-

View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE
provided by VU Research Portal

v U W UNIVERSITEIT
° AMSTERDAM

VU Research Portal

BinRec

Kroes, Taddeus; Altinay, Anil; Nash, Joseph; Na, Yeoul; Volckaert, Stijn; Bos, Herbert;
Franz, Michael; Giuffrida, Cristiano

published in
FEAST 2018 - Proceedings of the 2018 Workshop on Forming an Ecosystem Around Software Transformation,
co-located with CCS 2018

2018

DOI (link to publisher)
10.1145/3273045.3273050

document version _
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)

Kroes, T., Altinay, A., Nash, J., Na, Y., Volckaert, S., Bos, H., Franz, M., & Giuffrida, C. (2018). BinRec: Atack
surface reduction through dynamic binary recovery. In FEAST 2018 - Proceedings of the 2018 Workshop on
Forming an Ecosystem Around Software Transformation, co-located with CCS 2018 (pp. 8-13). Association for
Computing Machinery. https://doi.org/10.1145/3273045.3273050

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

https://core.ac.uk/display/303686203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3273045.3273050
https://research.vu.nl/en/publications/76a4675d-0875-4f07-8554-2eafd32dafaa
https://doi.org/10.1145/3273045.3273050

Full Paper

FEAST'18, October 15, 2018, Toronto, ON, Canada

BinRec:
Attack Surface Reduction Through Dynamic Binary Recovery

Taddeus Kroes

Vrije Universiteit Amsterdam

Yeoul Na

University of California, Irvine

Michael Franz

University of California, Irvine

ABSTRACT

Compile-time specialization and feature pruning through static
binary rewriting have been proposed repeatedly as techniques for
reducing the attack surface of large programs, and for minimizing
the trusted computing base. We propose a new approach to attack
surface reduction: dynamic binary lifting and recompilation.

We present BinRec, a binary recompilation framework that lifts
binaries to a compiler-level intermediate representation (IR) to allow
complex transformations on the captured code. After transforma-
tion, BinRec lowers the IR back to a “recovered” binary, which is
semantically equivalent to the input binary, but has its unnecessary
features removed. Unlike existing approaches, which are mostly
based on static analysis and rewriting, our framework analyzes
and lifts binaries dynamically. The crucial advantage is that we can
not only observe the full program including all of its dependencies,
but we can also determine which program features the end-user
actually uses. We evaluate the correctness and performance of Bin-
Rec, and show that our approach enables aggressive pruning of
unwanted features in COTS binaries.

CCS CONCEPTS

« Security and privacy — Software and application security;
Software reverse engineering;

KEYWORDS

Binary lifting; attack surface reduction; symbolic execution; LLVM

ACM Reference Format:

Taddeus Kroes, Anil Altinay, Joseph Nash, Yeoul Na, Stijn Volckaert, Herbert
Bos, Michael Franz, and Cristiano Giuffrida. 2018. BinRec:, Attack Surface
Reduction Through Dynamic Binary Recovery. In The 2018 Workshop on
Forming an Ecosystem Around Software Transformation (FEAST ’18), October
19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 6 pages. https:
//dOi.Org/lo.l145/3273045.3273050

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FEAST 18, October 19, 2018, Toronto, ON, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5997-9/18/10...$15.00
https://doi.org/10.1145/3273045.3273050

Anil Altinay

University of California, Irvine

Stijn Volckaert

University of California, Irvine

Joseph Nash

University of California, Irvine

Herbert Bos

Vrije Universiteit Amsterdam

Cristiano Giuffrida
Vrije Universiteit Amsterdam

1 INTRODUCTION

As a software program evolves over time, developers often intro-
duce additional features to address various user expectations and
to improve compatibility with other software or hardware. Many of
these additional features remain unused by regular users, however,
and security vulnerabilities in them often remain undiscovered for
years. In a recent study, Wagner et al. found that 83% of security
vulnerabilities that were assigned a CVE number in 2014 laid in
4ATJcold codeaAl [33]. To discover bugs lurking in cold code, one
current practice is to insert sanity checks into a program using dy-
namic bug detection tools (e.g., sanitizers), and to fuzz the program
or run test cases to exercise all parts of the program. As program
complexity grows, these approaches are less suitable for detecting
bugs hidden in deep execution paths.

An alternative approach to eliminate latent bugs is to specialize
the program for specific use cases through manual feature prun-
ing [24], compile-time specialization [22], or link-time code com-
paction [9]. Assisted by either static or dynamic analysis to deter-
mine which features are unnecessary for the target use case, these
techniques can achieve substantial reductions of the program’s code
size, while also removing the features that are the most likely to
contain security vulnerabilities. The downside of these techniques
is that they are heavily tailored to the kernel, exploiting the fact
that the kernel has a small set of easily recognizable interfaces to
external code (i.e., user-space programs, peripheral devices, etc.),
and thousands of preprocessor options to enable or disable features
at the source code level.

We propose a more generic approach for attack surface reduction
that works for binary commercial off-the-shelf (COTS) programs.
Instead of trying to find vulnerabilities in cold code, or running
coarse-grained analyses to identify unnecessary features and re-
move them at compile time, we use fine-grained dynamic profiling
to determine with greater precision which parts of a program’s code
are actually used. We then lift these parts of the code into a com-
piler intermediate representation (IR) format, and use a mainstream
compiler to compile the IR to a new binary executable.

We also present BinRec, a framework that implements our pro-
posed approach. BinRec is a binary program recovery and recompi-
lation framework that combines dynamic profiling with multipath
exploration to lift machine instructions to compiler IR. It then trans-
forms the IR using compiler passes (e.g., to optimize and harden
the recovered program), and recompiles it to executable code. To
reduce the attack surface exposed by unwanted program features,

https://doi.org/10.1145/3273045.3273050
https://doi.org/10.1145/3273045.3273050
https://doi.org/10.1145/3273045.3273050

Full Paper

we selectively recover only the essential parts of the program based
on execution tracing and symbolic execution. Preliminary results
show that BinRec effectively reduces the attack surface, and enables
complex transformations using existing compiler passes.

To summarize, our contributions are threefold:

e We present a novel approach to attack surface reduction
through binary recovery, combining selective binary lifting
with program analysis and transformation at the level of
compiler IR, based on dynamic profiling.

e We implement our approach in BinRec and apply our frame-
work to real-world COTS binaries.

e Our results show that BinRec successfully reduces the attack
surface in the recovered binary by removing unused program
paths and by reducing the number of ROP gadgets.

2 BACKGROUND

There are several existing efforts attempting binary recovery or
recompilation, but their specific aims vary. Some solutions provide
static reassembleable disassembly [34], but they are not conser-
vative and, without lifting to IR, they do not provide access to
powerful compiler-level analysis. Revgen [11] and Dagger [5] can
disassemble binaries to LLVM bitcode, but the IR they produce
contains machine specific constructs and unresolved control flow.
It would require extensive tool-specific analyses and transforma-
tions before that IR could be coherently understood by off-the-shelf
compiler analyses. SecondWrite [3] and McSema [16] aim to lift
entire binaries to LLVM IR and recompile them. Rev.ng [15] can
lift entire binaries to compilable LLVM IR, and primarily aims to
provide analysis of programs’ control flow and function boundries.
However, these approaches are all fully static: static disassembly,
static analysis, and static rewriting. Static disassembly decodes
machine instructions in a binary without executing them. When
successful, this provides the advantage of a complete program view.
Unfortunately, static analysis is difficult for complicated code. Sec-
ondWrite [3], for instance, cannot correctly handle handwritten
assembly, special idioms, many optimizations and transformations,
or even position-independent code. Still, it is sufficient for benign
off-the-shelf binaries that follow known code generation patterns
from compilers and contain symbols. Unfortunately, binaries that
are the target of analysis are typically release builds, stripped of
symbols and debug information. In addition, such static disassembly
tools conservatively assume that all statically reachable program
paths are equally important in the absence of run-time informa-
tion. Such conditions make static disassembly ineffective for attack
surface reduction through binary rewriting. Hence, we propose to
use dynamic analysis to support cases where static disassembly
inherently fails, instead following actual runs of the program. While
this removes the problems of static analysis, it introduces new ones.
For instance, what should be done when a rewritten binary hits
an execution path that did not appear during profiling and how to
improve coverage to limit such cases?

3 BINREC DESIGN

Figure 1 shows an overview of the BinRec framework, consisting of
three components: a front-end that lifts machine code to compiler
IR, a transformation component that rewrites the IR in any way

FEAST'18, October 15, 2018, Toronto, ON, Canada

Transformation
IR I Symbolic executor I
Lifting frontend
Input
Binary

Machine code

Compilation
backend

Recovered
binary

Figure 1: The steps of binary recovery: lifting to compiler IR,
transformation on the IR level, and lowering of compiled IR
back to machine code.

desired (e.g., compiler optimizations, security hardening, etc.), and
a back-end that compiles the transformed IR back to machine code
and produces an executable binary. At a high level, BinRec works
as follows. First, the lifting front-end executes the given program
binary with concrete inputs in a virtual environment. At the same
time, it also selectively invokes symbolic execution to discover pos-
sible execution paths that may be reachable with other legitimate
program inputs. The front-end lifts all the program paths visited
during both the concrete and symbolic execution, and turns them
into IR snippets. It then removes any dependency with the virtual
environment from the lifted IR and merges them into a single IR
module that can be analyzed by the subsequent transformation
passes. The transformation component can incorporate any tech-
nique that operates on compiler IR, including existing optimization
and security hardening passes. Finally, the back-end component
removes any remaining instrumentation added by the front-end,
and compiles the final IR to machine code using the compiler.
Unlike traditional binary recovery tools, BinRec does not aim to
maximize code coverage. Instead, it aims to reduce the program’s
attack surface by removing rarely executed code paths. With this
strategy, however, the recovered binary may not include all the nec-
essary program functionality, especially when the recovered binary
is later executed with untested program inputs. To guarantee that
the recovered binary will execute correctly, we enforce a fallback
to the original code whenever it hits execution paths removed from
the recovered binary. Thanks to our trace-based lifting, fallbacks
should not occur frequently. We can therefore afford to embed
heavyweight (i.e., slow) security mechanisms in the fallback code,
which allows us to further reduce the program’s attack surface.

3.1 Lifting binary code to compiler IR

We discover additional possible execution paths by performing
multi-path recovery of the input binary. To do so, we employ sym-
bolic execution [8, 21], a well-known technique to find software
bugs by replacing memory values with symbolic expressions. To
ensure conservativeness, we must handle all execution paths that
both the profile runs and symbolic execution missed in a conserva-
tive manner. In other words, the binary should detect a deviation
from the observed code paths and take the appropriate action (e.g.,
jump to to existing machine code in the input binary).

We base our design on a lifting front-end that lifts machine code
to IR using a virtual machine for program isolation. The front-
end produces IR that is specific to the execution environment. For
instance, both data and code pointers are put as constants in the
IR. This also holds true for position independent code (PIC), which

Full Paper

normally uses only offsets relative to the location of the program.
This means that our design supports the lifting of PIC binaries by
fixing the code and data locations that were used during tracing,
and thereafter accessing them in an address dependent manner.

3.2 Ensuring conservative program behavior

While trace-based lifting of BinRec is mainly designed for attack
surface reduction, it can also be used for aggressive input-specific
optimizations. BinRec features a configurable fallback mechanism
that facilitates both uses cases. With the fallback enabled, the recov-
ered program diverts any control flow edge that ventures outside of
the recovered CFG to the corresponding machine code in the input
binary. The fallback mechanism currently supports four modes:

(1) disabled No fallback, inputs that require control flow trans-
fers outside the recovered path trigger undefined behavior.
This allows for aggressive optimization, but does not pre-
serve program behavior for all inputs.

error Unknown control flow transfers trigger an error. This
is used when a fallback is not desired (e.g., because the code
is only considered secure in the instrumented path), but
the input cannot be controlled to always be confined to the
recovered path (which the disabled mode requires).
standard Any unknown control transfer jumps to the corre-
sponding instruction in the existing code of the input binary.
The binary maintains a jump table of code pointers to all
recovered basic blocks. The target of the control flow trans-
fer is first checked to exist in the jump table—to stay in the
recovered path for as long as possible—and execution moves
to existing code only in case of a miss.

replaced Based on standard mode, but we also modify the
existing code in the input binary to jump to recovered code
for a selected set of code addresses (which defaults to all
recovered code addresses). This enforces execution of lifted
code for the selected addresses, while conservatively main-
taining all original behavior of the binary. replaced mode
is not yet implemented in our current prototype.

@)

®)

©

Intuitively, the attack surface is enlarged when adding code to a
binary while also leaving the original code in place, as is done by the
standard fallback mode. Depending on the type of attack surface
reduction desired, however, the original code can be modified to
mitigate attacks. For instance, when implementing memory safety
or control flow integrity, the original code can be monitored by a
heavyweight binary instrumentation framework. The recovered
code constitutes a fast path in this case in which instrumentation is
efficiently embedded within the recovered IR before recompilation.
When reducing the amount of ROP gadgets, on the other hand, one
would use the error mode and remove the original code sections.

3.3 Deinstrumentation

Running a binary in a virtual machine requires maintaining a vir-
tual processor state (e.g., registers) in memory, which is also visible
in the lifted code that interacts with this virtual environment rather
than on physical registers. A significant part of our work concerns
deinstrumenting the captured code—detaching the captured IR from
the runtime environment in order to create a standalone executable
binary. We omit details of these transformations here due to space

10

FEAST'18, October 15, 2018, Toronto, ON, Canada

cmp eax, 3
jne label
(a) x86 assembly

4513727, i32 134513707

5
%BB_804842b

(d) Optimized

(b) Instrumentation after lifting

Figure 2: Deinstrumentation of a small basic block (a). Dy-
namic code lifting captures instrumented, decoupled code
(b). Deinstrumentation shortens the code and adds explicit
control flow instructions (c). After applying standard com-
piler optimizations, a single basic block remains in the IR
(d). Note that the instructions illustrate code size and are not
intended to be readable.

constraints, but Figure 2 shows their efficacy on a small code ex-
ample. Conversely, we also instrument the IR with some additional
information, such as memory accesses, to aid in performing effec-
tive optimizations. The added instrumentation is removed before
compiling the IR back to executable code.

3.4 Producing an executable binary

The back-end component removes any remaining instrumentation
added by the front-end, and compiles the rewritten IR to machine
code. Although lifted instructions are ready for compilation to stan-
dalone machine code, dependencies on data and external functions
from the original program are still unresolved in the resulting bi-
nary. Uroberos [34] attempts to find and replace such references in
the code with position-independent references in the output binary.
They rely on the assumption that all such references can be found,
which is not guaranteed in all use cases we aim to support. Instead,
we follow the more conservative approach of SecondWrite [3],
which embeds sections from the input binary in the recovered IR
and enforces linkage at the original base addresses.

4 IMPLEMENTATION

We have implemented our approach in BinRec, spanning 9960 sloc
of which 7915 are C++ code that implements lifting and deinstru-
mentation. The implementation targets 32-bit x86 binaries on Linux.

BinRec uses S’E [12] as its lifting front-end. S?E implements
selective symbolic execution, alternating computationally intensive
symbolic execution with high performance dynamic binary trans-
lation (DBT). This facilitates symbolic execution of a single process
running in a QEMU [4] virtual machine. Code is translated to LLVM
IR in order to be symbolically executed by the KLEE [7] symbolic

Full Paper

executor. Selective symbolic execution successfully combines multi-
path exploration with dynamic analysis of binary executables while
lifting code to compiler-level IR. This makes S?E a solid founda-
tion for our binary recovery framework. On top of S?E, we have
implemented a plugin that logs the generated LLVM IR.

The logged IR is decoupled from the S?E runtime state by our
deinstrumentation engine, as exemplified in Figure 2. The engine
implements the disabled, error, and standard modes of BinRec’s
fallback mechanism. When enabled, it directs all control flow edges
with unknown targets in the logged IR to a trampoline. The trampo-
line copies lifted register values to physical registers before jumping
to the corresponding code address in the original code of the binary.

5 EVALUATION

We evaluated BinRec by lifting binaries and running them on a
system with 32GB RAM, and an Intel i7-6700 processor running
at 3.4GHz with frequency scaling turned off. We used gcc 4.8.4 to
compile programs to 32-bit x86 binaries.

We first evaluate the correctness and performance of a number
of binaries from the SPEC-CPU2006 benchmarking suite, recovered
by BinRec. Since KLEE does not support floating-point operations,
S?E implements these by emulation in integer operations. As this
significantly degrades floating-point performance, we only eval-
uate the CINT subset of SPEC to obtain an accurate view of any
instrumentation overhead.

Furthermore, we disable symbolic execution to assert that we
evaluate correctness and performance of the recovered binary
within the exact same code path followed by the original binary.

5.1 Correctness

We evaluated the correctness of the recovered binaries by running
single-path binary recovery and comparing the behavior of the re-
covered binary with that of the input binary. Each program binary is
lifted using its first reference input available in the SPEC-CPU2006
benchmark suite. If binary recovery is performed successfully and
the same inputs are specified, the recovered binary must exercise
exactly the same code paths as during recovery, not requiring the
fallback mechanism. We use the error path of the fallback mecha-
nism to test this behavior, and verify that the recovered and input
binaries have the same output. We have compiled the 12 programs
from the CINT set without optimizations and with full optimization
(-00 and -03), resulting in 24 input binaries. 9 of these do not work
as expected for varying reasons:

o omnetpp, gcc, xalancbmk and gobmk-O3 trigger incorrectly
ordered execution events in S2E, causing successor informa-
tion to be recorded incorrectly. This leads to a fallback.

e perlbench triggers incorrect disassembly by S?E due to a bug
that causes an off-by-one error in the program counter.

The remaining 15 binaries all correctly follow the original code
path, i.e., no fallback is detected. In order to measure the perfor-
mance of the fallback mechanism, we have also recovered the re-
maining binaries with the fallback mechanism disabled, and again
verified the results. bzip2-O3 crashes when the fallback mechanism
is disabled, due to a nontrivial over-optimization bug. This leaves a
total of 29 output binaries for our performance evaluation.

1

FEAST'18, October 15, 2018, Toronto, ON, Canada

B fallback enabled fallback disabled

2

15

035

0
P

o o_\ o\ o\ o\
48 @
ot e

My 0y
P P 00 P P P P 0P o PP
‘\ﬁ\ﬁ‘ 4 30@ ,Lbn. 2 b 0 g \p“‘ rﬂ'@h o

hb W

Figure 3: Normalized runtime of recovered SPEC2006 bina-
ries (1 = input binary).

5.2 Performance

Figure 3 shows the runtime performance of recovered binaries com-
pared to the respective input binaries. All recovered binaries have
been optimized after lifting. For some unoptimized binaries, this
leads to a significant speedup (bzip2, mcf, hmmer and sjeng, the
latter only with fallback disabled). For most binaries, however, bi-
nary recovery incurs a slowdown. Manual inspection shows this
is the case because LLVM optimizations cannot effectively track
variable values on the stack, and thus keep them in memory rather
than in registers after recompilation. The geometric mean of nor-
malized runtimes for unoptimized (O0) binaries are 1.02 and 0.97
with the fallback mechanism enabled and disabled respectively. For
optimized (O3) binaries, the geometric means are 1.44 and 1.39
respectively. We believe this to be an acceptable baseline instru-
mentation overhead given that (i) existing binary rewriting also
introduce overhead but without allowing for IR-level transforma-
tions [34] and (ii) additional optimizations unique to our particular
setting (e.g., profile-guided optimizations) are possible.

5.3 Attack Surface Reduction

Although progress is being made at quantifying the attack surface
of the kernel [22], we are not aware of any universally accepted
attack surface reduction metrics for user-space code. We therefore
chose to measure the attack surface of the recovered programs by
calculating the fraction of original program instructions that are
lifted to IR code, and by comparing the number of ROP gadgets
in the recovered code with the number of gadgets in the original
code. Table 1 shows our findings. We evaluated only benchmarks
that can be correctly recovered by BinRec; all input binaries are
optimized (O3). Each program binary is lifted using all reference
inputs available in the SPEC CPU 2006 benchmark suite. We then
measured geometric means of results from different reference in-
puts. astar, for example, has two reference inputs BigRakes2048 and
rivers, thereby two recovered binaries were generated and mea-
sured for this benchmark. Using BinRec, only 28% of the original
instructions are lifted to LLVM IR on average. We measured ROP
gadget reduction in the recovered binaries using a ROP gadget
finder tool called Ropper [2]. We found that the BinRec recovered
binaries contain 48% fewer ROP gadgets than the original binaries.

Full Paper

FEAST'18, October 15, 2018, Toronto, ON, Canada

Table 1: Attack surface reduction

. . ROP gadgets
Benchmark | % recovered instructions . .
original # recovered (gmean) % reduction
astar 49.09% 1029 804 21.87%
bZip 55.91% 1070 581.67 45.64%
gobmk 19.70% 20564 4583.6 77.711%
h264ref 21.81% 9035 2315.67 74.37%
hmmer 8.17% 5488 1100 79.96%
libquantum 26.92% 1397 179 48.53%
mcf 57.20% 549 433 21.13%
sjeng 25.84% 2269 1013 55.35%
gmean [28.05% 47.56%

6 RELATED WORK

BinRec is not the first to address the problem of binary rewriting
or code lifting. We now summarize related work.

Attack surface reduction. Previous work on attack surface reduc-
tion primarily targets the Linux kernel. Not all of these works tar-
geted attack surface reduction specifically, but achieved it nonethe-
less as a side effect of code compaction. Lee et al., for example,
constructed call graphs to identify dead code in the kernel, and
then manually pruned this code at the source level [24]. Chanet et al.
used a variety of static analyses, including constant propagation, to
specialize the kernel for a given kernel command line [9]. Contrary
to the aforementioned work by Lee et al., this solution operates at
link time and is fully automated. He et al. analyze and compact the
kernel at the source code level, and propose to leverage approxi-
mate decompilation and FA-analysis to incorporate the effects of
hand-written assembly snippets into static analysis results [18].
More recently, Kurmus et al. used dynamic tracing to determine
which kernel functionality is necessary to support a given system
workload [22]. They then correlated the trace information to source
lines, and subsequently calculated the minimal set of compile-time
configuration options that must be enabled to generate a kernel
that incorporates all the necessary functionality.

Low-level binary analysis and rewriting. Many projects target
the problem of low-level binary analysis and rewriting. PEBIL [23],
UQBT [13] and Uroboros [34] all statically rewrite binary programs
either at the machine code level or using a custom low-level IR.
Their main aim is to support the insertion of simple instrumentation
where efficiency is more important than the ability to perform com-
plex code transformations, such as altering the CFG. BISTRO [14]
allows extracting and embedding functional components within
binaries, and when combined with an analysis and concretization
scheme such as one proposed by [20] can provide binary feature
customization. While it targets advanced analysis, rather than code
rewriting (as we do)), angr [31] bundles numerous static and dy-
namic analysis techniques, including symbolic execution.

Earlier work such as ATOM [17], PLTO [28], Diablo [27], and
Vulcan [32] are powerful tools, but to our knowledge they do not
work well with stripped binaries. Also, like dynamic instrumenta-
tion tools, they typically do not support a generic compiler-level

12

IR. Dynamic instrumentation tools like PIN [25], Dyninst [6], Dy-
namoRIO [1] and Valgrind [26] are dynamic binary analysis tools,
providing runtime APIs to analyse and instrument code at runtime.
They do not use a compiler-level IR, and since they lack the recom-
pilation phases, they are weaker in applying advanced analysis or
optimization passes.

Binary code lifting. LLBT [29, 30] statically retargets binaries to
different ISAs after lifting them to LLVM IR. MC-Semantics [16],
Dagger [5] and RevNIC [10] (which is based on S?E) raise machine
code for the purpose of high-level static binary translation on LLVM
IR. SecondWrite [3] successfully recompiles real-world binaries
after statically lifting them to LLVM IR, rejuvenating them by ap-
plying existing compiler optimizations. Such projects are limited by
their static analysis and cannot handle complex program code such
as highly optimized binaries, special idioms, etc. They are all based
on static analysis. In addition, even the most advanced solution, Sec-
ondWrite, currently cannot cope with position-independent code.
Finally, HQEMU [19] extends the QEMU code generation back-end
to lift code to LLVM IR similarly to S?E (and therefore BinRec), for
the purpose of optimization. It does not decouple lifted code from
the QEMU runtime to produce a standalone executable binary, like
BinRec.

7 CONCLUSION

We presented BinRec, a new solution for attack surface reduction
based on binary analysis and rewriting. BinRec recovers only an
essential part of the program by capturing execution traces and
discovering more execution paths reachable through symbolic exe-
cution. Our experiment shows that BinRec successfully removes
over 70% of the original instructions while preserving the program’s
functionality, and that the BinRec recovered binaries contain nearly
50% less ROP gadgets. To implement a conservative recompilation
strategy, BinRec relies on fallback code to handle residual binary
code that did not execute during profiling. Since the program rarely
reaches the fallback code, we can apply slower yet stronger harden-
ing solutions to the fallback code, e.g., precise control-flow integrity
instrumentation. Applying such hardening techniques to fallback
code will allow us to further reduce the attack surface.

Full Paper

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable feedback.
This work was supported in part by the Netherlands Organisa-
tion for Scientific Research through grants NWO 639.023.309 VICI
“Dowsing”, in part by the United States Office of Naval Research
(ONR) under contracts N00014-17-1-2782 and N00014-17-S-B010
“BinRec”, in part by the European Commission (Horizon 2020 - DS-
07-2017) under Grant #786669 “ReAct”, in part by the Defense Ad-
vanced Research Projects Agency (DARPA) under contracts FA8750-
15-C-0124 and FA8750-15-C-0085, and in part by the National Sci-
ence Foundation under awards CNS-1619211 and CNS-1513837.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this paper are those of the authors and do not necessarily
reflect the views of any of the sponsors or any of their affiliates. The
authors also gratefully acknowledge a gift from Oracle Corporation.

REFERENCES

[1] DynamoRIO. http://dynamorio.org.

[2] Ropper. https://scoding.de/ropper/.

[3] Kapil Anand, Matthew Smithson, Khaled Elwazeer, Aparna Kotha, Jim Gruen,
Nathan Giles, and Rajeev Barua. A compiler-level intermediate representation
based binary analysis and rewriting system. In Eurosys, 2013.

[4] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX ATC,
2005.

[5] Ahmed Bougacha, Geoffroy Aubey, Pierre Collet, Thomas Coudray, Jonathan
Salwan, and Amaury de la Vieuville. Dagger decompiling to ir. 2013.

[6] Bryan Buck and Jeffrey K Hollingsworth. An api for runtime code patching.
IJHPCA, 2000.

[7] Cristian Cadar, Daniel Dunbar, and Dawson R Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
OSDI, 2008.

[8] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S Pasireanu, Koushik
Sen, Nikolai Tillmann, and Willem Visser. Symbolic execution for software
testing in practice: preliminary assessment. In ICSE, 2011.

[9] Dominique Chanet, Bjorn De Sutter, Bruno De Bus, Ludo Van Put, and Koen

De Bosschere. System-wide compaction and specialization of the linux kernel.

ACM SIGPLAN Notices, 2005.

Vitaly Chipounov and George Candea. Reverse engineering of binary device

drivers with revnic. In EuroSys, 2010.

Vitaly Chipounov and George Candea. Enabling sophisticated analyses of x86

binaries with revgen. In DSN-W, 2011.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E: a platform

for in-vivo multi-path analysis of software systems. 2012.

Cristina Cifuentes and Mike Van Emmerik. Ugbt: Adaptable binary translation

at low cost. Computer, 2000.

Zhui Deng, Xiangyu Zhang, and Dongyan Xu. Bistro: Binary component extrac-

tion and embedding for software security applications. In Computer Security —

[10]
[11]
[12]
[13]

[14]

13

FEAST'18, October 15, 2018, Toronto, ON, Canada

ESORICS 2013, 2013.

Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. Rev. ng: a unified
binary analysis framework to recover cfgs and function boundaries. In CC, 2017.
Artem Dinaburg and Andrew Ruef. Mcsema: Static translation of x86 instructions
to llvm. In ReCon, 2014.

Alan Eustace and Amitabh Srivastava. Atom: A flexible interface for building
high performance program analysis tools. In USENIX TCON, 1995.

Haifeng He, John Trimble, Somu Perianayagam, Saumya Debray, and Gregory
Andrews. Code compaction of an operating system kernel. In CGO, 2007.
Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew, Jan-Jan Wu, Wei-Chung
Hsu, Pangfeng Liu, Chien-Min Wang, and Yeh-Ching Chung. Hqemu: A multi-
threaded and retargetable dynamic binary translator on multicores. In CGO,
2012.

Dohyeong Kim, William N. Sumner, Xiangyu Zhang, Dongyan Xu, and Hira
Agrawal. Reuse-oriented reverse engineering of functional components from
x86 binaries. In ICSE, 2014.

James C King. Symbolic execution and program testing. CACM, 1976.

Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin
Rothberg, Andreas Ruprecht, Wolfgang Schroder-Preikschat, Daniel Lohmann,
and Rudiger Kapitza. Attack surface metrics and automated compile-time os
kernel tailoring. In NDSS, 2013.

Michael A Laurenzano, Mustafa M Tikir, Laura Carrington, and Allan Snavely.
Pebil: Efficient static binary instrumentation for linux. In ISPASS, 2010.

Chi-Tai Lee, Jim-Min Lin, Zeng-Wei Hong, and Wei-Tsong Lee. An application-
oriented linux kernel customization for embedded systems. J. Inf. Sci. Eng.,
2004.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In SIGPLAN,
2005.

Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In SIGPLAN, 2007.

L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere. Diablo: a
reliable, retargetable and extensible link-time rewriting framework. In ISSPIT,
2005.

Benjamin Schwarz, Saumya Debray, Gregory Andrews, and Matthew Legendre.
Plto: A link-time optimizer for the intel ia-32 architecture. In WBT, 2001.
Bor-Yeh Shen, Jiunn-Yeu Chen, Wei-Chung Hsu, and Wuu Yang. Llbt: an llvm-
based static binary translator. In CASES, 2012.

Bor-Yeh Shen, Wei-Chung Hsu, and Wuu Yang. A retargetable static binary
translator for the arm architecture. TACO, 2014.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. SoK: (State of) The Art of War: Offensive Techniques in
Binary Analysis. In S&P, 2016.

A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary transformation in a dis-
tributed environment. Technical report, Microsoft Research, 2001.

[33] Jonas Wagner, Volodymyr Kuznetsov, George Candea, and Johannes Kinder. High
system-code security with low overhead. In Security and Privacy (SP), 2015 IEEE
Symposium on, pages 866—879. IEEE, 2015.

Shuai Wang, Pei Wang, and Dinghao Wu. Reassembleable disassembling. In
USENIX SEC, 2015.

[16

(17

[18

[19

[24

[25]

™
2

[27

[28

[29

[30

[31

(32]

(34]

http://dynamorio.org
https://scoding.de/ropper/

	Abstract
	1 Introduction
	2 Background
	3 BinRec Design
	3.1 Lifting binary code to compiler IR
	3.2 Ensuring conservative program behavior
	3.3 Deinstrumentation
	3.4 Producing an executable binary

	4 Implementation
	5 Evaluation
	5.1 Correctness
	5.2 Performance
	5.3 Attack Surface Reduction

	6 Related Work
	7 Conclusion
	References

