtain a curve t \mapsto \rightarrow g\lambda (t) which satisfies
hypotheses (n1)--(n3). Henceforth we shall write gt instead of g\lambda (t).

Denote by Ck the kth chain group associated with f and the isolating neighborhood NE .
Define a homomorphism

\psi 1,0
k : Ck \rightarrow CkD
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by defining it on a generator X0 of Ck to be

\psi 1,0
k (X0) =

\sum 
X1\in \scrS k(N,f)

i1,0(X0, X1)X1.

Here i1,0(X0, X1) counts (modulo 2) the number of heteroclinic orbits U of the nonautonomous
equation (TWE) associated with (f, gt, c), with U(t) \in N for all t \in R, and limt\rightarrow  - \infty U(t) =
X0, and limt\rightarrow \infty U(t) = X1.

Lemma 9.3. The map \psi 1,0
k is well-defined and satisfies

(45) \partial k(N
E , f, g1, c) \circ \psi 1,0

k = \psi 1,0
k - 1 \circ \partial k(N

E , f, g0, c),

where \partial k(N
E , f, gi, c) : Ck \rightarrow Ck - 1 denotes the boundary operator associated with the chosen

quadruple (NE , f, gi, c).

Proof. By Lemma 3.7 and since N is finitely generating we know that the sum appearing
in the definition of \psi 1,0

k is finite. The fact that i1,0(X0, X1) itself is well-defined relies on
the compactness results we have obtained for the nonautonomous equation, together with a
detailed analysis of the manifold structure of the moduli space. For this, one first has to
repeat the analysis from section 7 for the nonautonomous equation. We refer to Remark 7.7
and note that the essential ingredients are compactness, transversality, and gluing for the
nonautonomous equation, together with the fact that NE is an isolating neighborhood for the
dynamics.

The fact that (45) holds follows entirely out of the geometry of the moduli space of index
1 nonautonomous solutions. See Figure 3 toward the end of section 7, but also [Sch93]. The
case depicted in Figure 3(a), corresponding solely to the term \partial k(N

E , f, g1, c) \circ \psi 1,0
k in the

left-hand side of (45), results in no net contribution as we count with Z2 coefficients. Likewise,
the situation described by Figure 3(b) corresponds solely to the right-hand side of (45) and
has no net contribution. The last case, depicted in Figure 3(c), yields the identity (45).

Note that Lemma 9.3 implies that \psi 1,0
k induces a homomorphism \Psi 1,0

k on the homology

groups. To verify that \Psi 1,0
k is indeed an isomorphism, independence of the chosen homotopy

g\lambda has to be checked. To do so, one choses a two-parameter family g\lambda ,\mu \in \scrB (\delta E) and considers
the parameter dependent moduli space\scrM \mu (Z - , Z+), consisting of pairs

(\mu \ast , U\mu \ast ) \in \scrM \mu (Z - , Z+),

where U\mu \ast belongs to the moduli space\scrM (Z - , Z+) for the nonautonomous equation (TWE)
corresponding to (f, g\lambda (t),\mu \ast , c). The analysis of this parameter dependent moduli space is much
the same as the work in section 7, with the exception that there are more cases to distinguish
in the compactification. We refer to [Sch93] for a concise description, the conclusion of which is
that on the level of homology the homomorphism \Psi 1,0

k is independent of the chosen homotopy
g\lambda . Combined with a gluing argument, this yields the relation

\Psi 2,0
k = \Psi 2,1

k \circ \Psi 
1,0
k ,

which in particular shows that \Psi 1,0
k is an isomorphism. We summarize this discussion in the

following theorem.D
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Theorem 9.4. Given g0, g1 \in \scrB reg(\delta E), the homomorphism \Psi 1,0
\ast : HTW\ast (N

E , f, g0, c) \rightarrow 
HTW\ast (N

E , f, g1, c) is independent of the choice of homotopy \lambda \mapsto \rightarrow g\lambda between g0 and g1.
Furthermore,

(1) if g0 = g1, then \Psi 1,0
\ast is the identity, and

(2) for any three g0, g1, g2 \in \scrB reg(\delta E) one has \Psi 2,0
\ast = \Psi 2,1

\ast \circ \Psi 1,0
\ast .

In particular, \Psi 1,0
\ast is an isomorphism.

We will refer to this isomorphism as the canonical isomorphism between HTW\ast (N
E , f, g0, c)

and HTW\ast (N
E , f, g1, c).

The limit as E \rightarrow \infty and g \rightarrow 0. For each k \in Z, define

E\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t}(k) := max \{ \scrE f (X) : X \in \scrS k(N, f) \cup \scrS k+1(N, f)\} .

The maximum is attained since N is finitely generating. Pick regular energy levels E0 >
E\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t}(k) and E1 > E\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t}(k), and let g \in \scrB \mathrm{r}\mathrm{e}\mathrm{g}(min\{ \delta E0 , \delta E1\} ). Let U be a connecting orbit of
(TWE) associated with (f, g, c), with limt\rightarrow  - \infty U(t) = X where X is a rest point with index
\mu f (X) = k+1 or \mu f (X) = k. Then \scrE f (U(t)) \leqslant E\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t}(k) for all t \in R; hence if U is trapped by
NE0 , then it is also trapped by NE1 , and vice versa. Thus \partial k(N

E0 , f, g, c) = \partial k(N
E1 , f, g, c)

and \partial k+1(N
E0 , f, g, c) = \partial k+1(N

E1 , f, g, c). Hence there is a canonical isomorphism

HTWk(N
E0 , f, g, c) \sim = HTWk(N

E1 , f, g, c) for g \in \scrB \mathrm{r}\mathrm{e}\mathrm{g}(min\{ \delta E0 , \delta E1\} ).

For any two \widetilde g0, \widetilde g1 \in \scrB \mathrm{r}\mathrm{e}\mathrm{g}(min\{ \delta E0 , \delta E1\} ), the following diagram commutes:

HTWk(N
E0 , f, g0, c)

HTWk(N
E0 , f, \widetilde g0, c) HTWk(N

E0 , f, \widetilde g1, c)
HTWk(N

E1 , f, \widetilde g0, c) HTWk(N
E1 , f, \widetilde g1, c)

HTWk(N
E1 , f, g1, c)

Here each of the arrows denotes one of the canonical isomorphisms. It follows that the
isomorphism between HTWk(N

E0 , f, g0, c) and HTWk(N
E1 , f, g1, c), which is defined via the

commuting diagram, is independent of the intermediate point \widetilde g0. Denote this isomorphism

by \Phi 
(E1,g1),(E0,g1)
k .
Thus HTWk(N

E , f, g, c) is independent, up to a canonical isomorphism, of E and g, as
E \rightarrow \infty and g \rightarrow 0. We then define HTWk(N, f, c) as the isomorphism class of HTWk(N, f, g, c)
for small generic g. To formalize the notion of defining HTWk(N, f, c) up to natural isomor-

phism, we make use of an inverse limit of the isomorphisms \Phi 
(E1,g1),(E0,g1)
k and set

HTWk(N, f, c) := lim\leftarrow  - HTWk(N
E , f, g, c).

9.2.3. Continuation in \bfitf and \bfitc . Suppose a curve t \mapsto \rightarrow (ft, ct) with regular endpoints
(f - , c - ) and (f+, c+) satisfies hypotheses (n1)--(n3). In addition, assume N \subset X0 is a finitelyD
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generating isolating neighborhood for the dynamics associated with the autonomous equations
(TWE) corresponding to (f - , 0, c - ) and (f+, 0, c+), as well as being an isolating neighborhood
the nonautonomous equation (TWE) corresponding to (ft, 0, ct). We will call such an N stable
with respect to t \mapsto \rightarrow (ft, ct). By repeating the construction from the preceding section, but
with the constant f and c replaced by their t-dependent analogues, one finds the following
theorem.

Theorem 9.5. A curve t \mapsto \rightarrow (ft, ct) which satisfies hypotheses (n1)--(n3), which has regu-
lar endpoints (f - , c - ) and (f+, c+), and for which N is stable, induces an isomorphism of
homologies:

HTW\ast (N, f - , c - ) \sim = HTW\ast (N, f+, c+).

9.2.4. Classes of isomorphic homologies when \bfitN = \bfitX \bfzero . Let us now consider the special
case where N = X0. Clearly this means that N is stable with respect to any homotopy
between regular endpoints (f - , c - ) and (f+, c+) for which X0 is finitely generating. Thus
(X0, f - , c - ) and (X0, f+, c+) will have isomorphic homologies whenever there exists a curve
t \mapsto \rightarrow (ft, ct) connecting (f - , c - ) with (f+, c+) and satisfying hypotheses (n1)--(n3). A first
thing to note is that any two c - , c+ > 0 can be connected via such a path (keeping f fixed).
In fact, the induced isomorphism will then be independent of the chosen homotopy between
c - and c+ (this can be verified by considering two-parameter families of c > 0, similar to
how independence of the chosen path t \mapsto \rightarrow gt is verified). Thus, for f for which X0 is finitely
generating, we can define

HTW\ast (f) := lim\leftarrow  - HTW\ast (X
0, f, c),

where lim\leftarrow  - is the inverse limit over the isomorphisms induced by homotopies of c. In the
remainder of this subsection we give a concrete description of a class of nonlinearities f for
which the homology remains unchanged.

Let f\ast , which will function as a reference point for our perturbations, be of class Cm

(with m \geqslant 4) and satisfy hypotheses (f1)--(f3). Recall that hypotheses (f3) was needed only
when considering Neumann or periodic boundary data, in order to arrive at the compactness
results from section 3. In contrast to this, even when considering Dirichlet boundary data we
will now demand that f\ast satisfies the superlinear growth condition (f3). This will help in the
construction of allowed perturbations from f\ast , as we will see shortly. Consider f of the form

(46) f(x, u) = \alpha (x)f\ast (x, u) + h(x, u),

where \alpha \in Cm
b (\Omega ), and h \in Cm(\Omega \times R),

inf
x\in \Omega 

\alpha (x) > 0,

and

lim sup
| u| \rightarrow \infty 

sup
x\in \Omega 

\bigm| \bigm| \bigm| \bigm| h(x, u)f\ast (x, u)

\bigm| \bigm| \bigm| \bigm| = 0.

Lemma 9.6. Any f of the form (46) satisfies hypotheses (f1)--(f3).D
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Proof. It is obvious that f will satisfy hypotheses (f1) and (f3). Checking whether (f2) or
(f2\prime ) is satisfied takes slightly more effort. Let us assume that f\ast satisfies (f2); the argument
for the other case is completely similar. We shall prove that f then also satisfies (f2), i.e., we
need to show that

(47) | \alpha (x)F\ast (x, u) +H(x, u)| \leqslant C +
\theta 

2
(\alpha (x)f\ast (x, u) + h(x, u))u

for some constants C \geqslant 0, and  - 1 < \theta < 1. Here H(x, u) :=
\int u
0 h(x, u) ds. First note that by

dividing by \alpha (x) and updating the values of C and h(x, u), it suffices to prove (47) for \alpha \equiv 1.
Suppose for the moment that

(48) lim sup
| u| \rightarrow \infty 

sup
x\in \Omega 

\bigm| \bigm| \bigm| \bigm| H(x, u)

F\ast (x, u)

\bigm| \bigm| \bigm| \bigm| = 0.

Then for each \varepsilon > 0 we can find C\varepsilon > 0 such that

| F\ast (x, u) +H(x, u)| \leqslant C\varepsilon + (1 + \varepsilon )
\theta \ast 
2
f\ast (x, u)u,

where \theta \ast is the value of \theta for which f\ast satisfies hypothesis (f2). Then note that hypotheses
(f2) and (f3) taken together imply that \theta \ast f\ast (x, u)u is strictly positive for | u| large. Combining
this observation with the assumption that h = o(f\ast ) as | u| \rightarrow \infty , uniformly in x, gives

\theta \ast 
2
f\ast (x, u)u \leqslant \widetilde C\varepsilon + (1 + \varepsilon )

\theta \ast 
2
(f\ast (x, u) + h(x, u))u.

Combined with the penultimate estimate this shows that f satisfies hypothesis (f2), with \theta 
arbitrarily close to \theta \ast .

We still need to see why (48) holds, i.e., that H = o(f\ast ) as | u| \rightarrow \infty , uniformly in x. As
we have already seen, hypotheses (f2) and (f3) together imply that f\ast (x, u) does not change
signs for | u| large. Therefore, to prove (48) we can replace f\ast by | f\ast | and can thus assume
that f\ast (x, u) > 0 for all x and u. Since h = o(f\ast ) as | u| \rightarrow \infty , uniformly in x, for each \varepsilon > 0
we can find K \geqslant 0 such that for all | u| \geqslant K we have

| H(x, u)| \leqslant \varepsilon F\ast (x, u) +
1

2

\int K

 - K
| h(x, s)| ds - \varepsilon 

2

\int K

 - K
f\ast (x, s) ds.

Hypothesis (f3) ensures that infx\in \Omega F\ast (x, u) \rightarrow \infty as | u| \rightarrow \infty . Hence given any \varepsilon > 0 and
K \geqslant 0 we can find L \geqslant K such that for any x \in \Omega and | u| \geqslant L one has

1

2

\int K

 - K
| h(x, s)| ds - \varepsilon 

2

\int K

 - K
f\ast (x, s) ds \leqslant \varepsilon f\ast (x, u).

Hence | H(x, u)| \leqslant 2\varepsilon F\ast (x, u) for all | u| \geqslant L. Since \varepsilon > 0 was chosen arbitrarily, we arrive
at (48).

We will call a curve t \mapsto \rightarrow ft \in Cm(R, Cm(\Omega \times R)), where ft is of the form

ft(x, u) = \alpha t(x)f(x, u) + ht(x, u),

an \varepsilon -perturbation of f\ast provided thatD
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1. it is constant for t \in ( - \infty , 1) and for t \in (1,\infty ),
2. sup(t,x)\in \bfR \times \Omega | 1 - \alpha t(x)| < \varepsilon and sup(t,x)\in \bfR \times \Omega | \partial t\alpha t(x)| < \varepsilon , and
3. | ht(x, u)| \leqslant \varepsilon (1 + | f\ast (x, u)| ) for all t \in R, (x, u) \in \Omega \times R.

Lemma 9.7. There exists a sufficiently small \varepsilon > 0 such that any \varepsilon -perturbation of f\ast 
satisfies hypotheses (n1)--(n3).

Proof. Properties 2 and 3 from the definition of \varepsilon -perturbations ensure that the estimates
made in the proof of Lemma 9.6 can be made uniformly in t. Hence hypothesis (n1) is satisfied.
By definition (according to property 1) \varepsilon -perturbations also satisfy (n2).

Left to check is that hypothesis (n3) holds when \varepsilon is chosen sufficiently small, i.e., that

| \partial t\alpha t(x)F (x, u) + \partial tHt(x, u)| \leqslant C +\Theta | \alpha t(x)F (x, u) +Ht(x, u)| ,

for some C \geqslant 0 and sufficiently small \Theta . Here Ht(x, u) =
\int u
0 ht(x, s) ds. As noted in the proof

of Lemma 9.6, for each t the function Ht is o(F ) as | u| \rightarrow \infty , uniformly in x, and in light of
property 3 from the definition of \varepsilon -perturbations, these estimates are also uniform in t. Thus
it suffices to see that

| \partial t\alpha t(x)F (x, u) + \partial tHt(x, u)| \leqslant C +\Theta | \alpha t(x)F (x, u)| .

Since by assumption | \partial t\alpha t(x)| < \varepsilon and | 1  - \alpha t(x)| < \varepsilon , given any \Theta > 0 we can find \varepsilon > 0
such that

| \partial t\alpha t(x)F (x, u)| \leqslant 
\Theta 

2
| \alpha t(x)F (x, u)| .

Furthermore, since for each t we have Ht = o(F ) as | u| \rightarrow \infty , uniformly in x, we also have
\partial tHt = o(F ) as | u| \rightarrow \infty , uniformly in x. Hence in particular, for any given \Theta > 0 there exists
a C \geqslant 0 such that

| \partial tHt(x, u)| \leqslant C +
\Theta 

2
| \alpha t(x)F (x, u)| .

This proves that hypothesis (n3) holds, and the constant \Theta can be made arbitrarily small by
choosing \varepsilon sufficiently small.

Combining Lemmas 9.6 and 9.7 with Theorem 9.5 shows that any two nonlinearities
(regular and for which X0 is finitely generating) which can be connected via an \varepsilon -perturbation
have isomorphic homologies.

Denote by \Sigma (f\ast ) the set of all nonlinearities f of the form (46). Endow \Sigma (f\ast ) with the
topology of Cm

\mathrm{l}\mathrm{o}\mathrm{c}(\Omega \times R). Let \Sigma \mathrm{r}\mathrm{e}\mathrm{g}(f\ast ) consist of all those f \in \Sigma (f\ast ) which are regular;
in light of Theorem 8.1 \Sigma \mathrm{r}\mathrm{e}\mathrm{g}(f\ast ) is dense in \Sigma (f\ast ). Finally, denote by \Sigma fi\mathrm{n}(f\ast ) the set of
those f \in \Sigma \mathrm{r}\mathrm{e}\mathrm{g}(f\ast ) for which X

0 is finitely generating. Now note that any two nonlinearities
f0, f1 \in \Sigma (f\ast ) can be connected via a concatenation of finitely many \varepsilon -perturbations. However,
these \varepsilon -perturbations can only be inducing isomorphisms of homologies if the endpoints of each
of the individual \varepsilon -perturbations can be chosen to be elements of \Sigma fi\mathrm{n}(f\ast ). Hence we arrive at
the following theorem.

Theorem 9.8. Fix arbitrary f0, f1 \in \Sigma fin(f\ast ) and suppose f0 and f1 belong to the same
path-component of cl\Sigma (f\ast )\Sigma fin(f\ast ). Then

HTW\ast (f0) \sim = HTW\ast (f1).D
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Remark 9.9. In the examples in section 10 we consider nonlinearities f\ast which are ho-
mogeneous in u. For these nonlinearities it follows that \Sigma fi\mathrm{n}(f\ast ) = \Sigma \mathrm{r}\mathrm{e}\mathrm{g}(f\ast ), and since
cl\Sigma (f\ast )\Sigma fi\mathrm{n}(f\ast ) = \Sigma (f\ast ) is path-connected, it follows that any two f0, f1 \in \Sigma \mathrm{r}\mathrm{e}\mathrm{g}(f\ast ) have
isomorphic homologies. It remains an open question whether any regular f which satisfies
hypotheses (f1)--(f3) automatically has X0 as a finitely generating isolating neighborhood. If
this turns out to be true, it follows that any two regular nonlinearities f0, f1 \in \Sigma \mathrm{r}\mathrm{e}\mathrm{g}(f\ast ) induce
isomorphic homologies. One can then proceed to define the homology for any nongeneric
nonlinearity f\ast as the inverse limit over \Sigma \mathrm{r}\mathrm{e}\mathrm{g}(f\ast ).

9.3. Direct sum property. We conclude this section with an algebraic property of the
traveling wave homology which will be useful when applying the theory to concrete problems.

Lemma 9.10. Let f be a regular nonlinearity and c > 0. Let N \subset X0 be a finitely generating
isolating neighborhood for the dynamics associated with (f, 0, c). Suppose V1, V2 \subset X0 are
isolating neighborhoods for the dynamics associated with (f, 0, c), such that BInv(N ; f, 0, c) =
BInv(V1; f, 0, c) \cup BInv(V2; f, 0, c) and BInv(V1; f, 0, c) \cap BInv(V2; f, 0, c) = \emptyset . Then

HTW\ast (N, f, c) = HTW\ast (V1, f, c)\oplus HTW\ast (V2, f, c).

Proof. Note that without loss of generality we may assume V1 \cap V2 = \emptyset . Fix any k \in Z
and E > E\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t}(k). We claim that, for any g \in \scrB \mathrm{r}\mathrm{e}\mathrm{g}(\delta ) with 0 < \delta \leqslant \delta E sufficiently small,
any bounded solution U of the dynamics of (TWE) associated with (f, g, c), and for which
U(t) \in NE for all t \in R, has either U(t) \in intV E

1 for all t \in R or U(t) \in intV E
2 for all

t \in R. Suppose this is not the case. Then one can find a sequence of (gn)n with gn \rightarrow 0 as
n\rightarrow \infty , bounded solutions Un of (TWE) associated with (f, gn, c) and such that Un(t) \in NE

for all t \in R, and a sequence (tn)n \subset R such that Un(tn) \not \in intV E
1 \cup intV E

2 for all n \in N. As
discussed in Remark 3.2, Un(\cdot + tn) converges over a subsequence to a solution U\infty of (TWE)
corresponding to (f, 0, c). But then U\infty (0) \not \in intV E

1 \cup intV E
2 , and since \scrE f (U\infty (0)) \leqslant E, also

U\infty (0) \not \in intV1 \cup intV2. However, U\infty (t) \in N for all t \in R. Hence we have constructed a
solution U\infty of (TWE) corresponding to (f, 0, c) which is isolated by N but not isolated by
either V1 or V2. This is in contradiction with the hypotheses of the lemma.

We conclude that whenever g \in \scrB \mathrm{r}\mathrm{e}\mathrm{g}(\delta ) and 0 < \delta \leqslant \delta E is sufficiently small, the sets NE ,
V E
1 , and V E

2 are isolating neighborhoods for the dynamics of (TWE) associated with (f, g, c),
and

BInv(NE ; f, g, c) = BInv(NE ; f, g, c) \cup BInv(NE ; f, g, c).

Hence the critical groups satisfy the direct sum property C\ast (N
E) = C\ast (V

E
1 )\oplus C\ast (V

E
2 ) (here

C\ast (N) denotes the chain group corresponding to a given isolating neighborhood N) and the
boundary operator \partial k(N

E , f, g, c) factorizes through this direct sum. Hence

HTWk(N
E , f, g, c) = HTWk(V

E
1 , f, g, c)\oplus HTWk(V

E
2 , f, g, c).

This is true for any E sufficiently large and g sufficiently small, hence the conclusion of the
lemma follows.

10. Applications. In this section we will first compute the traveling wave homology for
various classes of nonlinearities and finally give some examples of how this information can
be used to derive conclusions about the existence of traveling waves.D
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In this section we consider nonlinearities f\mathrm{o}\mathrm{d}\mathrm{d},\pm and f\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},\pm as introduced in (2) and (3). It
was already pointed out in Remark 2.3 that these nonlinearities satisfy hypotheses (f1)--(f3).
We will compute the traveling wave homologies for these nonlinearities of this form, after
which we will show how this information can be used to prove existence of traveling waves in
reaction-diffusion equations.

Theorem 10.1. For any regular nonlinearity f = fodd,\pm or f = feven,\pm , the set N = X0 is
a finitely generating isolating neighborhood. There exists a k0 \in Z (depending on the chosen
normalized Morse index \mu ) such that

HTWk(fodd, - ) \sim =
\biggl\{ 

Z2 if k = k0,
0 otherwise.

Furthermore,

HTW\ast (fodd,+) = 0,

HTW\ast (feven, - ) = 0,

HTW\ast (feven,+) = 0.

Proof. We begin with verifying that X0 is finitely generating for each of the nonlinearities,
so that the homologies are indeed well-defined. We will in fact show that \Sigma fi\mathrm{n}(f) = \Sigma \mathrm{r}\mathrm{e}\mathrm{g}(f).
This also shows that, in light of Theorem 9.8, all the nonlinearities in \Sigma \mathrm{r}\mathrm{e}\mathrm{g}(f) have isomorphic
homologies.

When either f = f\mathrm{o}\mathrm{d}\mathrm{d}, - , or f = f\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}, - , or f = f\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},+, this is true because the set of
solutions z of \biggl\{ 

\Delta z + f(\cdot , z) = 0 on \Omega ,
B(z) = 0 on \partial \Omega 

is compact in H2
B(\Omega ) (see, e.g., [FSV98]), hence \scrS (f) is finite for regular f . Hence \Sigma fi\mathrm{n}(f) =

\Sigma \mathrm{r}\mathrm{e}\mathrm{g}(f).
When f = f\mathrm{o}\mathrm{d}\mathrm{d},+ the set \scrS (f) will typically not be finite. Assume that f is regular, and

recall from the definition of the normalized Morse index that there exists a constant m0 such
that for the index of a rest point Z = (z, 0) \in \scrS (f) we have the following identity:

(49) \mu f (Z) = m0  - mf (z),

where mf is the classical Morse index

mf (z) := \#
\bigl( 
\sigma (\Delta + fu(x, z)) \cap (0,\infty )

\bigr) 
.

For any given k \in Z, a classical result from Bahri and Lions (see [BL92], but also [Yan98,
RTZ09, Yu14, HARS12, HHM15]) then gives us a priori bounds on the L\infty norm of rest points
Z with a given morse index mf (z) \leqslant k. In light of (49) this gives L\infty bounds on Z with a
given index \mu f (Z) \geqslant k. Thus \scrS k(X0, f) is finite for each k, i.e., X0 is finitely generating for
f . Thus we again find that \Sigma fi\mathrm{n}(f) = \Sigma \mathrm{r}\mathrm{e}\mathrm{g}(f).

We now proceed to the actual computation of the various homologies. Computation of
the homology for f\mathrm{o}\mathrm{d}\mathrm{d}, - requires a different technique from the computation of the homologyD
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for f\mathrm{o}\mathrm{d}\mathrm{d},+, but these approaches work for any boundary condition. The homology for the
nonlinearities f\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}, - and f\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},+ can be computed using the same technique, but in this case
the chosen approach depends on the boundary data.

Computation for f\bfo \bfd \bfd , - . By Theorem 9.8,

HTW\ast (f\mathrm{o}\mathrm{d}\mathrm{d}, - ) \sim = HTW\ast (f\varepsilon ),

where
f\varepsilon (x, u) =  - | u| p - 1u - \varepsilon u.

For \varepsilon \geqslant 0, suppose z is a solution of

(50)

\biggl\{ 
\Delta z + f\varepsilon (x, z) = 0 on \Omega ,
B(z) = 0 on \partial \Omega .

Then \int 
\Omega 
| \nabla z| 2 + | z| p+1 + \varepsilon | z| 2 dx =  - 

\int 
\Omega 

\bigl( 
\Delta z + f\varepsilon (x, z)

\bigr) 
z dx = 0.

Hence the only solution z of (50) is z \equiv 0. Moreover, for \varepsilon > 0 sufficiently small this rest
point is hyperbolic, so that

HTWk(f\varepsilon ) \sim =
\biggl\{ 

Z2 if k = \mu f\varepsilon (0),
0 otherwise.

Computation for f\bfo \bfd \bfd ,+. By Theorem 9.8,

HTW\ast (f\mathrm{o}\mathrm{d}\mathrm{d},+) \sim = HTW\ast (f\beta ),

where
f\beta (x, u) = | u| p - 1u+ \beta u+ \varphi \beta (x, u).

Here \varphi \beta is chosen such that any solution z \in H2
B(\Omega ) of \Delta z + f\beta (\cdot , z) = 0 is hyperbolic, and

\| \partial u\varphi \beta \| L\infty (\Omega \times \bfR ) \leqslant 1. Such \varphi \beta exist in light of Theorem 8.1. Note that if z is a solution of
\Delta z + f\beta (\cdot , z) = 0, then for the linearization one has

\Delta +
\partial f\beta 
\partial u

(\cdot , z) = \Delta + p| z| p - 1 + \beta + \partial u\varphi \beta (x, z) \succeq \Delta + \beta  - 1,

where ``\succeq "" denotes the partial ordering on L2(\Omega ) induced by the cone of positive operators
on L2(\Omega ). It then follows from the min-max characterization of eigenvalues of self-adjoint
operators (see, e.g., [Eva98]) that

mf\beta (z) \geqslant \#
\bigl( 
\sigma (\Delta + \beta  - 1) \cap (0,\infty )

\bigr) 
.

So for any Z = (z, 0) \in \scrS (f\beta ) it follows that

\mu f\beta (Z) = m0  - mf\beta (z) \leqslant m0  - \#
\bigl( 
\sigma (\Delta + \beta  - 1) \cap (0,\infty )

\bigr) 
.

The right-hand side tends to  - \infty as \beta \rightarrow \infty . Hence, for each given k we can choose \beta 
sufficiently large so that \scrS k(X0, f\beta ) = \emptyset , and therefore HTWk(f\beta ) = 0.D
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Computation for f\bfe \bfv \bfe \bfn ,\pm , Dirichlet boundary data. By Theorem 9.8,

HTW\ast (f\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},\pm ) \sim = HTW\ast (f\mu ,\pm ),

where
f\mu ,\pm (x, u) = \pm \mu | u\pm 1| p.

We will argue that for \mu > 0 sufficiently large, there is no solution to the equation \Delta z +
f\mu ,\pm (\cdot , z) = 0. Let us now first discuss the case where f\mu ,\pm = f\mu , - . Suppose z \in H2

B(\Omega ) is a
solution of

(51) \Delta z + f\mu , - (x, z) = 0.

Then z is subharmonic, and zero on \partial \Omega , hence by the maximum principle z \leqslant 0. So

f\mu , - (x, z) =
\bigl( 
 - | z  - 1| p - 2(z  - 1)

\bigr) \bigl( 
\mu (z  - 1)

\bigr) 
\leqslant \mu (z  - 1) \leqslant \mu z.

Furthermore, z \equiv 0 is clearly not a solution of (51). Thus z also satisfies

(52)

\left\{       
\Delta z + \mu z \geqslant 0 on \Omega ,
z \not = 0 on \Omega ,
z \leqslant 0 on \Omega ,
z = 0 on \partial \Omega .

Let \lambda 1 be the fundamental eigenvalue of \Delta with Dirichlet boundary data, and let \varphi 1 be a
corresponding eigenfunction. Recall (see, e.g., [Eva98]) that \lambda 1 < 0 and we may assume that
\varphi 1(x) > 0 for all x \in int\Omega . Now multiply (52) by \varphi 1 and integrate to obtain

(53) 0 \leqslant 
\int 
\Omega 
\varphi 1\Delta z + \mu \varphi 1z dx =

\int 
\Omega 
z\Delta \varphi 1 + \mu \varphi 1z dx = (\lambda 1 + \mu )

\int 
\Omega 
\varphi 1z dx.

Since z \leqslant 0 and z \not = 0 on \Omega , and \varphi 1 > 0 on int\Omega , the last integral must be strictly negative.
But then (\lambda 1 + \mu )

\int 
\Omega \varphi 1z dx < 0 for \mu >  - \lambda 1, contradicting inequality (53). Hence there

can be no solution of (51) whenever \mu >  - \lambda 1. Similarly, for \mu >  - \lambda 1 there are no solutions
of \Delta z + f\mu ,+(\cdot , z) = 0 with Dirichlet boundary conditions. Hence for \mu >  - \lambda 1 we have
HTW\ast (f\mu ,\pm ) = 0.

Computation for f\bfe \bfv \bfe \bfn ,\pm , Neumann or periodic boundary data. By Theorem 9.8,

HTW\ast (f\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},\pm ) \sim = HTW\ast (f\pm ),

where
f\pm (x, u) = \pm | u| p \pm 1.

Now if z \in H2
B(\Omega ) were a solution of \Delta z + f\pm (z) = 0, one would find that

Vol(\Omega ) \leqslant \pm 
\int 
\Omega 
f\pm (z) dx = \mp 

\int 
\Omega 
\Delta z dx.

But by Stokes' theorem and the chosen boundary data, the last integral equals 0. Hence
\Delta z + f\pm (z) = 0 does not have any solutions with Neumann or periodic boundary data.
Therefore, HTW\ast (f\pm ) = 0.D
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With the homologies computed, we can now apply this information to prove existence of
traveling wave solutions of (RDE).

Theorem 10.2. Consider any wave speed c \not = 0, and let k \geqslant 1. Then the following holds:
\bullet If f = fodd, - and (TWE) has at least 2k distinct hyperbolic stationary solutions, then
(RDE) has at least k distinct traveling wave solutions of wave speed c. More precisely,
to each given hyperbolic stationary solution Z (but with the possible exception of at most
one of them), there corresponds at least one traveling wave U such that \alpha (U) = \{ Z\} 
or \omega (U) = \{ Z\} (but it is possible that \omega (U), resp., \alpha (U), consist of nonhyperbolic
stationary solutions).
\bullet If either f = fodd,+, or f = feven, - , or f = feven,+, and (TWE) has at least 2k  - 1
distinct hyperbolic stationary solutions, then (RDE) has at least k distinct traveling
wave solutions of wave speed c. More precisely, to each given hyperbolic stationary
solution Z, there corresponds at least one traveling wave U such that \alpha (U) = \{ Z\} 
or \omega (U) = \{ Z\} (but it is possible that \omega (U), resp., \alpha (U), consist of nonhyperbolic
stationary solutions).

Furthermore, in each of these cases there exists at least one more stationary solution (which
might be nonhyperbolic).

Proof. Let us first discuss the case where f = f\mathrm{o}\mathrm{d}\mathrm{d}, - . Fix any c > 0. Let S1 consist of the
2k given hyperbolic stationary solutions of (TWE).

Suppose there exist two points Z1, Z2 \in S1 such that for both of them there exist no
connecting orbit which converges to Zi in either forward or backward time. This means
that both \{ Z1\} and \{ Z2\} are connected components of BInv(X0; f, 0, c). Hence we can find
mutually disjoint isolating neighborhoods V1, V2, and N such that \{ Zi\} = BInv(Vi; f, 0, c),
and BInv(X0; f, 0, c) = BInv(V1; f, 0, c)\cup BInv(V2; f, 0, c)\cup BInv(N ; f, 0, c). We claim we can
choose a small perturbation f\varepsilon of f such that

1. f\varepsilon is regular,
2. V1, V2, and N are isolating neighborhoods for (TWE) associated with (f\varepsilon , 0, c), and
3. BInv(X0; f\varepsilon , 0, c) = BInv(V1; f\varepsilon , 0, c) \cup BInv(V2; f\varepsilon , 0, c) \cup BInv(N ; f, 0, c).

Indeed, set f\varepsilon := f + \varphi \varepsilon , where \varphi \varepsilon is an arbitrarily chosen \varphi \varepsilon \in \scrF m
\mathrm{r}\mathrm{e}\mathrm{g} with \| \varphi \varepsilon \| \scrF m \leqslant \varepsilon (recall

that \scrF m
\mathrm{r}\mathrm{e}\mathrm{g} and \| \cdot \| \scrF m are defined in section 8.1). The first property then follows from Theorem

8.1. The fact that the other two properties hold for sufficiently small choices of \varepsilon follows from
an argument identical to the one used in the proof of Lemma 9.10.

In light of Theorem 10.1, the isolating neighborhood X0 is finitely generating for f\varepsilon (hence
so are the isolating neighborhoods N , V1, and V2), and HTW\ast (X

0, f\varepsilon , c) is of rank 1. Since V1
and V2 each contain exactly one hyperbolic stationary solution of the unperturbed equation
(TWE) associated with (f, 0, c), it follows from the implicit function theorem that (after
choosing a sufficiently small perturbation and shrinking the neighborhoods V1 and V2) they
each contain exactly one hyperbolic stationary solution of the perturbed equation (TWE)
associated with (f\varepsilon , 0, c). Hence both HTW\ast (V1, f\varepsilon , c) and HTW\ast (V2, f\varepsilon , c) are of rank 1.

By invariance and the direct sum property (Lemma 9.10) of the homology,

HTW\ast (X
0, f\varepsilon , c) = HTW\ast (V1, f\varepsilon , c)\oplus HTW\ast (V2, f\varepsilon , c)\oplus HTW\ast (N, f\varepsilon , c).

We have arrived at a contradiction, since the homology on the left-hand side has rank 1, while
the homology on the right-hand side has rank at least 2. From this we conclude that oneD
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2698 B. BAKKER, J. B. VAN DEN BERG, AND R. VANDERVORST

Figure 4. Detection of a traveling wave with given wave speed c. When the index of the stationary solution
Z does not coincide with the full homology, a heteroclinic orbit U connecting Z to another, unknown, stationary
solution must exist. Direction of propagation of the traveling wave depends on whether Z is the \alpha - or \omega -limit
set of U .

of the Zi must have a corresponding bounded solution U of (TWE) associated to the triplet
(f, 0, c), such that either \alpha (U) = \{ Zi\} or \omega (U) = \{ Zi\} . See also Figure 4.

For simplicity of the argument, say Z1 is the point which is not isolated, and U converges
towards it in backward time, i.e., \alpha (U) = \{ Z1\} . From Lemma 7.3 it follows that \omega (U) consists
of stationary solutions of (TWE), which can be either another one of the hyperbolic stationary
solutions or (a family of) nonhyperbolic solution(s). In the first case (that is, \{ Z3\} = \omega (U) is
hyperbolic), set S2 := S1\smallsetminus \{ Z1, Z3\} . In the latter case (that is, \omega (U) consists of nonhyperbolic
solutions), set S2 := S1\smallsetminus \{ Z1\} . By repeating the preceding argument with Z1 and Z2 replaced
by points \widetilde Z1, \widetilde Z2 \in S2, we prove the existence of another connecting orbit which is distinct
from the one previously found. We can iterate this procedure k times, at which point the
iteration terminates since we can no longer guarantee that \#Sk \geqslant 2.

In the other cases, when either f = f\mathrm{o}\mathrm{d}\mathrm{d},+, or f = f\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}, - , or f = f\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},+, a similar
argument shows that the existence of a single isolated rest point Z is already excluded. This
again relies on the direct sum property, combined with the fact that for these nonlinearities
the full homology HTW\ast (X

0, f, c) is of rank 0.

Appendix A. Fredholm theory. Let \frakL and \frakL \mathrm{h}\mathrm{y}\mathrm{p} be as defined in section 5. In this
appendix we will fill in some details about the Fredholm theory for the operator

\scrD L :W 1,2(R;X0, X1)\rightarrow L2(R;X0),

\scrD LW = \partial tW + L(t)W,

where L \in C0(R;\frakL ) is such that the limits L\pm = limt\rightarrow \pm \infty L(t) exist in the uniform operator
topology on \scrL (X1, X0), and L\pm \in \frakL \mathrm{h}\mathrm{y}\mathrm{p}.

A.1. Fredholm alternative for \bfscrD \bfitL . We will use the results from [Rab04]. Let us first cite
a simplified version of the main result from said article.

Theorem A.1 (see [Rab04]). Let H be a Hilbert space and W \subset H a normed space. Let
(L(t))t\in \bfR be a family of unbounded operators on H with common domain W . Assume that
the following holds:D
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1. W is a Banach space and the embedding W \lhook \rightarrow H is continuous, compact, and dense.
2. L \in C0(R,\scrL (W,H)).
3. There are operators L - , L+ \in GL(W,H) such that

lim
t\rightarrow \infty 
\| L(t) - L+\| \scrL (W,H) = lim

t\rightarrow  - \infty 
\| L(t) - L - \| \scrL (W,H) = 0.

4. For every t \in R \cup \{ \pm \infty \} there exist constants C0(t) > 0 and R0(t) > 0 such that

\| \lambda (L(t) - i\lambda ) - 1\| \scrL (H) \leqslant C0(t) for all \lambda \in R, | \lambda | \geqslant R0(t).

5. \sigma (L\pm ) \cap iR = \emptyset .
Then the operator \partial t+L(t) is Fredholm fromW 1,p(R;H,W ) to Lp(R;H) for every p \in (1,\infty ).

Note that, in contrast to the classical Robbin--Salamon theorem [RS95], the operators L(t)
do not have to be symmetric. In fact, the spectrum may cross the imaginary axis, as long as
we remain in control of the resolvent as per property 4.

In our case, W = X1 and H = X0. It is then obvious that properties 1, 2, 3, and 5 hold.
The fact that also property 4 is satisfied is the content of Lemma 5.2.

Theorem A.1 combined with Lemma 5.2 shows that \scrD L is a Fredholm operator. The
index is independent of the particular choice of the path L but only depends on the hyperbolic
limits L - , L+. To see why, let L\prime \in C0(R;\frakL ) be another curve with L(t)\rightarrow L\pm as t\rightarrow \pm \infty ,
convergence in the uniform operator topology on \scrL (X1, X0). Then for each t \in R

L(t) - L\prime (t) =

\biggl( 
0 0

L1(t) - L\prime 
1(t) L2(t) - L\prime 

2(t)

\biggr) 
,

note that this is a bounded operator from X0 to X0 and therefore compact operator from X1

to X0. Moreover, L  - L\prime \in C0(R,\scrL (X1, X0)), and L(t)  - L\prime (t) \rightarrow 0 as t \rightarrow \pm \infty . Hence the
induced multiplication operator L  - L\prime is compact from W 1,p(R;X0, X1) to L2(R;X0); see
[Rab04]. Consequently, ind(\scrD L) = ind(\scrD L\prime ).

Summarizing these observations, we have the following theorem.

Theorem A.2. Let L \in C0(R;\frakL ) be such that L(t) \rightarrow L\pm as t \rightarrow \pm \infty in the uniform
operator topology on \scrL (X1, X0), where L\pm \in \frakL hyp. Then the map \scrD L is Fredholm from
W 1,2(R;X0, X1) to L2(R;X0), and its index depends only on the endpoints L - , L+.

This allows us to define a relative index:

\nu : \frakL \mathrm{h}\mathrm{y}\mathrm{p} \times \frakL \mathrm{h}\mathrm{y}\mathrm{p} \rightarrow Z,

\nu (L - , L+) = ind(\scrD L).

A.2. Transitivity. We now prove Lemma 5.4.

Lemma A.3. Let L\alpha , L\beta , L\gamma \in \frakL hyp. Then

\nu (L\alpha , L\beta ) =  - \nu (L\beta , L\alpha ) (antisymmetry),
\nu (L\alpha , L\gamma ) = \nu (L\alpha , L\beta ) + \nu (L\beta , L\gamma ) (cyclicity).D
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Proof. This proof is an adaptation of the argument given in [RS95]. First we note that
the antisymmetry follows from the cyclicity. Indeed, since \sigma (L\alpha ) \cap iR = \emptyset and Lemma 5.2 is
applicable, the operator

\scrD L\alpha = \partial t + L\alpha :W 1,2(R;X0, X1)\rightarrow L2(R;X0)

is invertible; see [Rab03] for details. Consequently,

\nu (L\alpha , L\beta ) + \nu (L\beta , L\alpha ) = \nu (L\alpha , L\alpha ) = ind(\scrD L\alpha ) = 0.

To prove the cyclicity we first choose paths L\alpha \beta , L\beta \gamma \in C0(R;\frakL ) such that L\alpha \beta (t) = L\alpha 

for t \leqslant  - 1, L\alpha \beta (t) = L\beta for t \geqslant 1, L\beta \gamma (t) = L\beta for t \leqslant  - 1, L\beta \gamma (t) = L\gamma for t \geqslant 1. Moreover,
given T \geqslant 0 let L\alpha \gamma \in C0(R;\frakL ) be defined by

L\alpha \gamma (t) =

\Biggl\{ 
L\alpha \beta (t+ T + 1) for t \leqslant 0,

L\beta \gamma (t - T  - 1) for t \geqslant 0.

Consider the operators

M = \partial t +

\biggl( 
L\alpha \beta 0
0 L\beta \gamma 

\biggr) 
,

N = \partial t +

\biggl( 
L\alpha \gamma 0
0 L\beta 

\biggr) 
.

These are bounded Fredholm operators from

\scrX :=W 1,2(R;X0, X1)\times W 1,2(R;X0, X1)

to
\scrY := L2(R;X0)\times L2(R;X0).

We have ind(M) = \nu (L\alpha , L\beta ) + \nu (L\beta , L\gamma ) and ind(N) = \nu (L\alpha , L\gamma ) + \nu (L\beta , L\beta ) = \nu (L\alpha , L\gamma ).
Hence we need to prove that ind(M) = ind(N).

Let \eta \in C\infty (R) be such that \eta (t) = 0 for t \leqslant  - 1, and \eta (t) = \pi /2 for t \geqslant 1, and define

R(t) =

\biggl( 
cos(\eta (t/T )) sin(\eta (t/T ))
 - sin(\eta (t/T )) cos(\eta (t/T ))

\biggr) 
.

Then R induces automorphisms of both \scrX and \scrY . Hence we can conjugate N with R without
changing the Fredholm index. Computing the conjugate yields

(R - 1NR)(t) = \partial t + I(t) + J(t) +K(t),

where

I(t) =
\eta \prime (t)

T

\biggl( 
0  - 1
1 0

\biggr) 
,

J(t) =

\biggl( 
cos2(\eta (t/T ))L\alpha \gamma (t) + sin2(\eta (t/T ))L\beta 0

0 cos2(\eta (t/T ))L\beta + sin2(\eta (t/T ))L\alpha \gamma (t)

\biggr) 
,

K(t) = cos(\eta (t/T )) sin(\eta (t/T ))

\biggl( 
0 L\alpha \gamma (t) - L\beta 

L\alpha \gamma (t) - L\beta 0

\biggr) 
.
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Since I \rightarrow 0 in the uniform operator topology on \scrL (\scrX ,\scrY ) as T \rightarrow \infty , continuity of the
Fredholm index implies that after choosing T sufficiently large, ind(N) = ind(R - 1NR) =
ind(\partial t + J +K). Observe that L\alpha \gamma (t) = L\alpha \beta (t+ T + 1) for  - \infty < t \leqslant T , so that

cos2(\eta (t/T ))L\alpha \gamma (t)+ sin2(\eta (t/T ))L\beta (t) = L\alpha \beta (t+T +1)+ sin2(\eta (t/T ))
\bigl( 
L\beta  - L\alpha \beta (t+T +1)

\bigr) 
for all t \in R. Since L\alpha \beta (t+ T + 1) = L\beta for t \geqslant  - T , in fact

cos2(\eta (t/T ))L\alpha \gamma (t) + sin2(\eta (t/T ))L\beta (t) = L\alpha \beta (t+ T + 1).

Using a similar computation for the other nonzero entry in J(t) one sees that

J(t) =

\biggl( 
L\alpha \beta (t+ T + 1) 0

0 L\beta \gamma (t - T  - 1)

\biggr) 
.

Similarly one can verify that K(t) = 0 for all t \in [ - T, T ] (and hence K(t) = 0 for all t \in R).
Let S \in \scrL (\scrY ) be the shift operator S(U, V )(t) = (U(t+ T + 1), V (t - T  - 1)). Note that

S is an automorphism of \scrY and restricts to an automorphism of \scrX . So we can let S act on
\scrL (\scrX ,\scrY ) via conjugation. Note that S commutes with \partial t, and

S - 1JS =

\biggl( 
L\alpha \beta 0
0 L\beta \gamma 

\biggr) 
,

so that S - 1(\partial t + J)S = \partial t + S - 1JS =M . Hence

ind(N) = ind(S - 1R - 1NRS) = ind(S - 1(\partial t + J)S) = ind(M),

thus concluding the proof.

Appendix B. Exponential dichotomy along heteroclinic orbits. Here we give some de-
tails as to why the linearization of (TWE) along heteroclinic orbits possesses an exponential
dichotomy. We begin with citing a simplified version of the main theorem from [PSS97].

Theorem B.1 (see [PSS97]). Let X0 be a reflexive Banach space and L : \scrD (L) \rightarrow X0 a
closed, possibly unbounded operator such that X1 := \scrD (L) is dense in X0. Let X1 be equipped
with the graph norm of L, i.e., \| u\| X1 = (\| u\| 2X0 + \| Lu\| 2X0)

1/2. Let J = [\tau 0,\infty ) and suppose
that B \in C0(J,\scrL (X0)) is Lipschitz continuous. Consider the abstract differential equation

(54) \partial tW (t) + (L+B(t))W (t) = 0, W \in C0(J ;X1) \cap C1(int J ;X0, X1).

Assume that the following four conditions are satisfied:
1. There exists a constant C such that

(55) \| (L - i\mu ) - 1\| \scrL (X0) \leqslant 
C

1 + | \mu | 

for all \mu \in R. Assume that there is a projection P - \in \scrL (X0) such that L - 1 and P - 
commute. Furthermore, assume there exists a constant \delta > 0 such that Re\lambda <  - \delta for
\lambda \in \sigma (LP - ) and Re\lambda > \delta for \lambda \in \sigma (L(1 - P - )).D
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2. It holds that \| B(t)\| \scrL (X0) \rightarrow 0 as t\rightarrow \infty .
3. The operator L has compact resolvent.
4. The only solution W of (54) such that supt\in J \| W (t)\| X0 < \infty and W (0) = 0 is the

trivial solution W \equiv 0.
Then (54) has an exponential dichotomy in X0 on the interval J with rate \gamma for any

0 \leqslant \gamma < \delta . In particular, there exists K > 0 such that if W is a solution of (54) with
supt\in J \| W (t)\| X0 <\infty , it holds that

\| W (t)\| X0 \leqslant Ke - \gamma | t - \tau | \| W (\tau )\| X0 for t \geqslant \tau \geqslant \tau 0.

We need to check that this theorem applies to our linearized equation. Suppose hypotheses
(f1)--(f3) and (g1)--(g3) are satisfied. Let U be a solution of (TWE) such that U(t) \rightarrow Z in
X0 as t\rightarrow \infty , where Z \in \scrS is a hyperbolic rest point. Define J = [0,\infty ). We decompose

dA(U(t)) = L+B(t),

where L = dA(Z+) \in \scrL (X1, X0), and

B(t) =

\biggl( 
0 0

fu(x, u(t, x)) - fu(x, z(x)) 0

\biggr) 
+

\biggl( 
0 0

\partial 1g(x, U(t)) \partial 2g(x, U(t))

\biggr) 
.

Here \partial 1g(x, (u, v)) :=
\partial g(x,(u,v))

\partial u and \partial 2g(x, (u, v)) :=
\partial g(x,(u,v))

\partial v .
Let us now construct the projections needed in condition 1 of Theorem B.1. First, let

\{ \mu n\} n be the eigenvalues (counting multiplicity) of \Delta + fu(x, z(x)), arranged in decreasing
order. Let k0 be such that \mu k0+1 < 0 < \mu k0 , let kc be such that \mu kc+1 < c2/4 \leqslant \mu kc , and let
k\mathrm{d}\mathrm{e}\mathrm{f} denote the number of eigenvalues which are equal to c2/4.

Let (\varphi n)n be an orthonormal basis for H1
B(\Omega ) consisting of eigenfunctions for \Delta + fu(\cdot , z),

arranged so that \varphi n is an eigenfunction corresponding to the eigenvalue \mu n. Then L has
eigenvalues

\lambda \pm n =  - c
2
\pm 1

2

\sqrt{} 
c2  - 4\mu n,

with corresponding eigenfunctions \Psi \pm 
n given by

\Psi \pm 
n =

\biggl( 
\varphi n

 - \lambda \pm n\varphi n

\biggr) 
.

A direct computation shows that these eigenfunctions are orthogonal in X0. If \mu n = c2/4
(i.e., when k\mathrm{d}\mathrm{e}\mathrm{f} \geqslant 1 and kc  - k\mathrm{d}\mathrm{e}\mathrm{f} \leqslant n \leqslant kc), then \lambda 

\pm 
n =  - c/2 is a defective eigenvalue of L

and a corresponding generalized eigenfunction is given by

\widetilde \Psi n =

\biggl( 
0
\varphi n

\biggr) 
.

Also, note that for 1 \leqslant n \leqslant kc, we have

Re\Psi \pm 
n =

\biggl( 
\varphi n
c
2\varphi n

\biggr) 
and \frakI m\Psi \pm 

n =

\biggl( 
0

\mp 1
2

\sqrt{} 
4\mu n  - c2\varphi n

\biggr) 
.
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Define

E - := span

\biggl( \bigl\{ 
Re\Psi  - 

n , \frakI m\Psi  - 
n : n \geqslant 1

\bigr\} 
\cup 
\bigl\{ 
Re\Psi +

n , \frakI m\Psi +
n : 1 \leqslant n \leqslant k0

\bigr\} 
\cup 
\Bigl\{ \widetilde \Psi n : \mu n = c2/4

\Bigr\} \biggr) 
and

E+ := span
\bigl\{ 
\Psi +

n : n \geqslant k0 + 1
\bigr\} 
.

Denote by E - and E+ the closure of E - and E+ in X0.
We claim that X0 = E - \oplus E+. First note that if (an)n \in \ell 2(N), then

\sum \infty 
n=kc+1 an\Psi 

+
n

converges in X0. Indeed,
(56)\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

j\sum 
n=i

an\Psi 
+
n

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

X0

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
j\sum 

n=i

an\varphi n

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

H1
B(\Omega )

+

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
j\sum 

n=i

an\lambda 
+
n\varphi n

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L2(\Omega )

=

j\sum 
n=i

\bigl( 
1 + | \lambda +n | 2\| \varphi n\| 2L2(\Omega )

\bigr) 
| an| 2,

and we need to check that the right-hand side tends to zero as i, j \rightarrow \infty . Note that, since
\| \varphi n\| H1

B(\Omega ) = 1,

 - \mu n\| \varphi n\| 2L2(\Omega ) = \| \nabla \varphi n\| 2L2(\Omega )  - \langle fu(\cdot , z)\varphi n, \varphi n\rangle L2(\Omega ) \leqslant 1 + \| fu(\cdot , z)\| L\infty (\Omega ),

and since  - \mu n \rightarrow \infty as n\rightarrow \infty it follows that \| \varphi n\| L2(\Omega ) \rightarrow 0 as n\rightarrow \infty . Then, since

 - \mu n\| \varphi n\| 2L2(\Omega ) = \| \varphi n\| 2H1
B(\Omega )  - \| \varphi n\| 2L2(\Omega )  - \langle fu(\cdot , z)\varphi n, \varphi n\rangle L2(\Omega )

= 1 - \langle (1 + fu(\cdot , z))\varphi n, \varphi n\rangle L2(\Omega ),

we see that  - \mu n\| \varphi n\| 2L2(\Omega ) \sim 1 as n \rightarrow \infty (here ``\sim "" denotes asymptotic equivalence of

sequences). Since | \lambda +n | 2 \sim  - \mu n as n\rightarrow \infty , it now follows that the right-hand side in (56) tends
to 0 as i, j \rightarrow \infty . An identical computation shows that (an)n \in \ell 2(N), then

\sum \infty 
n=kc+1 an\Psi 

 - 
n

converges in X0. Thus E - + E+ contains elements of the form

\biggl( 
x
y

\biggr) 
=

kc\sum 
n=1

an

\biggl( 
\varphi n
c
2\varphi n

\biggr) 
+

kc - k\mathrm{d}\mathrm{e}\mathrm{f}\sum 
n=1

bn

\biggl( 
0

1
2

\sqrt{} 
4\mu n  - c2\varphi n

\biggr) 
+

kc\sum 
n=kc - k\mathrm{d}\mathrm{e}\mathrm{f}+1

bn

\biggl( 
0
\varphi n

\biggr) 

+
\infty \sum 

n=kc+1

an

\biggl( 
\varphi n

\lambda +n\varphi n

\biggr) 
+

\infty \sum 
n=kc+1

bn

\biggl( 
\varphi n

\lambda  - n\varphi n

\biggr) 
,

where (an)n, (bn)n \in \ell 2(N). To see why any (x, y) \in X0 is of this form, write x =
\sum \infty 

n=1 cn\varphi n

and y =
\sum \infty 

n=1 dn\varphi n, where (cn)n \in \ell 2(N) and (\| \varphi n\| L2(\Omega )dn)n \in \ell 2(N). SetD
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\left\{   
an = cn

bn =  - c\sqrt{} 
4\mu n  - c2

cn +
2\sqrt{} 

4\mu n  - c2
dn,

n \leqslant kc  - k\mathrm{d}\mathrm{e}\mathrm{f},

\Biggl\{ 
an = cn,

bn =  - c
2
cn + dn,

kc  - k\mathrm{d}\mathrm{e}\mathrm{f} + 1 \leqslant n \leqslant kc,

\left\{       
an =

\lambda  - n
\lambda  - n  - \lambda +n

cn  - 
1

\lambda  - n  - \lambda +n
dn,

bn =  - \lambda +n
\lambda  - n  - \lambda +n

cn +
1

\lambda  - n  - \lambda +n
dn,

n \geqslant kc + 1.

Note that, as n\rightarrow \infty ,\bigm| \bigm| \bigm| \bigm| \lambda \pm n
\lambda  - n  - \lambda +n

\bigm| \bigm| \bigm| \bigm| 2 \sim 1

4
and

\bigm| \bigm| \bigm| \bigm| 1

\lambda  - n  - \lambda +n

\bigm| \bigm| \bigm| \bigm| 2 \sim  - 1

4\mu n
\sim 1

4
\| \varphi n\| 2L2(\Omega ).

Hence (an)n, (bn)n \in \ell 2(N), and since an\varphi n + bn\varphi n = cn\varphi n and an\lambda 
+
n\varphi n + bn\lambda 

 - 
n\varphi n = dn\varphi n,

this proves that (x, y) \in E - + E+. Since E - and E+ are orthogonal in X0, it follows that
E - \cap E+ = \{ 0\} . Thus X0 = E - \oplus E+.

Let P - be the projection onto E - along E+. Then P - commutes with L - 1. The construc-
tion of the sets E\pm ensures that Re\lambda <  - \delta for \lambda \in \sigma (AP - ) and Re\lambda > \delta for \lambda \in \sigma (A(1 - P - )).
Finally, estimate (55) is a special case of the result from Lemma 5.2. Hence condition 1 of
Theorem B.1 is satisfied.

Note that B \in C1(J,\scrL (X0)) and \| B(t)\| \scrL (X0) \rightarrow 0 as t \rightarrow \infty , hence B is Lipschitz
continuous. Thus condition 2 of Theorem B.1 is also satisfied. Since the embedding X1 \lhook \rightarrow X0

is compact, L has compact resolvent. Hence condition 3 of Theorem B.1 is satisfied.
To ensure condition 4 of Theorem B.1 is satisfied we need to assume that the nonlinearity

f is of class C4. Recalling from section 3 that U \in C4
b (R;X0, . . . , X3), we see that

B \in C3(int J,\scrL (X0)) \cap C2(int J,\scrL (X1)) \cap C1(int J,\scrL (X2)) \cap C0(J,\scrL (X3)).

In turn elliptic regularity theory implies that w \in C4(int J, L2(\Omega )) (where W = (w, \partial tw)).
Together with the mean value theorem this ensures that if W (0) = 0, then w satisfies the
decay estimates (26) from Lemma 4.2 around t = 0. Hence by Lemma 4.2, w(t) = 0 and
hence W (t) = 0 for t in a neighborhood of 0. By an argument similar to the proof of Theorem
4.3 one then finds that W \equiv 0.

The preceding discussion shows that the linearized equation posesses an exponential di-
chotomy on X0 with some rate \gamma > 0 on the time interval J = [\tau 0,\infty ), provided that the
nonlinearity f is of class Cm with m \geqslant 4.
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