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AModeling Environment for Dynamic
and Adaptive Network Models
Implemented in MATLAB

S. Sahand Mohammadi Ziabari and Jan Treur

Abstract In this paper, a software environment to support Network-Oriented Mod-
eling is presented. The environment has been implemented in MATLAB. This code
covers the principles of temporal-causal network models. The software environment
has built-in options for network adaptation principles such as the Hebbian learn-
ing principle from neuroscience and the adaptation principle for bonding based on
homophily from social science. The implementation is illustrated for an adaptive
temporal-causal network model under acute stress for decision-making.

Keywords Network-oriented modeling · Temporal-causal network · Adaptive ·
Software environment · Hebbian learning · Bonding by homophily · MATLAB

1 Introduction

In this paper, a dedicated software environment to support Network-OrientedModel-
ing is presented.TheNetwork-OrientedModeling approach addresseduses temporal-
causal network models. This means that any scientific field in which causal relations
are used to explain hypotheses, findings, and theories can be used in Network-
Oriented Modeling [1]. Such domains vary from mental processes in individuals
to social processes. For example, the interactions among individuals can be modeled
as a network taking into account a network adaption principle like bonding based
on homophily principle [2, 3]. Individual mental processes can be modeled as an
interaction between mental states taking into account a network adaption principle
based onHebbian learning [4]. The latter represents the notion of plasticity described
in Neuroscience which means that the communications within the brain are often
adaptive and change over time.
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There are twodifferent representations of a temporal-causal networkmodel named
a conceptual representation (labeled graph or matrix representation) and a numeri-
cal representation (representation by difference or differential equations). Using the
software environment presented here, a conceptual representation can be used as a
basis. By the software, it is automatically translated into a numerical representation,
which can be used for numerical simulation, mathematical analysis, validation by
comparing to empirical data or properties, and tuning of parameters to characteristics
of domain, person, or social context.

The example model presented in [5] has been used as an illustration. This model
incorporates adaptation principles based on Hebbian learning and on suppression of
connections due to acute stress. There are other implementations for other types of
network-oriented modeling, some of which can be found in [6–11].

The sections of paper are as follows. In Sect. 2, the Network-Oriented Modeling
approachbased on temporal-causal networks is brieflydescribed. InSect. 3,modeling
a temporal-causal network in MATLAB is introduced, and in Sect. 4 an Illustration
for an example network model has been described. Finally, Sect. 5 is the discussion
section.

2 The Network-Oriented Modeling Approach Addressed

This software environment covers the principles of Network-Oriented Modeling
based on temporal-causal networks discussed in the book [12]. The Network-
Oriented Modeling format used is based on a dynamic and adaptive variant of mod-
eling, reasoning, and simulation in a causal way which is a topic with a long history
in artificial intelligence [13]. In this respect, any scientific field of study in which
causal relations are applied can be addressed on the basis of this Network-Oriented
Modeling approach. Among the wide variety of application areas, there are two types
of applications that in a sense are dominant: describing individual mental processes
specifically anddescribing how individuals interactwith each other [1]. Table 1 shows
the overview of some combination functions. The following three notions are central

Table 1 Overview of some combination functions c(V1, …, Vk)

Name Description Formula c(V1, …, Vk) =
sum(…) Sum V1 + · · · + Vk

ssumλ(…) Scaled sum function V1+···+Vk
λ

with λ > 0

min(…)
max(…)

Minimal value
Maximal value

Min(V1, . . . , Vk)

Max(V1, . . . , Vk)

slogisticστ (…) Simple logistic sum function 1
1+e−σ(V1+···+Vk −τ) with σ , τ ≥ 0

alogisticσ ,τ (…) Advanced logistic sum function
[

1
1+e−σ(V1+···+Vk −τ) − 1

1+e−στ

]

(1 + eστ ) with σ , τ ≥ 0
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in the Network-Oriented Modeling approach and define a temporal-causal network
model, and therefore are part of a conceptual representation of a temporal-causal
network model [14]:

• Connections strength ωX,Y

The connection strength between a state X to a state Y is called weight value ωX,Y

which is normally between 0 and 1.

• Aggregation of impacts of states cY (..)

Each state needs a combination function cY (..) to aggregate the impacts of other
states on state Y.

• Speed of change of a state ηY

There is a speed factor ηY shows how fast a state changes over a period of time based
on the impact.

A conceptual representation of a temporal-causal network model can be trans-
formed in a systematic or automated manner into a numerical representation of the
model as follows [1, 12]:

• Y (t) represents the value of Y at time point t in the model which is in the interval
[0, 1].

• impactX,Y (t) = ωX,Y X(t) shows the influence of a state X connected to a state Y at
time point t where ωX,Y represents the weight of the connection.

• The aggregated impact of some statesXi onY at t is calculated using a combination
function cY (..):

aggimpactY (t) =cY (impactX1,Y (t), . . . , impactXk ,Y (t))

=cY (ωX1,Y X1(t), . . . , ωXk ,Y Xk(t))

• The impact of aggimpactY (t) on Y is applied over time gently, based on speed
factor ηY :

Y (t + �t) = Y (t) + ηY [aggimpactY (t) − Y (t)]�t

or

dY (t)/dt = ηY [aggimpactY (t) − Y (t)]

• Therefore, the difference and differential equations for Y are achieved:

Y (t + �t) = Y (t) + ηY [cY (ωX1,Y X1(t), . . . , ωXk ,Y Xk(t)) − Y (t)]�t

dY (t)/dt = ηY [cY (ωX1,Y X1(t), . . . , ωXk ,Y Xk(t)) − Y (t)]
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Adaptation principles covered
The following adaptation principles are covered.

Hebbian learning
For Hebbian learning of a connection from state Xi to state Xj, the following model
is used

ω(t + �t) = ω(t) + ηω[cω(Xi (t), X j (t), ω(t)) − ω(t)]�t

with

cω(V1, V2, W ) = hebbμ(V1, V2, W ) = V1V2(1−W ) + μW

where μ is the persistence factor with 1 as full persistence.

State-connection modulation
For the adaptation principle for state-connection modulation with control state cs,
the following model is used:

ω(t + �t) = ω(t) + ηω[cω(cs2(t), ω(t)) − ω(t)]�t

with

cω(V, W ) = scmα(V, W ) = W + αV W (1−W )

whereα is the adjustment parameter forω fromcs. In combination, these two adaptive
combination functions can be used as a weighted average with 0 ≤ θ ≤ 1 as follows:

cω(V1, V2, V, W ) = θ hebbμ(V1, V2, W ) + (1 − θ) scmα(V, W )

ω(t + �t) = ω(t) + ηω[cω(Xi (t), X j (t), cs(t), ω(t)) − ω(t)] �t

All these difference equations can be used for simulation.
This state-connection adaptation principle can also be applied in a social context.

The hypothesis is based on that whenever a more intensive interplay between two
persons occurs, the connection will become solid, e.g., [15].

Bonding based on homophily
Bonding based on homophily shows that the more look like the states of two con-
nected states, the stronger their connection will become: ‘the more you are alike, the
more you like (each other)’ [12]; see, for example, [2, 16, 17]. When also the states
are assumed dynamic, this principle can be combined with contagion of states into
a circular causal relation [18]: State ↔ Link. See also, for example [19–22]. The
homophily principle can be as represented numerically by a combination function
cA,B (V 1, V 2, W ) as follows:
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ωA,B(t + �t) = ωA,B(t) + ηA,B[cA,B(X A(t), X B(t), ωA,B(t)) − ωA,B(t)] �t

dY (t)/dt = ηA,B[cA,B(X A(t), X B(t), ωA,B) − ωA,B]

Three variants of models for the homophily axiom are the linear, quadratic, and
logistic variants:

Linear

c(V1, V2, W ) = slhomo(V1, V2, W ) = W + W (1 − W )(τ − |V1−V2|)

Quadratic

c(V1, V2, W ) = sqhomo(V1, V2, W ) = W + W (1 − W )(τ 2−(V1−V2)
2)

Logistic

c(V1, V2, W ) =sloghomo(V1, V2, W )

=W + W (1 − W )(0.5−1/(1 + e−σ(|V1−X2|−τ)))

Based on these options that can be chosen the following numerical differential
and difference equations are generated

dωC,D/dt = ηC,D ωC,D(1 − ωC,D)(τC,D − |XC−X D|)
ωC,D(t + �t) = ωC,D + ηC,D ωC,D(t) (τC,D − |XC−X D|)�t

dωC,D/dt = ηC,D ωC,D(1 − ωC,D)(τ 2
C,D − |XC−X D|)2)

ωC,D(t + �t) = ωC,D + ηC,D ωC,D(t)(1 − ωC,D)(τ 2
C,D−(X A(t)−X B(t))2)�t

dωC,D/dt = ηC,D ωC,D(1 − ωC,D)(0.5−1/(1 + e−σ(|XC −X D |−τC,D)))

ωC,D(t + �t) = ωC,D + ηA,B ωC,D(t)(1 − ωC,D)(0.5−1/(1 + e−σ(|XC −X D |−τC,D)))�t

Here, XC , XD are the states of personC andD; ωC,D is the connection weight from
person C to person D, ηC,D the update speed factor for the connection from person
C to person D, and τC,D the threshold or tipping point for connection adaption.

3 Modeling a Temporal-Causal Network in MATLAB

The advantage of using MATLAB for simulation is that (as the abbreviation of that
says) ‘Matrix laboratory’ can easily work with matrices. The format is defined in
Table 2, if there is a connection between X1 and X2 as states, the connection weight
assigned to the matrix representation (w) of states between aforementioned states.
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Due to simplicity of MATLAB and also providing many functions, the MATLAB
software became one of the often-used software environments for engineers and
computer science developers. It has been used in different aspects of sciences from
image processing, due to providing many toolboxes, and also machine learning,
analyze and simulates the behavioral dynamics of agents in cognitive science, social
science, and in artificial intelligence.

The initialization of the matrices for doing actions, calculating based on the
combination functions (identity, advance logistic, advance advanced logistic, scaled
sum…),MATLAB representation of functions based on notations of states, relations,
and all principles are shown in Table 4 in the appendix.

In Fig. 1, the functional view of the MATLAB code is shown. The process starts
with the inputs named number of states (nodes), connection weights, speed factors,
and initial values. In the next step, all parameters are allocated in matrices with 1 ×
N dimensions, where N is the number of the states in the model.

The next phase is allocating the primitive values of the states in the first row
of the matrix (STDX) and then specifying the time period for having simulation.
If there is a Hebbian learning in the model, then parameters of Hebbian learning,
η, hebb, and μ are allocated in three different matrices, similarly for the homophily
principle, simple homophily (slhom), advanced homophily (alhom) simple quadratic
homophily (sqhom) and advanced quadratic homophily (qhom), threshold (hthau),
and finally for state-connectionmodulation (scma) and the number of the stateswhich
have modulation ability. Figure 1 illustrates the functional view of writtenMATLAB
code.

Then in the next step, if there is any above-mentioned principle in the model they
will multiply by the STDX matrix formed already with time. Meanwhile, the matrix
called condy with the weights of states formed in a column-wise order and thenmake
a new row based on any principle existed and then add the influence of them in the
matrix. Finally, all matrices with STDX and condy (if there was any state-connection
modulation) result in generating the simulation.

The human interaction flowchart is depicted in Fig. 2. As it can be seen, a first step
is initialization as providing inputs, for instance, number of states, weights among
states, speed factors, and combination functions. In the second step, it is needed to
be decided in which system the user wants to work. In this phase, there are two sys-
tems, multi-agent system and single-agent system. The former offers simple linear,
advanced linear, simple quadratic, advanced quadratic homophily principles, and for
latter, there are Hebbian learning and state-connection suppression, and finally, the
plotting of simulation occurs.

And for more specification, the flowchart of the code is presented in Fig. 3.
To enable easy use, one can also use a user interface betweenExcel andMATLAB.

As MATLAB works with matrices it might be easier to use an Excel interface of
matrices and just read the matrices from the Excel file and then do the execution in
MATLAB. Such a matrix expresses the parameters, combination functions, identity
function, sum function, scaled sum with scale factor, normalized with normalizing
factor, adaptive normalized sum, simple logistic, advanced logistic, advanced logistic
and adaptive advanced logistic function with steepness, and threshold and other
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Inputs

Number of states
Connection weights
Speed factors,
initial values

Mixing

Is there any

Hebbian
Learning
principle

Multiplying
Is there any 
Homophily Multiplying
principle

Is there any                           Multiplying
state-

connection
modulation

Add         Add          Add

Allocating each row 
of combination 
function and also all 
other parameters with 
matrices 1*N dimen-
sion in order to save 
time in Matlab 

Allocating 
initial values of 
states in the 
first row of 
Matrix STDX
(1 N)

Specifying period 
of time for 
simulation (L)

Making a 
matrix with 
(time, number 
of states) 

STDX(L,

Allocating etha, 
hebb, mu with 
matrices as the 
parameters of 
Hebbian learning

Allocating slhom, 
alhom, sqhom, 
qhom, hthau as a 
threshold of 
homophily in 

Allocating state-
connection 
amplification 
(sca), scaampl , 
and the name of 
the state for 

Allocating condy matrix with 
the weights of states in 
column-wise way. (for 10 
states, 100 columns, con-
dy(1,100))
Showing relationship among 
t t  

Making condy(i,k) if there is a homoph-
ily, suppression, Hebbian learning

Allocating legends for showing each state

Allocating time for condy to make a graph if there is 
any state-connection suppression 

Making final STDX for simulating graph

Allocating legends for showing each connection

Simulating the graph of each connection if there is state-
connection modulation

Simulating the graph of each states

Fig. 1 Functional view of the MATLAB process

principles. As can be seen from Figs. 4 and 5, the MATLAB code reads the matrices
based on the matrix representation in Excel; for instance, in these figures, it would
be from column C1 to L32 to read matrix for all weights of states, speed factors,
deltaT, maxt, combination functions, and finally initial values from the first sheet and
if there is any principle combined with the model using the second sheet to read from
Excel for Hebbain learning principle and homophily for their principles. Figures 4
and 5 show this option in Excel sheets.

Parameter tuning using the sum of squared residuals and root mean square
For comparison between empirical data and simulation results and optimization of
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Initialization
(Inputs)

States – Weights - Speed factors - 
Combination Functions

Multi-Agent
System

Single-Agent 
System

Simple linear Homophily  
Advanced Linear Homophily 
Simple Quadratic Homophily 

Advanced Quadratic Homophily

Hebbian Learning Principle 
State-Connection Modulation Principle 

Plotting

Fig. 2 Human interaction flowchart

parameters, MATLAB components are available; the sum of squared residuals (SSR)
has been implemented to calculate the difference.

SSR = ((X (t1) − Y (t1))
2 + · · · + (X (tN ) − Y (tN ))2)

RMS =
√
SSR

N
=

√
(X (t1) − Y (t1))2 + · · · + (X (tN ) − Y (tN ))2

N

% loading empirical data

load('Data1.mat', 'Data1'); 
[row, col]=size(Data1); 

% Calculating Root Mean Square
RMS = sqrt (nansum ((Output - emp_data) .^2 )) / (col * row) 
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Variables Initializations in matrices
(STDX (X))

Number of 
States (N)

Weights of 
Connections

(W)

Combination 
Functions 

(O)

Simple 
 Logistic 

(C12)

Advanced 
Logistic 
(C13)

Adaptive 
Normalized 
Sum (C7)

Normalized 
Sum (C5)

Sum (C2) Identity (C1)
Adaptive 
Advanced 

logistic 
(C14)

Scaled Sum
(C3) Scaling Factor

Normalizing 
Factor 

Steepness  
Threshold

Steepness  
Threshold

Steepness  
Threshold

Homophily Principles
(Condy (i,k))

Speed Factors 
(Sp_f)

Fig. 3 Structural view of the code

4 Illustration for an Example Network Model

It is shown how the model presented in [5] can be executed in MATLAB. The
conceptual representation of temporal-causal network of the model used in [5] is
illustrated in Fig. 5, and the explanation of states has been shown in Table 3. As can
been seen from Fig. 5, here, both the Hebbian learning principle and state-connection
modulation were used. The Hebbian learning principle used between states srss and
(psa1 and psa2) and also state-connection suppression between state cs2 and the
connections with Hebbian learning principle. The number of states considered to be
10. Figure 7 shows simulation result of weights of states and Fig. 8 shows state-
connection suppression (Fig. 6).

In Fig. 6 shows temporal-causal network model. An overview of explanation of
the states is illustrated in Table 3.
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Fig. 4 Excel interface to read for MATLAB programming (parameters, speed factor, combination
function, and initial values)

Fig. 5 Excel interface to read for MATLAB programming (Hebbian, homophily, and suppression
principles)
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Fig. 6 Adaptive temporal-causal network model’s conceptual representation [5]

Table 3 States explanations in the model [5]

X1 Sensory representation of stimulus s

X2 Sensory representation of context c

X3 Sensory representation of action effect e1

X4 Sensory representation of action effect e2

X5 Feeling state for extreme emotion ee

X6 Preparation state for action a1

X7 Preparation state for action a2

X8 Preparation state for response of extreme emotion ee

X9 Control state for timing of suppression of connections

X10 Control state for suppression of connections
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Fig. 7 Simulation outcome of presented model: states

Fig. 8 Simulation outcome for suppression and Hebbian learning for ω1 (connection X1–X6) and
ω2 (connection X1–X7)

%   SRSs  SRSc   SRSe1   SRSe2  FSee    PSa1    PSa2   PSee    CS1   CS2

%    X1    X2      X3     X4     X5      X6      X7     X8     X9    X10  

W=[  0     0       0      0       0      0.9    0.4      0      0     0   %X1  SRSs

0     1     -0.1    0.3      0      0       0       1      0     0   %X2  SRSc

0     0       0      0       0     0.7      0       0      0     0   %X3  SRSe1

0     0       0      0       0      0      0.7      0      0     0   %X4  SRSe2

0     0       0      0       0      0       0       1      0     0   %X5  FSee

0     0      0.7     0       0      0 -0.2      0      0     0   %X6  PSa1  

0     0       0     0.7      0    -0.2      0       0      0     0   %X7  PSa2 

0     0       0      0       1      0       0       0      0     0   %X8  PSee 

0     0       0      0       0      0       0       0      0     0   %X9  CS1

0     0       0      0       0      0       0       0      0   -0.9  %X10 CS2

];
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Sp_f=[ 0    0.05    0.5    0.5    0.5    0.5     0.5     0.4 0.02   0.6];

O=[    0     0       0      0       1      0       0       0      1     0   % identity function id(.)

0     0       0      0       0      0       0       0      0     0   % sum function sum (...)

0     0       1      1       0      1       1       1      0     1   % Scaled sum sum (...)

0     0      0.7     1       0      2       2       2      0     1   % Scaling factor 

0     0       0      0       0      0       0       0      0     0   % normalised sun norsum(...)

0     0       0      0       0      0       0       0      0     0   % normalizing factor 

0     0       0      0       0      0  0       0      0     0   % adnorsum 

0     0       0      0       0      0       0       0      0     0   % slogistic(...)

0     0       0      0       0      0       0       0      0     0   % alogistic(...)

0  0       0      0       0      0       0       0      0     0   % steepness

0     0       0      0       0      0       0       0      0     0   % threshold

0     1       0      0       0      0       0       0      0     0 % adaptive advanced logistic (...)

0    18       0      0       0      0       0       0      0     0   % steepness

0    0.2      0      0       0      0       0       0      0     0   % threshold factor

% Suppression among connections in Hebbian learning
adcon(13,6)=0.15;
adcon(13,7)=0.15;
adcon(14,6)=0.5;
adcon(14,7)=0.5; 
adcon(24,6)=-0.7;
adcon(24,7)=-0.7;

% Hebbian learning among states 1,6
eta(1,6)=0.5;
eta(1,7)=0.8;

hebb(1,6)=0.85;
hebb(1,7)=0.85;

mu(1,6)=0.8;
mu(1,7)=0.8;

% Assign time for plotting
dt=0.25;
time=0:dt:398;
L=length(time);
STDX=zeros(L,N);

% Assign the initialization for states 1 and 2 (can be for any states)
STDX(1,1)=1;
STDX(1,2)=0.1;

Figure 9 shows adifference between simulation result and empirical data provided.
And the result is 0.01309.

5 Discussion

The implementation of a dedicated MATLAB-based software environment for
Network-Oriented Modeling has been described. The modeling approach covered
can be found in [12]; see also [1]. This implementation has been used in dynamic
and adaptive network-oriented modeling. The environment was illustrated for the
example model described in [5] for which previously only an Excel-based model
was available.



106 S. S. Mohammadi Ziabari and J. Treur

Fig. 9 Simulation result for empirical data (X1) and simulation result (X2)

An important advantage of the software environment is that modeling can take
place at the level of conceptual representations expressed as labeled graphs or matri-
ces. Therefore, it is suitable in a multidisciplinary context where different disciplines
play a role, also disciplines where technical knowledge from computer science or
AI is minimal. The more technical numerical representations and the actual exe-
cution are taken care of by the software environment, and therefore for users, no
programming skills are needed.

Acknowledgements Wewould like to thank our colleague Fakhra Jabeen, Ph.D. candidate at Vrije
Universiteit Amsterdam, for her assistance with making possible to have an Excel interface with
current MATLAB code.

Appendix: Inputs Description of the MATLAB Code

% Initializing the matrices with zeros in order to get less time in operating the main codese

id=zeros(1,N);

sum=zeros(1,N);

ssum=zeros(1,N);

lambda=zeros(1,N);

norsum=zeros(1,N);

norlambda=zeros(1,N);

adnorsum=zeros(1,N);

slog=zeros(1,N);

alog=zeros(1,N);

s=zeros(1,N);

t=zeros(1,N);

adalog=zeros(1,N);
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adas=zeros(1,N);
adat=zeros(1,N);
id=O(1,:);
sum=O(2,:);
ssum=O(3,:);
lambda=O(4,:);
norsum=O(5,:);
norlambda=O(6,:);
adnorsum=O(7,:);
slog=O(8,:);
alog=O(9,:);
s=O(10,:);
t=O(11,:);
adalog=O(12,:);
adas=O(13,:);
adat=O(14,:);
eta=zeros(N);
hebb=zeros(N);
mu=zeros(N);
slhomo=zeros(N);
alhomo=zeros(N);
sqhomo=zeros(N);
aqhomo=zeros(N);
htau=zeros(N);
amp=zeros(N);
adcon=zeros(14+N, N^2);

clc
clear 
close all
format long
N=10;

See Table 4.
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