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ADHD is a neurodevelopmental psychiatric disorder that 
affects around 5% of children and adolescents and 2.5% of 
adults worldwide1. ADHD is often persistent and markedly 

impairing, with increased risk of harmful outcomes, such as inju-
ries2, traffic accidents3, increased healthcare utilization4,5, substance 

abuse6, criminality7, unemployment8, divorce4, suicide9, AIDS risk 
behaviors8 and premature mortality10. Epidemiologic and clinical 
studies implicate genetic and environmental risk factors that affect 
the structure and functional capacity of brain networks involved in 
behavior and cognition1 in the etiology of ADHD.
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Attention deficit/hyperactivity disorder (ADHD) is a highly heritable childhood behavioral disorder affecting 5% of children 
and 2.5% of adults. Common genetic variants contribute substantially to ADHD susceptibility, but no variants have been 
robustly associated with ADHD. We report a genome-wide association meta-analysis of 20,183 individuals diagnosed with 
ADHD and 35,191 controls that identifies variants surpassing genome-wide significance in 12 independent loci, finding impor-
tant new information about the underlying biology of ADHD. Associations are enriched in evolutionarily constrained genomic 
regions and loss-of-function intolerant genes and around brain-expressed regulatory marks. Analyses of three replication stud-
ies: a cohort of individuals diagnosed with ADHD, a self-reported ADHD sample and a meta-analysis of quantitative measures 
of ADHD symptoms in the population, support these findings while highlighting study-specific differences on genetic overlap 
with educational attainment. Strong concordance with GWAS of quantitative population measures of ADHD symptoms sup-
ports that clinical diagnosis of ADHD is an extreme expression of continuous heritable traits.
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Consensus estimates from more than 30 twin studies indicate 
that the heritability of ADHD is 70–80% throughout the lifespan11,12 
and that environmental risks are those not shared by siblings13. Twin 
studies also suggest that diagnosed ADHD represents the extreme 
tail of one or more heritable quantitative traits14. Additionally, fam-
ily and twin studies report genetic overlap between ADHD and 
other conditions, including antisocial personality disorder/behav-
iors15, cognitive impairment16, autism spectrum disorder17,18, schizo-
phrenia19, bipolar disorder20, and major depressive disorder21.

Thus far, genome-wide association studies (GWASs) to iden-
tify common DNA variants that increase the risk of ADHD have 
not been successful22. Nevertheless, genome-wide SNP heritability 
estimates range from 0.10–0.28 (ref. 23,24), supporting the notion 
that common variants comprise a significant fraction of the risk 
underlying ADHD25 and that with increasing sample size, and 
thus, increasing statistical power, genome-wide significant loci 
will emerge.

Previous studies have demonstrated that the common vari-
ant risk, also referred to as the SNP heritability, of ADHD is also 
associated with depression25, conduct problems26, schizophrenia27, 
continuous measures of ADHD symptoms28,29 and other neuro-
developmental traits29 in the population. Genetic studies of quan-
titative ADHD symptom scores in children further support the 
hypothesis that ADHD is the extreme of a quantitative trait30.

Here, we present a genome-wide meta-analysis identifying the 
first genome-wide significant loci for ADHD using a combined 
sample of 55,374 individuals from an international collaboration. 
We also strengthen the case that the clinical diagnosis of ADHD is 
the extreme expression of one or more heritable quantitative traits, 
at least as it pertains to common variant genetic risk, by integrating 
our results with previous GWASs of ADHD-related behavior in the 
general population.

Results
Genome-wide significantly associated ADHD risk loci. Genotype 
array data for 20,183 individuals with ADHD and 35,191 controls 
were collected from 12 cohorts (Supplementary Table  1). These 
samples included a population-based cohort of 14,584 individu-
als with ADHD and 22,492 controls from Denmark collected by 
the Lundbeck Foundation Initiative for Integrative Psychiatric 
Research (iPSYCH; Supplementary Fig.  1), and 11 European, 
North American and Chinese cohorts aggregated by the Psychiatric 
Genomics Consortium (PGC). Individuals with ADHD in iPSYCH 
were identified from the national Psychiatric Central Research 
Register and diagnosed by psychiatrists at a psychiatric hospital 
according to ICD10 (F90.0) and then genotyped using Illumina 
PsychChip. Designs for the PGC cohorts have been described pre-
viously22,24,25,31,32 (detailed cohort descriptions in  Supplementary 
Note). All relevant ethical permissions and informed consent were 
obtained for the included cohorts (details in approval authorities 
in Supplementary Note).

Prior to analysis, stringent quality control procedures were per-
formed on the genotyped markers and individuals in each cohort 
using a standardized pipeline33 (Methods). Related individuals were 
removed, and genetic outliers within each cohort were excluded 
based on principal component analysis. Non-genotyped markers 
were imputed using the 1000 Genomes Project Phase 3 reference 
panel34 (Methods).

GWAS was conducted in each cohort using logistic regression 
with the imputed additive genotype dosages. Principal components 
were included as covariates to correct for population stratifica-
tion35 (Supplementary Note), and variants with imputation INFO 
score <​ 0.8 or minor allele frequency (MAF) <​ 0.01 were excluded. 
The GWASs were then meta-analyzed using an inverse-variance 
weighted fixed effects model36. The single Chinese cohort included 
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Fig. 1 | Manhattan plot of the results from the GWAS meta-analysis of ADHD. The index variants in the 12 genome-wide significant loci are highlighted 
as an orange diamond. Index variants located with a distance <​400 kb are considered as one locus. The y axis represents –log(two-sided P values) 
for association of variants with ADHD, from meta-analysis using an inverse-variance weighted fixed effects model and a total sample size of 20,183 
individuals with ADHD and 35,191 controls. The horizontal red line represents the threshold for genome-wide significance.
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had insufficient sample size for well-powered transethnic modeling 
(Supplementary Fig.  2). Association results were considered only 
for variants with an effective sample size >​70% of the full meta-
analysis, leaving 8,047,421 variants in the final meta-analysis. A 
meta-analysis restricted to individuals of European ancestry (19,099 
with ADHD, 34,194 controls) was also performed to facilitate sec-
ondary analyses (Supplementary Note).

In total, 304 genetic variants in 12 loci surpassed the thresh-
old for genome-wide significance (P <​ 5 ×​ 10−8; Fig.  1, Table  1 
and Supplementary Fig.  3). Results for the European ancestry 
meta-analysis were substantively similar (Supplementary Fig.  4). 
No marker demonstrated significant heterogeneity between stud-
ies (Supplementary Figs.  5 and 6), and no heterogeneity was 
observed between the Chinese and European ancestry cohorts 
(Supplementary Fig. 2). Conditional analysis within each locus did 
not identify any independent secondary signals meeting genome-
wide significance (Methods; Supplementary Table 2).

Homogeneity of effects between cohorts. No genome-wide signif-
icant heterogeneity was observed in the ADHD GWAS meta-analy-
sis (Supplementary Note). A genetic correlation analysis (Methods) 
provided further evidence that effects were consistent across 
cohort study designs. The estimated genetic correlation between 
the European ancestry PGC samples and the iPSYCH sample from 
linkage disequilibrium (LD) score regression37 was not significantly 
less than 1 (rg =​ 1.17, standard error (SE) =​ 0.20). The correlation 
between European ancestry PGC case/control and trio cohorts 
estimated with bivariate GREML was similarly close to 1 (rg =​ 1.02, 
SE =​ 0.32; Supplementary Table 3).

Polygenic risk scores (PRSs)38 were also consistent across tar-
get samples. PRSs computed in each PGC study using iPSYCH as 
the training sample were consistently higher in ADHD compared 
with controls or pseudocontrols (Supplementary Fig. 7). Increasing 
deciles of PRS in the PGC were associated with a higher odds ratio 
(OR) for ADHD (Fig.  2). A similar pattern was seen in five-fold 
cross-validation in the iPSYCH cohort, with PRS for each subset 
computed from the other four iPSYCH subsets and the PGC samples 
used as training samples (Methods; Fig. 2). Across iPSYCH subsets, 
the mean of the maximum variance explained by the estimated PRS 

(Nagelkerke’s R2) was 5.5% (SE =​ 0.0012) (Supplementary Fig.  8). 
The difference in standardized PRS between cases and controls was 
stable across iPSYCH subsets (OR =​ 1.56, 95% confidence interval 
(CI): 1.53–1.60; Supplementary Fig. 9) and across waves and PGC 
cohorts (Supplementary Fig. 10). These results further support the 
notion of highly polygenic architecture of ADHD and demonstrate 
that ADHD risk is significantly associated with PRS in a dose-
dependent manner.

Polygenic architecture of ADHD. To assess the proportion of phe-
notypic variance explained by common variants, we applied LD score 
regression37 to results from the European ancestry meta-analysis 
(Methods). Assuming a population prevalence of 5% for ADHD39, 
we estimated the liability-scale SNP heritability as h2

SNP =​ 0.216 
(SE =​ 0.014, P =​ 8.18 ×​ 10−54; Supplementary Table  4). These esti-
mated polygenic effects account for 88% (SE =​ 0.0335) of observed 
genome-wide inflation of the test statistics in the meta-analysis 
(λ =​ 1.200; quantile-quantile plots in Supplementary Fig.  11); the 
remaining inflation, which may reflect confounding factors, such as 
cryptic relatedness and population stratification, is significant but 
modest (intercept =​ 1.0362, SE =​ 0.0099, P =​ 2.27 ×​ 10−4).

To further characterize the patterns of heritability from the 
genome-wide association data, we partitioned SNP heritability 
by functional annotations, as described in Finucane et al.40, using 
partitioned LD score regression (Methods). The analysis found  
significant enrichment in the heritability from SNPs located in con-
served regions (P =​ 8.49 ×​ 10−10; Supplementary Fig. 12), supporting  
their biological importance. Enrichment of the SNP heritability 
in cell-type-specific regulatory elements was evaluated using the 
cell-type-specific group annotations described in Finucane et al.40.  
We observed a significant enrichment of the average per SNP 
heritability for variants located in central nervous system−​specific 
regulatory elements (enrichment =​ 2.44, SE =​ 0.35, P =​ 5.81 ×​ 10−5; 
Supplementary Figs. 13 and 14).

Genetic correlation with other traits. Pairwise genetic correla-
tion with ADHD was estimated for 219 phenotypes using LD 
score regression41,42 (Methods; Supplementary Data 1). Forty-three 
phenotypes demonstrated significant genetic overlap with ADHD 

Table 1 | Results for the genome-wide significant index variants in the 12 loci associated with ADHD identified in the GWAS meta-
analysis of 20,183 individuals with ADHD and 35,191 controls

Locus Chr BP Index variant Genes A1 A2 A1 freq OR P value

1 1 44184192 rs11420276 ST3GAL3, KDM4A, KDM4A-AS1, PTPRF, 
SLC6A9, ARTN, DPH2, ATP6V0B, B4GALT2, 
CCDC24, IPO13

G GT 0.696 1.113 2.14 ×​ 10−13

2 1 96602440 rs1222063 Intergenic A G 0.328 1.101 3.07 ×​ 10−8

3 2 215181889 rs9677504 SPAG16 A G 0.109 1.124 1.39 ×​ 10−8

4 3 20669071 rs4858241 Intergenic T G 0.622 1.082 1.74 ×​ 10−8

5 4 31151456 rs28411770 PCDH7, LINC02497 T C 0.651 1.090 1.15 ×​ 10−8

6 5 87854395 rs4916723 LINC00461, MIR9-2, LINC02060, 
TMEM161B-AS1

A C 0.573 0.926 1.58 ×​ 10−8

7 7 114086133 rs5886709 FOXP2, MIR3666 G GTC 0.463 1.079 1.66 ×​ 10−8

8 8 34352610 rs74760947 LINC01288 A G 0.957 0.835 1.35 ×​ 10−8

9 10 106747354 rs11591402 SORCS3 A T 0.224 0.911 1.34 ×​ 10−8

10 12 89760744 rs1427829 DUSP6, POC1B A G 0.434 1.083 1.82 ×​ 10−9

11 15 47754018 rs281324 SEMA6D T C 0.531 0.928 2.68 ×​ 10−8

12 16 72578131 rs212178 LINC01572 A G 0.883 0.891 7.68 ×​ 10−9

Index variants are LD independent (r2 <​ 0.1) and are merged into one locus when located with a distance <​400 kb. The location (chromosome (chr) and base position (BP)), alleles (A1 and A2), allele 
frequency (A1 freq), odds ratio (OR) of the effect with respect to A1 and association P values from inverse-variance weighted fixed effects model of the index variant are given, along with genes within 50 kb 
of the credible set for the locus.
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(P <​ 2.28 ×​ 10−4), including major depressive disorder43, anorexia 
nervosa44, educational outcomes45–49, obesity-related phenotypes50–55, 
smoking56–58, reproductive success59, insomnia60, and mortality61 
(Fig. 3 and Supplementary Table 5). In most domains, the genetic 
correlation is supported by GWAS of multiple related phenotypes.  
For the positive genetic correlation with major depressive disorder 
(rg =​ 0.42, P =​ 7.38 ×​ 10−38), we also observed a positive correlation 
with depressive symptoms (rg =​ 0.45, P =​ 7.00 ×​ 10−19), neuroticism 
(rg =​ 0.26, P =​ 1.02 ×​ 10−8) and a negative correlation with subjective 
well-being (rg =​ −​0.28, P =​ 3.73 ×​ 10−9). The positive genetic correla-
tions with ever having smoked (rg =​ 0.48, P =​ 4.33 ×​ 10−16) and with 
number of cigarettes smoked per day (rg =​ 0.45, P =​ 1.07 ×​ 10−5) are 
reinforced by significant positive correlation with lung cancer (rg =​ 0.39, 
P =​ 6.35 ×​ 10−10). Similarly, genetic correlations related to obesity 
include significant relationships with body mass index (BMI; rg =​ 0.26, 
P =​ 1.68 ×​ 10−15), waist-to-hip ratio (rg =​ 0.30, P =​ 1.16 ×​ 10−17), child-
hood obesity (rg =​ 0.22, P =​ 3.29 ×​ 10−6), HDL cholesterol (rg =​ −​0.22,  
P =​ 2.44 ×​ 10−7), and type 2 diabetes (rg =​ 0.18, P =​ 7.80 ×​ 10−5).  
Additionally the negative correlation with years of schooling (rg =​ −​0.53,  
P =​ 6.02 ×​ 10−80) is supported by a negative genetic correlation with 
human intelligence (rg =​ −​0.41, P =​ 7.03 ×​ 10−26). Finally, the genetic 
correlation with reproduction includes a negative correlation with age 
of first birth (rg =​ −​0.612, P =​ 3.70 ×​ 10−61) and a positive correlation 
with number of children ever born (rg =​ 0.42, P =​ 8.51 ×​ 10−17).

Biological annotation of significant loci. For the 12 genome-wide 
significant loci, Bayesian credible sets were defined to identify the 
set of variants at each locus most likely to include a variant with 
causal effect (Methods, Supplementary Data 2 and Supplementary 
Table 6). Biological annotations of the variants in the credible set 

were then considered to identify functional or regulatory vari-
ants, common chromatin marks, and variants associated with gene 
expression (eQTLs) or in regions with gene interactions observed in 
Hi-C data (Methods; Supplementary Data 3). Broadly, the signifi-
cant loci do not coincide with candidate genes proposed to play a 
role in ADHD62.

Here, we highlight genes that are identified in the regions of 
association (also Supplementary Table  7). The loci on chromo-
somes 2, 7 and 10 each have credible sets localized to a single gene 
with limited additional annotations. In the chromosome 7 locus, 
FOXP2 encodes a forkhead/winged-helix transcription factor and 
is known to play an important role in synapse formation and neural 
mechanisms mediating the development of speech and learning63–65. 
Comorbidity of ADHD with specific developmental disorders of 
language and learning is common (7–11%)66,67, and poor language 
skills have been associated with higher inattention or hyperactiv-
ity symptoms in primary school68. On chromosome 10, the ADHD 
association is intronic, located in SORCS3, which encodes a brain-
expressed transmembrane receptor that is important for neuronal 
development and plasticity69 and has previously been associated 
with depression43,70.

Genome-wide significant loci on chromosomes 12 and 15 have 
more biological annotations supporting the colocalized genes. The 
credible set on chromosome 12 spans DUSP6 and includes an anno-
tated missense variant in the first exon and an insertion near the 
transcription start site, though neither is the lead variant in the 
locus (Supplementary Data  4). DUSP6 encodes a dual specificity 
phosphatase71 and may play a role in regulating neurotransmit-
ter homeostasis by affecting dopamine levels in the synapses72,73. 
Regulation of dopamine levels is likely to be relevant to ADHD, 
as widely used ADHD medications have dopaminergic targets74,75 
that increase the availability of synaptic dopamine. The chromo-
some 15 locus is located in SEMA6D, and the majority of vari-
ants in the credible set are strongly associated with expression of 
SEMA6D in fibroblasts76. SEMA6D is active in the brain during 
embryonic development and may play a role in neuronal wiring77. 
Furthermore, variants in SEMA6D have previously been associated 
with educational attainment78.

Credible set annotations at the remaining loci are more diverse 
(Supplementary Data 3). The most strongly associated locus on chro-
mosome 1 (index variant rs112984125) covers a gene-rich 250-kb 
region of strong LD. The index variant is intronic to ST3GAL3, and 
most SNPs in the credible set are strongly associated with expression 
of ST3GAL3 in whole blood79 (Supplementary Data  3). Missense 
mutations in ST3GAL3 have been shown to cause autosomal reces-
sive intellectual disability80. Hi-C and eQTL annotations suggest mul-
tiple alternative genes, however, including PTPRF (Supplementary 
Data 4). The locus also includes an intergenic variant, rs11210892, 
that has previously been associated with schizophrenia33.

On chromosome 5, the credible set includes links to LINC00461 
and TMEM161B (Supplementary Data  3). The function of 
LINC00461 is unclear, but the RNA has highly localized expres-
sion in the brain81, and the genome-wide significant locus overlaps 
with variants in LINC00461 associated with educational attain-
ment78. Alternatively, a genome-wide significant SNP in this locus 
(rs304132) is located in MEF2C-AS1, of strong interest given pre-
vious associations between MEF2C and severe intellectual dis-
ability82–84, cerebral malformation83, depression70, schizophrenia33 
and Alzheimer’s disease85, but the corresponding variant is not 
supported by the credible set analysis. Credible set annotations for 
other significant loci are similarly cryptic.

Analysis of gene sets. Competitive gene-based tests were per-
formed for FOXP2 target genes, highly constrained genes and for all 
Gene Ontology terms86 from MsigDB 6.0 (ref. 87) using MAGMA88 
(Methods). Association results for individual genes are consistent 
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with the genome-wide significant loci for the GWAS (Supplementary 
Table 8); however, four new genes passed the threshold for exome-
wide significant association (Supplementary Fig.  15a–d). Three 
independent sets of FOXP2 downstream target genes89,90 were tested 
(Methods), none of which demonstrated significant association to 

ADHD (Supplementary Table 9). The lack of association might be 
caused by unknown functions of FOXP2 driving ADHD risk, insuf-
ficient power to detect relevant downstream genes or because only a 
small subset of biological functions regulated by FOXP2 are relevant 
to ADHD pathogenesis.

Childhood IQ (P = 5 × 10–7)

Years of schooling (P = 1 × 10–80)

College completion (P = 3 × 10–31)

Human intelligence (P = 7 × 10–26)

UKB college/university degree (P = 6 × 10–42)

UKB verbal–numerical reasoning (P = 6 × 10–13)

Neuroticism (P = 1 × 10–8)

Depressive symptoms (P = 7 × 10–19)

Subjective well being (P = 4 × 10–9)

Major depressive disorder (P = 7 × 10–38)

PGC cross-disorder analysis (P = 6 × 10–9)

Anorexia nervosa (P = 2 × 10–4)

Body mass index (P = 2 × 10–15)

Waist circumference (P = 2 × 10–15)

Hip circumference (P = 2 × 10–6)

Waist-to-hip ratio (P = 1 × 10–17)

Overweight (P = 2 × 10–14)

Obesity class 1 (P = 2 × 10–15)

Obesity class 2 (P = 5 × 10–12)

Obesity class 3 (P = 4 × 10–7)

Extreme BMI (P = 9 × 10–7)

Childhood obesity (P = 3 × 10–6)

Type 2 diabetes (P = 8 × 10–5)

HDL cholesterol (P = 2 × 10–7)

Triglycerides (P = 6 × 10–5)

Ever vs never smoked (P = 4 × 10–16)

Cigarettes smoked per day (P = 1 × 10–5)

Former vs current smoker (P = 7 × 10–5)

Lung cancer (P = 6 × 10–10)

Lung cancer (all) (P = 3 × 10–7)

Squamous cell lung cancer (P = 5 × 10–5)

Age of first birth (P = 4 × 10–61)

Number of children ever born (P = 9 × 10–17)

Age at menopause (P = 2 × 10–4)

Mothers age at death (P = 6 × 10–7)

Fathers age at death (P = 7 × 10–6)

Parents age at death (P = 4 × 10–5)

Insomnia (P = 4 × 10–11)

Rheumatoid arthritis (P = 1 × 10–4)

Genetic correlation (rg)

–0.6 –0.3 0.3 0.60.0

Fig. 3 | Genetic correlations of ADHD with other phenotypes. Significant genetic correlations between ADHD (results from European GWAS meta-
analysis of 19,099 individuals with ADHD, 34,194 controls) and other traits reveal overlap of genetic risk factors for ADHD across several groups of traits 
(grouping indicated by a vertical line): educational, psychiatric or personality, weight (and possible weight-related traits), smoking behavior or smoking-
related cancer, reproductive traits and parental longevity (sample size of the external GWASs are presented in Supplementary Table 5). In total, 219 traits 
were tested, and only traits significant after Bonferroni correction are presented. Results are omitted for significant correlations with two previous GWAS 
of years of schooling and two GWAS whose the discovery sample was not restricted to European ancestry. Genetic correlation is presented as a dot and 
error bars indicate 95% confidence limits.
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Consistent with the partitioning of heritability, a set of 2,932 
genes that are highly constrained and show high intolerance to 
loss of function91 showed significant association with ADHD 
(β =​ 0.062, P =​ 2.6 ×​ 10−4; Supplementary Table 10). We also found 
little evidence for effects in previously proposed candidate genes for 
ADHD62; of the nine proposed genes, only SLC9A9 showed weak 
association with ADHD (P =​ 3.4 ×​ 10−4; Supplementary Table 11). 
None of the Gene Ontology gene sets were significant after cor-
recting for multiple testing, although the most associated included 
interesting nominally significant pathways such as ‘dopamine 
receptor binding’ (P =​ 0.0010) and ‘excitatory synapse’ (P =​ 0.0088; 
Supplementary Data 5).

Replication of GWAS loci. For replication, we evaluated the com-
parison of the GWAS meta-analysis of ADHD with three other 
independent ADHD-related GWASs: replication of top loci in an 
Icelandic cohort with ADHD status derived from medical records of 
ICD codes and medication history by deCODE (5,085 with ADHD, 
131,122 controls), a GWAS of self-reported ADHD status among 
23andMe research participants (5,857 with ADHD, 70,393 controls) 
and a meta-analysis of GWAS of childhood rating scales of ADHD 
symptoms performed by the EAGLE consortium (17,666 children  
<​13 years of age)30 and QIMR92 (2,798 adolescents), referred to as 
EAGLE/QIMR hereafter. Although the phenotyping and cohort 
ascertainment of the 23andMe and EAGLE/QIMR studies differ 
from the PGC and iPSYCH ADHD meta-analysis (Supplementary 
Note), they have clear relevance to understanding how the ADHD 
GWAS results generalize to closely related phenotypes.

Top loci from the ADHD GWAS showed moderate concordance 
across the three replication studies. Sign concordance between each 
of the three replication cohorts and the ADHD GWAS was sig-
nificantly greater than what would be expected by chance (range 
72–82% concordant; P <​ 0.0167 =​ 0.05/3 replication cohorts; 
Supplementary Table  12) for nominally associated loci from 
the ADHD GWAS (P <​ 1 ×​ 10−6), with the highest concordance 
observed in EAGLE/QIMR. The deCODE and 23andMe results 
also permit direct comparisons of the magnitude of effect sizes 
for the top loci in the ADHD GWAS (Supplementary Table  13). 
Regressing effect size estimates from each replication cohort on 
estimates from the ADHD GWAS adjusted for winner’s curse yields 
significantly positive slopes (deCODE slope =​ 0.664, P =​ 1.2 ×​ 10−4; 
23andMe slope =​ 0.417, P =​ 1.11 ×​ 10−3), although these slopes are 
less than one, suggesting imperfect replication. Among the genome-
wide significant loci, rs9677504 (SPAG16 locus) in deCODE and 
rs112984125 (ST3GAL3/PTPRF locus) and rs212178 (LINC01572 
locus) in 23andMe are notable outliers with weak replication results 
(Methods; Supplementary Figs. 16 and 17).

The genome-wide data available from 23andMe and EAGLE/
QIMR showed similar trends for replication. The genetic correla-
tion between EAGLE/QIMR and the ADHD GWAS was extremely 
strong (rg =​ 0.970, SE =​ 0.207, P =​ 2.66 ×​ 10−6) and not significantly 
different from 1 (one-sided P =​ 0.442). Genetic correlation with  
the 23andMe results was weaker but still strongly positive (rg =​ 0.653, 
SE =​ 0.114, P =​ 1.11 ×​ 10−8), although also significantly less than  
1 (one-sided P =​ 1.17 ×​ 10−3). To explore this lower correlation,  
we evaluated the genetic correlation between 23andMe and traits 
from LD Hub (see URLs)42 to potentially identify differences 
in the profile of genetic correlations compared with the ADHD 
GWAS (Methods). This comparison identified striking differ-
ences (Supplementary Table  14), most notably that the 23andMe 
GWAS shows little to no genetic correlation with college comple-
tion (rg =​ 0.056, compared with rg =​ −​0.54 for the primary ADHD 
GWAS; approximate P =​ 1.1 ×​ 10−9 for difference) and other educa-
tion-related phenotypes. Genetic correlations with obesity-related 
phenotypes were similarly smaller for the 23andMe cohort. The 
domains in which 23andMe exhibited a trend toward stronger  

genetic correlations were schizophrenia (rg =​ 0.27 vs. rg =​ 0.12 in 
ADHD, P =​ 0.053) and bipolar disorder (rg =​ 0.029 vs. rg =​ 0.095  
in ADHD, P =​ 0.09), although these trends are not significant with 
the approximated test of the difference in genetic correlation.

Finally, we meta-analyzed the ADHD GWAS with each repli-
cation cohort. For EAGLE/QIMR, we developed a novel model to 
meta-analyze the GWAS of the continuous measure of ADHD with 
the clinical diagnosis in the ADHD GWAS. In brief, we perform 
a z-score based meta-analysis using a weighting scheme derived 
from the SNP heritability and effective sample size for each phe-
notype that fully accounts for the differences in measurement scale 
(detailed description in  Supplementary Note and Supplementary 
Figs. 18–20). This calibration based on the genome-wide estimate 
of heritability prevents joint meta-analysis of all replication cohorts 
because genome-wide data is not available for the deCODE study.

Meta-analyses of the ADHD GWAS with each replication study 
identified ten genome-wide significant loci (P <​ 5 ×​ 10−8, without 
multiple testing correction) in meta-analysis with deCODE, ten sig-
nificant loci with 23andMe, and 15 significant loci with EAGLE/
QIMR (Supplementary Data  6 and Supplementary Figs.  21,22).  
Of the 12 significant loci from the primary ADHD GWAS, four were 
significant in all three of these replication meta-analyses: index 
variants rs11420276 (ST3GAL3/PTPRF), rs5886709 (FOXP2), 
rs11591402 (SORCS3), and rs1427829 (intergenic). The remaining 
loci were all significant in at least one of the replication meta-anal-
yses. Additionally, ten novel loci reached genome-wide significance 
in the replication meta-analyses, of which three loci were signifi-
cant in two of these analyses (Supplementary Data 6): index vari-
ants rs1592757/rs30266 (RefSeq LOC105379109), rs28452470/
rs1443749 (CADPS2), and rs2243638/rs9574218 (RNF219-AS1). 
The CADPS2 locus has recently been identified in autism spectrum 
disorder as a novel locus shared with educational attainment93.

Meta-analysis with the 23andMe cohort also found genome-wide 
significant heterogeneity at the lead chromosome 1 locus from the 
ADHD GWAS meta-analysis (rs12410155: I2 =​ 97.2, P =​ 2.29 ×​ 10−9;  
Supplementary Figs.  23 and 24). This heterogeneity is consistent 
with the moderate sign concordance, effect size replication and 
genetic correlation of the 23andMe cohort with the ADHD GWAS. 
Notably, the lead chromosome 1 locus in the ADHD GWAS over-
laps a reported association with educational attainment78, sug-
gesting that this heterogeneity is consistent with the much weaker 
genetic correlation between the 23andMe results and published 
GWAS of education-related outcomes. No genome-wide significant 
heterogeneity was observed in the replication meta-analyses with 
deCODE or EAGLE/QIMR (Supplementary Figs.  25 and 26 and 
Supplementary Data 6).

Discussion
Our GWAS meta-analysis of ADHD identified the first genome-
wide significant risk loci and indicates an important role for com-
mon variants in the polygenic architecture of ADHD. Several of 
the loci are located in or near genes that implicate neurodevelop-
mental processes that are likely to be relevant to ADHD, includ-
ing FOXP2, SORCS3 and DUSP6. Future work might focus on 
refining the source of the strong association in each locus, espe-
cially the lead locus on chromosome 1, which is complicated by 
broad LD and substantial heterogeneity between the main meta-
analysis of ADHD and the analysis of self-reported ADHD status 
in 23andMe.

The 12 significant loci are compelling, but only capture a tiny 
fraction of common variant risk for ADHD. The ORs for the risk 
increasing allele at the index SNPs in the 12 significant loci are mod-
est, ranging from 1.077 to 1.198 (Table 1). This is within the range 
of effect sizes for common genetic variants that has been observed 
for other highly polygenic psychiatric disorders, for example, 
schizophrenia33. A considerably larger proportion of the heritability 
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of ADHD can be explained by all common variants (h2
SNP =​ 0.22, 

SE =​ 0.01). This is consistent with previous estimates of h2
SNP for 

ADHD in smaller studies (h2
SNP: 0.1–0.28)23,24 and also comparable 

to SNP heritability estimates for schizophrenia (h2
SNP 0.23–0.26)23,24. 

As would be hypothesized for a psychiatric disorder, these effects 
are enriched in conserved regions and regions containing enhanc-
ers and promoters of expression in central nervous system tissues, 
consistent with previous observations in schizophrenia and bipolar 
disorder40. On the other hand, we do not observe substantial effects 
in most previously reported candidate genes for ADHD62.

Along with polygenicity, selection and evolutionary pressures 
might be an important feature of the architecture of ADHD 
genetics. We observe that ADHD risk variants are strongly 
enriched in genomic regions conserved in mammals94, and con-
strained genes likely to be intolerant to loss-of-function muta-
tions91 are associated with ADHD. We also find that common 
variant risk for ADHD is genetically correlated with having 
children younger and having more children, in line with epide-
miological findings of increased risky sexual behavior95–97 and 
increased risk of ADHD for children born to young parents98–100. 
Given the phenotypic101,102 and genetic103 correlation of ADHD 
with reduced educational attainment, positive selective pressure 
on the genetics of ADHD would be consistent with recently pub-
lished work suggesting that variants associated with educational 
attainment are under negative selection in Iceland104. Future 
studies of fecundity and the role of rare and de novo variants 
in ADHD might provide more insight on selective pressures in 
ADHD-associated loci.

The observed genetic correlations with educational outcomes 
and other phenotypes suggest a strong genetic component to 
the epidemiological correlates of ADHD. The significant posi-
tive genetic correlation of ADHD with major depressive disorder 
and depressive symptoms supports previous findings that sug-
gest a positive genetic overlap between those phenotypes24,42, as 
well as the broader genetic overlap of psychiatric disorders23,24. 
Positive genetic correlations between ADHD and health risk 
behaviors such as smoking and obesity are consistent with the 
observed increase in those behaviors among individuals with 
ADHD105–108 and are indicative of a shared genetic basis for these 
traits. We also observed a positive genetic correlation of ADHD 
with insomnia, consistent with reports of sleep disturbances in 
ADHD109, but this relationship does not appear to generalize to 
other sleep-related phenotypes.

These genetic correlations might not generalize to all settings. We 
observed much weaker genetic correlation of the 23andMe ADHD 
results with educational attainment, with only partial genetic corre-
lation between 23andMe and the current ADHD GWAS, including 
significant heterogeneity in the lead chromosome 1 locus. The pat-
tern of replication for the top loci in the deCODE study is stronger 
but still mixed. These differences may reflect dissimilarities in phe-
notyping (for example self-report vs. medical records), exclusion of 
individuals with comorbid psychiatric disorders (deCODE), study 
population (for example, higher average education and socioeco-
nomic status among 23andMe research participants possibly under-
representing the proportion of individuals with ADHD with poor 
educational outcomes in the general population) or other study fac-
tors that should be a focus of future work.

On the other hand, the replication results from EAGLE30/QIMR92 
are much stronger and support the hypothesis that ADHD is the 
extreme expression of one or more heritable quantitative traits110. 
We observe strong concordance between the GWAS of ADHD and 
the previous GWASs of ADHD-related traits in the population, 
both in terms of genome-wide genetic correlation and concordance 
at individual loci. Polygenic risk for ADHD has previously been 
associated with inattentive and hyperactive/impulsive trait variation 
below clinical thresholds in the population29. Shared genetic risk 

with health risk behaviors may similarly be hypothesized to reflect 
an impaired ability to self-regulate and inhibit impulsive behav-
ior111,112. The observed negative correlation between ADHD and 
anorexia nervosa might also be related to these behavioral factors.

In summary, we report 12 independent genome-wide significant 
loci associated with ADHD in a GWAS meta-analysis of 55,374 
individuals from 12 study cohorts. The GWAS meta-analysis impli-
cates FOXP2 and other biologically informative genes as well as 
constrained regions of the genome as important contributors to the 
etiology of ADHD. The results also highlight strong overlap with 
the genetics of ADHD-related traits and health risk behaviors in 
the population, encouraging a dimensional view of ADHD as the 
extreme end of a continuum of symptoms.

URLs. LD-Hub, http://ldsc.broadinstitute.org/ldhub/; LD score 
regression, https://github.com/bulik/ldsc; Pre-computed European 
LD scores, https://data.broadinstitute.org/alkesgroup/LDSCORE/; 
PGC Ricopili GWA pipeline, https://github.com/Nealelab/ricopili;  
Credible set analysis, https://github.com/hailianghuang/FM-summ
ary; FUMA, http://fuma.ctglab.nl.
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Methods
GWAS meta-analysis. Quality control, imputation and primary association 
analyses were done using the bioinformatics pipeline Ricopili (see URLs), 
developed by the Psychiatric Genomics Consortium (PGC)33. In order to avoid 
potential study effects, the 11 PGC samples and the 23 genotyping batches  
within iPSYCH were each processed separately unless otherwise stated 
(Supplementary Note).

Stringent quality control was applied to each cohort following standard 
procedures for GWAS, including filters for call rate, Hardy–Weinberg equilibrium 
and heterozygosity rates (Supplementary Note). Each cohort was then phased 
and imputed using the 1000 Genomes Project phase 3 (1KGP3)34,113 imputation 
reference panel using SHAPEIT114 and IMPUTE2 (ref. 115), respectively. For trio 
cohorts, pseudocontrols were defined from phased haplotypes prior to imputation.

Cryptic relatedness and population structure were evaluated using a set of 
high-quality markers pruned for linkage disequilibrium (LD). Genetic relatedness 
was estimated using PLINK v1.9 (refs 116,117) to identify first and second-degree 
relatives (π  ̂>​ 0.2) and one individual was excluded from each related pair. Genetic 
outliers were identified for exclusion based on principal component analyses using 
EIGENSOFT35,118. This was done separately for each of the PGC cohorts and on 
a merged set of genotypes for the iPSYCH cohort (Supplementary Note). Across 
studies, a total of 20,183 cases and 35,191 controls remained for analysis after 
quality control.

Genome-wide association analyses for the 11 PGC samples and the 23 waves 
in iPSYCH were performed using a logistic regression model with the imputed 
marker dosages in PLINK v1.9 (refs 116,117). Principal components were included as 
covariates to control for population stratification35,118, along with relevant study-
specific covariates where applicable (Supplementary Note, Supplementary Table 1). 
Subsequently the results were meta-analyzed using an inverse-variance weighted 
fixed effects model, implemented in METAL (version 2011-03-25)36. Variants 
were filtered and included if imputation quality (INFO score) was >​0.8 and minor 
allele frequency (MAF) >​ 0.01. Only markers supported by an effective sample 
size Neff =​ 4/(1/Ncases +​ 1/Ncontrols)119 >​70% were included. After filtering, the meta-
analysis included results for 8,047,421 markers.

Conditional analysis. Twelve independent genome-wide significant loci were 
identified by LD clumping and merging loci within 400 kb (Supplementary Note). 
In two of these loci, a second index variant persisted after LD clumping. The two 
putative secondary signals were evaluated by considering analysis conditional 
on the lead index variant in each locus. In each cohort, logistic regression was 
performed with the imputed genotype dosage for the lead index variant included 
as a covariate. All covariates from the primary GWAS (for example, principal 
components) were also included. The conditional association results were then 
combined in an inverse-variance weighted meta-analysis.

Genetic correlations between ADHD samples. Genetic correlation between the 
European ancestry PGC and iPSYCH GWAS results was calculated using LD score 
regression37. The regression was performed using pre-computed LD scores for 
HapMap3 SNPs calculated based on 378 individuals of European ancestry from the 
1000 Genomes Project (see URLs). Only results for markers with an imputation 
INFO score >​ 0.90 were included in the analysis. Additionally, a bivariate GREML 
analysis was conducted using GCTA120 to estimate the genetic correlation between 
PGC case/control and trio study designs.

Polygenic risk scores for ADHD. The iPSYCH sample were split into five groups, 
and, subsequently, five leave-one-out association analyses were conducted, using 
four out of five groups and the PGC samples as training datasets38. PRS were 
estimated for each target sample using variants passing a range of association 
P-value thresholds in the training samples. PRS were calculated by multiplying 
the natural log of the odds ratio of each variant by the allele dosage (imputation 
probability), and whole-genome polygenic risk scores were obtained by summing 
values over variants for each individual.

For each of the five groups of target samples, PRS were normalized, and the 
significance of the case–control score difference was tested by standard logistic 
regression, including principal components. For each target group and for 
each P-value threshold, the proportion of variance explained (Nagelkerke’s R2) 
was estimated by comparing the regression with PRS to a reduced model with 
covariates only. The OR for ADHD within each PRS decile group was estimated 
based on the normalized score across groups (using the P-value threshold with the 
highest Nagelkerke’s R2 within each target group) (Fig. 3). OR was also estimated 
using logistic regression on the continuous scores for each target group separately, 
and an OR based on all samples using the normalized PRS score across all groups 
(Supplementary Fig. 9). Additionally PRS were evaluated in the PGC samples using 
the iPSYCH sample as training sample, following the approach described above 
(Supplementary Note).

SNP heritability and intercept evaluation. LD score regression37 was used to 
evaluate the relative contribution of polygenic effects and confounding factors, 
such as cryptic relatedness and population stratification, to deviation from the null 
in the genome-wide distribution of GWAS χ 2 statistics. Analysis was performed 

using pre-computed LD scores from European-ancestry samples in the 1000 
Genomes Project (see URLs) and summary statistics for the European-ancestry 
ADHD GWAS to ensure matching of population LD structure. The influence 
of confounding factors was tested by comparing the estimated intercept of the 
LD score regression to one, its expected value under the null hypothesis of no 
confounding from for example population stratification. The ratio between this 
deviation and the deviation of the mean χ 2 from one (that is it’s expected value 
under the null hypothesis of no association) was used to estimate the proportion 
of inflation in χ 2 attributable to confounding as opposed to true polygenic effects 
(ratio =​ (intercept-1)/(mean χ 2−​1)). SNP heritability was estimated based on the 
slope of the LD score regression, with heritability on the liability scale calculated 
assuming a 5% population prevalence of ADHD39.

Partitioning of the heritability. SNP heritability was partitioned by functional 
category and tissue association using LD score regression40. Partitioning was 
performed for 53 overlapping functional categories, as well as 220 cell-type- 
specific annotations grouped into 10 cell-type groups, as described in  
Finucane et al.40. For both sets of annotations, we used previously computed  
LD scores and allele frequencies from European ancestry samples in the  
1000 Genomes Project (see URLs).

Additionally, we expanded the cell-type specific heritability analysis by 
including an annotation based on information about H3K4Me1 imputed gapped 
peaks excluding the broad MHC-region (chr6:25–35MB), generated by the 
Roadmap Epigenomics Mapping Consortium121,122 (Supplementary Note). The 
analyses were restricted to the European GWAS meta-analysis results to ensure 
matching of population LD structure. Results for each functional category were 
evaluated based on marginal enrichment, defined as the proportion of SNP 
heritability explained by SNPs in the annotation divided by the proportion 
of genome-wide SNPs in the annotation40. For each cell-type group and each 
H3K4Me1 cell-type annotations, the contribution to SNP heritability was tested 
conditional on the baseline model containing the 53 functional categories.

Genetic correlations of ADHD with other traits. The genetic correlations of 
ADHD with other phenotypes were evaluated using LD score regression42. For 
a given pair of traits, LD score regression estimates the expected population 
correlation between the best possible linear SNP-based predictor for each trait, 
restricting to common SNPs. Such correlation of genetic risk may reflect a 
combination of colocalization, pleiotropy, shared biological mechanisms, and 
causal relationships between traits. Correlations were tested for 211 phenotypes 
with publically available GWAS summary statistics using LD Hub41 (Supplementary 
Note; URLs). Additionally, we analyzed on our local computer cluster the 
genetic correlation of ADHD with eight phenotypes: human intelligence103, four 
phenotypes related to education and cognition analyzed in samples from the UK 
Biobank49 (college/university degree, verbal–numerical reasoning, memory and 
reaction time), insomnia60, anorexia nervosa44, and major depressive disorder43. 
The genetic correlation with major depressive disorder was tested using GWAS 
results from an updated analysis of 130,664 cases with major depressive disorder 
and 330,470 controls from the Psychiatric Genomics Consortium. As in the 
previous LD score regression analyses, this estimation was based on summary 
statistics from the European GWAS meta-analysis, and significant correlations 
reported are for traits analyzed using individuals with European ancestry.

Credible set analysis. We defined a credible set of variants in each locus using 
the method described by Maller et al.123. (Supplementary Note), implemented 
by a freely available R script (URLs). Under the assumption that (a) there is one 
causal variant in each locus, and (b) the causal variant is observed in the genotype 
data, the credible set can be considered to have a 99% probability of containing 
the causal variant. For each the 12 genome-wide significant loci, variants within 
1 MB and in LD with correlation r2 >​ 0.4 to the index variant were considered for 
inclusion in the credible set analysis. The credible set analysis was done using  
the European GWAS meta-analysis to ensure consistent LD structure in the 
analyzed cohorts.

Biological annotation of variants in credible set. The variants in the credible 
set for each locus were annotated based on external reference data in order to 
evaluate potential functional consequences. In particular, we identify: (a) gene 
and regulatory consequences annotated by Variant Effect Predictor (VEP) using 
Ensembl with genome build GRCh37124. We exclude upstream and downstream 
consequences, and consequences for transcripts that lack a HGNC gene symbol 
(for example vega genes). (b) Variants within 2 kb upstream of the transcription 
start site (TSS) of at least one gene isoform based on Gencode v19125. (c) 
Variants annotated as interacting with a given gene in Hi-C data from samples 
of developing human cerebral cortex during neurogenesis and migration126. 
Annotations are considered for both the germinal zone (GZ), primarily consisting 
of actively dividing neural progenitors, and the cortical and subcortical plate (CP), 
primarily consisting of post-mitotic neurons. (d) Variants identified as expression 
quantitative trait loci (eQTLs) based on gene expression in the Genotype-Tissue 
Expression (GTEx)127 project database or BIOS79. Expression quantitative trait loci 
were annotated using FUMA (see URLs). We restricted to eQTL associations with 
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false discovery fate (FDR) <​ 1 ×​ 10–3 within each dataset. (e) Chromatin states 
of each variant based on the 15-state chromHMM analysis of epigenomics data 
from Roadmap121. The 15 states summarize to annotations of active chromatin 
marks (that is Active TSS, Flanking Active TSS, Flanking Transcription, Strong 
Transcription, Weak Transcription, Genic Enhancer, Enhancer, or Zinc Finger 
[ZNF] gene), repressed chromatin marks (Heterochromatin, Bivalent TSS, 
Flanking Bivalent TSS, Bivalent Enhancer, Repressed Polycomb, or Weak 
Repressed Polycomb), or quiescent. The most common chromatin state across 127 
tissue/cell types was annotated using FUMA (see URLs). We also evaluated the 
annotated chromatin state from fetal brain.

Gene-set analyses. Gene-based association with ADHD was estimated with 
MAGMA 1.0588 using the summary statistics from the European GWAS meta-
analysis (Ncases =​ 19,099, Ncontrols =​ 34,194; Supplementary Note, Supplementary 
Table 1). Association was tested using the SNP-wise mean model, in which the  
sum of -log(SNP P-value) for SNPs located within the transcribed region (defined 
using NCBI 37.3 gene definitions) was used as the test statistic. MAGMA accounts 
for gene-size, number of SNPs in a gene and LD between markers when  
estimating gene-based P-values. LD correction was based on estimates from  
the 1000 Genomes Project Phase 3 European ancestry samples34.

The generated gene-based P values were used to analyze sets of genes in 
order to test for enrichment of association signals in genes belonging to specific 
biological pathways or processes. In the analysis only genes on autosomes and 
genes located outside the broad MHC region (hg19:chr6:25–35 M) were included. 
We used the gene names and locations and the European genotype reference panel 
provided with MAGMA. For gene sets we used sets with 10–1,000 genes from the 
Gene Ontology sets86 curated from MsigDB 6.0 (ref. 87).

Targeted FOXP2 downstream target gene sets were analyzed for association 
with ADHD. Three sets were examined: (1) putative target genes of Foxp2 that were 
enriched in wild type compared to control Foxp2 knockout mouse brains in ChIP-
chip experiments (219 genes), (2) genes showing differential expression in wild 
type compared with Foxp2 knockout mouse brains (243 genes), and (3) FOXP2 
target genes that were enriched in either or both basal ganglia (BG) and inferior 
frontal cortex (IFC) from human fetal brain samples in ChIP-chip experiments 
(258 genes). Curated short lists of high-confidence genes were obtained from 
Vernes et al.89. and Spiteri et al.90.

A set of evolutionarily highly constrained genes were also analyzed. The set of 
highly constrained genes was defined using a posterior probability of being loss-
of-function intolerant (pLI) based on the observed and expected counts of protein-
truncating variants within each gene in a large study of over 60,000 exomes from 
the Exome Aggregation Consortium (ExAC)91. Genes with pLI ≥​ 0.9 were selected 
as the set of highly constrained genes (2,932 genes).

Replication of GWAS loci. To replicate the results of the ADHD GWAS meta-
analysis, we compared the results to those of analyses of cohorts from deCODE 
and 23andMe, and a meta-analysis of two independent studies conducted by 
EAGLE and QIMR (referred to as EAGLE/QIMR). We evaluated evidence for 
replication based on: (a) sign tests of concordance between the ADHD GWAS 
meta-analysis and each replication cohort; (b) comparison of bias-corrected 
effect sizes between the ADHD GWAS and the deCODE and 23andMe 
replication cohorts; (c) genetic correlation between the ADHD GWAS and 
the 23andMe and EAGLE/QIMR replication cohorts; (d) meta-analysis of the 
ADHD GWAS meta-analysis results with the results from each replication 
cohort; and (e) tests of heterogeneity between the ADHD GWAS and each 
replication cohort.

For the sign test, we first identified the overlapping SNPs present in the ADHD 
GWAS and each of the three replication analyses (that is deCODE, 23andMe, 
and EAGLE/QIMR). For each replication cohort intersecting SNPs were then 
clumped for LD (r2 >​ 0.05 within 1 Mb) for all variants with P <​ 1 ×​ 10−4 in the 
ADHD GWAS (or P <​ 1 ×​ 10−5 for the deCODE replication) using 1000 Genomes 
Phase 3 data on European ancestry populations. After clumping, sign tests were 
performed to test the proportion of loci with a concordant direction of effect in 
the replication cohort (π​) using a one sample test of the proportion with Yates’ 
continuity correction128 against a null hypothesis of π​ =​ 0.50 (i.e., the signs are 
concordant between the two analyses by chance) in R129. This test was evaluated 
separately for concordance in deCODE, 23andMe, and EAGLE/QIMR for loci 
passing P-value thresholds of P <​ 5 ×​ 10−8 (i.e., genome-wide significant loci), P <​ 1 
×​ 10−7, P <​ 1 ×​ 10−6, P <​ 1 ×​ 10−5, and P <​ 1 ×​ 10−4 in the ADHD GWAS meta-
analysis (Supplementary Note).

In addition to testing concordance for the direction of effect, we also evaluated 
replication for the magnitude of the effect sizes. Specifically, for each of deCODE 
and 23andMe we regressed the effect size in the replication cohort (that is the log 
odds ratio) on the estimated effect size from the ADHD GWAS after adjustment 
for winner’s curse for loci with P <​ 1 ×​ 10−6. Winner’s curse correction is performed 
by computing posterior mean estimates of marginal SNP effects βj after fitting a 
spike-and-slab distribution
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τ

π~
N

0
(0, )

with probability
otherwisej 2

by maximum likelihood as described by Okbay et al.78. (Supplementary Note). 
For the regression of effect sizes we oriented all variants in the direction of the 
risk increasing allele estimated from the ADHD GWAS, constrained the intercept 
to zero, and weighted the variants proportional to the inverse of their squared 
standard error from the ADHD GWAS. A regression slope of one indicates  
“ideal” replication of all loci in the regression, whereas a slope of zero  
indicates no replication.

Genetic correlation of the ADHD GWAS with the 23andMe and EAGLE/
QIMR results was computed using LD score regression37 with pre-computed 
European ancestry LD scores following the same procedure as described above 
for other genetic correlation analyses. Genetic correlation could not be computed 
for deCODE since results were only available for top loci from the ADHD GWAS. 
To further explore the moderate genetic correlation between the 23andMe results 
and the ADHD GWAS we also evaluated the genetic correlation between traits 
from 23andMe and traits from LD Hub (URLs)42. To evaluate the magnitude of 
the observed differences in rg we consider both the absolute difference (that is 
∣ − ∣r rg ADHD g andMe, ,23 ) and the test of an approximate z score for this difference 
(Supplementary Note):
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We do not expect this to be an ideal formal test for the difference between two 
genetic correlations, and therefore emphasize caution in interpreting the precise 
results. Nevertheless, it does offer a useful benchmark for evaluating the magnitude of 
the difference between the rg estimates in the context of the uncertainty in those values.

Finally, we meta-analyzed the ADHD GWAS with the results from each 
replication cohort. For deCODE and 23andMe inverse variance-weighted meta-
analyses were performed. For meta-analysis with the EAGLE/QIMR GWAS of 
ADHD-related behaviors in childhood population samples we used a modified 
sample size-based weighting method. Modified sample size-based weights were 
derived to account for the respective heritabilities, genetic correlation, and 
measurement scale of the GWASs (Supplementary Note). To summarize, given z 
scores Z1j and Z2j resulting from GWAS of SNP j in a dichotomous phenotype (for 
example ADHD) with sample size N1 and a continuous phenotype (for example 
ADHD-related traits) with sample size N2, respectively, we calculate
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The adjusted sample sizes Ñ 1 and Ñ 2 reflect differences in power between 
the studies due to measurement scale and relative heritability that is not captured 
by sample size. The calculation of ̃Z 2 reduces the contribution of the continuous 
phenotype’s GWAS to the meta-analysis based on imperfect genetic correlation 
with the dichotomous phenotype of interest (that is ADHD). The adjustments 
are computed based on the sample prevalence (P) and population prevalence (K) 
of the dichotomous phenotype, the estimated liability scale SNP heritability of 
the two phenotypes (h1

2 and h2
2), and the genetic correlation (rg) between the two 

phenotypes, as well as the average SNP LD score (lj) and the number of SNPs (M). 
Heritability and genetic correlation values to compute these weights are computed 
using LD score regression. This meta-analysis weighting scheme is consistent with 
weights alternatively derived based on modelling the joint distribution of marginal 
GWAS beta across traits130.

To test heterogeneity with each replication cohort, we considered Cochran’s Q 
test of heterogeneity in the meta-analyses. Specifically, we evaluated the one degree 
of freedom test for heterogeneity between the ADHD GWAS meta-analysis and the 
replication cohort.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
The PGC’s policy is to make genome-wide summary results public. Summary 
statistics with the results from the ADHD GWAs meta-analysis of iPSYCH and 
the PGC samples are available on the PGC and iPSYCH websites (https://www.
med.unc.edu/pgc/results-and-downloads and http://ipsych.au.dk/downloads/). 
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GWA summary statistics with results from the GWAS of ADHD symptom 
scores analyzed in the EAGLE sample can be accessed at the PGC website (link 
above). Summary statistics for the 23andMe dataset can be obtained by qualified 
researchers under an agreement with 23andMe that protects the privacy of the 
23andMe participants. For access to genotypes from the PGC cohorts and the 
iPSYCH sample, interested researchers should contact the lead PIs (iPSYCH, 
A.D.B.; P.G.C., B.M.N. and S.V.F.).
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Collection of genotypic information was done using SNP array genotyping and subsequent calling of genotypes were done using the 
softwares GenCall, Birdseed and GenomeStudio

Data analysis Quality control and association analyses were done using the Ricopili pipeline: 
https://github.com/Nealelab/ricopili, which include the follwoing software: ShapeIt, IMPUTE2, Plink 
1.9, Eigensoft 6.1.3, METAL 2011-03-25. 
For gene-based and gene-set analyses we used MAGMA 1.06 
Analyses of credible SNPs were done using https://github.com/hailianghuang/FMsummary 
Functional annotation of credible SNPs was done using Ensemble Variant Effect 
Predictor (VEP). 
SNPs associated with gene expression were annotated using FUMA (http:// 
fuma.ctglab.nl/) 
SNP heritability, partitioning of the heritability and genetic correlations were 
estimated using LD score regression (https://github.com/bulik/ldsc) and LD hub 
(http://ldsc.broadinstitute.org/). 
Genetic correlation between PGC case-control and trio samples was calculated 
using GCTA v1.26.0 
Meta analyses of continuous and dichotomous ADHD measures were calculated 
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using adjusted sample size weighted meta-anaysis, described in details in the 
Supplementary Information.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Availability of genotype data and summary statistics 
For access to genotypes from the PGC cohorts and the iPSYCH sample interested researchers should contact the lead PIs (iPSYCH: lead PI Anders D. Børglum; PGC: 
Benjamin Neale and Stephen Faraone). Summary statitistics can be downloaded from:  
https://www.med.unc.edu/pgc/results-and-downloads 
http://ipsych.au.dk/downloads/   
http://www.wikigenes.org/e/art/e/348.html 

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calcualtion was made. Previous studies of polygenic psychiatric 
disorders (e.g. schizophrenia) have demonstrated that high numbers of cases and 
controls (in line with the sample size analysed in this study) yield enough power to 
detect common risk variants with low effect sizes.

Data exclusions Within each analysed cohort we aimed at analysing genetically homognous 
samples of unrelated individuals. Related individuals were excluded based on Identity by State analyses (pseudo controls were used for trios) 
and genetic outliers were excluded based on principal component analyses

Replication The results from our primary GWAS of diagnosed ADHD were replicated using 
results from analyses of three studies: a GWAS meta-analysis of ADHD sympotom 
scores in the general population ( EAGLE and QIMR cohorts), GWAS of selfreported 
ADHD (the 23andMe sample) and a sample of diagnosed ADHD 
(deCODE). We evaluated our results in the three replication studies in three ways: 
1) sign test 2) genetic correlation 3) meta-analysis of the combined samples. The 
results of these three replication apporaches support the results from our primary 
GWAS meta-analysis.

Randomization Allocation into groups was not random. Individuals were allocated into the case 
group based on having a diagnosis of ADHD. The controls in each cohort did not 
have a diagnosis of ADHD.

Blinding No blinding was done in this study. The design was a case-control study and therefore it was fundamental for the analyses that researchers 
knew the case-control status of the included individuals

Reporting for specific materials, systems and methods
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Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Unique biological materials
Policy information about availability of materials

Obtaining unique materials No unique material were used

Human research participants
Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study design 
questions and have nothing to add here, write "See above."

Recruitment In the meta-analysis we included 11 cohorts form the Psychiatric Genetics 
Consortium (PGC) and the iPSYCH cohort. In the seperate GWASs we corrected for 
population stratification using relevant principal components from principal 
component analyses as covariates. 
The iPSYCH cohort was processed in 23 genotyping waves (genotyping, qc and imputation 
were done seperately for theses batches) of approximately 3,500 individuals each. 
In order to control for potential batch effects we included “wave” as a covariate in 
the regression models of all downstream analyses when relevant. 
Sex was not used as covariate, as we found no indication of sex being a confounder 
in our analyses (results not shown).
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