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Abstract

We introduce a stochastic network formation model where agents choose both actions and links.
Neighbors in the network benefit from each other’s action levels through local complementari-
ties and there exists a global interaction effect reflecting a strategic substitutability in actions.
We provide a complete equilibrium characterization in the form of a Gibbs measure, and show
that the model is consistent with empirically observed networks. We then use our equilibrium
characterization to show that the model can be conveniently estimated even for large networks.
The policy relevance is demonstrated with examples of firm exit, mergers and subsidies in R&D
collaboration networks.
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1. Introduction

The many aspects that are governed by networks make it critical to understand how networks
impact behavior (and vice versa), which network structures are likely to emerge, and how they
affect welfare in the society [Jackson, 2008; Jackson et al., 2017]. A crucial aspect of such envi-
ronments is the coevolution of networks and behaviors. An example is the coevolution of R&D
collaboration networks and firms’ R&D investment choices. Technology spillovers across collab-
orations in R&D alliance networks affect the firms’ R&D investment portfolios. Conversely, the
R&D investment portfolios determine which R&D collaborations are being formed. In this paper
we introduce a tractable framework to account for the joint evolution of networks and behaviors,
which can be applied to real world network data and used for policy analysis.

Overview of the results and contributions Our paper makes three interrelated contribu-
tions: (i) a theoretical, (ii) an econometric, and (iii) a policy contribution. Our framework has a
broad range of applications in various fields [Jackson et al., 2015]. To give a concrete example, in
the following we will illustrate our contributions with the example of firms forming R&D collab-
orations to benefit from technology spillovers while, at the same time, being competitors in the
product market [D’Aspremont and Jacquemin, 1988].

(i) We provide an analytic characterization of both, equilibrium networks and endogenous effort
choices, by making the network in the model introduced by Ballester et al. [2006] endogenous.
We show that equilibrium networks are “nested split graphs” [König et al., 2014a],1 providing
an explanation for why nestedness has been observed in empirical R&D networks [Tomasello
et al., 2016]. Nested graphs further have a core-periphery structure [cf. Hojman and Szeidl,
2008], which has also been documented in empirical studies on R&D networks [Kitsak et al.,
2010; Rosenkopf and Schilling, 2007]. In particular, Kitsak et al. [2010] find that firms in the
core have a higher market value, consistent with the predictions of our model. Moreover, we
show that the firms’ output levels and degrees follow a Pareto distribution, consistent with the
data [König et al., 2018; Powell et al., 2005]. We then investigate the efficient network structure
that maximizes social welfare, and find that equilibrium networks tend to be under-connected
compared to the social optimum.2

(ii) We provide an estimation framework that can handle the endogeneity of both, the network
structure and (either continuous or discrete) action choices. This generalizes previous works
such as Mele [2017], where only the formation of the network has been considered. Importantly,
the analytic equilibrium characterization allows us to design an estimation algorithm that can
handle large network datasets. We illustrate how our estimation framework can be applied to
the data by using a unique dataset on R&D collaborations matched to firm’s balance sheets and
patents. Using R&D tax credits as exogenous instruments and our structural model, we are
able to separately identify the technology spillover and the product market rivalry effects from
the exogenous variations in the firms’ productivities that affect both, their R&D investment

1A network is a nested split graph if the neighborhood of every node is contained in the neighborhoods of
the nodes with higher degrees [Mahadev and Peled, 1995]. See supplementary Appendix B for further network
definitions and characterizations.

2In Section 4.3 we analyze the effectiveness of a subsidy on firms’ R&D collaboration costs, that provides firms
with additional incentives to form collaborations and thus increases the network connectivity.
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levels as well as their propensities to form R&D collaborations. As predicted by the theory,
our estimates show that the technology spillover effect has a positive and significant impact
on output and investment while the competition effect has a negative and significant impact,
with the first dominating the latter.

(iii) We provide a counterfactual policy analysis with an endogenous network structure that we
illustrate with three real world examples. First, we use our estimated model to investigate
the impact of exogenous shocks on the network. More precisely, we perform a dynamic “key
player” analysis [Zenou, 2015], and identify the firm whose exit would have the largest impact
on welfare (endogenizing Ballester et al. [2006]).3,4 Focusing on the chemicals and pharma-
ceutical sectors, our results indicate that the exit of Pfizer Inc., one of the world’s largest
pharmaceutical companies, would lead to a reduction in welfare of 0.47%. We then provide
a ranking of the firms in our sample according to their impact on welfare upon exit. The
ranking shows that the most important firms are not necessarily the ones with the highest
market share, but that in order to evaluate the importance of a firm, we need to take into
account the positions of these firms in a network of R&D collaborations, and how this network
dynamically responds to shocks.

Second, our framework allows us to study mergers and acquisitions, and their impact on welfare
[Farrell and Shapiro, 1990]. Traditional market concentration indices are not adequate to
correctly account for the network effect of a merger on welfare [Encaoua and Hollander, 2002].
This is because the effect of a merger on industry profits, consumer surplus and welfare depends
not only on the market structure, but also on the architecture of the R&D collaboration
network between firms through which R&D spillovers are channelled. In such networked
markets, benefits from concentration of R&D activities can arise through economies of scale and
faster diffusion of technologies in more centralized networks [Daughety, 1990]. Our framework
allows us to determine which mergers lead to welfare losses due to market concentration, or to
welfare gains through efficient R&D concentration.5 Our results show that a merger between
Xoma and DOV Pharmaceutical Inc., two American biotech companies, would result in a
welfare loss of 0.075%. In contrast, a welfare gain of 0.86% from a merger would be obtained
between Novartis and Pfizer Inc.. Our results indicate that the R&D spillover effect is larger
when two well connected, R&D intensive firms merge, while welfare losses from increased
market concentration dominate when less connected and more market dominant firms are
involved in the merger.

Third, we identify which R&D collaborations should be subsidized. Our study indicates that
subsidizing an R&D collaboration between Exelixis, an American genomics-based drug discov-
ery company, and Colgate-Palmolive Co., a worldwide consumer and pharmaceutical products
company, would increase welfare by 0.94%. Typically, collaborations between firms with only

3We note that our model is formulated in a fairly flexible way, and because we consider the general payoff
structure introduced in Ballester et al. [2006], one could use our framework also to investigate key players in
criminal networks, or other related contexts [see also Zenou, 2015].

4The exit of a firm could be due to either financial reasons, such as the recession experienced by the American
automobile manufacturing industry during the global financial downturn, or legal reasons, such as the recent
emission-fraud scandal of Volkswagen. In the latter case, policy makers want to know the overall cost they impose
on the economy by inflicting high fines that might threaten the continued existence of a firm.

5This is highly relevant in practice, as for example in 2014 more than half of the merger proposals that were
investigated by the U.S. Department of Justice involved R&D-efficiency claims [Marshall and Parra, 2015].
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a few if any collaborations yield the largest welfare gains. As subsidies have been increasingly
used by governmental organizations to stimulate collaborative R&D activities,6 our frame-
work could assist governmental funding agencies that typically do not take into account the
aggregate spillovers generated within a dynamic R&D network structure.

Related literature There is a growing literature on the stochastic evolution of networks going
back to Jackson and Watts [2002], with more recent examples including Hojman and Szeidl
[2006], Feri [2007] and Dawid and Hellmann [2014], using tools from evolutionary game theory
[Blume, 1993; Kandori et al., 1993; Sandholm, 2010] to analyze the formation of social and
economic networks. In this literature agents form links over time based on myopic improvements
that the resulting network offers them relative to the current network. While there is a small
probability that agents make mistakes, the stochastically stable states are identified when this
probability vanishes. Our paper uses similar techniques to analyze the stationary states in a
stochastic network formation model, but different from the aforementioned works, we investigate
the coevolution of links and actions, and develop an estimable framework from our theory that
can be applied to real world networks.

There also exist related studies on the formation of R&D networks in the economics literature.
Similar to our framework, Goyal and Moraga-Gonzalez [2001], Dawid and Hellmann [2014], and
Westbrock [2010] study the formation of R&D networks in which firms can form collaborations to
reduce their production costs. In particular, Dawid and Hellmann [2014] study a perturbed best
response dynamic process as we do here, and analyze the stochastically stable states. However,
different from the current model, they ignore the R&D investment decision, and the technology
spillovers from a collaboration in these models is independent of the identity and the character-
istics of the firms involved.7

Similarly, Ehrhardt et al. [2008] analyze the formation of a network in which agents play
a coordination game with their neighbors, while König et al. [2014a], Marsili et al. [2004], and
Fosco et al. [2010] study the coevolution of networks and behavior. As in the present paper, these
authors show that the interplay between action choice and link creation may feed on each other
to generate sharp transitions from sparse to dense networks. The underlying payoff structure,
however, is different from ours. Further, while these authors assume that links decay at random,
here link removal depends on whether the agents find this profitable.

Our analysis also bears similarities with a number of other recent contributions in the literature
which analyze a similar payoff structure. In the papers by Ballester et al. [2006] and König et al.
[2018] the authors derive equilibrium outcomes in a linear quadratic game where agents’ efforts
are local complements in an exogenously given network. Different from these works we make
the network as well as effort choices endogenous.8 Cabrales et al. [2011] allow the network to be

6For example, total subsidies for cooperative R&D provided by EUREKA, a Europe-wide network for industrial
R&D, accumulated to more than €37 billion in 2015.

7Goyal and Moraga-Gonzalez [2001] present a more general setup which relaxes this assumption but their
analysis is restricted to regular graphs and networks comprising of four firms. In this paper we take into account
general equilibrium structures with an arbitrary number of firms and make no ex ante restriction on the potential
collaboration pattern between them.

8It is straightforward to see that the results obtained in this paper can be generalized to the payoff structure
introduced in Ballester et al. [2006]. See in particular the general payoff structure considered in Equation (1). We
provide a complete equilibrium characterization for the model introduced in Ballester et al. [2006], but allow both
agents’ actions and links to be endogenously determined.
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formed endogenously, but assume that link strengths are proportional to effort levels, while we
make the linking decision depending on marginal payoffs. Hiller [2013] studies the joint formation
of links and actions using a similar payoff structure as we do here, however, abstracting from any
global substitutability effects, and shows that equilibrium networks are nested split graphs [see
also König et al., 2014a]. Similarly, Belhaj et al. [2016] analyze the design of optimal networks with
the same payoff function but without global substitutabilities, and show that when the planner
chooses links, but not the level of output (second best), the optimal network is a nested split
graph. We find that when the planner chooses both actions and links (first best), both equilibrium
and efficient structures are nested spit graphs, even when allowing for global substitutes and
incorporating heterogeneous firms, and we provide a more precise equilibrium characterization
beyond the general class of nested split graphs. In particular, we identify conditions under which
both the output and the degree distributions follow a power law, consistent with the empirical
data [Gabaix, 2016; Powell et al., 2005].

Our approach is a further generalization of the endogenous network formation mechanisms
proposed in Snijders [2001], Chandrasekhar and Jackson [2012], and Mele [2017]. As in these
papers, we use a potential function to characterize the stationary states [Monderer and Shapley,
1996], but here both, the action choices as well as the linking decisions are fully endogenized.
Moreover, different from these papers we provide a microfoundation (from a Cournot competition
model with externalities) for the potential function. Further, in a recent paper by Badev [2013]
a potential function is used to analyze the formation of networks in which agents not only form
links but also make a binary choice of adopting a certain behavior depending on the choices of
their neighbors. Different from Badev [2013], we consider a continuum of choices, and provide a
microfoundation derived from the payoff function introduced in Ballester et al. [2006]. Moreover,
different from the previous authors we provide an explicit equilibrium characterization, use an
alternative estimation method (which can also be applied to large networks and addresses the
“local trap” problem of non-concave likelihood functions),9 apply our model to a different context,
and study a range of novel counterfactual policy scenarios. Relatedly, in a recent paper, Hsieh
and Lee [2013] apply a potential function to an empirical model of joint network formation and
action choices. However, their potential function is based on a transferable utility function so that
linking decisions are based on maximizing aggregate payoffs, while here we consider decentralized
link formation between payoff maximizing agents.

Organization of the paper The paper is organized as follows. The theoretical model is
outlined in Section 2. In particular, Section 2.1 introduces the linear-quadratic payoff function
considered in this paper. Section 2.2 defines the stochastic network formation and output adjust-
ment process and provides a complete characterization of the stationary state. In Section 2.3 the
welfare maximizing networks are derived. Section 2.4 discusses several extensions of the model
that allow for firm heterogeneity. Next, Section 3 provides information about the data that we
use and explains the estimation methods and results. Section 4 then uses the estimated model to
analyze several counterfactual policy experiments. Finally, Section 5 concludes. All proofs are
relegated to Appendix A.

9Note also that classical Maximum Likelihood Estimation (MLE) methods such as the one considered in Badev
[2013] are greatly influenced by the choice of initial parameter values, and if these are not close enough to the true
values, the method may converge to a sub-optimal solution [Airoldi et al., 2009].
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Additional relevant material can be found in the supplementary appendices. In particular,
supplementary Appendix B provides basic definitions and characterizations of networks. Supple-
mentary Appendix C provides a motivation for the linear quadratic payoff function from a model
of R&D collaborating firms that are competing on the product market à la Cournot. Supple-
mentary Appendix D explains the distinction between continuous and discrete quantity choices.
Supplementary Appendix E explains in detail the extensions mentioned in the main text. Supple-
mentary Appendix F provides a detailed description of the data used for our empirical analysis
in Section 3, while supplementary Appendix G provides additional details of the estimation algo-
rithms. Supplementary Appendix H provides a simulation study to examine the performance and
consistency of our various estimation algorithms, as well as the impact of missing observations
on estimation.

2. Theoretical Framework

2.1. Payoffs

Each firm (agent) i ∈ N = {1, . . . , n} in the network G ∈ Gn with an output level qi ∈ Q and
obtains a linear-quadratic profit (payoff) πi : Qn × Gn → R given by10

πi(q, G) = ηiqi − νq2i − bqi

n∑
j ̸=i

qj + ρ
n∑
j=1

aijqiqj − ζdi, (1)

where Q is the (bounded) output choice set of a firm, Gn denotes the set of all graphs with n ≥ 2

nodes, aij = 1 if firms i and j set up a collaboration (0 otherwise) and aii = 0.11 Equation
(1) is concave in own output, qi, with parameters ηi ≥ 0 and ν ≥ 0. Moreover, b > 0 is a
global substitutability parameter, ρ ≥ 0 is a local complementarity parameter, ζ ≥ 0 is a fixed
linking cost and di is the number of collaborations of firm i. A derivation of the profit function
in Equation (1) in the context of R&D collaborating firms competing à la Cournot can be found
in supplementary Appendix C.

The profit function introduced in Equation (1) admits a (cardinal) potential function [Mon-
derer and Shapley, 1996].

Proposition 1. The profit function of Equation (1) admits a potential game where firms choose
both output and links with a potential function Φ: Qn × Gn → R given by

Φ(q, G) =
n∑
i=1

(ηiqi − νq2i )−
b

2

n∑
i=1

n∑
j ̸=i

qiqj +
ρ

2

n∑
i=1

n∑
j=1

aijqiqj − ζm, (2)

for any q ∈ Qn and G ∈ Gn where m denotes the number of links in G.

The potential function has the property that the marginal profit of a firm from adding or
removing a link is exactly equivalent to the difference in the potential function from adding
or removing a link. Similarly, the marginal profit of a firm from changing its output level is

10See also Ballester et al. [2006] and Jackson et al. [2015] for a more general discussion of the payoff function
introduced in Equation (1).

11See supplementary Appendix B for further network definitions and characterizations.
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exactly equivalent to the change of the potential function.12 The potential function thus allows
to aggregate the incentives of the firms to either change their links or adjust their production levels
in a single global function. The existence of a potential function will be crucial for the equilibrium
characterization of the network formation process that will be introduced in the following section.

2.2. Network Dynamics and Equilibrium Characterization

In the following we introduce a dynamic model where firms choose both output and links, based
on the profit function of Equation (1). In this model the network is formed endogenously from the
decisions of firms with whom to collaborate,13 and share knowledge about a cost reducing tech-
nology. The opportunities for change arrive as a Poisson process [Blume, 1993; Sandholm, 2010],
similar to Calvo models of pricing [Calvo, 1983]. We follow the best response dynamics analyzed
in Cournot [1838]:14 Firms maximize profits by taking the output levels and collaborations of the
other firms as given. To capture the fact that R&D projects and collaborations are fraught with
ambiguity and uncertainty [Czarnitzki et al., 2015; Kelly et al., 2002], we will introduce noise in
this decision process. The precise definition of the dynamics of output adjustment and network
evolution is given in the following.

Definition 1 (Cournot Best Response Dynamics). The evolution of the population of firms
and the collaborations between them is characterized by a sequence of states (ωt)t∈R+, ωt ∈ Ω =
Qn×Gn, where each state ωt = (qt, Gt) consists of a vector of firms’ output levels, qt ∈ Qn, and
a network of collaborations, Gt ∈ Gn. We assume that Q is a bounded output choice set of a firm.
In a short time interval [t, t+∆t), t ∈ R+, one of the following events happens:

Output adjustment At rate χ ≥ 0 a firm i ∈ N is receives an output adjustment opportunity.
The profit of firm i from choosing an output level q ∈ Q is then given by πi(q,q−it, G) + εit.
When εit is identically and independently type-I extreme value distributed with parameter ϑ,15

then the probability that an adjustment to an output level q conditional on the output levels of
all other firms, q−it, and the network, Gt, at time t is profitable for firm i is given by16

P (ωt+∆t = (q,q−it, Gt)|ωt = (qt, Gt)) = χ
eϑπi(q,q−it,Gt)∫

Q e
ϑπi(q′,q−it,Gt)dq′

∆t+ o(∆t). (3)

Link formation With rate τ ≥ 0 a pair of firms i, j which is not already connected receives
an opportunity to form a link. The formation of a link depends on the marginal profits
the firms receive from the link plus an additive pairwise i.i.d. error term εij,t. The prob-
ability that link (i, j) is created is then given by P (ωt+∆t = (qt, Gt ⊕ (i, j))|ωt = (qt, Gt)) =

12 More formally, the potential Φ has the property that for any q ∈ Qn and G,G′ ∈ Gn with G′ = G⊕ (i, j) or
G′ = G ⊖ (i, j) we have that Φ(q, G′) − Φ(q, G) = πi(q, G

′) − πi(q, G), where G ⊕ (i, j) (G ⊖ (i, j)) denotes the
network obtained from G by adding (removing) the link (i, j). Moreover, for qi, q′i ∈ Q, q−i ∈ Qn−1 and G ∈ Gn

we have that Φ(q′i,q−i, G)− Φ(qi,q−i, G) = πi(q
′
i,q−i, G)− πi(qi,q−i, G).

13Note that the formation of a collaboration requires the mutual agreement of both firms involved in a collabora-
tion, while for the termination of a collaboration it is sufficient that one of the firms finds this profitable [Jackson
and Watts, 2002].

14Cournot [1838] analyzed a dynamic process in which firms myopically best respond in the current period to
the existing output levels of all rivals [cf. Daughety, 2005]. For similar network formation models see Jackson and
Watts [2002]; Watts [2001]. The assumption of myopic agents is also common in incomplete information dynamic
decision-making as considered in Gabaix [2014].

15 For a type-I extreme value distributed random variable ε we have that P(ε ≤ c) = e−ec/ζ−γ , where γ ≈ 0.58

is Euler’s constant. The mean is E(ε) = 0 and the variance is given by Var(ε) = π2ζ2

6
.

16 The multinomial choice probability can be derived from a random utility model where firms maximize profits
subject to a random error term [Anderson et al., 2004; McFadden, 1976]. See supplementary Appendix D for more
details.
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τ P ({πi(qt, Gt ⊕ (i, j))− πi(qt, Gt) + εij,t > 0} ∩ {πj(qt, Gt ⊕ (i, j))− πj(qt, Gt) + εij,t > 0})∆t+
o(∆t). Using the fact that πi(qt, Gt ⊕ (i, j)) − πi(qt, Gt) = πj(qt, Gt ⊕ (i, j)) − πj(qt, Gt) =
Φ(qt, Gt⊕(i, j))−Φ(qt, Gt), and assuming that the error term εij,t is independently logistically
distributed,17 we obtain

P (ωt+∆t = (qt, Gt ⊕ (i, j))|ωt = (qt, Gt)) = τ
eϑΦ(qt,Gt⊕(i,j))

eϑΦ(qt,Gt⊕(i,j)) + eϑΦ(qt,Gt)
∆t+ o(∆t). (4)

Link removal With rate ξ ≥ 0 a pair of connected firms i, j receives an opportunity to ter-
minate their collaboration. The link is removed if at least one firm finds this profitable.
The marginal profits from removing the link (i, j) are perturbed by an additive pairwise
i.i.d. error term εij,t. The probability that the link (i, j) is removed is then given by
P (ωt+∆t = (qt, Gt ⊖ (i, j))|ωt = (qt, Gt)) = ξ P({πi(qt, Gt ⊖ (i, j)) − πi(qt, Gt) + εij,t > 0} ∪
{πj(qt, Gt⊖ (i, j))− πj(qt, Gt) + εij,t > 0})∆t+ o(∆t). Using the fact that πi(qt, Gt⊖ (i, j))−
πi(qt, Gt) = πj(qt, Gt ⊖ (i, j))− πj(qt, Gt) = Φ(qt, Gt ⊖ (i, j))−Φ(qt, Gt), and assuming that
the error term is independently logistically distributed, we obtain

P (ωt+∆t = (qt, Gt ⊖ (i, j))|ωt = (qt, Gt)) = ξ
eϑΦ(qt,Gt⊖(i,j))

eϑΦ(qt,Gt⊖(i,j)) + eϑΦ(qt,Gt)
∆t+ o(∆t). (5)

We assume that the set Q is a discretization of the bounded interval [0, q], with q < ∞.
The fact that Q is a countable set allows us to use standard results for discrete state space,
continuous time Markov chains [Norris, 1998]. For an increasingly fine discretization, we can then
use Equation (3) as a continuous analogue of the standard multinomial logit probabilistic choice
framework [see also Anderson et al., 2004, 2001; Ben-Akiva and Watanatada, 1981; McFadden,
1976], where the probability of choosing an output level is proportional to an exponential function
of the firm’s profit. The standard derivation of the logit model is based on the assumption that
profits are subject to noise from a type-I extreme value distribution [Anderson et al., 1992].18

The parameter ϑ is inversely related to the level of noise, so that in the limit of ϑ→ ∞ the noise
vanishes and firms choose the output level that maximizes their profit, while in the limit of ϑ→ 0

the noise dominates and output adjustments in Equation (3) become random. The same holds
for the link formation and removal decisions in Equations (4) and (5), respectively.19

Note that we can numerically implement the stochastic process introduced in Definition 1 using
the “next reaction method” for simulating a continuous time Markov chain [Gibson and Bruck,
2000]. We will use this method throughout the paper to illustrate our theoretical predictions for
various network statistics (see Figures 1 and 3). However, this method becomes computationally
infeasible for large networks, where we have to rely on our theoretical equilibrium characterization
and alternative simulation methods.

We next introduce some definitions and notations that allow us to characterize the stochastic

17Let z be i.i.d. logistically distributed with mean 0 and scale parameter ϑ, i.e. Fz(x) = eϑx

1+eϑx . Consider the
random variable ε = g(z) = −z. Since g is monotonic decreasing, and z is a continuous random variable, the
distribution of ε is given by Fε(y) = 1− Fz(g

−1(y)) = eϑy

1+eϑy .
18See supplementary Appendix D for a derivation of the multinomial logit model with a continuous choice set

from a mulitnomial model with a discrete choice set [see also McFadden, 1976]. This illustrates that our framework
can also be applied to cases where agents choose from an arbitrary discrete set of alternatives.

19While in Definition 1 pairs of firms are selected in a global way to form collaborations, it is possible to consider
a local approach where new links are more likely to be formed among firms which already have a common neighbor
[Jackson and Rogers, 2007]. This can be captured by a linking cost that is decreasing in the number of common
neighbors of the firms. We explicitly consider such a formulation in the empirical model in Section 3.2.
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process in Definition 1. Let F denote the smallest σ-algebra generated by σ (ωt : t ∈ R+). The
filtration is the non-decreasing family of sub-σ-algebras {Ft}t∈R+ on the measure space (Ω,F),
Ω = Qn × Gn, with the property that F0 ⊆ F1 ⊆ · · · ⊆ Ft ⊆ · · · ⊆ F . The probability
space is given by the triple (Ω,F ,P), where P : F → [0, 1] is the probability measure satisfying∫
Ω P(dω) = 1. As we will see below in Theorem 1 the sequence of states (ωt)t∈R+ , ωt ∈ Ω, induces

an irreducible and positive recurrent (i.e. ergodic) time homogeneous Markov chain.
The one step transition probability matrix Pϑ(t) : Ω2 → [0, 1]|Ω|2 has elements which deter-

mine the probability of a transition from a state ω ∈ Ω to a state ω′ ∈ Ω in a small time interval
[t, t+∆t) of length ∆t given by P(ωt+∆t = ω′|Ft = σ(ω0,ω1, . . . ,ωt = ω)) = P(ωt+∆t = ω′|ωt =
ω) = qϑ(ω,ω′)∆t+ o(∆t) if ω′ ̸= ω and P(ωt+∆t = ω|Ft = σ(ω0,ω1, . . . ,ωt = ω)) = P(ωt+∆t =

ω|ωt = ω) = 1+qϑ(ω,ω)∆t+o(∆t), where qϑ(ω,ω′) is the transition rate from state ω to state ω′

and lim∆t→0
o(∆t)
∆t = 0 (see Theorem 2.8.2 in Norris [1998]). From the stochastic process of Defi-

nition 1 we see that the transition rate matrix (or infinitesimal generator) Qϑ = (qϑ(ω,ω′))ω,ω′∈Ω

of the Markov chain has the elements

qϑ(ω,ω′) =



χ eϑπi(q
′,q−i,G)∫

Q eϑπi(q
′′,q−i,G)dq′′

if ω′ = (q′,q−i, G) and ω = (q, G),

τ eϑΦ(q,G⊕(i,j))

eϑΦ(q,G⊕(i,j))+eϑΦ(q,G) if ω′ = (q, G⊕ (i, j)) and ω = (q, G),

ξ eϑΦ(q,G⊖(i,j))

eϑΦ(q,G⊖(i,j))+eϑΦ(q,G) if ω′ = (q, G⊖ (i, j)) and ω = (q, G),

−
∑

ω′ ̸=ω q
ϑ(ω,ω′) if ω′ = ω,

0 otherwise,

(6)

with
∑

ω′∈Ω q
ϑ(ω,ω′) = 0.20 As the Markov chain is time homogeneous, the transition rates

are independent of time. The stationary distribution µϑ : Ω → [0, 1] is then the solution to
µϑPϑ = µϑ, or equivalently µϑQϑ = 0 [Norris, 1998].

With the potential function Φ of Proposition 1 we can compute the stationary distribution of
the Cournot best response dynamics in the form of a Gibbs measure [Grimmett, 2010].

Theorem 1. The stochastic process (ωt)t∈R+ with states ωt ∈ Ω = Qn×Gn is an ergodic Markov
chain with a unique stationary distribution µϑ : Ω → [0, 1] such that limt→∞ P(ωt = (q, G)|ω0 =
(q0, G0)) = µϑ(q, G). The distribution µϑ is given by

µϑ(q, G) =
eϑ(Φ(q,G)−m ln( ξ

τ ))∑
G′∈Gn

∫
Qn e

ϑ(Φ(q′,G′)−m′ ln( ξ
τ ))dq′

, (7)

for any q ∈ Qn and G ∈ Gn.

From Theorem 1 we know that the Markov chain is ergodic, so that the Ergodic Theorem
applies [Norris, 1998], which states that

lim
t→∞

1

t

∫ t

0
1{ωs∈A}ds = µϑ(A), P-a.s., (8)

for any measurable set A ∈ Ω, and long-run averages of sample paths converge to the invariant

20The transition rate matrix satisfies the Chapman-Kolmogorov forward equation d
dt
Pϑ(t) = Pϑ(t)Qϑ so that

Pϑ(t) = I|Ω| +Qϑ∆t+ o(∆t) [Norris, 1998]. Conversely, we have that Qϑ = lim∆t→0
Pϑ(t+∆t)−I|Ω|

∆t
.
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Figure 1: The average degree d̄ (left panel) and the average output q̄ (right panel) as a function of the linking
cost ζ for varying values of ϑ ∈ {0.05, 0.1, 0.2} with n = 20 firms and τ = ξ = χ = 1, η = 300, ρ = 1, b = 1 and
ν = 20. Dashed lines indicate the theoretical predictions of Equations (10) and Equation (12) in Proposition 2,
respectively.

distribution. Moreover, for any measurable function f : (Ω,F) → (R,B) in L1(P) we have that

lim
t→∞

1

t

∫ t

0
f (ωs) ds = Eµϑ(f), P-a.s.,

where Eµϑ(f) is the expected value of f under the invariant probability measure µϑ. Note that
the stationary distribution µϑ in Equation (7) does not depend on the output adjustment rate
χ. It also does not depend on the link adjustment rates τ and ξ, when the rates for link creation
and removal are the same. In the following we will make the simplifying assumption that τ = ξ.

In the limit of vanishing noise, i.e., ϑ → ∞, we call the states in the support of µϑ the
stochastically stable states [Jackson and Watts, 2002; Kandori et al., 1993]. A state (q, G) ∈ Ω

is stochastically stable if limϑ→∞ µϑ(q, G) > 0. In the following we will denote µ∗(q, G) ≡
limϑ→∞ µϑ(q, G). The set of stochastically stable states is denoted by Ω∗ ⊆ Ω. From the Gibbs
distribution in Equation (7) it follows that (q, G) ∈ Ω∗ if and only if Φ(q, G) ≥ Φ(q′, G′) ∀q′ ∈ Qn

and ∀G′ ∈ Gn.
As the potential function Φ in Equation (2) is continuous on the compact set Ω it has a global

maximum, stochastically stable states always exist and Ω∗ ̸= ∅. An explicit characterization of
the stationary distribution µϑ in Equation (7) requires the computation of the partition function

Zϑ =
∑
G∈Gn

∫
Qn

eϑΦ(q,G)dq, (9)

so that we can write µϑ(q, G) = 1
Zϑ
eϑΦ(q,G) for any q ∈ Qn and G ∈ Gn. We also introduce the

Hamiltonian, defined by Hϑ(q) ≡ 1
ϑ ln

(∑
G∈Gn eϑΦ(q,G)

)
, which allows us to write the partition

function more compactly as Zϑ =
∫
Qn e

ϑHϑ(q)dq.
In the following we provide an explicit characterization of the Gibbs distribution in Theo-

rem 1 and derive the stochastically stable states. We first consider the special case of ex ante
homogeneous firms with identical marginal costs.

Proposition 2. Consider homogeneous firms such that ηi = η in the profit function of Equation
(1) for all i = 1, . . . , n, and let the evolution of the firms’ output levels and collaborations be
governed by the stochastic process in Definition 1. Denote η∗ ≡ η/(n − 1) and ν∗ ≡ ν/(n − 1).
Moreover, let the empirical average output be denoted by q̄ ≡ 1

n

∑n
i=1 qi and the average degree be

d̄ ≡ 1
n

∑n
i=1 di. Further, let the empirical degree distribution be given by P̄ ϑ(k) ≡ 1

n

∑n
i=1 1{di=k},

and be denoted by P ϑ(k) ≡ Eµϑ
(
P̄ ϑ(k)

)
.
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Figure 2: A phase diagram illustrating the regions with a unique and with multiple equilibria according to Equation
(10) in Proposition 2 for varying values of b ∈ {0, . . . , 0.01} and ρ ∈ {0, . . . , 0.01} with n = 100, ν = 0.5, η = 100
ϑ = 1 and ζ = 50.

(i) Let q∗ ∈ Q be the root of

(b+ 2ν∗)q − η∗ =
ρ

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
q, (10)

which has at least one solution if b+2ν∗ > ρ. Then, q̄ a.s.−−→ q∗. Moreover, for large n, the firms’
output levels become independent Gaussian distributed random variables, qi

d−→ N (q∗, σ2), with
mean q∗ and variance σ2 = n/

(
2ϑν∗ + ϑ2(bq∗ − η∗ + 2ν∗q∗)(q∗(b+ 2ν∗ − ρ)− η∗)

)
. The de-

gree di of firm i follows a mixed Poisson distribution with mixing parameter
∫
Q p

ϑ(q, q′)µϑ(dq′),
where pϑ(q, q′) = eϑ(ρqq

′−ζ)/(1 + eϑ(ρqq
′−ζ)), and for any 1 < m ≤ n the degrees d1, . . . , dm are

asymptotically independent. In particular,

P ϑ(k) = Eµϑ

(
e−d̄(q1)d̄(q1)

k

k!

)
(1 + o(1)) , (11)

where the expected degree for large ϑ is given by

Eµϑ
(
d̄
)
=
n− 1

2

(
1 + tanh

(
ϑ

2

(
ρ(q∗)2 − ζ

)))
+

1

2ϑ
Rϑ, (12)

q∗ is given by Equation (10) and the expression of the remainder term Rϑ can be found in the
proof of the proposition.

(ii) For ϑ→ ∞, in the stochastically stable state, the probability measure µ∗ is concentrated on

q∗ =


η∗

b+2ν∗−ρ , if ζ < ρ(η∗)2

(b+2ν∗)2 ,{
η∗

b+2ν∗−ρ ,
η∗

b+2ν∗

}
, if ρ(η∗)2

(b+2ν∗)2 < ζ < ρ(η∗)2

(b+2ν∗−ρ)2 ,

η∗

b+2ν∗ , if ρ(η∗)2

(b+2ν∗−ρ)2 < ζ,

(13)

and we refer to the two possible output levels in Equation (13) as the high equilibrium
and the low equilibrium, respectively. The expected average degree in the high equilibrium
is Eµ∗

(
d̄
)

= limϑ→∞ Eµϑ
(
d̄
)

= n − 1, which corresponds to a complete graph, Kn, and
Eµ∗

(
d̄
)
= limϑ→∞ Eµϑ

(
d̄
)
= 0 in the low equilibrium, which corresponds to an empty graph,

Kn.

Figure 1 shows the average output q̄ of Equation (10) and the average degree d̄ of Equation
(12) in part (i) Proposition 2 as a function of the linking cost ζ. With increasing cost, both the

10



0 1 2 3 4 5 6 7
q

0

0.02

0.04

0.06

0.08

P
(q
)

ϑ= 0.15
ϑ= 0.25
ϑ= 0.75

Figure 3: (Left panel) The stationary output distribution P (q) for n = 50, η = 150, b = 0.5, ν = 10, ρ = 1 ,
ϑ ∈ {0.1, 0.25, 0.75} and ζ = 60. Dashed lines indicate the normal distribution N (q∗, σ2) of part(i) of Proposition
2). (Right panel) The stationary degree distribution P (k) for the same parameter values. The dashed lines indicate
the solution in Equation (11) of Proposition 2.

network connectivity and the output produced are decreasing. The transition from an economy
with high output and collaboration intensity to an economy with low output and collaboration
intensity is becoming sharper as ϑ increases, consistent with the limit of part (ii) in Proposition
2. An illustration of µϑ of the output distribution N (q∗, σ2) in part (i) of Proposition 2 together
with the results of numerical simulations can be seen in the left panel in Figure 3. The figure
shows that the analytic prediction reproduces the simulation results fairly well even for small
values of ϑ. A phase diagram illustrating the regions with a unique and with multiple equilibria
according to Equation (10) can be seen in Figure 2. Note that the stationary output levels in
Equation (10) are increasing in ρ and η, and decreasing in ζ and b (see also Figure 1 in Appendix
A). The latter implies that both higher collaboration cost (weaker spillovers) and more intense
competition (larger market size/lower production costs) decrease overall production.

We next consider the more general case of firms with heterogeneous marginal production costs.

Proposition 3. Let the firms’ profits be given by Equation (1), and let the evolution of the firms’
output levels and collaborations be governed by the stochastic process in Definition 1.

(i) For any q ∈ Qn and G ∈ Gn the stationary distribution of Equation (7) can be written as
µϑ(q, G) = µϑ(G|q)µϑ(q), where, for large ϑ, the marginal distribution µϑ(q) of the firms’
output levels is asymptotically Gaussian and given by

µϑ(q) =

(
2π

ϑ

)−n
2

|−∆Hϑ(q
∗)|

1
2 exp

{
−1

2
ϑ(q− q∗)⊤(−∆Hϑ(q

∗))(q− q∗)

}
+o
(
∥q− q∗∥2

)
,

(14)
with mean q∗ ∈ Qn solving q∗i = ηi +

∑n
j ̸=i

(
ρ
2

(
1 + tanh

(
ϑ
2

(
ρq∗i q

∗
j − ζ

)))
− b
)
q∗j , and

variance-covariance matrix given by the inverse of −∆Hϑ(q
∗),21 while the conditional dis-

tribution µϑ(G|q) is given by

µϑ(G|q) =
n∏
i=1

n∏
j=i+1

eϑaij(ρqiqj−ζ)

1 + eϑ(ρqiqj−ζ)
, (15)

for any q ∈ Qn and G ∈ Gn, which corresponds to an inhomogeneous random graph with

21The variance-covariance matrix can be computed in closed form: (∆Hϑ(q))ii =
ϑρ2

4

∑n
j ̸=i q

2
j

(
1− tanh

(
ϑ
2
(ρqiqj − ζ)

)2)− 1, and (∆Hϑ(q))ij = ρ
2

(
1 + tanh

(
ϑ
2
(ρqiqj − ζ)

))(
1 + ϑρ

2
qiqj

(
1− tanh

(
ϑ
2
(ρqiqj − ζ)

)))
− b, for j ̸= i.
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Figure 4: The (stepwise) adjacency matrix A = (aij)1≤i,j≤n, characteristic of a nested split graph, with elements
given by aij = 1{

qiqj>
ζ
ρ

}, where the vector q is the solution to Equation (17) in Proposition 3. The panels from
the left to the right correspond to increasing linking costs ζ ∈ {0.0075, 0.01, 0.02}. The parameters used are n = 10,
ν = 0.5, b = 0.06, ρ = 0.02 and η = (1.00, 0.71, 0.58, 0.50, 0.45, 0.41, 0.38, 0.35, 0.33, 0.32)⊤.

linking probability

pϑ(qi, qj) =
eϑ(ρqiqj−ζ)

1 + eϑ(ρqiqj−ζ)
. (16)

(ii) In the limit of ϑ→ ∞, the stochastically stable network G ∈ Gn in the support of µ∗ is a nested
split graph in which a link between the pair of firms i and j is present if and only if ρqiqj > ζ,
and the output profile, q ∈ Qn, is the fixed point to the following system of equations

qi =
ηi
2ν

+
1

2ν

n∑
j ̸=i

qj

(
ρ1{ρqiqj>ζ} − b

)
, µ∗-a.s.. (17)

Moreover, if firms i and j are such that ηi > ηj then i has a higher output than j, qi > qj and
a larger number of collaborations, di > dj, µ∗-a.s..

(iii) Assume that (ηi)ni=1 are identically and independently Pareto distributed with density function
f(η) = (γ − 1)η−γ for η ≥ 1. Denote M ≡ In + bB − ρA, where B is an n × n-dim. matrix
of ones with zero diagonal and A has elements aij = 1{ρqiqj>ζ}. Then the stochastically stable
output distribution is given by µ∗(q) = (γ − 1)n| det(M)|

∏n
i=1 (Mq)−γi . In particular, for

q = cu, with c > 0, and u being an n-dim. vector of ones, we have that µ∗(cu) ∼
∏n
i=1O (c−γ)

as c→ ∞, i.e., the output levels are asymptotically independently Pareto distributed.

Note that the marginal probability derived in Equation (14) will be important for our esti-
mation algorithm introduced in Section 3.3.1. Moreover, Figure 4 shows the adjacency matrix
A = (aij)1≤i,j≤n whose elements are given by aij = 1{

qiqj>
ζ
ρ

} and the vector q is the solu-

tion to Equation (17) in part (ii) of Proposition 3. We observe that firms with higher ηi also
have higher output levels, qi, in the stationary state. Moreover, the corresponding adjacency
matrix is stepwise, characterizing a nested split graph,22 and becomes increasingly sparse with
increasing linking cost ζ. The fact that empirical R&D networks are characterized by nested-
ness has been documented in Tomasello et al. [2016]. Further, note that nested split graphs are
paramount examples of core-periphery networks [Hojman and Szeidl, 2008]. The core-periphery
structure of R&D alliance networks has also been documented empirically in Kitsak et al. [2010]
and Rosenkopf and Schilling [2007]. Our model thus provides a theoretical explanation for why
real-world R&D networks exhibit such a core-periphery structure. Moreover, Kitsak et al. [2010]

22A nested split graph is characterized by the fact that the neighborhood of every node is contained in the
neighborhoods of the nodes with higher degrees [König et al., 2014a; Mahadev and Peled, 1995]. See supplementary
Appendix B for the definition of nested split graphs.
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Figure 5: The distribution P (η) of η following a Pareto distribution with exponent 2 (left panel), the resulting
stationary output distribution P (q) (middle panel) and the degree distribution P (d) (right panel) from a numerical
simulation of the stochastic process of Definition 1. Dashed lines indicate a power-law fit. Observe that P (η) and
P (q) exhibit a power law tail with the same exponent, consistent with part (iii) of Proposition 3. The parameters
used are n = 350, ν = 0.95, b = 0.75, ρ = 2 and ζ = 75.

find that firms in the core have a higher market value, consistent with the predictions of our
model. More productive firms have lower marginal costs of production, and thus higher output,
R&D expenditures, and can form more links, which makes them more central in the network.

When the firms’ marginal costs are not exogenously given, but when the (ηi)
n
i=1 follow a power

law distribution (which would correspond to Pareto distributed productivity levels that have been
documented for example in König et al. [2016]), then part (iii) of Proposition 3 shows that the
stationary output distribution is also a power law. The resulting degree distribution will then
also be a power law.23 An example based on a numerical simulation of the stochastic process of
Definition 1 can be seen in Figure 5. Our model can thus provide an explanation for the joint
occurrence of heavy tailed distributions not only in the firms’ sizes [Gabaix, 2016], but also in
their degrees [Powell et al., 2005].

2.3. Efficiency

Social welfare, W , is given by the sum of consumer surplus, U , and firms’ profits, Π. Consumer
surplus is given by U(q) = 1

2

∑n
i=1 q

2
i +

b
2

∑n
i=1

∑n
j ̸=i qiqj (see supplementary Appendix C, Foot-

note 13). In the special case of non-substitutable goods, when b→ 0, we obtain U(q) = 1
2

∑n
i=1 q

2
i ,

while in the case of perfectly substitutable goods, when b→ 1, we get U(q) = 1
2 (
∑n

i=1 qi)
2. Pro-

ducer surplus is given by aggregate profits Π(q, G) =
∑n

i=1 πi(q, G). As a result, assuming

23Note that in the limit of ϑ → ∞ the linking probability between two firms with output levels q and q′,
respectively, is given by Equation (16):

lim
ϑ→∞

pϑ(q, q′) = lim
ϑ→∞

eϑ(ρqq′−ζ)

1 + eϑ(ρqq′−ζ)
= 1{ρqq′>ζ} = 1{

log q+log q′>log
(

ζ
ρ

)}. (18)

When the output levels are power law distributed, with density f(x) = γ
c

(
c
x

)γ+1 for x > c, where c > 0 is a
lower-cut-off and γ > 0 is a positive parameter, then the log-ouptut levels, ln q, follow an exponential distribution
with density f(y) = γcγe−γy.The linking probability in Equation (18) then induces an inhomogenous random
graph identical to the one analyzed in Boguná and Pastor-Satorras [2003] (see also Appendix B). In particular,
the authors show that this random graph is characterized by a power law degree distribution, a negative clustering
degree correlation and a decaying average nearest neighbor degree distribution indicating a dissortative network.
In Section 2.4.1 and Appendix E.1 we discuss how such network characteristics can also be obtained when firms
are heterogeneous in terms of their marginal collaboration costs.
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homogeneous firms, total welfare is equal to

W (q, G) = U(q) + Π(q, G) =
1

2

n∑
i=1

q2i +
b

2

n∑
i=1

n∑
j ̸=i

qiqj +
n∑
i=1

πi(q, G)

=
1

2

n∑
i=1

q2i +
b

2

n∑
i=1

n∑
j ̸=i

qiqj +
n∑
i=1

ηqi − νq2i − b
n∑
j ̸=i

qiqj + ρ
n∑
j=1

aijqiqj

− 2ζm, (19)

where m denotes the number of links in G. The efficient state is then defined by the network
G∗ ∈ Gn and output profile q∗ ∈ Qn that maximize welfare W (q, G) in Equation (19), that is,
W (q∗, G∗) ≥ W (q, G) for all G ∈ Gn and q ∈ Qn.24 The following proposition shows that the
decentralized equilibrium is efficient only when the linking costs are sufficiently high. Otherwise,
equilibrium networks are under-connected, and production is too low compared to what would
be socially optimal.

Proposition 4. Let the firms’ profits be given by Equation (1), define welfare as in Equation (19),
and let the evolution of the firms’ output levels and collaborations be governed by the stochastic
process in Definition 1. Further, denote η∗ ≡ η/(n− 1) and ν∗ ≡ ν/(n− 1).

(i) In the case of homogeneous firms such that ηi = η for all i = 1, . . . , n, the efficient network
G∗ ∈ Gn and output profile q∗ ∈ Qn are given by q∗u, with u denoting an n-dimensional
vector of ones, and

(q∗, G∗) =


(

η∗

b+2(ν∗−ρ)− 1
n−1

,Kn

)
, if ζ ≤ ζ∗,(

η∗

b+2ν∗− 1
n−1

,Kn

)
, if ζ∗ < ζ,

(20)

where Kn denotes the complete graph, Kn denotes the empty graph and

ζ∗ =
ρ (η∗)2(

b+ 2ν∗ − 1
n−1

)(
b+ 2(ν∗ − ρ)− 1

n−1

) . (21)

Moreover, in the limit of ϑ→ ∞ the stochastically stable equilibrium network is efficient if
ζ > ζ∗, µ∗-a.s..

(ii) In the case of heterogeneous firms, the efficient network G∗ ∈ Gn is a nested split graph,
where the output profile q∗ ∈ Qn is the solution to the following system of equations

qi =
ηi

2ν − 1
+

1

2ν − 1

n∑
j ̸=i

qj

(
ρ1{ρqiqj>ζ} − b

)
. (22)

Further, when Equation (22) admits an interior solution, then the stochastically stable
equilibrium output (and R&D expenditures) and the collaboration intensity are too low
compared to the social optimum (µ∗-a.s.).

The left panel of Figure 6 shows welfare as a function of the linking cost ζ for varying values
of ϑ, while the right panel shows the ratio of welfare relative to welfare in the efficient graph in

24Observe that this is different from the efficiency analysis in Ballester et al. [2006], where the planner chooses
links, but not the effort levels, and there are not linking costs. It is also different from the efficiency analysis in
Hiller [2013] and Belhaj et al. [2016], where global substitutability effects are not taken into account.
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Figure 6: (Left panel) Welfare W (q, G) as a function of the linking cost ζ for varying values of ϑ ∈ {0.05, 0.1, 0.2}
with n = 20 firms and τ = ξ = χ = 1, η = 300, ρ = 1, b = 1 and ν = 20. The solid line indicates welfare in the
efficient graph of Proposition 4 (which is either complete or empty). (Right panel) The ratio of welfare relative to
welfare in the efficient graph.

the case of homogeneous firms considered in part (i) of Proposition 4. It illustrates the region
of inefficiency of the equilibrium network for linking costs ζ < ζ∗, where equilibrium networks
typically tend to be under-connected.25 As similar observation can also be made for heterogeneous
firms considered in part (ii) of Proposition 4. In Section 4.3 we analyze the welfare improving
impact of a subsidy on firms’ R&D collaboration costs, that motivates firms to form collaborations
and thus increases the network connectivity.

2.4. Extensions

The model presented so far can be extended in a number of different directions that account for
firm heterogeneity, which are summarized below and described in greater detail in supplementary
Appendix E.

2.4.1. Heterogeneous Collaboration Costs

We can extend the model by assuming that firms with higher productivity incur lower collabo-
ration costs (see also supplementary Appendix E.1). One can show that a similar equilibrium
characterization using a Gibbs measure as in Theorem 1 is possible. Moreover, in the special
case that the productivity is power law distributed, one can show that the degree distribution
also follows a power law distribution (see Proposition 5),26 consistent with previous empirical
studies of R&D networks [see e.g., Powell et al., 2005], together with other empirically relevant
correlations (see Propositions 6 and 7).27

25In contrast, when the linking costs are very high, then the R&D externalities are not high enough to compensate
for the costs of maintaining the network, and so the social planner prefers not to form any links. In this high cost
region also the individual firms do not want to form links, so that the social planners solution and the decentralized
equilibrium coincide.

26In particular, assume that the productivity s are distributed as a power law s−γ with exponent γ. Then one
can show that the asymptotic degree distribution is also power law distributed, P (k) ∼ k

− γ
γ−1 , with exponent γ

γ−1
.

27We note that also other statistics such as the clustering degree distribution can be computed. See supplementary
Appendix E.2 for further details. In particular, under the assumptions of a power law productivity distribution,
we can generate two-vertex and three-vertex degree correlations, such as a decreasing average nearest neighbor
connectivity, knn(d), indicating a dissortative network, as well as a decreasing clustering degree distribution, C(d),
with the degree d.
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Figure 7: The largest connected component in the observed network of R&D collaborations in the year 2006 for
the firms without missing observations on R&D expenditures and industry classifications. The shade and size of a
node indicates its R&D expenditures, with the 5 largest firms mentioned in the graph. The number of firms is 1014
and the number of firms in the largest connected component is 431. The figure indicates two clusters representing
the car producing and the pharmaceuticals sectors, with most of the collaborations within a sector and a few
collaborations across sectors.

2.4.2. Heterogeneous Technology Spillovers

We can further extend the model by assuming that there are heterogeneous spillovers between
collaborating firms depending on their technology portfolios [Griffith et al., 2003] (see also sup-
plementary Appendix E.2). For example, assume that firms can only benefit from collaborations
if they have at least one technology in common. Then one can show that our model is a general-
ization of a “random intersection graph” [Deijfen and Kets, 2009] (see supplementary Appendix
B) for which positive degree correlations can be obtained (i.e., “assortativity”, see Proposition
8).

The above extensions show that our model is capable of generating networks with properties
that can be observed in real world networks, such as power law degree distributions and various
degree correlations, once we introduce firm heterogeneity. This counteracts general criticism
of (simple variants of) exponential random graphs, which often have difficulties in generating
networks with empirically relevant characteristics [Chandrasekhar and Jackson, 2012].

3. Empirical Study

3.1. Data

To get a comprehensive picture of R&D alliances we use data of interfirm R&D collaborations
stemming from two sources which have been widely used in the literature [Schilling, 2009]. The
first is the Cooperative Agreements and Technology Indicators (CATI) database [Hagedoorn,
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2002]. The database only records agreements for which a combined innovative activity or an
exchange of technology is at least part of the agreement. Moreover, only agreements that have at
least two industrial partners are included in the database, thus agreements involving only univer-
sities or government labs, or one company with a university or lab, are disregarded. The second
is the Thomson Securities Data Company (SDC) alliance database. SDC collects data from the
U. S. Securities and Exchange Commission (SEC) filings (and their international counterparts),
trade publications, wires, and news sources. We include only alliances from SDC which are clas-
sified explicitly as R&D collaborations.28 Supplementary Appendix F provides more information
about the databases used for this study.

We then merged the CATI database with the Thomson SDC alliance database. For the match-
ing of firms across datasets we adopted and extended the name matching algorithm developed
as part of the NBER patent data project [Trajtenberg et al., 2009].29 The systematic collection
of inter-firm alliances in CATI started in 1987 and ended in 2006. As the CATI database only
includes collaborations up to the year 2006, we take this year as the base year for our empirical
analysis. We then construct the R&D alliance network by assuming that an alliance lasts for 5
years [similar to e.g., Rosenkopf and Padula, 2008]. The corresponding entry in the adjacency
matrix between two firms is coded as one if an alliance between them exists during this period,
and zero otherwise. An illustration of the observed R&D network can be seen in Figure 7. The
figure indicates two clusters representing the car manufacturing and the pharmaceuticals sectors,
respectively, with most of the collaborations within a sector and a few collaborations across sec-
tors. The non-overlap of these sectors and the R&D collaborations (within and across sectors) will
allow us to separately identify the technology spillover effect and the product market competition
effect.

The combined CATI-SDC database provides only the names of the firms in an alliance. To
obtain also information about their balance sheets and income statements we matched the firms’
names in the CATI-SDC database with the firms’ names in Standard & Poor’s Compustat U.S.
and Global Fundamentals databases, as well as Bureau van Dijk’s Orbis database [see e.g., Bloom
et al., 2013]. For the purpose of matching firms across databases, we employ the above mentioned
name matching algorithm. We could match roughly 25% of the firms in the alliance data for
which balance sheet information was available.30 From our match between the firms’ names in
the alliance database and the firms’ names in the Compustat and Orbis databases, we obtained
a firm’s R&D expenditures, sales, primary industry code and location.

We use a firm’s log-R&D expenditure to measure its R&D effort.31 Moreover, the firms’
productivities are measured by their log-R&D capital stocks (lagged by one year). As in Hall
et al. [2000], Bloom et al. [2013] and König et al. [2018] the R&D capital stock is computed using a
perpetual inventory method based on the firms’ R&D expenditures with a 15% depreciation rate.
We further identify the patent portfolios of the firms in our dataset using the EPO Worldwide

28For a comparison and summary of different alliance databases, including CATI and SDC, see Schilling [2009].
29See https://sites.google.com/site/patentdataproject. We would like to thank Enghin Atalay and Ali

Hortacsu for sharing their name matching algorithm with us.
30 Note that for many small private firms no balance sheet information is available, and hence these firms could

not be matched by our algorithm. We therefore typically exclude smaller private firms from our analysis, but this
is inevitable if one is going to use market value data. Nevertheless, R&D is mostly concentrated in publicly listed
firms, which cover most of the R&D activities in the economy, and these firms are typically included in our sample
[see e.g., Bloom et al., 2013].

31As illustrated in supplementary Appendix C, R&D effort is proportional to output in our model.
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Table 1: Descriptive statistics.

Log R&D Expenditures Productivity Log # of Patents

Sample # of firms mean min max mean min max mean min max

Full 1014 9.7092 3.2109 15.2467 11.2292 5.0706 17.0613 4.9587 0.0000 11.8726

SIC-28 347 9.6574 3.2109 15.2467 11.1018 5.0706 16.8160 4.7960 0.0000 11.8014
U.S. manuf. 165 10.6796 4.5972 15.2467 12.4617 6.7889 17.0613 6.4891 0.0000 11.6349

Note: R&D expenditure is measured by thousand U.S. dollars in 2006. A Firm’s productivity is measured by its
log-R&D capital stock (lagged by one year). To compute the R&D capital stocks we use a perpetual inventory method
based on the firms’ R&D expenditures with a 15% depreciation rate (following Hall et al. [2000] and Bloom et al.
[2013]). The logarithm of the number of patents in 2006 is used as a control variable in the linking cost function
[Hanaki et al., 2010]. We impute zero when the number of patents is zero.

Patent Statistical Database (PATSTAT) [Jaffe and Trajtenberg, 2002] (see also supplementary
Appendix F.4). We only consider granted patents (or successful patents), as opposed to patents
applied for, as they are the main drivers of revenue derived from R&D [Copeland and Fixler,
2012]. We obtained matches for roughly 30% of the firms in the data. The technology classes
were identified using the main international patent classification (IPC) numbers at the 4-digit
level. We drop firm observations with missing values on either R&D expenditure or patents which
results in a sample of 1,014 firms (with 428 R&D collaborations) for our analysis.32 Descriptive
statistics of the sample are shown in Table 1.

The size of the sample is somewhat too large for implementing some of the estimation methods
that we will introduce below due to computational complexity (in particular the exchange and
adaptive exchange algorithms in Sections 3.3.2 and 3.3.3, respectively).33 Therefore, we further
consider a subsample of the data where we can apply all of our estimation strategies. The subsam-
ple we consider in the following is restricted to firms in the SIC-28 sector, “chemicals and allied
products,” which consists of 347 firms and 139 within sector R&D collaborations. Compared to
other 2-digit SIC sectors, the SIC-28 sector has the largest number of within sectoral R&D col-
laborations, and the smallest percentage of R&D collaborations to other 2-digit SIC sectors. The
SIC-28 sector contains eight 3-digit SIC sub-sectors, ranging from “industrial inorganic chemi-
cals” (SIC-281) to “miscellaneous chemical products” (SIC-289). The summary statistics of firms
in SIC-28 are provided in Table 1 and the number of R&D collaborations across major 2-digit
SIC sectors (with more than twenty firms) and within the SIC-28 sectors are shown in Figure 8.
Among the eight 3-digit SIC sub-sectors within SIC-28, the drugs development sector (SIC-283)
is the largest one. It consists of 256 firms and 119 within sector R&D collaborations.

3.2. Firm Heterogeneity

To account for the firm level heterogeneity that we observe in the data, we extend the profit
function of Equation (1) in Section 2 to accommodate heterogeneous marginal costs of production,
substitution effects, and heterogeneous technology spillovers (see also Section 2.4), so that the

32To understand the impact of missing observations due to incomplete matching between databases, we conducted
a Monte Carlo simulation study in supplementary Appendix H.

33See Section 3.3 and supplementary Appendix H for a more detailed discussion of the various estimation pro-
cedures that we introduce in this paper. Further, note that the restriction to small sample sizes does not apply to
the likelihood partition approach introduced in Section 3.3.1, for which we can use the full sample to estimate the
parameters of the model. We find, however, that the estimation results are similar, irrespective of whether we use
only a subsample of the data or the full sample. Compared to several existing studies [e.g., Badev, 2013; Hsieh and
Lee, 2013; Mele, 2017], which analyze networks with a few hundred nodes, the size of one single network that we
handle in this paper is significantly larger.

18



B

i

j

B

i

j

37 73 35 38 36 28

37 22 6 3 7 4 2
73 6 4 17 7 17 8
35 3 17 11 4 26 2
38 7 7 4 5 13 26
36 4 17 26 13 29 3
28 2 8 2 26 3 139

281 282 283 284 285 286 287 289

281 1 2 13 0 0 0 0 0
282 2 1 1 0 0 0 0 0
283 13 1 119 0 2 0 0 0
284 0 0 0 0 0 0 0 0
285 0 0 2 0 0 0 0 0
286 0 0 0 0 0 0 0 0
287 0 0 0 0 0 0 0 0
289 0 0 0 0 0 0 0 0

Figure 8: (Top left panel) The empirical competition matrix B across all 2-digit SIC sectors. The largest sector
is the SIC-28 sector with 347 firms, which comprises 34.22% of all firms in the sample. (Top right panel) The
empirical competition matrix B across all 3-digit SIC sectors within the SIC-28 sector. The largest sector is the
SIC-283 “drugs” sector with 256 firms, which comprises 73.78% of all firms in the SIC-28 sector. (Bottom left
panel) The number of R&D collaborations across all 2-digit SIC sectors. The sector SIC-28 has 139 within sector
R&D collaborations. (Bottom right panel) The number of R&D collaborations within the sector SIC-28. The
sector SIC-283 has 119 within sector R&D collaborations.

profit of firm i can be written as follows:

πi(q, G) = ηiqi −
1

2
q2i − b

n∑
j ̸=i

bijqjqi + ρ

n∑
j=1

fijaijqjqi − ζi(G). (23)

As compared to Equation (1), in Equation (23) we have normalized ν to 1/2. The term ηi

represents an individual fixed effect for each firm and we capture it by Xiδ, where Xi includes
firm i’s productivity and a sector dummy (at the two-digit SIC level). To allow for additional
heterogeneity among firms, the substitution effect is considered at the three-digit SIC level. Each
firm faces a substitution effect from all other firms within the same sector, i.e., we set bij = 1, if
both firms i and j are in the same sector, and zero otherwise. In Equation (23) we have further
introduced the symmetric weights (fij)1≤i,j≤n, with fij = fji, to capture heterogeneous technology
spillovers across firms, based on the technological proximities of firms i and j measured either by
Jaffe’s or the Mahalanobis patent similarity indices [Bloom et al., 2013; Jaffe, 1989] criteria (see
the supplementary Appendices E.2 and F.4 for further details).

The total cost of R&D collaborations for firm i is captured by the term ζi(G) =
∑n

j=1 aij(ψij+

φij), with the pairwise symmetric functions ψij = γ⊤cij and φij = κtij . In our study the
r-dimensional vector of dyadic-specific variables, cij , represents measures of similarity between
firms i and j regarding sector, location, technology, research quality, etc., that might have an
effect on the collaboration costs (see e.g., Lychagin et al. [2016] and supplementary Appendix E.1
for a simple example). The term tij =

∑n
k ̸=i,j aikajk counts the number of common collaborators

shared by firms i and j (“cyclic triangles” effect). It allows for R&D collaborations to be less
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costly between firms that have mutual third-party collaborators [Hanaki et al., 2010].34

The potential function Φ: Rn+ × Gn → R corresponding to Equation (23) is given by12

Φ(q, G) =
n∑
i=1

(
ηiqi −

1

2
q2i

)
− b
2

n∑
i=1

n∑
j ̸=i

bijqiqj+
ρ

2

n∑
i=1

n∑
j ̸=i

fijaijqiqj−
1

2

n∑
i=1

n∑
j ̸=i

aijψij−
1

3

n∑
i=1

n∑
j ̸=i

aijφij .

(24)
In the vector-matrix form this is

Φ(q, G) = η⊤q− 1

2
q⊤M(G)q− 1

2
tr(AΨ⊤)− 1

3
tr(Aφ⊤), (25)

where η = (η1, η2, . . . , ηn)
⊤, Ψ = (ψij)1≤i,j≤n and φ = (φij)1≤i,j≤n. In the following, we denote

M(G) ≡ In + bB − ρ(A ◦ F), where F is the matrix with elements fij for 1 ≤ i, j ≤ n, and ◦
denotes the Hadamard element wise matrix product.35 The stationary distribution of the Markov
process of Definition 1 is then given by the Gibbs measure µϑ(q, G) of Equation (7) in Theorem
1 with the potential function Φ(q, G) of Equation (25).

3.3. Exponential Random Graph Models

When both the quantity produced, q, and the network, G, are endogenous, the stationary distri-
bution µϑ(q, G) is determined by Equation (7). The parameters of the model can be summarized
by θ = (ρ, b, δ⊤,γ⊤,κ) ∈ Θ with parameter space Θ.36 This empirical model belongs to the
family of exponential random graph models (ERGMs) or p∗ models [see Frank and Strauss,
1986]. The closed form expression of the likelihood function given in Equation (7) establishes
a straightforward channel to check identification of the parameter vector θ. Following the the-
ory of exponential family distributions, identification of the parameters θ is guaranteed as long
as the regressors in Φ(q, G) of Equation (25) are not linearly dependent [Badev, 2013; Mele,
2017; Lehmann and Casella, 2006]. ERGMs are notorious for the difficulty of estimation due
to existence of an “intractable normalizing constant” in the probability likelihood function.37,38

Using classical estimation methods such as a Maximum likelihood (MLE) approach, one needs
to simulate a set of auxiliary networks in order to approximate the intractable normalizing con-
stant (MCMC-MLE) [Badev, 2013]. However, the performance of the MCMC-MLE method is
greatly influenced by the choice of initial parameter values, θ(0) [Airoldi et al., 2009]. If θ(0)

is not close enough to the true value, without resorting to a global searching algorithm such as

34Hanaki et al. [2010] argue that the existence of mutual collaborators may enhance the effectiveness of penalties
and improve the appropriability of the outcomes of joint R&D projects, and that firms can use pre-existing collab-
orations as conduits of information about the reliability of potential collaboration partners. The authors further
find empirical evidence that R&D collaborations are more likely to be undertaken between firms that have mutual
third-party collaborators.

35Let A and B be m× n matrices. The Hadamard product of A and B is defined by [A ◦B]ij = [A]ij [B]ij for
all 1 ≤ i ≤ m, 1 ≤ j ≤ n, i.e. the Hadamard product is simply an element-wise multiplication.

36Similar to the standard logistic regression framework, the parameter ϑ cannot be separately identified, and we
therefore omit it from estimation for simplicity.

37This corresponds to the denominator of Equation (7) which involves a summation over all networks G ∈ Gn,
that is, a sum with 2(

n
2
) terms.

38Other than the difficulty of estimation, the most basic exponential random graphs are statistically equivalent
to an Erdös-Rény random graph in the limit of large n unless the model contains at least one non-trivial negative
network externality effect [Bhamidi et al., 2011; Mele, 2017]. We show in section 2.4 how the introduction of various
forms of firm heterogeneity leads to correlated networks with structural properties that differ significantly from an
Erdös-Rény random graph.
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simulated annealing, the method may converge to a sub-optimal solution.
Alternatively, the Bayesian MCMC approach has recently gained more attention on ERGM es-

timation [see e.g., Hsieh and Lee, 2013; Mele, 2017; Snijders, 2002; Liang, 2010]. The intractable
normalizing constant in the likelihood function also makes the standard MCMC algorithm in-
feasible. The standard MH algorithm to update the parameters from θ to θ′ depends on the
acceptance probability,

α(θ′|θ) = min

{
1,
π(θ′)µϑ(q, G|θ′)T1(θ|θ′)

π(θ)µϑ(q, G|θ)T1(θ′|θ)

}
, (26)

where π denotes the prior density and T1(θ
′|θ) denotes the symmetric proposal density for the

independent MH draw, i.e., T1(θ′ − θ) = T1(θ − θ′). In the above acceptance probability, two
normalizing terms in µϑ(q, G|θ′) and µϑ(q, G|θ) do not cancel each other and therefore, α(θ′|θ)
cannot be calculated.

In the following subsections, we will focus on the MCMC approach and discuss three strategies
to bypass the evaluation of the intractable normalizing term. Among these three strategies, when
the cyclic triangles effect is absent from the model, i.e., setting κ = 0, link independence holds
(conditional on output), and we can use a likelihood partition approach (Section 3.3.1), which is
generally applicable to large network samples. In a dependent link case, where κ ̸= 0, we will use
an exchange algorithm (Section 3.3.2) and an adaptive exchange algorithm (Section 3.3.3). The
adaptive exchange algorithm is an extension of the exchange algorithm in order to avoid the local
trap problem. In supplementary Appendix H, we conduct a simulation study to demonstrate the
consistency of each method and to compare their computational costs.

3.3.1. Likelihood Partition Approach

In the absence of cyclic triangles effects, i.e., when we set κ = 0, conditional link independence
holds (given the output levels of any pair of firms). The probability of observing a network
G ∈ Gn, given an output distribution q ∈ Qn, is then determined by the conditional distribution
(see Equation (15) and supplementary Appendix E):

µϑ(G|q) = µϑ(q, G)

µϑ(q)
=

n∏
i<j

eϑaij(ρfijqiqj−γ⊤cij)

1 + eϑ(ρfijqiqj−γ⊤cij)
. (27)

Such a factorization would not be possible if the linking cost would allow for higher order network
effects captured by κ ̸= 0. The marginal distribution of the firms’ output levels q ∈ Qn for large
ϑ is given by Equation (14) and supplementary Appendix E:

µϑ(q) ≈
(
2π

ϑ

)−n
2

|−∆Hϑ(q
∗)|

1
2 exp

{
−1

2
ϑ(q− q∗)⊤(−∆Hϑ(q

∗))(q− q∗)

}
, (28)

where

(∆Hϑ(q))ii = −1 +
ϑρ2

4

n∑
j ̸=i

f2ijq
2
j

(
1− tanh

(
ϑ

2

(
ρfijqiqj − γ⊤cij

))2
)
,
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and

(∆Hϑ(q))ij = −bbij +
ρfij
2

(
1 + tanh

(
ϑ

2

(
ρfijqiqj − γ⊤cij

)))
×
(
1 +

ϑρfij
2

qiqj

(
1− tanh

(
ϑ

2

(
ρfijqiqj − γ⊤cij

))))
,

for j ̸= i. Further, q∗ in Equation (28) solves the following system of equations (see Equation
(10) and supplementary Appendix E):

qi = ηi +

n∑
j ̸=i

(
ρfij
2

(
1 + tanh

(
ϑ

2

(
ρfijqiqj − γ⊤cij

)))
− bbij

)
qj . (29)

Equation (28) shows that in the limit of large ϑ, q is asymptotically normally distributed with
mean q∗ and variance-covariance matrix − 1

ϑ∆Hϑ(q
∗)−1. It then follows that the likelihood of

the network G and the quantity profile q in the large ϑ limit can be partitioned as follows [Smyth,
1996]

µϑ(q, G) = µϑ(G|q) · µϑ(q) ≈
n∏
i<j

eϑaij(ρfijqiqj−γ⊤cij)

1 + eϑ(ρfijqiqj−γ⊤cij)

×
(
2π

ϑ

)−n
2

|−∆Hϑ(q
∗)|

1
2 exp

{
−1

2
ϑ(q− q∗)⊤(−∆Hϑ(q

∗))(q− q∗)

}
, (30)

where we have inserted Equation (27) for µϑ(G|q) and Equation (28) for µϑ(q). Based on the
partition of µϑ(q, G) in Equation (30), we do not need to evaluate the intractable normalizing
constant in the likelihood function of Equation (7), and can estimate the parameters by a standard
Bayesian MCMC algorithm. The key step of solving q∗ from Equation (29) can be implemented
efficiently by recognizing it as a fixed point system, and using a fast fixed point algorithm. As
supplementary Appendix H shows, computation of this likelihood partition (LP) approach is much
less costly than the other two methods outlined below. Therefore, we apply the LP approach to
estimate the model for both, the full sample including all sectors and the SIC-28 sector subsample.

3.3.2. Exchange Algorithm

When we allow for cyclic triangles effects, i.e., κ ̸= 0, then we can no longer use the LP estimation
algorithm from the previous section. An alternative is the exchange algorithm, which provides
a way to bypass evaluation of the intractable normalizing constant in the Metropolis-Hastings
(MH) acceptance probability [see e.g., Liang et al., 2011]. The name “exchange” comes from its
similarity with the swapping operation of exchange Monte Carlo [Geyer, 1991]. It is different
from the conventional MH algorithm by having a proposal density T1(θ

′|θ)µ(q′, G′|θ′), which
involves simulation of auxiliary data (q′, G′) from the distribution µ(q′, G′|θ′). The acceptance
probability of the exchange algorithm can be written as

α(θ′|θ,q′, G′) = min

{
1,
π(θ′)µ(q, G|θ′)

π(θ)µ(q, G|θ)
· T1(θ|θ

′)µ(q′, G′|θ)
T1(θ′|θ)µ(q′, G′|θ′)

}
= min

{
1,
π(θ′)eΦ(q,G,θ′)

π(θ)eΦ(q′,G′,θ′)
· T1(θ|θ

′)eΦ(q′,G′,θ)

T1(θ′|θ)eΦ(q,G,θ)

}
. (31)
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Intractable normalizing terms in Equation (31) are cancelled out and thus the acceptance prob-
ability α(θ′|θ,q′, G′) can be computed.

A problem of the exchange algorithm is that it requires a perfect sampler of G′ and q′ from
µ(·|θ′) [Propp and Wilson, 1996], which is computationally intense for most of ERGM appli-
cations. To overcome this issue, Liang [2010] proposed the double MH (DMH) algorithm to
replace the perfect sampler with a finite MH chain initialized at the observed network. In this
paper, we use the DMH algorithm for parameter estimation, and more specific details about its
implementation can be found in supplementary Appendix G.1.

To improve the computational speed of the DMH algorithm, we assume that during the
dynamic network formation process, whenever a firm changes its R&D collaborations, all firms
adjust output levels immediately and thus the new output levels will be the profit-maximizing
output given by the best response function q∗ = M(G)−1η plus a stochastic error term.39 The
size of error, according to the approximation derived in supplementary Appendix G.4, should
be determined by M(G)−1. This assumption means that we impose two different time scales: a
fast time scale of output adjustments, and a slow time scale of link adjustments [Khalil, 2002].40

When simulating auxiliary data for the output levels and the network, this assumption saves
firm’s infinitesimal adjustments on output and turns it into an implicit function of the network.
However, we will have to evaluate M(G)−1 whenever a link has been added or removed from the
auxiliary network and this may still be computationally costly. To do this in an efficient way, we
use a matrix perturbation result that is derived in supplementary Appendix G.5.

3.3.3. Adaptive Exchange Algorithm

Even though the DMH algorithm alleviates the computational burden by replacing the perfect
sampling, convergence of the finite MH chain in the DMH algorithm is not theoretically guar-
anteed. Therefore, the DMH estimates are only approximately correct no matter how long the
algorithm has been run. Especially, if the network distribution represented by an ERGM is
multi-modal, the finite MH run may be trapped at one of the local maxima of the likelihood
function (“local trap problem”). Consequentially, the Markov chain of the DMH algorithm may
mix very slowly and require unaffordable computation time for achieving convergence [Bhamidi
et al., 2011].41

In this paper, we therefore additionally adopt an adaptive exchange (AEX) algorithm, which
has recently been developed by Jin et al. [2013] and Liang et al. [2015], to overcome the uncertainty
of slow mixing faced by the DMH algorithm. The foundation of the AEX algorithm is an MCMC
sampling scheme called stochastic approximation Monte Carlo (SAMC) algorithm [Liang et al.,

39Note that q∗ maximizes the potential function of Equation (25) for an exogenously given network G.
40Observe that the stationary distribution µ(q, G) in Equation (7) does not depend on the parameter χ that

governs the speed of the output adjustment. This means that the stationary distribution µ(q, G) is independent
of how quickly the output levels adjust. As a consequence, we can use it as a degree of freedom in our estimation
algorithms, that is, the stationary distribution is not affected whether we make the time scale separation assumption
or not.

41To overcome the local trap problem and thus speed up convergence during network simulation, Snijders [2002]
and Mele [2017] proposed MH samplers which consist of both local and non-local steps. In the local step, only one
random edge is updated in an iteration. With a certain probability, the sampler will implement the non-local step
where multiple (or even all) edges are updated in an iteration. Although Mele [2017] used a simulation study to
demonstrate convergence of the MH sampler with a non-local step, the simulation result is based on a simple model
specification with one indirect link effect and may not be extended to a more general case. Therefore, it is still
questionable whether the finite MH runs with non-local steps can always achieve convergence for general ERGMs.
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2007]. The main feature of SAMC is that it applies importance sampling to prevent the local trap
problem. In SAMC, the sample space is partitioned into non-overlapping subregions. Different
importance weights are assigned to each subregion so that SAMC draws samples from a kind
of “mixture distribution” that avoids being trapped by a local extremum. Additionally, SAMC
contains a self-adjusting mechanism to the weights of each subregion so that it can escape from
local extrema of the likelihood function very quickly.

In the AEX algorithm, two Markov chains are running in parallel. In the first chain, we draw
auxiliary data (q̃, G̃) from a family of distributions µ(q̃, G̃|θ1), . . . , µ(q̃, G̃|θm) with frequencies
determined by the SAMC algorithm, where (θ1, . . . ,θm) are pre-specified parameter points. In
practice, we set m = 50 and (θ1, . . . ,θ50) are chosen by the Max-Min procedure from the DMH
draws [Liang et al., 2015]. We have also tried m = 30 and m = 100 and the results are largely
similar. In the second chain, we implement the exchange algorithm for updating the target
parameters, where auxiliary data, q′ and G′, are re-sampled from the first chain by an importance
sampling procedure. Convergence of the AEX algorithm, i.e., q′ and G′ from the importance
sampling procedure of the AEX converge to µ(·|θ′) and the draws of θ from the target chain will
converge weakly to the posterior µ(θ|q, G), can be shown when the number of iterations of both
the auxiliary and target chains go to infinity. Details of implementing the AEX algorithm and
the proof of convergence are provided in supplementary Appendices G.2 and G.3.

3.4. Empirical Results

The first column in Table 2 presents our estimation results for the full sample encompassing all
sectors in the data, columns 2 to 4 analyze the subsample restricted to the SIC-28 sector, and
columns 5 and 6 analyze the U.S. manufacturing sector. Due to the aforementioned computational
constraints, we only apply the LP algorithm to estimate the full sample, while applying all three
estimation algorithms to the subsample for the SIC-28 sector. In the full sample both, estimates
of the technology spillover parameter ρ (0.0230) and the competition parameter b (0.0001) are
significant and have the expected signs. The two effects match our theoretical predictions from
Section 2, showing that firms face a positive complementary effect from R&D collaborations and
a negative product substitution effect from competing firms in the same market. Furthermore,
we find that the technology spillover effect ρ is much larger than the product market rivalry
effect b [Bloom et al., 2013]. This suggests that the marginal returns from R&D collaborations
are positive even between competing firms. We also find that a higher productivity is associated
with higher R&D expenditures [see e.g., Cohen et al., 1987]. The estimation results further
show significant effects from the control variables in the linking cost function, including the same
sector (at 3-digit SIC level) and the same country dummies (respectively, city dummies in the U.S.
sample), and the sum of log patent counts from each of the two firms involved in a collaboration.
Results on the two dummies reveal that the R&D collaboration cost are lower among two firms
in the same sector or in the same location. The sum of the log patent numbers acts as a proxy
for the research capacities of collaborating firms [Hanaki et al., 2010] and a higher value indicates
lower R&D collaboration costs between them.

In the SIC-28 subsample, the estimates are similar across different estimation methods in
columns 2 to 4 in Table 2, using either the LP, DMH or AEX estimation algorithm. This illustrates
the robustness of our results. Further, compared to the full sample, in the SIC-28 sector there are
additional significant effects from the differences in productivities between collaborating firms in
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Table 2: Estimation results for the full sample and various subsamples.

Full SIC-28 U.S.
sample subsample manufacturing

LP LP DMH AEX LP LP
(1) (2) (3) (4) (5) (6)

R&D Spillover (ρ) 0.0230∗∗∗ 0.0266∗∗∗ 0.0312∗∗∗ 0.0293∗∗∗ 0.0368∗∗∗ 0.0480∗∗∗

(0.0013) (0.0018) (0.0021) (0.0031) (0.0068) (0.0085)
Substitutability (b) 0.0001∗∗ 0.0001∗∗ 0.0002∗∗ 0.0001∗∗ 0.0004∗∗ 0.0004∗∗

(0.0000) (0.0000) (0.0001) (0.0000) (0.0002) (0.0002)
Productivity (δ1) 0.8537∗∗∗ 0.8034∗∗∗ 0.7356∗∗∗ 0.7418∗∗∗ 0.9773∗∗∗ 1.2336∗∗∗

(0.0160) (0.0744) (0.0911) (0.0364) (0.0306) (0.2203)
Sector FE (δ2) Yes Yes Yes Yes Yes Yes
R&D Tax Credit IVs No No No No No Yes

Linking Cost

Constant (γ0) 12.6642∗∗∗ 11.8554∗∗∗ 12.6239∗∗∗ 12.7124∗∗∗ 14.5007∗∗∗ 16.1998∗∗∗

(0.2338) (0.3706) (0.7079) (0.3420) (1.5226) (1.3744)
Same Sector (γ1) -2.1943∗∗∗ -1.7963∗∗∗ -1.9508∗∗∗ -1.6942∗∗∗ -1.5699∗∗ -1.7417∗∗

(0.1141) (0.2403) (0.4861) (0.3107) (0.8304) (0.7443)
Location (γ2) -0.7501∗∗∗ -0.3623∗∗ -0.4870∗ -0.5128 -0.8833 -0.7033

(0.1056) (0.1544) (0.2801) (0.3096) (1.1022) (0.9914)
Diff-in-Prod. (γ3) -0.0102 -0.3438∗∗ -0.4104 -0.3666∗∗ 0.1387 1.0021

(0.0876) (0.1433) (0.2706) (0.1627) (0.5432) (2.4465)
Patents (γ4) -0.1432∗∗∗ -0.0702∗∗∗ -0.0710∗ -0.1078∗∗∗ -0.0831 -0.0944

(0.0200) (0.0228) (0.0445) (0.0400) (0.0844) (0.0895)

Sample size 1,014 347 165

Notes: The dependent variable is log-R&D expenditure. A Firm’s productivity is measured by its log-R&D
capital stock. To compute the R&D capital stocks we use a perpetual inventory method based on the firms’
R&D expenditures with a 15% depreciation rate [cf. Bloom et al., 2013; Hall et al., 2000]. Further, following
Bloom et al. [2013], we use changes in the firm-specific tax of R&D to construct IVs for R&D stocks. Location
is either the same country (full sample and SIC-28) or city (U.S. sample). The parameters θ = (ρ, b, δ⊤,γ⊤,κ)
correspond to Equation (24), where ψij = γ⊤cij and ηi = Xiδ (see Section 3.2). We make 50,000 MCMC draws
where we drop the first 10,000 draws during a burn-in phase and keep every 10th of the remaining draws to
calculate the posterior mean (as point estimates) and posterior standard deviation (shown in parenthesis). All
cases pass the convergence diagnostics provided by Geweke [1992] and Raftery et al. [1992]. The MCMC draws
for ρ and b are shown in Figure G.1 in supplementary Appendix G. The asterisks ∗∗∗(∗∗,∗) indicate that its 99%
(95%, 90%) highest posterior density range does not cover zero.

the linking cost function. This indicates that R&D collaborations between similar firms involve
lower collaboration and coordination costs [see e.g., Hanaki et al., 2010; Nooteboom et al., 2007].

Columns 5 and 6 in Table 2 show the estimation results for a sample of U.S. manufacturing
firms. In columns 1 to 4 productivity is measured by the log-R&D stock. A possible threat
to our identification strategy might be that productivity could be correlated with unobserved
firm characteristics and thus be endogenous in determining a firm’s R&D investment. Due to
this potential endogeneity of the R&D stocks, as a robustness check, we use R&D tax credits
to instrument a firm’s productivity in the U.S manufacturing sample (column 6 of Table 2) [cf.
Bloom et al., 2013]. We regress the R&D stocks on R&D tax credits, and use the predicted R&D
stock as an alternative measure for a firm’s productivity. However, since the R&D tax credit data
is only available for U.S. manufacturing sectors, we can do this only with a subset of the sample
of matched U.S. manufacturing firms (see the summary statistics at the bottom of Table 1). We
find that the estimated R&D spillover and substitutability effects are significant with the same
sign and magnitude as in the other specifications. Moreover, the results are fairly similar with
and without the instrumental variables in columns 5 and 6. This mitigates potential endogeneity
concerns over our productivity measure. Thus, we are able to separately identify the technology
spillover (ρ) and the product market rivalry effect (b) from the exogenous variation in the firms’
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Table 3: Homogeneous versus heterogeneous technology spillovers.

Homogeneous Jaffe Mahalanobis

DMH Logit DMH Logit DMH Logit
(1) (2) (3) (4) (5) (6)

R&D Spillover (ρ) 0.0286∗∗∗ 0.0347∗∗∗ 0.0112∗∗ 0.0099∗∗ 0.0057∗∗ 0.0052∗∗∗

(0.0042) (0.0032) (0.0058) (0.0043) (0.0028) (0.0019)
Substitutability (b) 0.0002∗∗ - 0.0002∗∗ - 0.0002∗∗ -

(0.0001) - (0.0001) - (0.0001) -
Productivity (δ1) 0.7305∗∗∗ - 0.8665∗∗∗ - 0.8702∗∗∗ -

(0.1041) (0.1297) (0.1308)
Sector FE (δ2) Yes - Yes - Yes -

Linking Cost

Constant (γ0) 12.38105∗∗∗ 12.6222∗∗∗ 11.1879∗∗∗ 11.2252∗∗∗ 11.2409∗∗∗ 11.2739∗∗∗

(0.9768) (0.4959) (0.7841) (0.4822) (0.8496) (0.4936)
Same Sector (γ1) -1.8362∗∗∗ -1.5841∗∗∗ -1.8549∗∗∗ -1.8430∗∗∗ -1.8693∗∗∗ -1.8623∗∗∗

(0.6041) (0.2745) (0.4721) (0.2797) (0.5062) (0.3000)
Location (γ2) -0.3710 -0.4115∗∗ -0.5325∗ -0.5707∗∗∗ -0.5553∗ -0.5709∗∗∗

(0.4277) (0.1842) (0.3232) (0.1812) (0.3144) (0.1816)
Diff-in-Prod. (γ3) -0.4900 -0.3832∗∗ -0.5018∗∗ -0.4564∗∗∗ -0.4701∗∗ -0.4659∗∗∗

(0.3497) (0.1540) (0.2303) (0.1470) (0.2282) (0.1428)
Patents (γ4) -0.0491 -0.0398 -0.2030∗∗∗ -0.2136∗∗∗ -0.2032∗∗∗ -0.2111∗∗∗

(0.0374) (0.0273) (0.0437) (0.0269) (0.0461) (0.0279)
Cyclic Triangles (κ) -2.5025∗∗∗ -1.6077∗∗∗ -3.4586∗∗∗ -2.2362∗∗∗ -3.4415∗∗∗ -2.2205∗∗∗

(0.4312) (0.1801) (0.2528) (0.1573) (0.2701) (0.1630)

Notes: The dependent variable is log-R&D expenditure. A firm’s productivity is measured by its log-R&D
capital stock (lagged by one year). To compute the R&D capital stocks we use a perpetual inventory method
based on the firms’ R&D expenditures with a 15% depreciation rate [cf. Bloom et al., 2013; Hall et al.,
2000]. The parameters θ = (ρ, b, δ⊤,γ⊤,κ) correspond to Equation (24), where ψij = γ⊤cij , φij = κtij
and ηi = Xiδ (see Section 3.2). The estimation results are based on 347 firms from the SIC-28 sector. We
make 50,000 MCMC draws where we drop the first 10,000 draws during a burn-in phase and keep every
10th of the remaining draws to calculate the posterior mean (as point estimates) and posterior standard
deviation (shown in parenthesis). All cases pass the convergence diagnostics provided by Geweke [1992] and
Raftery et al. [1992]. The asterisks ∗∗∗(∗∗,∗) indicate that its 99% (95%, 90%) highest posterior density
range does not cover zero. Heterogeneous spillovers are captured by the technological proximity matrix with
elements fij using either the Jaffe or the Mahalanobis patent proximity metrics [Bloom et al., 2013; Jaffe,
1989].

productivities that affect both, their R&D investment levels as well as their propensities to form
R&D collaborations.

In Table 3 we provide additional estimation results by taking into account heterogeneous tech-
nology spillover effects among collaborating firms. We also allow for a cyclic triangles effects in the
linking cost function, where firms with common collaborators may experience lower collaboration
costs [Hanaki et al., 2010]. In specifying heterogeneous technology spillovers, R&D collaborations
are weighted by different technology proximity measures. More precisely, in columns 1 and 2 in
Table 3 we consider as a benchmark a homogenous R&D collaboration matrix (i.e., assuming all
weights are set to one), in columns 3 and 4 a matrix weighted by the technological proximity
measure introduced by Jaffe [1989], and in columns 5 and 6 a matrix weighted by the Maha-
lanobis technological proximity (see Bloom et al. [2013] and supplementary Appendix F.4 for
more details), respectively.42 Notice that due to appearance of cyclic triangles effects, the link
independence assumption can no longer be sustained and therefore we cannot use the LP algo-
rithm for estimation. Each model specification is therefore estimated using the DMH algorithm
outlined in Section 3.3.2 based on the subsample of firms in the SIC-28 sector. We are then able
to determine potential variations of the estimated spillover effects due to alternative weights for

42We do not impose any row-normalization on these weighted R&D collaboration matrices.
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the different technology proximity measures. Although the Jaffe and Mahalanobis measures are
highly correlated (see the supplementary Appendix F.4), the estimated spillover coefficient based
on the Jaffe measure (0.0112) is larger than the one based on the Mahalanobis measure (0.0057),
and both are smaller than the homogeneous spillover coefficient (0.0286).

The results further show that the cyclic triangles effect is large and significantly negative for
the linking cost, indicating that having mutual third-party collaborations effectively reduces the
R&D collaboration cost. Although adding the cyclic triangles effect breaks the link independence
condition (even conditional on R&D investment), the estimate of the spillover effect in the ho-
mogenous case (0.0286) remains similar to the baseline result (0.0312 ) in Table 2. In Table 3
we also compare the estimate from the DMH algorithm with the naive estimate of a logit model
of R&D link formation conditional on output, i.e., the model in Equation (15), which entirely
neglects the link dependence induced by the endogeneity of the output levels and the cyclic trian-
gles effect. We find that omitting link dependence, the logit model generates downward biases on
the estimates of the cyclic triangles effect in the linking cost function and the technology spillover
effect in the heterogeneous spillovers cases.

3.5. Model Fit

In order to investigate whether the network formation model that we propose fits the observed
network data, we adopt a model goodness-of-fit examination following Hunter et al. [2008]. We
take the observed network data from the full sample of 1014 firms. Then we simulate one hun-
dred artificial networks from our network formation model with parameters reported under the
LP algorithm in Table 2, column 1. Model fitness is examined by comparing the similarity be-
tween simulated networks and the observed network in terms of distributions of four network
statistics: degree, edge-wise shared partners, minimum geodesic distance and average nearest
neighbor connectivity.43 The examination results are illustrated in Figure 9 showing the mean
and 95% confidence intervals from 100 simulated artificial networks. From the figure we find that
the simulated networks and the observed network display similar distributions over these four
statistics. This illustrates that our estimated model is able to capture the underlying network
generating process.

4. Counterfactual Analyses

With our estimates from the previous section (taking column 3 in Table 2 as our baseline estimate),
we are now able to perform various counterfactual studies restricted to firms in the SIC-28 sector.
The first, discussed in Section 4.1, studies the impact on welfare of a firm exiting from the network.
The second, discussed in Section 4.2, analyzes the welfare impact of a merger between firms in
the same sector. The third policy intervention, discussed in Section 4.3, studies the welfare
impact of a subsidy on the collaboration costs between pairs of firms, and aims at identifying the

43See supplementary Appendix B for the definitions of basic network terms such as neighborhood and degree.
Moreover, the edge-wise shared partners contain information of a network related to the count of triangles in
a network G. Its distribution consists of values EPG(0)/EG, · · · , EPG(m − 2)/EG, where EPG(k) denotes the
number of edges whose endpoints both share edges with exactly k other nodes and EG is the total number of edges
in network G. Geodesic distance between any two nodes refers to the length of the shortest path joining these tow
nodes. Its distribution consists of the proportions of the possible values of geodesic distances between two nodes
[Hunter et al., 2008]. The average nearest neighbor connectivity is the average degree of the neighbors of a node.
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Figure 9: Goodness-of-fit statistics.

pair for which the subsidy yields the highest welfare gains. In all these counterfactual scenarios
the output levels of the firms and the links between them are fully endogenous and respond to
changes in the network or the parameters. Further, to evaluate the impact of any intervention
under consideration we take a long run perspective and analyze welfare in the new stationary
state, after the policy has been implemented.

4.1. Firm Exit and Key Players

In this section we evaluate the expected welfare loss from the exit of a firm from the network.
The exit of a firm could either be due to financial reasons, such as the recession experienced by
the American automobile manufacturing industry during the global financial downturn, or legal
reasons, such as the recent emission-fraud scandal of Volkswagen. In the former case, policy
makers want to know the overall welfare gain of “bailing out” a bankrupting firm, while, in the
latter case, policy makers want to know the overall welfare cost they impose on the economy by
inflicting high penalties that might threaten the continued existence of a firm.

The firm whose exit results in the highest expected welfare loss is termed the “key player”
[Zenou, 2015]. This counterfactual analysis is related to Ballester et al. [2006], who perform a key
player analysis where agents are ranked according to the reduction in aggregate output when they
are removed from the network, and König et al. [2018] who do this for the reduction in welfare
similar to our setup. However, while these authors have assumed that the network is exogenously
given and does not adapt to the exit of a firm, here we can relax this assumption and allow the
network to reconfigure endogenously after the removal of a firm. Formally, the key firm is defined
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as

i∗ = argmin
i∈N

 ∑
G∈Gn−1

∫
Qn−1

W−i(q, G)µ
ϑ(q, G)dq

 , (32)

where the probability measure µϑ(q, G) is given by Equation (7), the potential function from
Equation (25), the welfare function W (q, G) is defined in Equation (19) and W−i(G,q) denotes
the welfare function with firm i removed from the network.

We proceed by removing each firm from the network one at a time. Using the estimated
model from Table 2, we then simulate the network evolution for the remaining n − 1 firms. We
use the same graph simulation algorithm that is part of the DMH estimation algorithm, which
is explained in greater detail in supplementary Appendix G.1. We run the simulation for 104

iterations,44 use the observation of the last iteration as the simulation outcome, and calculate
the corresponding welfare value. We then repeat this procedure 100 times and report the average
welfare value.

The results for the key player analysis focusing on the chemicals and allied products sector
(SIC-28) can be seen in Table 4. In column six (∆WF) we consider the case of an exogenously
fixed network, while in column five (∆W ) we allow the network to dynamically adjust to the exit
of a firm. For the key firm, Pfizer Inc., an American pharmaceutical company headquartered
in New York City, and one of the world’s largest pharmaceutical companies,45 the reduction in
welfare due to its exit amounts to 0.90% when we assume that the network is fixed, and 0.74%
when we allow for an adaptive network. Comparing the cases with a fixed network versus an
endogenous network, we observe that assuming a fixed network can both, over (e.g., for Pfizer
ranked first, and Novartis ranked fourth) or underestimate (e.g., for Johnson & Johnson ranked
second or Abbott Laboratories ranked sixth) the impact of firm exit. The difference between the
two cases increases gradually towards the bottom of the list, showing that the assumption of an
exogenous network typically underestimates the effect of the exit of a firm.

Table 4 also illustrates that the most important firms are not necessarily the ones with the
highest market share, number of patents or degree, nor can they be identified with standard cen-
trality measures in the literature (such as the betweenness or eigenvector centrality; see Wasser-
man and Faust [1994]). Rather, our results illustrate that in order to identify the key firms
that are systemically relevant, we need to consider not only the market structure but also the
spillovers generated though a network of R&D collaborations, and this network must be allowed
to dynamically adjust upon the exit of a firm.

4.2. Mergers and Acquisitions

Our framework can be used to study mergers and acquisitions in innovative industries and their
impact on welfare [Farrell and Shapiro, 1990; Salant et al., 1983]. Market concentration indices are
not adequate to correctly account for the network effects of a merger on welfare [see e.g., Encaoua
and Hollander, 2002]. This is because the effect of a merger on industry profits, consumer surplus,
and welfare depends not only on the market structure (as for example in Bimpikis et al. [2014]) but

44We also tried 1.5× 104 and 2× 104 iterations and get similar results.
45Pfizer Inc. acquired Wyeth ranked number nine in Table 4 in 2009.
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Table 4: Key player ranking for firms in the chemicals and allied products sector (SIC-28).

Firm Mkt. Sh. [%]a Patents Degree ∆W [%]b ∆WF [%]c SIC Rank

Pfizer Inc. 2.7679 78061 15 -0.7353 -0.9031 283 1
Johnson & Johnson Inc. 3.0547 7460 7 -0.7109 -0.4996 283 2
Merck & Co. Inc. 1.2999 52847 10 -0.6982 -0.6291 283 3
Novartis 2.0691 18924 15 -0.6868 -0.9095 283 4
Amgen 0.8193 1885 13 -0.6773 -0.7291 283 5
Abbott Laboratories Inc. 1.2907 11160 3 -0.6458 -0.3148 283 6
Bristol-Myers Squibb Co. 1.0287 36114 6 -0.6313 -0.4279 283 7
Bayer 3.8340 133433 10 -0.6301 -0.6818 280 8
Wyeth 1.1686 7782 2 -0.6275 -0.2428 283 9
Unilever PLC 5.4914 14881 0 -0.5950 -0.2095 284 10
Schering-Plough Corp. 0.6057 52847 1 -0.5868 -0.1982 283 11
Takeda Pharmaceutical Co Ltd. 0.6445 19460 7 -0.5830 -0.3758 283 12
Akzo Nobel NV 11.7496 11366 2 -0.5769 -0.2408 285 13
Syngenta AG 4.1430 25796 0 -0.5577 -0.1458 287 14
Daiichi Sankyo Co. Ltd. 0.4590 5895 5 -0.5564 -0.3161 283 15
Monsanto Co. 3.7815 43441 0 -0.5518 -0.1816 287 16
L’Oreal SA 2.1873 46274 0 -0.5463 -0.1363 284 17
Eisai 0.3329 4541 1 -0.5380 -0.0607 283 18
Solvay SA 1.2445 22689 3 -0.5343 -0.2242 280 19
Allergan Inc. 0.1759 1900 3 -0.5274 -0.1485 283 20
Asahi Kasei Corp. 1.4715 9075 0 -0.5258 -0.0916 280 21
Genzyme Corp. 0.1830 1116 3 -0.5230 -0.1945 283 22
Kaocorp 1.1679 18213 0 -0.5166 -0.0989 284 23
Henkel AG 1.7648 58382 0 -0.5115 -0.1056 284 24
PPG Industries Inc. 7.5437 29784 0 -0.5111 -0.1607 285 25
a Market share in the primary 3-digit SIC sector in which the firm is operating.
b The relative welfare loss due to exit of a firm i is computed as ∆W =(

Eµϑ [W−i(q, G)]−W (qobs, Gobs)
)
/W (qobs, Gobs), where qobs and Gobs denote the observed R&D

expenditures and network, respectively.
c ∆WF denotes the relative welfare loss due to exit of a firm assuming a fixed network of R&D collaborations.

also on potential R&D-efficiency gains from spillovers in the network. Due to these spillovers,
mergers and the increased concentration they generate (both, in terms of the product market
and the collaboration network) can be good or bad for welfare [Daughety, 1990], depending
on the characteristics of the firms involved and their positions in the market as well as the
network structure. Our framework allows us to determine which mergers lead to welfare losses
due to market concentration, or to welfare gains through efficient R&D concentration. This
counterfactual analysis is potentially important for antitrust policy makers. For example, in
2014, more than half of the merger proposals that were investigated by the U.S. Department of
Justice involved R&D-efficiency claims [Marshall and Parra, 2015].

Based on our model we can assess the impact of a merger between two firms i and j which are
competing in the same market. The merger that results (in expectation) in the greatest reduction
in welfare is defined as

(i, j)∗ = argmin
(i,j)∈N×N

 ∑
G∈Gn−1

∫
Qn−1

Wi∪j(q, G)µ
ϑ(q, G)dq

 , (33)

where the probability measure µϑ(q, G) is given by Equation (7), the potential function from
Equation (25), the welfare function W (q, G) is defined in Equation (19) and Wi∪j(q, G) denotes
the welfare function with firms i and j being merged to a single firm k in the network G. That is,
two incident nodes, i and j in G, are merged into a new node k, where each of the edges incident
to k correspond to an edge incident to either i or j. In a similar way, the merger that results (in
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expectation) in the greatest increase in welfare can be defined.46

Using the same simulation procedure as in Section 4.1, the merger rankings (for both, welfare
gains and losses) can be found in Table 5. To prevent ambiguity on the sector identity of the
merged firms, we restrict mergers to firms within the same 3-digit SIC sectors. Column ten
(∆WF) in Table 5 shows the welfare change (∆WF) from a merger in fixed network. This is based
on the assumption that the network does not adjust to the merger and can be interpreted as a
short run analysis. In contrast, the ranking in column nine (∆W ) is based on an endogenous
network, which adapts to a merger and can be interpreted as a long run analysis. The mergers
resulting in the highest reduction or gain in welfare involve only firms in the drugs development
sector (SIC 283), which is also the largest sector in our sample.

The highest loss in the endogenous network case is triggered by a merger between Xoma and
DOV Pharmaceutical Inc., two American biotech companies, yielding a reduction in welfare of
0.075%. In contrast, assuming a fixed network (∆WF) would predict a weak welfare gain from
the merger, while ignoring the network structure altogether (∆WN in column eleven in Table 5)
would predict a much larger welfare loss. This highlights the importance of taking into account
network effects and their endogeneity. Further, the welfare loss due to a merger is typically lower
than the welfare loss due to firm exit. In contrast, the highest welfare gain form a merger is
obtained between Novartis and Pfizer Inc., two large multinational pharmaceutical companies.
In the endogenous case (∆W ) the welfare gain is 0.86%, while in the exogenous case (∆WF) it is
only 0.05%. This indicates the importance of dynamic network effects in the industry.

Further, comparing the firms involved in mergers that lead to welfare gains in Table 5, as
opposed to the ones that lead to a welfare loss, we see that mergers between firms with a larger
number of patents and a larger number of collaborations (high degree) lead to welfare gains,
while mergers between firms with few collaborations and fewer patents lead to a welfare loss.
This indicates that welfare gains are largest when two well connected and R&D intensive firms
merge, while welfare losses dominate when less connected and R&D intensive firms are involved
in the merger. Moreover, from Table 5 we find that the highest welfare gains from a merger are
larger than the highest welfare losses from a merger, indicating that the R&D spillover effects
are larger than the market distortion effects. Finally, as expected, in the absence of the R&D
collaboration network in column eleven in Table 5 (∆WN) a merger between two firms always
leads to a reduction in welfare [Salant et al., 1983].

4.3. R&D Collaboration Subsidy

Many governments provide R&D subsidies to foster the R&D activities of private firms [see e.g.,
Cohen, 1994]. One example is the Advanced Technology Program (ATP) which was administered
by the National Institute of Standards and Technology (NIST) in the U.S. [Feldman and Kelley,
2003]. In Europe, EUREKA is a Europe-wide network for industrial R&D. The main aim of
this EU programme is to strengthen European competitiveness in the field of R&D by means of
promoting market-driven collaborative research and technology development. EUREKA’s total

46We note that we only consider mergers between firms in the same market. We also do not consider firms
operating in multiple markets simultaneously, such as for example in Bimpikis et al. [2014]. However, we believe
that our analysis of a very specific type of a merger can generate useful insights because it takes into account
multiple sources of externalities that are typically ignored in other studies.
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subsidies for cooperative R&D accumulated to more than €37 billion in 2015.47 In this section
we analyze the impact of R&D subsidies on aggregate welfare within a dynamic R&D network.

We analyze a counterfactual policy that selects a specific firm-pair, (i, j), and compensates
their collaboration costs through a subsidy, i.e., setting ψij = 0 (see Equation (23) and there-
after).48 We then can evaluate the changes in welfare due to such a subsidy using our estimated
model. The pair of firms for which the subsidy results in the largest gain in welfare is defined as

(i, j)∗ = argmax
(i,j)∈E

{∑
G∈Gn

∫
Qn

W (q, G|ψij = 0)µϑ(q, G)dq

}
, (34)

where the probability measure µϑ(q, G) is given by Equation (7), the welfare function W (q, G)

is defined in Equation (19) and W (q, G|ψij = 0) denotes the welfare function with firms i and
j receiving a subsidy such that they do not incur a pair-specific collaboration cost (by setting
ψij = 0 permanently). The results can be seen in Table 6. In column nine (∆W ) we find that
a subsidy between Exelixis, an American genomics-based drug discovery company, and Colgate-
Palmolive Co., an American worldwide consumer and pharmaceutical products company, would
yield a welfare gain of 0.94 %. The welfare gain in column ten (∆WF) is much weaker when we
impose a fixed network, highlighting the importance of dynamic network effects. The ranking
illustrates that welfare gains from subsidizing R&D collaborations can be obtained for firms
which otherwise would only be involved in few if any collaborations. Our framework could be
used to guide governmental funding agencies that typically do not take into account the spillovers
generated within a dynamic R&D network structure.

5. Conclusion

In this paper we have introduced a tractable model to analyze the coevolution of networks and
behavior, and we have given an application to the formation of R&D collaboration networks
in which firms are competitors on the product market. We provide a complete equilibrium
characterization and show that our model can reproduce the observed patterns in real world
networks. Moreover, the model can be conveniently estimated using state of the art Bayesian
algorithms, and can be estimated even for large networks. Further, the model is amenable to
policy analysis, and we illustrate this with examples for firm exit, M&As and subsidies in the
context of R&D collaboration networks.

Due to the generality of the payoff function we consider (see Section 2.1), we believe that our
model – both from a theoretical and empirical perspectives – can be applied to a variety of related
contexts, where externalities can be modelled in the form of an adaptive network. Examples
include peer effects in education, crime, risk sharing, scientific co-authorship, etc. [Jackson et al.,
2015]. Our methodology can also be applied to study discrete choice models [Badev, 2013; König,
2016], and network games with local substitutes [Bramoullé and Kranton, 2007], when we assume

47For a theoretical and empirical analysis of R&D subsidies provided by the Finnish Funding Agency for Tech-
nology and Innovation see Takalo et al. [2013]. The effect of federal government R&D subsidies to stimulate
collaboration activities between private firms in Germany is analyzed in Broekel and Graf [2012]. For a general
discussion about the effectiveness of public R&D funding see Zúñiga-Vicente et al. [2014].

48Observe that in terms of the objective function of the planner the net effect of this policy intervention is zero.
This is because the cost of the subsidy is exactly compensated for by the gain in firms’ profits, which in turn, are
part of the welfare function.
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a negative sign for the local externality parameter in our payoff function.
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Appendix

A. Proofs

We first prove that the potential function has the property that the marginal profit of a firm from
adding or removing a link is exactly equivalent to the difference in the potential function from
adding or removing a link. Similarly, the marginal profit of a firm from changing its output level
is exactly equivalent to the change of the potential function.

Proof of Proposition 1. The potential Φ(q, G) has the property that Φ(q, G⊕(i, j))−Φ(q, G) =
ρqiqj − ζ = πi(q, G ⊕ (i, j)) − πi(q, G), and similarly, Φ(q, G ⊖ (i, j)) − Φ(q, G) = ζ − ρqiqj =
πi(q, G ⊖ (i, j)) − πi(q, G) for any q ∈ Qn and G ∈ Gn. From the properties of πi(q, G) it also
follows that Φ(q′i,q−i, G)− Φ(qi,q−i, G) = πi(q

′
i,q−i, G)− πi(qi,q−i, G). 2

We next show that the stationary distribution can be characterized by a Gibbs measure.

Proof of Theorem 1. First, note from Equation (6) that qϑ(ω,ω′) > 0 for any ω ̸= ω′ and
finite ϑ, so that there is a positive probability of a transition from any state ω to any other
state ω′, and there can be no absorbing state. The generator matrix Qϑ = (qϑ(ω,ω′))ω,ω′∈Ω
is therefore irreducible. Moreover, for an irreducible Markov chain on a finite state space Ω all
states are positive recurrent. The Markov chain then is ergodic and has a unique stationary
distribution [Norris, 1998].

The stationary distribution solves µϑQϑ = 0 with the transition rates matrix Qϑ of Equation
(6). This equation is satisfied when the probability distribution µϑ satisfies the following detailed
balance condition [Norris, 1998]

∀ω,ω′ ∈ Ω : µϑ(ω)qϑ(ω,ω′) = µϑ(ω′)qϑ(ω′,ω). (35)

Observe that the detailed balance condition is trivially satisfied if ω′ and ω differ in more than
one link or more than one quantity level. Hence, we consider only the case of link creation
G′ = G⊕ (i, j) (and removal G′ = G⊖ (i, j)) or an adjustment in quantity q′i ̸= qi for some i ∈ N .
For the case of link creation with a transition from ω = (q, G) to ω′ = (q, G⊕ (i, j)) we can write
the detailed balance condition as follows

1

Zθ
eϑ(Φ(q,G)−m ln( ξ

τ ))
eϑΦ(q,G⊕(i,j))

eϑΦ(q,G⊕(i,j)) + eϑΦ(q,G)
τ =

1

Zθ
eϑ(Φ(q,G⊕(i,j))−(m+1) ln( ξ

τ ))
eϑΦ(q,G)

eϑΦ(q,G) + eϑΦ(q,G⊕(i,j))
ξ.

This equality is trivially satisfied. A similar argument holds for the removal of a link with a
transition from ω = (q, G) to ω′ = (q, G⊖ (i, j)) where the detailed balance condition reads

1

Zθ
eϑ(Φ(q,G)−m ln( ξ

τ ))
eϑΦ(q,G⊖(i,j))

eϑΦ(q,G⊖(i,j)) + eϑΦ(q,G)
ξ =

1

Zθ
eϑ(Φ(q,G⊖(i,j))−(m−1) ln( ξ

τ ))
eϑΦ(q,G)

eϑΦ(q,G) + eϑΦ(q,G⊖(i,j))
τ.

For a change in the output level with a transition from ω = (qi,q−i, G) to ω′ = (q′i,q−i, G) we
get for the following detailed balance condition

1

Zθ
eϑ(Φ(qi,q−i,G)−m ln( ξ

τ ))
eϑπi(q

′
i,q−i,G)∫

Q e
ϑπi(q′,q−i,G)dq′

χ =
1

Zθ
eϑ(Φ(q′i,q−i,G)−m ln( ξ

τ ))
eϑπi(qi,q−i,G)∫

Q e
ϑπi(q′,q−i,G)dq′

χ.

This can be written as eϑ(Φ(qi,q−i,G)−Φ(q′i,q−i,G)) = eϑ(πi(qi,q−i,G)−πi(q′i,q−i,G)), which is satisfied
since we have for the potential Φ(qi,q−i, G)−Φ(q′i,q−i, G) = πi(qi,q−i, G)−πi(q′i,q−i, G). Hence,
the probability measure µϑ satisfies a detailed balance condition of Equation (35) and therefore
is the stationary distribution of the Markov chain with transition rate matrix Qϑ. 2

We next state a useful lemma that will be needed in the proofs that follow.
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Lemma 1. Consider a binary sequence h1, h2, . . . , hn with elements hi ∈ {0, 1} and a real se-
quence c1, c2, . . . , cn with elements ci ∈ R for i = 1, . . . , n and n ≥ 1. Let Hn be the set of all
binary sequences h = (h1, . . . , hn) with n elements. Then we have that

∑
h∈Hn

e
∑n

i=1 hici =

n∏
i=1

∑
hi∈{0,1}

ehici . (36)

Proof of Lemma 1. We give a proof by induction. For the induction basis consider n = 2 (the
case of n = 1 is trivially true). Then H2 = {(0, 0), (1, 0), (0, 1), (1, 1)}, and we have that∑

h∈H2

e
∑2

i=1 hici = 1 + ec1 + ec2 + ec1+c2 .

On the other hand, we have that

2∏
i=1

∑
hi∈{0,1}

ehici =

2∏
i=1

(1 + eci) = 1 + ec1 + ec2 + ec1+c2 .

Next, for the induction step, assume that Equation (36) holds for some n ≥ 2. Note that
all binary sequences h ∈ Hn+1 can be constructed from a binary sequence h ∈ Hn with one
additional element, hn+1, added to the sequence h1, . . . , hn where hn+1 takes on the two possible
values 0 or 1. Hence, we can write

∑
h∈Hn+1

e
∑n+1

i=1 hici =
∑

h∈Hn+1

n+1∏
i=1

ehici

=
∑
h∈Hn

n∏
i=1

ehici +
∑
h∈Hn

n∏
i=1

ehiciecn+1

=
∑
h∈Hn

n∏
i=1

ehici (1 + ecn+1)

=
n∏
i=1

∑
hi∈{0,1}

ehici (1 + ecn+1)

=
n+1∏
i=1

∑
hi∈{0,1}

ehici ,

where we have used the induction hypothesis that Equation (36) holds for n. This concludes the
proof. 2

Proof of Proposition 2. We start with the proof of the first part of the proposition. Observe
that the potential of Equation (2) can be written as

Φ(q, G) =
n∑
i=1

η − νqi −
b

2

n∑
j ̸=i

qj

 qi︸ ︷︷ ︸
ψ(q)

+
n∑
i=1

n∑
j=i+1

aij (ρqiqj − ζ)︸ ︷︷ ︸
σij

= ψ(q) +
n∑
i=1

n∑
j=i+1

aijσij . (37)

We then have that eϑΦ(q,G) = eϑψ(q)eϑ
∑n

i<j aijσij , where only the second factor is network depen-
dent. Observing that the sequence (aij)1≤i<j≤n = (a12, a13, . . . , an−1,n) is a binary sequence as in
Lemma 1, we then can use the fact that for any constant, symmetric σij = σji, 1 ≤ i, j ≤ n, we
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can write49 ∑
G∈Gn

eϑ
∑n

i<j aijσij =
n∏
i=1

n∏
j=i+1

(
1 + eϑσij

)
. (38)

From Equation (38) we then obtain

∑
G∈Gn

eϑΦ(q,G) = eϑψ(q)
n∏
i<j

(
1 + eϑσij

)
=

n∏
i=1

eϑ(ηi−νqi−
b
2

∑n
j ̸=i qj)qi

n∏
i<j

(
1 + eϑ(ρqiqj−ζ)

)
. (39)

We can use Equation (39) to compute the marginal distribution

µϑ(q) =
1

Zϑ

∑
G∈Gn

eϑΦ(q,G)

=
1

Zϑ

n∏
i=1

eϑ(ηi−νqi−
b
2

∑
j ̸=i qj)qi

n∏
i<j

(
1 + eϑ(ρqiqj−ζ)

)
=

1

Zϑ
eϑ

∑n
i=1(ηi−νqi−

b
2

∑
j ̸=i qj)qie

∑n
i<j ln

(
1+eϑ(ρqiqj−ζ)

)

=
1

Zϑ
eϑHϑ(q), (40)

where we have introduced the Hamiltonian

Hϑ(q) ≡
n∑
i=1

ηqi − νq2i +
n∑
j>i

(
1

ϑ
ln
(
1 + eϑ(ρqiqj−ζ)

)
− bqiqj

) . (41)

Using the fact that
∫
Qn µ

ϑ(q)dq = 1, it follows from Equation (40) that we can write the partition
function as

Zϑ =

∫
Qn

eϑHϑ(q)dq.

We next make the Laplace approximation [Wong, 2001, Theorem 3, p. 495]

Zϑ ∼
(
2π

ϑ

)n
2

∣∣∣∣∣
(
∂2Hϑ

∂qi∂qj

)
qi=q∗

∣∣∣∣∣
− 1

2

eϑHϑ(q
∗), (42)

for large ϑ, where q∗ = argmaxq∈[0,q̄]n Hϑ(q), and the Hessian is given by ∂2Hϑ
∂qi∂qj

for 1 ≤ i, j ≤ n.
From Equation (41) we find that

∂Hϑ

∂qi
= η − 2νqi +

n∑
j ̸=i

(
ρ

2

(
1 + tanh

(
ϑ

2
(ρqiqj − ζ)

))
− b

)
qj . (43)

The first order conditions ∂Hϑ
∂qi

= 0 in Equation (43) imply that

η − 2νqi =

n∑
j ̸=i

(
b− ρ

2

(
1 + tanh

(
ϑ

2
(ρqiqj − ζ)

)))
qj .

49Note that Equation (38) requires the σij to be constant, and in particular, to be independent. In this case the
summation over all networks only needs to count the number of possible networks in which the link ij is present.
In contrast, when σij depends on the other links in the network, then this simple summation formula would no
longer hold.
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This system of equations has a symmetric solution, qi = q for all i = 1, . . . , n, where

(b(n− 1) + 2ν)q − η =
(n− 1)ρ

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
q.

Introducing the variables η∗ ≡ η/(n− 1) and ν∗ ≡ ν/(n− 1), this can be written as

(b+ 2ν∗)q − η∗ =
ρ

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
q. (44)

Let the RHS of Equation (44) be denoted by F (q) so that we can write it as (b + 2ν∗)q − η∗ =
F (q). Then we have that F (0) = 0, F ′(q) ≥ 0 and F (q) ∼ ρq for q → ∞. It follows that
(b + 2ν∗)q − η∗ = F (q) has at least one solution when b + 2ν∗ > ρ.50 Moreover, any iteration
(b + 2ν∗)qt+1 − η∗ = F (qt) starting at q0 = 0 converges to the smallest fixed point q∗ such that
(b+ 2ν∗)q∗ − η∗ = F (q∗).

We next compute the average output level q̄ = 1
n

∑n
i=1 qi. We have that

Eµϑ

(
n∑
i=1

qi

)
=
∑
G∈Gn

∫
Qn

dq

(
n∑
i=1

qi

)
µϑ(q, G) =

1

Zϑ

∑
G∈Gn

∫
Qn

dq

(
n∑
i=1

qi

)
eϑΦ(q,G)

=
1

Zϑ

∑
G∈Gn

∫
Qn

dq
1

ϑ

∂

∂η
eϑΦ(q,G) =

1

ϑ

1

Zϑ

∂Zϑ

∂η
=

1

ϑ

∂ lnZϑ

∂η
= − 1

ϑ

∂Fϑ

∂η
,

where we have denoted Fϑ ≡ − lnZϑ. The average output is then given by

Eµϑ

(
1

n

n∑
i=1

qi

)
= − 1

nϑ

∂Fϑ

∂η
.

With Equation (42) we get

Fϑ ∼ −n
2
ln

(
2π

ϑ

)
+

1

2
ln

∣∣∣∣∣
(
∂2Hϑ

∂qi∂qj

)
qi=q∗

∣∣∣∣∣− ϑHϑ(q
∗).

We then find that

∂Fϑ

∂η
= −ϑ∂Hϑ(q

∗)

∂η
+

1

2

∂

∂η
ln

∣∣∣∣∣
(
∂2Hϑ

∂qi∂qj

)
qi=q∗

∣∣∣∣∣
= −ϑ∂Hϑ(q

∗)

∂η
+

1

2
tr
((

∂2Hϑ

∂qi∂qj

)−1
∂

∂η

(
∂2Hϑ

∂qi∂qj

))
qi=q∗

,

where we have used Jacobi’s formula [Horn and Johnson, 1990].51 From Equation (43) we further
have that

∂2Hϑ

∂q2i
= −2ν +

ϑρ2

4

n∑
j ̸=i

q2j

(
1− tanh

(
ϑ

2
(ρqiqj − ζ)

)2
)
, (45)

50Since the RHS, F (q), of Equation (44) is increasing (one can see this from taking the derivative), is zero at
q = 0, i.e. F (0) = 0, and asymptotically grows linearly as ρq, it follows that when b+ 2ν∗ > ρ there must exist at
least one fixed point. This is because the LHS, (b+2ν∗)q− η∗, of Equation (44) starts below zero at q = 0 (where
it is −η∗), both LHS and RHS are increasing, and the RHS approaches asymptotically a line with a slope smaller
than the slope b+ 2ν∗ of the LHS. Hence they must intersect at some q ≥ 0.

51For any invertible matrix M(x) for all x, Jacobi’s formula states that d
dx

|M(x)| = |M(x)| tr
(
M(x)−1 d

dx
M(x)

)
,

which can be written more compactly as d
dx

ln |M(x)| = tr
(
M(x)−1 d

dx
M(x)

)
.
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and for j ̸= i we have that

∂2Hϑ

∂qi∂qj
= −b+ ρ

2

(
1 + tanh

(
ϑ

2
(ρqiqj − ζ)

))(
1 +

ϑρ

2
qiqj

(
1− tanh

(
ϑ

2
(ρqiqj − ζ)

)))
.

(46)

This shows that ∂
∂η

(
∂2Hϑ
∂qi∂qj

)
= 0, so that ∂Fϑ

∂η = −ϑ∂Hϑ(q
∗)

∂η , and the expected average output
level is then given by

Eµϑ

(
1

n

n∑
i=1

qi

)
=

1

n

∂Hϑ(q
∗)

∂η
.

Using the fact that ∂Hϑ(q
∗)

∂η =
∑n

i=1 qi = nq∗, we then get in leading order terms for large ϑ that

Eµ∗
(
1

n

n∑
i=1

qi

)
= lim

ϑ→∞
Eµϑ

(
1

n

n∑
i=1

qi

)
= q∗.

Next, we compute the output distribution. It can be written as follows

µϑ(q) =
1

Zϑ

∑
G∈Gn

eϑΦ(q,G) =
1

Z ϑ
n

eϑHϑ(q),

where the Hamiltonian is implicitly defined by eϑHϑ(q) =
∑

G∈Gn eϑΦ(q,G). From a Taylor expan-
sion around q∗ we have that

Hϑ(q) = Hϑ(q
∗) + (q− q∗)∇Hϑ(q

∗) +
1

2
(q− q∗)⊤∆Hϑ(q

∗)(q− q∗) + o
(
∥q− q∗∥2

)
,

as ϑ → ∞, where q∗ = argmaxq∈[0,q̄]n Hϑ(q), the gradient is ∇Hϑ(q) =
(
∂Hϑ
∂qi

)
i=1,...,n

, and the

Hessian is ∆Hϑ(q) =
(
∂2Hϑ
∂qi∂qj

)
i,j=1,...,n

. As the gradient ∇Hϑ(q) vanishes at q∗, we have that

Hϑ(q) = Hϑ(q
∗) +

1

2
(q− q∗)⊤∆Hϑ(q

∗)(q− q∗) + o
(
∥q− q∗∥2

)
.

We then can write

µϑ(q) =
1

Z ϑ
n

eϑHϑ(q
∗) exp

{
−1

2
ϑ(q− q∗)⊤(−∇Hϑ(q

∗))(q− q∗)

}
+ o

(
∥q− q∗∥2

)
.

Normalization implies that

Z ϑ
n =

∫
Qn

dqeHϑ(q) = eϑHϑ(q
∗)

∫
Qn

dq exp

{
−1

2
ϑ(q− q∗)⊤(−∆Hϑ(q

∗))(q− q∗)

}
+ o

(
∥q− q∗∥2

)
= eϑHϑ(q

∗)(2π)
n
2 |−∆Hϑ(q

∗)|−
1
2 + o

(
∥q− q∗∥2

)
.

The Laplace approximation of µϑ(q) is then given by

µϑ(q) =

(
2π

ϑ

)−n
2

|−∆Hϑ(q
∗)|

1
2 exp

{
−1

2
ϑ(q− q∗)⊤(−∆Hϑ(q

∗))(q− q∗)

}
+ o

(
∥q− q∗∥2

)
.

(47)
That is, in the limit of large ϑ, q is asymptotically normally distributed with mean q∗ and
variance − 1

ϑ∇Hϑ(q
∗)−1.
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Imposing symmetry, qi = q for all i = 1, . . . , n, in Equation (45) we can write

∂2Hϑ

∂q2i

∣∣∣∣
qi=q

= −2ν + (n− 1)
ϑρ2

4
q2
(
1− tanh

(
ϑ

2

(
ρq2 − ζ

)))(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
,

and for j ̸= i we have from Equation (45) that

∂2Hϑ

∂qi∂qj

∣∣∣∣
qi=qj=q

= −b+ ρ

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))(
1 +

ϑρ

2
q2
(
1− tanh

(
ϑ

2

(
ρq2 − ζ

))))
.

Using Equation (44), from which we get

ρ

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
=

((n− 1)b+ 2ν)q − η

(n− 1)q
,

and
ρ

2

(
1− tanh

(
ϑ

2
(ρqiqj − ζ)

))
=

((n− 1)(ρ− b)− 2ν)q + η

(n− 1)q
,

we then can write

∂2Hϑ

∂q2i

∣∣∣∣
qi=q

= −2ν +
ϑ(((n− 1)(ρ− b)− 2ν)q + η)(((n− 1)b+ 2ν)q − η)

n− 1
,

and

∂2Hϑ

∂qi∂qj

∣∣∣∣
qi=qj=q

= −b+ ((n− 1)b+ 2ν)q − η

(n− 1)q

(
1 +

ϑq(((n− 1)(ρ− b)− 2ν)q + η)

n− 1

)
.

Denoting by ν∗ ≡ ν/(n− 1) and η∗ ≡ η/(n− 1) we can further write

∂2Hϑ

∂q2i

∣∣∣∣
qi=q

= (n− 1)

(
−2ν∗ + ϑq2

(
ρ− b− 2ν∗ +

η∗

q

)(
b+ 2ν∗ − η∗

q

))
, (48)

and
∂2Hϑ

∂qi∂qj

∣∣∣∣
qi=qj=q

= −b+
(
b+ 2ν∗ − η∗

q

)(
1 + ϑq2

(
ρ− b− 2ν∗ +

η∗

q

))
. (49)

Note that due to symmetry, the Hessian ∆Hϑ(q
∗) with components in Equations (48) and

(49) is a special case of a circulant matrix. Denoting by a the diagonal elements of ∆Hϑ(q
∗) and

by b the off-diagonal elements, the determinant in Equation (47) follows from the general formula
[Horn and Johnson, 1990]:

|−∆Hϑ(q
∗)| =

∣∣∣∣∣∣∣∣∣
a b b . . .
b a b . . .
b b a
...

... . . .

∣∣∣∣∣∣∣∣∣ = (a− b)n−1(a+ (n− 1)b).

Similarly, for a circulant matrix (by applying the Sherman-Morrison formula ( Horn and Johnson
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[1990]) we get for the inverse in Equation (47) that

−∆Hϑ(q
∗)−1 =


a b b . . .
b a b . . .
b b a
...

... . . .


−1

=
1

a2 + (n− 2)ab− (n− 1)b2


a+ (n− 2)b −b −b . . .

−b a+ (n− 2)b −b . . .
−b −b a+ (n− 2)b
...

... . . .

 ,

For large n we see from Equations (48) and (49) that the off-diagonal elements vanish relative to
the diagonal elements. As q is asymptotically normally distributed with mean q∗ and variance
− 1
ϑ∆Hϑ(q

∗)−1, this implies that, in the limit of n → ∞, the individual firms’ output levels
become independent. The diagonal entries are given by

− 1

ϑ
(∆Hϑ(q

∗))−1
ii ∼ 1

ϑ

n

2ν∗ + ϑ(bq − η∗ + 2ν∗q)(q(b+ 2ν∗ − ρ)− η∗)
≡ σ2.

Next, we compute the expected average degree d̄. The expected number of links can be obtained
as follows

Eµϑ(m) =
∑
G∈Gn

∫
Qn

mµϑ(q, G)dq =
1

Zϑ

∑
G∈Gn

∫
Qn

meϑΦ(q,G)︸ ︷︷ ︸
− 1

ϑ
∂
∂ζ
eϑΦ(q,G)

dq = − 1

ϑ

1

Zϑ

∂Zϑ

∂ζ
=

1

ϑ

∂Fϑ

∂ζ
,

where we have denoted Fϑ ≡ − lnZϑ. From the Laplace approximation in Equation (42) we find
that

∂Fϑ

∂ζ
= −ϑ∂Hϑ(q

∗)

∂ζ
+

1

2

∂

∂ζ
ln

∣∣∣∣∣
(
∂2Hϑ

∂qi∂qj

)
qi=q∗

∣∣∣∣∣
= −ϑ∂Hϑ(q

∗)

∂ζ
+

1

2
tr
((

∂2Hϑ

∂qi∂qj

)−1
∂

∂ζ

(
∂2Hϑ

∂qi∂qj

))
qi=q∗

,

where we have used Jacobi’s formula [see e.g. Horn and Johnson, 1990]. Consequently, the
expected number of links is

Eµϑ(m) = −∂Hϑ(q
∗)

∂ζ
+

1

2ϑ
tr
((

∂2Hϑ

∂qi∂qj

)−1
∂

∂ζ

(
∂2Hϑ

∂qi∂qj

))
qi=q∗

.

Further, we have that

∂Hϑ

∂ζ
= −1

2

n∑
i=1

n∑
j>i

(
1 + tanh

(
ϑ

2
(ρqiqj − ζ)

))
,

and in the symmetric equilibrium this is

∂Hϑ

∂ζ

∣∣∣∣
qi=q

= −n(n− 1)

4

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
.

The expected number of links can then be written as

Eµϑ(m) =
n(n− 1)

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
+

1

2ϑ
tr
((

∂2Hϑ

∂qi∂qj

)−1
∂

∂ζ

(
∂2Hϑ

∂qi∂qj

))
qi=q∗

.

44



Using the fact that
ρ

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

))2
)

= b+ 2ν∗ − η∗

q
,

where ν∗ = ν
n−1 and η∗ = η

n−1 , we can write

∂Hϑ

∂ζ

∣∣∣∣
qi=q

= −n(n− 1)

2ρ

(
b+ 2ν∗ − η∗

q

)
.

In the limit of ϑ → ∞ in the low equilibrium, where q = η∗

b+2ν∗ and therefore η∗

q = b + 2ν∗, we
then get

∂Hϑ

∂ζ

∣∣∣∣
qi=q

= 0.

In contrast, in the limit of ϑ→ ∞ in the high equilibrium, where q = η∗

b+2ν∗−ρ , and η∗

q = b+2ν∗−ρ
we find that

∂Hϑ

∂ζ

∣∣∣∣
qi=q

= −n(n− 1)

2
.

Further, the derivatives with respect to ζ in Equation (45) are given by

∂

∂ζ

∂2Hϑ

∂q2i
=
ϑ2ρ2

4

n∑
j ̸=i

tanh

(
ϑ

2
(ρqiqj − ζ)

)(
1− tanh

(
ϑ

2
(ρqiqj − ζ)

)2
)
,

and for j ≠ i from Equation (46) we get that

∂

∂ζ

∂2Hϑ

∂qi∂qj
= −ϑρ

4

(
1− tanh

(
ϑ

2
(ρqiqj − ζ)

)2
)(

1− ϑρqiqj tanh

(
ϑ

2
(ρqiqj − ζ)

))
.

Imposing symmetry, qi = q for all i = 1, . . . , n, we then can write

∂

∂ζ

∂2Hϑ

∂q2i

∣∣∣∣
qi=q

=
(n− 1)ϑ2ρ2

4
tanh

(
ϑ

2

(
ρq2 − ζ

))(
1− tanh

(
ϑ

2

(
ρq2 − ζ

))2
)
, (50)

and

∂

∂ζ

∂2Hϑ

∂qi∂qj

∣∣∣∣
qi=qj=q

= −ϑρ
4

(
1− tanh

(
ϑ

2

(
ρq2 − ζ

))2
)(

1− ϑρq2 tanh

(
ϑ

2

(
ρq2 − ζ

)))
. (51)

For a circulant matrix (by applying the Sherman-Morrison formula [Horn and Johnson, 1990] we
have that
a b b . . .
b a b . . .
b b a
...

... . . .


−1

=
1

a2 + (n− 2)ab− (n− 1)b2


a+ (n− 2)b −b −b . . .

−b a+ (n− 2)b −b . . .
−b −b a+ (n− 2)b
...

... . . .

 ,

and

tr


c d d . . .
d c d . . .
d d c
...

... . . .



e f f . . .
f e f . . .
f f e
...

... . . .

 = n(ce+ (n− 1)df),
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so that

tr


a b b . . .
b a b . . .
b b a
...

... . . .


−1

e f f . . .
f e f . . .
f f e
...

... . . .

 =
n((a+ (n− 2)b)e− (n− 1)bf)

a2 + (n− 2)ab− (n− 1)b2
.

The expected number of links can then be written as follows

Eµϑ(m) =
n(n− 1)

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
+

1

2ϑ
Rϑ,

where
Rϑ ≡ n((c1 + (n− 2)c2)c3 − (n− 1)c2c4)

c21 + (n− 2)c1c2 − (n− 1)c22
,

with

c1 ≡ −2ν + (n− 1)
ϑρ2q2

4

(
1− tanh

(
ϑ

2

(
ρq2 − ζ

))2
)
,

c2 ≡ −b+ ρ

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))(
1 +

ϑρq2

2

(
1− tanh

(
ϑ

2

(
ρq2 − ζ

))))
,

c3 ≡
(n− 1)ϑ2ρ2

4
tanh

(
1− tanh

(
ϑ

2

(
ρq2 − ζ

))2
)
,

c4 ≡ −ρϑ
4

(
1− tanh

(
ϑ

2

(
ρq2 − ζ

))2
)(

1− ϑρq2 tanh

(
ϑ

2

(
ρq2 − ζ

)))
.

In the following we compute the degree distribution. From our previous discussion we know that
each firm i has an output level q distributed identically and independently with density µϑ(q) given
by N (q∗, σ2) and converging to δ(q−q∗) in the limit ϑ→ ∞. With the marginal distribution from
Equation (40) and the potential in Equation (37) we then can write the conditional distribution
as

µϑ(G|q) = µϑ(q, G)

µϑ(q)
=

eϑΦ(q,G)∑
G′∈Gn eϑΦ(q,G′)

=
eψ(q)eϑ

∑n
i<j aij(ρqiqj−ζ)

eψ(q)
∏
i<j

(
1 + eϑ(ρqiqj−ζ)

)
=

eϑ
∑n

i<j aij(ρqiqj−ζ)∏
i<j

(
1 + eϑ(ρqiqj−ζ)

)
=
∏
i<j

eϑaij(ρqiqj−ζ)

1 + eϑ(ρqiqj−ζ)

=
∏
i<j

(
eϑ(ρqiqj−ζ)

1 + eϑ(ρqiqj−ζ)

)aij (
1− eϑ(ρqiqj−ζ)

1 + eϑ(ρqiqj−ζ)

)1−aij

=
∏
i<j

pϑ(qi, qj)
aij
(
1− pϑ(qi, qj)

)1−aij
. (52)

Hence, we obtain the likelihood of an inhomogeneous random graph with link probability52

pϑ(qi, qj) =
eϑ(ρqiqj−ζ)

1 + eϑ(ρqiqj−ζ)
=

gϑ(qi, qj)

1 + gϑ(qi, qj)
, (53)

where we have denoted gϑ(q, q′) ≡ eϑ(ρqq
′−ζ). The probability of observing the network G, given

52See also supplementary Appendix B, Boguná and Pastor-Satorras [2003] and and Söderberg [2002].
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the output levels q can then be written as follows

µϑ(G|q) =
n∏
i=1

n∏
j=i+1

(
gϑ(qi, qj)

1 + gϑ(qi, qj)

)aij ( 1

1 + gϑ(qi, qj)

)1−aij
=

n∏
i=1

n∏
j=i+1

1

1 + gϑ(qi, qj)

n∏
i=1

n∏
j=i+1

gϑ(qi, qj)
aij ,

which can be written as
µϑ(G|q) = Cϑ(q)

n∏
i=1

n∏
j=i+1

gϑ(qi, qj)
aij ,

with the normalizing constant

Cϑ(q) ≡
n∏
i=1

n∏
j=i+1

(
1 + gϑ(qi, qj)

)
.

Since
∑

G∈Gn P (G|q) = 1, Cϑ(q) can also be written as

Cϑ(q) =
∑
G∈Gn

n∏
i=1

n∏
j=i+1

gϑ(qi, qj)
aij .

Next, we consider the probability generating function of the vector of degrees, (di(G))ni=1, given
by

Eµϑ

(
n∏
i=1

x
di(G)
i

∣∣∣∣∣q
)

= E

 n∏
i=1

n∏
j=i+1

(xixj)
aij

∣∣∣∣∣∣q
 (54)

=
∑
G∈Gn

P (G|q)
n∏
i=1

n∏
j=i+1

(xixj)
aij

=
1

Cϑ(q)

∑
G∈Gn

n∏
i=1

n∏
j=i+1

gϑ(qi, qj)
aij

n∏
i=1

n∏
j=i+1

(xixj)
aij

=
1

Cϑ(q)

∑
G∈Gn

n∏
i=1

n∏
j=i+1

(
gϑ(qi, qj)xixj

)aij
=

∑
G∈Gn

∏n
i=1

∏n
j=i+1

(
gϑ(qi, qj)xixj

)aij∏n
i=1

∏n
j=i+1(1 + gϑ(qi, qj))

=

n∏
i=1

n∏
j=i+1

1 + gϑ(qi, qj)xixj
1 + gϑ(qi, qj)

, (55)

where we have used the fact that
∑

G∈Gn

∏n
i=1

∏n
j=i+1

(
gϑ(qi, qj)xixj

)aij =∏n
i=1

∏n
j=i+1

(
1 + gϑ(qi, qj)xixj

)
.

To compute the generating function of d1(G), we simply set xi = 1 for all i > 1. Then

Eµϑ
(
x
d1(G)
1

)
= Eµϑ

(
Eµϑ

(
x
d1(G)
1

∣∣∣ q1))
= Eµϑ

Eµϑ

 n∏
j=2

1 + gϑ(q1, qj)x1
1 + gϑ(q1, qj)

∣∣∣∣∣∣ q1


= Eµϑ

((
Eµϑ

(
1 + gϑ(q1, q2)x1
1 + gϑ(q1, q2)

∣∣∣∣ q1))n−1
)
,

where we have used symmetry and the independence of q1, . . . , qn. Further, note that

1 + xy

1 + x
= 1 + (y − 1)x+O

(
x2
)
.
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Hence, for gϑ(q1, q2) small in the sparse graph limit, we can write

Eµϑ
(
1 + gϑ(q1, q2)x1
1 + gϑ(q1, q2)

∣∣∣∣ q1) =

∫
Q

1 + gϑ(q1, q2)x1
1 + gϑ(q1, qj)

µϑ(dq2)

= 1 + (x1 − 1)

∫
Q
gϑ(q1, q2)µ

ϑ(dq2) + o(1)

= 1 + (x1 − 1)νϑ(q1) + o(1),

where we have denoted νϑ(q) ≡
∫
Q g

ϑ(q, q′)µϑ(dq′). It then follows that

Eµϑ
(
x
d1(G)
1

)
= Eµϑ

((
1 + (x1 − 1)νϑ(q1)

)n−1
)
(1 + o(1)) = Eµϑ

(
e(x1−1)(n−1)νϑ(q1)

)
(1 + o(1)) ,

where we have used the fact that e(x1−1)νϑ(q) = 1 + (x1 − 1)νϑ(q) + o(1). This is the prob-
ability generating function of a mixed Poisson random variable with mixing parameter νϑ(q).
In particular, since pϑ(q, q′) = gϑ(q, q′) + o(1), we can write nνϑ(q) = n

∫
Q p(q, q

′)µϑ(dq′) =∑n
j=1

∫
Q p

ϑ(q, qj)µ
ϑ(dqj) =

∑n
j=1 P (a1j = 1| q1 = q) = Eµϑ (d1(G)| q1 = q), which is the expected

degree of a firm with output q, and we denote it by d̄(q). Further, it then follows that

Eµϑ
(
x
d1(G)
1

)
=

n∑
k=0

xk1P (d1(G) = k)

= Eµϑ
(
e(x1−1)d̄(q1)

)
(1 + o(1))

= Eµϑ

(
e−d̄(q1)

n∑
k=0

(x1d̄(q1))
k

k!

)
(1 + o(1))

n∑
k=0

xk1Eµϑ

(
e−d̄(q1)d̄(q1)

k

k!

)
(1 + o(1)) .

Let the empirical degree distribution be given by P̄ ϑ(k) = 1
n

∑n
i=1 1{di(G)=k}, and denoted by

P ϑ(k) ≡ Eµϑ
(
P̄ ϑ(k)

)
. Then we have that

P ϑ(k) = P (d1(G) = k) = Eµϑ

(
e−d̄(q1)d̄(q1)

k

k!

)
(1 + o(1)) .

We now give a proof of part (ii) of the proposition. In the limit of ϑ→ ∞ we obtain from the
FOC in Equation (44) that

(b+ 2ν∗)q − η∗ =

{
ρq, if ζ < ρq2,

0, if ρq2 < ζ.

This shows that the right hand side of Equation (10) has a point of discontinuity at
√

ζ
ρ (see

Figure 1). It then follows that, in the limit of ϑ→ ∞ (for the stochastically stable equilibrium),
we have

q∗ =


η

b+2ν∗−ρ , if ζ < ρ(η∗)2

(b+2ν∗)2 ,{
η∗

b+2ν∗−ρ ,
η∗

b+2ν∗

}
, if ρ(η∗)2

(b+2ν∗)2 < ζ < ρη2

(b+2ν∗−ρ)2 ,

η∗

b+2ν∗ , if ρ(η∗)2

(b+2ν∗−ρ)2 < ζ,

(56)

which is increasing in ρ and η∗, and decreasing in ζ and b (see Figure 1). Next, note that
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Figure 1: (Top left panel) The right hand side of Equation (10) for different values of ζ1 = 25, ζ2 = 10, ζ3 = 3 and
b = 4, ρ = 2, η = 6.5, ν = 0 and ϑ = 10. (Top right panel) The values of q solving Equation (10) for different
values of ζ with b = 1.48, ρ = 0.45 and ϑ1 = 49.5, ϑ2 = 0.495, ϑ3 = 0.2475. (Bottom left panel) The right hand
side of Equation (10) for different values of η1 = 2.5, η2 = 6.5, η3 = 10 and b = 4, ρ = 2, ζ = 10 and ϑ = 10.
(Bottom right panel) The values of q solving Equation (10) for different values of η with b = 4, ρ = 2 and ϑ1 = 10,
ϑ2 = 0.26, ϑ3 = 0.2.

Eµϑ

(
n∑
i=1

q2i

)
=
∑
G∈Gn

∫
Qn

dq

(
n∑
i=1

q2i

)
µϑ(q, G) =

1

Zϑ

∑
G∈Gn

∫
Qn

dq

(
n∑
i=1

q2i

)
eϑΦ(q,G)

=
1

Zϑ

∑
G∈Gn

∫
Qn

dq
1

ϑ2
∂2

∂η2
eϑΦ(q,G) =

1

Zϑ

1

ϑ2
∂2Zϑ

∂η2
,

where we have denoted Fϑ ≡ − lnZϑ. We further have that

∂2 lnZϑ

∂η2
=

1

Zϑ

∂2Zϑ

∂η2
− 1

Z 2
ϑ

(
∂Zϑ

∂η

)2

=
1

Zϑ

∂2Zϑ

∂η2
−
(
∂ lnZϑ

∂η

)2

= ϑ2Eµϑ

(
n∑
i=1

q2i

)
− ϑ2Eµϑ

(
n∑
i=1

qi

)2

.

We then get

Varµϑ

(
n∑
i=1

qi

)
= Eµϑ

(
n∑
i=1

q2i

)
− Eµϑ

(
n∑
i=1

qi

)2

=
1

ϑ2
∂2 lnZϑ

∂η2
= − 1

ϑ2
∂2Fϑ

∂η2
.

The variance of the mean is then given by

Varµϑ

(
1

n

n∑
i=1

qi

)
= − 1

n2ϑ2
∂2Fϑ

∂η2
.

We have that
∂2Fϑ

∂η2
= −ϑ∂

2Hϑ(q
∗)

∂η2
= 0,
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Figure 2: The output iteration of Equation (59) over the firm fixed effects ηi. Filled circles indicate the fixed
points. The insets show the adjacency matrix A = (aij)1≤i,j,n with elements are given by aij = 1{

qiqj>
ζ
ρ

} (see also
Figure 4), where the vector q is the fixed point of Equation (59). The panels from the left to the right correspond
to increasing linking costs ζ ∈ {0.0075, 0.01, 0.02}. The parameters used are n = 10, ν = 0.5, b = 0.06, ρ = 0.02
and η = (1.00, 0.71, 0.58, 0.50, 0.45, 0.41, 0.38, 0.35, 0.33, 0.32)⊤.

and we get

Varµ∗

(
1

n

n∑
i=1

qi

)
= lim

ϑ→∞
Varµϑ

(
1

n

n∑
i=1

qi

)
= 0.

Note that the variance of the average output can be equal to zero only if it is equal to its
expectation in all of its support. This can only happen if the average output is equal to q∗ with
probability one in the large ϑ limit.

Further, in the limit of ϑ→ ∞, for both, the low equilibrium, where q = η∗

b+2ν∗ and therefore
η∗

q = b + 2ν∗, as well as the high equilibrium, where q = η∗

b+2ν∗−ρ , and η∗

q = b + 2ν∗ − ρ we find
from Equation (50) that

∂

∂ζ

∂2Hϑ

∂q2i

∣∣∣∣
qi=q

= 0,

and from Equation (51) we get
∂

∂ζ

∂2Hϑ

∂qi∂qj

∣∣∣∣
qi=qj=q

= 0.

Hence, we find that in the high equilibrium Eµ∗(m) = limϑ→∞ Eµϑ(m) = n(n−1)
2 , while in the

low equilibrium Eµ∗(m) = limϑ→∞ Eµϑ(m) = 0. Consequently, the expected average degree in
the high equilibrium is Eµ∗

(
1
n

∑n
i=1 di

)
= limϑ→∞ Eµϑ

(
1
n

∑n
i=1 di

)
= n − 1, where we have a

complete graph, Kn, and zero in the low equilibrium where we obtain an empty graph, Kn. 2

We next give the proof of Proposition 3, which generalizes Proposition 2 by allowing for firm
heterogeneity.

Proof of Proposition 3. We first give a proof of part (i) of the proposition. We have that
µϑ(q, G) = µϑ(G|q)µϑ(q). Analogous to the proof of Proposition 2 one can show that µϑ(G|q) =∏
i<j p

ϑ(qi, qj)
aij
(
1− pϑ(qi, qj)

)1−aij where pϑ(qi, qj) is given by Equation (53), which corre-
sponds to an inhomogeneous random graph with linking probability pϑ : Q × Q → [0, 1]. The
output distribution is given by

µϑ(q) =
1

Zϑ

∑
G∈Gn

eϑΦ(q,G) =
1

Z ϑ
n

eϑHϑ(q),

where the Hamiltonian is implicitly defined by eϑHϑ(q) =
∑

G∈Gn eϑΦ(q,G). From a Taylor expan-

50



sion around q∗ (for large ϑ) we have that

Hϑ(q) = Hϑ(q
∗) + (q− q∗)∇Hϑ(q

∗) +
1

2
(q− q∗)⊤∆Hϑ(q

∗)(q− q∗) + o
(
∥q− q∗∥2

)
,

as ϑ → ∞, where q∗ = argmaxq∈[0,q̄]n Hϑ(q), the gradient is ∇Hϑ(q) =
(
∂Hϑ
∂qi

)
i=1,...,n

, and the

Hessian is ∆Hϑ(q) =
(
∂2Hϑ
∂qi∂qj

)
i,j=1,...,n

. As the gradient ∇Hϑ(q) vanishes at q∗, we have that

Hϑ(q) = Hϑ(q
∗) +

1

2
(q− q∗)⊤∆Hϑ(q

∗)(q− q∗) + o
(
∥q− q∗∥2

)
.

We then can write

µϑ(q) =
1

Z ϑ
n

eϑHϑ(q
∗) exp

{
−1

2
ϑ(q− q∗)⊤(−∇Hϑ(q

∗))(q− q∗)

}
+ o

(
∥q− q∗∥2

)
.

Normalization,
∫
Qn µ

ϑ(q)dq = 1, implies that

Z ϑ
n =

∫
Qn

eHϑ(q)dq = eϑHϑ(q
∗)

∫
Qn

exp

{
−1

2
ϑ(q− q∗)⊤(−∆Hϑ(q

∗))(q− q∗)

}
dq+ o

(
∥q− q∗∥2

)
= eϑHϑ(q

∗)(2π)
n
2 |−∆Hϑ(q

∗)|−
1
2 + o

(
∥q− q∗∥2

)
.

The Laplace approximation of µϑ(q) is then given by [Wong, 2001, Theorem 3, p. 495]

µϑ(q) =

(
2π

ϑ

)−n
2

|−∆Hϑ(q
∗)|

1
2 exp

{
−1

2
ϑ(q− q∗)⊤(−∆Hϑ(q

∗))(q− q∗)

}
+ o

(
∥q− q∗∥2

)
.

That is, in the limit of large ϑ, q is asymptotically normally distributed with mean q∗ and
variance − 1

ϑδHϑ(q
∗)−1, where ∆Hϑ(q) =

(
∂2Hϑ
∂qi∂qj

)
i,j=1,...,n

with ∂2Hϑ

∂q2i
given by Equation (45)

while, for any i ̸= j, ∂2Hϑ
∂qi∂qj

is given by Equation (46).
We next turn to part (ii) of the proposition. We show that the networks G in the support of

the stationary distribution µϑ(q, G) in the limit of vanishing noise ϑ→ ∞ is a nested split graph.
A graph G is a nested split graph if for every node i ∈ N there exist a weight xi and a threshold
T such that vertices i and j are linked if and only if xi + xj ≥ T [Mahadev and Peled, 1995].

In the limit ϑ→ ∞ the conditional probability of the network G can be written as µ∗(G|q) =
limϑ→∞ µϑ(G|q) =

∏n
i<j 1

aij
{ρqiqj>ζ}1

1−aij
{ρqiqj<ζ}. Assume that G is a stochastically stable network,

that is for G ∈ Ω∗, we must have that µ∗(q, G) = limϑ→∞ µϑ(q, G) > 0. Since, µ∗(q, G) =
µ∗(G|q)µ∗(q) this implies that µ∗(G|q) > 0. It follows that ρqiqj > ζ for all aij = 1 and
ρqiqj < ζ for all aij = 0. We then define the weights xi ≡ log qi, xj ≡ log qj and a threshold
T ≡ log ζ − log ρ, and conclude that G is a nested split graph (or threshold graph, see also
supplementary Appendix B).

Moreover, the output distribution is given by µϑ(q) = 1
Zϑ

∑
G∈Gn eϑΦ(q,G) = 1

Z ϑ
n
eϑHϑ(q), where

the Hamiltonian is given by Equation (41). The output profile that maximizes the Hamiltonian
can be found from the FOC , ∂Hϑ

∂qi
= 0, from which we get

qi =
ηi
2ν

+
1

2ν

n∑
j ̸=i

(
ρ

2

(
1 + tanh

(
ϑ

2
(ρqiqj − ζ)

))
− b

)
qj .

Taking the limit ϑ→ ∞ and noting that

lim
ϑ→∞

1

2

(
1 + tanh

(
ϑ

2
(ρqiqj − ζ)

))
=

{
1, if ρqiqj > ζ,

0, if ρqiqj < ζ,
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we thus obtain53

qi =
ηi
2ν

+
1

2ν

n∑
j ̸=i

qj

(
ρ1{

qiqj>
ζ
ρ

} − b

)
. (57)

Note that for any profile of output levels q there exists a unique nested split graph with adjacency
matrix A = (aij)1≤i,j,n whose elements are given by aij = 1{

qiqj>
ζ
ρ

}. Then we can write Equation

(57) as follows

qi =
ηi
2ν

+
ρ

2ν

n∑
j ̸=i

aijqj −
b

2ν

n∑
j ̸=i

qj . (58)

Moreover, assume that ηi > ηj , then we want to show that qj > qi for the output profile q
solving Equation (57). For this purpose we consider the iteration

qi,t+1 = fi(qt) ≡ max

0,
ηi
2ν

+
ρ

2ν

n∑
j ̸=i

qj,t1{
qi,tqj,t>

ζ
ρ

} − b

2ν

n∑
j ̸=i

qj

 , (59)

starting from the initial vector q0 = (0, . . . , 0)⊤. We then observe that the map fi : R+ → R+ is
η-order preserving. That is, if ηi > ηj and qi,t > qj,t, then also qi,t+1 > qj,t+1. To show this we
proceed by induction. For the induction basis consider t = 0. Then qi,1 = ηi for all i = 1, . . . , n,
and the claim follows. Next, consider the induction step, assuming that the claim holds for some
t > 0. Then

qi,t+1 − qj,t+1 = fi(qt)− fj(qt) =
b

2ν
(ηi − ηj) +

ρ

2ν

∑
k∈Ni,t\Nj,t

qk,t +
b

2ν
(qi,t − qj,t) > 0,

where we have used the fact that the condition qi,tqj,t >
ζ
ρ for i and j being linked represents a

nested split graph, and for such a graph if qi,t > qj,t (so that di,t > dj,t) then Nj,t ⊂ Ni,t. Hence,
for all t, the claim holds, and in particular, taking the limit as t→ ∞ it holds for the fixed point
q solving Equation (57).

We now give a proof of part (iii) of the proposition. From Equation (17) we know that in the
stochastically stable state the output levels satisfy the following equation

g(q) ≡ (In + bB− ρA)q = η, (60)

where B is a matrix of ones with zero diagonal and A has elements aij = 1{ρqiqj>ζ}. When the
(ηi)

n
i=1 are real valued random variables with probability density function f , then the probability

density function µ of q is given by

µ(q) =

∣∣∣∣det(dg(q))dq

)∣∣∣∣ f(η),
where

(
dg(q)
dq

)
ij
= ∂gi(q)

∂qi
. From Equation (60) we get dg(q)

dq = In + bB− ρA, and we denote this
by M. It then follows that µ(q) = | det(M)|f(Mq). In particular, if the (ηi)

n
i=1 are identically

and independently Pareto distributed with density function f(η) = (γ − 1)η−γ for η ≥ 1 then

µ(q) = (γ − 1)n|det(M)|
n∏
i=1

(Mq)−γi .

Next, consider q = cu, c > 0, with u being a vector of all ones. Then M = In+(b−ρ)B for c
large enough (because ρqiqj = c2ρ > ζ for c large enough), and det(M) = (1 + (n− 1)(b− ρ)) (1+

53Note that Hϑ(q) is a real valued function that converges pointwise and whose derivatives converge uniformly
on a closed interval [0, q̄] so that we can exchange the derivative with the limit [Rudin, 1987].
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Figure 3: (Left panel) The stationary output distribution. The vertical dashed lines indicate the theoretical
predictions from Equation (56). (Right panel) The average output level from numerical simulations with ϑ = 1
starting with different initial conditions (indicated with different colors). The horizontal dashed lines indicate the
equilibrium quantities and the vertical dashed lines the threshold cost levels from Equation (13). In the region of
the cost ζ between the lower and upper thresholds two equilibria exist.

b+ ρ)n−1. Further, (Mq)i = 1 + (n− 1)(b− ρ), so that we can write

µ(cu) = (1 + (n− 1)(b− ρ)) (1 + b+ ρ)n−1(γ − 1)n (1 + (n− 1)(b− ρ))−nγ c−nγ ,

and we conclude that µ(cu) ∼
∏n
i=1O (c−γ) as c→ ∞. 2

Figure 2 shows the output iteration of Eq. (59) over the firm fixed effects ηi together with the
adjacency matrix A = (aij)1≤i,j,n (see also Figure 4) whose elements are given by aij = 1{

qiqj>
ζ
ρ

}
and the vector q is the fixed point of Equation (59). We observe that firms with higher ηi also have
higher output levels. Moreover, the corresponding adjacency matrix is stepwise, characterizing a
nested split graph (see also supplementary Appendix B), and becomes increasingly sparse with
increasing linking costs ζ.

An illustration with the average output level from numerical simulations starting with different
initial conditions and a comparison with the predictions of Equation (56) can be seen in Figure
3.

Proof of Proposition 4. We first give a proof of part (i) of the proposition. Welfare can be
written as follows

W (q) = U(q) + Π(q, G)

=
1

2

n∑
i=1

q2i +
b

2

n∑
i=1

n∑
j ̸=i

qiqj +
n∑
i=1

ηqi − νq2i − b
n∑
j ̸=i

qiqj + ρ
n∑
j=1

aij(qiqj − ζ)


= η

n∑
i=1

qi −
2ν − 1

2

n∑
i=1

q2i −
b

2

n∑
i=1

n∑
j ̸=i

qiqj +
n∑
i=1

n∑
j ̸=i

aij(ρqiqj − ζ).

The only network dependent part in W (q, G) is the last term
∑n

i=1

∑n
j ̸=i aij(ρqiqj − ζ). For a

given output vector q the network that maximizes this term is a nested split graph G (see also
supplementary Appendix B) where each link ij ∈ G if and only if ρqiqj > ζ.54 Hence, we can

54A graph G is a nested split graph if for every node i ∈ N there exist a weight xi and a threshold T such that
vertices i and j are linked if and only if xi + xj ≥ T [Mahadev and Peled, 1995]. Then by letting ln qi = xi and
ln(ζ/ρ) = T yields ρqiqj > ζ iff xi + xj ≥ T the conclusion follows.
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qi → qj

G→ G′′
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Figure 4: (Left panel) An illustration of the neighborhoods of i, j such that Ni ⊂ Nj . (Right panel) A schematic
representation of a nested split graph G (see supplementary Appendix B).

write welfare reduced to this class of networks as follows

W (q) = η
n∑
i=1

qi −
2ν − 1

2

n∑
i=1

q2i −
b

2

n∑
i=1

n∑
j ̸=i

qiqj +
n∑
i=1

∑
j ̸=i

(ρqiqj − ζ)1{ρqiqj>ζ}.

The necessary first order condition (FOC) can be written as follows

∂W

∂qi
= η − (2ν − 1)qi − b

n∑
j ̸=i

qj + ρ
n∑
j ̸=i

qj1{ρqiqj>ζ} = 0. (61)

We next consider a symmetric solution qi = q for all i = 1, . . . , n with the property that ρq2 > ζ.
Then Equation (61) implies that

η − (2ν − 1)q + (2ρ− b)(n− 1)q = 0,

from which we deduce that
q =

η∗

b+ 2ν∗ − 2ρ− 1
n−1

,

where we have denoted η∗ = η/(n − 1) and ν∗ = ν/(n − 1). The corresponding network is a
complete graph, Kn. Further, for a symmetric solution with ρq2 < ζ from Equation (61) we must
have that

η + (1− 2ν)q − b(n− 1)q = 0,

from which we deduce that
q =

η∗

b+ 2ν∗ − 1
n−1

.

The corresponding network is an empty graph, Kn. Note that welfare in the complete network
Kn and the empty network Kn is the same if ζ = ζ∗ where ζ∗ is given in Equation (21).

Consider a degree partition D1,D2, . . . ,Dm (see also supplementary Appendix B) in a nested
split graph G such that di < dj if i ∈ Dk, j ∈ Dk′ with k′ > k. From the symmetry of the FOC
in Equation (61) it follows that for any i, j ∈ Dk it must hold that qi = qj . Moreover, from the
FOC we also observe that when di < dj then qi < qj .

Further, we show that either the complete network Kn or the empty network Kn are efficient.
To do so, assume that G is efficient, and it is neither empty nor complete. Let the output profile
in G be q. We know that the efficient network is a nested split graph. Consider i, j such that
qj > qi and Ni ⊂ Nj . Let G′ be the graph obtained from G with the links of j in Nj\Ni removed.
Further, let q′ = (qi, . . . , qj−1, qi, qj+1, . . . , qn), that is, q′ is obtained from q be replacing qj with
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qi. An illustration can be seen in the left panel of Figure 4. We then have that

W (q′, G′)−W (q, G) = (qi − qj)

η + 1− 2ν

2
(qi + qj)− b

∑
k ̸=j

qk + 2ρ
∑
k∈Ni

qk

− 2
∑

k∈Nj\Ni

(ρqjqk − ζ).

Similarly, consider the graph G′′ obtained from G with the links in Nj\Ni added to i. Further,
let q′′ = (qi, . . . , qi−1, qj , qi+1, . . . , qn), that is, q′′ is obtained from q be replacing qi with qj . Then
we have that

W (q′′, G′′)−W (q, G) = (qj − qi)

η + 1− 2ν

2
(qi + qj)− b

∑
k ̸=j

qk + 2ρ
∑
k∈Ni

qk

+ 2
∑

k∈Nj\Ni

(ρqjqk − ζ).

It follows that W (q′′, G′′)−W (q, G) +W (q′, G′)−W (q, G) = 0. There are three possible cases
to consider such that this equality holds. First, if W (q′′, G′′) − W (q, G) < 0 then we must
have that W (q′, G′) −W (q, G) > 0. This means that W (q′, G′) > W (q, G) and (q, G) is not
efficient. Second, if W (q′, G′)−W (q, G) < 0 then we must have that W (q′′, G′′)−W (q, G) > 0.
This means that W (q′′, G′′) > W (q, G) and (q, G) is not efficient. The third case to consider is
W (q′′, G′′)−W (q, G) = 0. Then we must have that W (q′′, G′′) =W (q′, G′) =W (q, G).

From the definition of q′′ and G′′ we see that the transition from G to G′′ corresponds to
moving a node from a degree partition Dk to a partition Dl with l > k, while leaving welfare
unchanged. An illustration can be seen in the right panel in Figure 4. In particular, (q′′, G′′)
must be efficient. We then can repeat this procedure to move up the node to the next higher
partition while leaving welfare unchanged. Doing this across all partitions and for all nodes shows
that we end up with the complete graph, Kn, with the same welfare as the original graph G.
However, this is a contradiction to our initial assumption that the complete graph is not efficient.
This shows that either the empty, Kn, or the complete graph, Kn, must be efficient.

We next consider part (ii) of the proposition. In the case of heterogeneous firms, welfare can
be written as

W (q) =
n∑
i=1

ηiqi −
2ν − 1

2

n∑
i=1

q2i −
b

2

n∑
i=1

n∑
j ̸=i

qiqj +
n∑
i=1

n∑
j ̸=i

aij(ρqiqj − ζ).

The only network dependent part in W (q, G) is the last term
∑n

i=1

∑n
j ̸=i aij(ρqiqj − ζ), and, as

in part (i), for a given output vector q the network that maximizes this term is a nested split
graph G where each link ij ∈ G if and only if ρqiqj > ζ. Moreover, from the necessary FOC we
obtain

qi = fi(q) ≡ max

0,
ηi

2ν − 1
− b

2ν − 1

n∑
j ̸=i

qj +
ρ

2ν − 1

n∑
j ̸=i

qj1{ρqiqj>ζ}

 . (62)

We can compare this to the equilibrium output levels of Equation (57), which were given by

qi = gi(q) ≡ max

0,
ηi
2ν

− b

2ν

n∑
j ̸=i

qj +
ρ

2ν

n∑
j ̸=i

qj1{ρqiqj>ζ}

 . (63)

We have for any q ∈ Qn that fi(q) > gi(q). This is because

fi(q)− gi(q) =

(
1

2ν − 1
− 1

2ν

)ηi − b
n∑
j ̸=i

qj + ρ
n∑
j ̸=i

qj1{ρqiqj>ζ}

 ≥ 0.

Next, consider the differential equations dx
dt = f(x) − x and dy

dt = g(y) − y, both with initial
condition x0 = y0 = (0, . . . , 0)⊤. Because f(x) > g(x), the comparison lemma implies that
x(t) > y(t) for all t ≥ 0 (see Khalil [2002], Lemma 3.4). In particular, we can conclude that the
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fixed point f(q) = q must be higher than the fixed point g(q) = q. That is, in the stochastically
stable equilibrium output levels are too low compared to the social optimum. Moreover, because
a link is only present if ρqiqj > ζ there are fewer links in the stochastically stable network than
in the efficient network. 2
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