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OB1-Reader: A Model of Word Recognition and Eye Movements
in Text Reading
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Jonathan Grainger
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Decades of reading research have led to sophisticated accounts of single-word recognition and, in
parallel, accounts of eye-movement control in text reading. Although these two endeavors have
strongly advanced the field, their relative independence has precluded an integrated account of the
reading process. To bridge the gap, we here present a computational model of reading, OB1-reader,
which integrates insights from both literatures. Key features of OB1 are as follows: (1) parallel
processing of multiple words, modulated by an attentional window of adaptable size; (2) coding of
input through a layer of open bigram nodes that represent pairs of letters and their relative position;
(3) activation of word representations based on constituent bigram activity, competition with other
word representations and contextual predictability; (4) mapping of activated words onto a spatio-
topic sentence-level representation to keep track of word order; and (5) saccade planning, with the
saccade goal being dependent on the length and activation of surrounding word units, and the
saccade onset being influenced by word recognition. A comparison of simulation results with
experimental data shows that the model provides a fruitful and parsimonious theoretical framework
for understanding reading behavior.

Keywords: text reading, computational model, orthographic processing, lexical processing, parallel word
processing

For decades, reading research has advanced along two rela-
tively independent lines. One of these lines has focused on
orthographic processing of single words, spurring various ac-
counts of how readers may code for letter identity and position
(e.g., Davis, 1999; Grainger & van Heuven, 2003; McClelland

& Rumelhart, 1981; Whitney, 2001). The other line, mean-
while, has made key contributions to our knowledge of eye-
movement control in text reading (e.g., Engbert, Nuthmann,
Richter, & Kliegl, 2005; Reichle, Rayner, & Pollatsek, 1999,
2003; Reilly & Radach, 2006). These two endeavors have led to
large advances in our understanding of the reading system.
Word recognition research has enabled us to predict fairly
accurately how long it takes to recognize a given word and to
describe how orthographic information is integrated over time
(e.g., Grainger, 2008, 2018, for reviews). Meanwhile, research
on eye-movements in text reading has enabled us to predict
temporal and spatial eye movement parameters that are based
on properties of the text being read (e.g., Rayner, 1998, 2009,
for reviews).

At the same time, it is clear that not all pending issues
concerning reading can be answered by these domains in iso-
lation. For example, research on word recognition has generally
ignored how recognition processes may be influenced by sur-
rounding words and context. Meanwhile, the major focus of
research on text reading has been at the lexical level (but see,
e.g., Hyönä, 1995; White & Liversedge, 2004), making it dif-
ficult to account, for instance, for how and when text reading
may go awry.
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Following the recommendations of Grainger (2003) and
Grainger, Dufau, and Ziegler (2016), here we integrate the two
domains of reading research in a computational model of read-
ing, OB1-reader, developed with the aim to solve aforemen-
tioned issues. In the following section, we provide a theoretical
background, comprising a short overview of models of word
recognition on the one hand and models of eye-movement
control on the other, highlighting those elements that are, in our
view, key to achieving an integrative account of reading. In
subsequent sections, we summarize the main assumptions and
implementation of our model. We conclude with a comparison
of simulation results to experimental data.

Theoretical Background: Models of Reading

Models of Word Recognition

Although a substantial body of visual word recognition re-
search has been dedicated to phonological, morphological, and
semantic processing (e.g., Frost, Grainger, & Rastle, 2005),
orthographic processing, that is, the process of coding for the
identities and positions of letters, is generally thought to lie at
the heart of the word recognition process. In the early 80s,
McClelland and Rumelhart (1981; Rumelhart & McClelland,
1982) provided what has likely been the most influential ac-
count of the word recognition process to date. According to
their interactive-activation model (IAM), letters in the visual
input activate position-coded letter nodes. These in turn activate
nodes for words with letters at matching positions (e.g., a letter
node coding for letter e at Position 2 would activate best, leave,
see), until one of the word nodes reaches an activity threshold
that marks the point of recognition. Importantly however, acti-
vated words provide feedback activation to those letter repre-
sentations that match their respective location in the word (e.g.,
best would activate the letter node coding for s at Position 3).
This mechanism accounts for the classic word-superiority effect
reported by Cattell (1886), whereby recall of individual letters
is better when those letters form a word, as compared to a
nonword string. The model also correctly predicted that recog-
nition of low-frequency words is hampered when they have at
least one high-frequency orthographic neighbor (sharing all but
one letter while respecting letter positions; e.g., blur– blue;
Grainger, O’Regan, Jacobs, & Segui, 1989; Grainger, 1990).

One of the major drawbacks of McClelland and Rumelhart’s
(1981) seminal model, however, was that letter processing took
place in a rigid slot-based fashion, meaning that a stimulus with
a certain letter at a certain position would only activate words
that have the same letter at the same position. Since the IAM’s
first appearance, there has been a wealth of evidence against
such absolute letter position coding, and in favor of a more
flexible letter-word interface. Using a paradigm where subjects
had to identify two words that were briefly presented together
(e.g., sand lane), McClelland and Mozer (1986) showed that
letter migration errors can occur (e.g., land sane). Years later,
Davis and Bowers (2004) showed that such illusory identifica-
tions do not have to respect position: Given a word pair like
step soap, participants could also respond stop, indicating a
migration of the letter o from position two to Position 3.

Another body of evidence in favor of flexible letter position
coding comes from the masked priming paradigm, which tests
the influence of briefly presented prime words on the process-
ing of subsequently presented target words. It has been shown
that target words are recognized faster after a transposed-letter
prime (e.g., mother–mother) as compared with a prime with
different letters at the same positions (e.g., monder–mother;
e.g., Andrews, 1996; Perea & Carreiras, 2006; Perea & Lupker,
2004). Further, Peressotti and Grainger (1999) found that the
processing of six-letter target words was facilitated by four-
letter relative-position primes (e.g., mthr–mother) as compared
to unrelated primes (e.g., lndn–mother; see also Grainger,
Granier, Farioli, Van Assche, & van Heuven, 2006; Van Assche
& Grainger, 2006).

The need for more flexibility in the word recognition process
has led to three major modeling approaches: noisy slot-based
coding, spatial coding, and relative-position coding. Noisy
slot-based coding refers to the addition of Gaussian noise to the
slot-based scheme of the IAM (Davis & Bowers, 2004; Gomez,
Ratcliff, & Perea, 2008), meaning that each letter of a stimulus
word would not only activate the node representing that letter at
its specific slot (s), but also in slots s – 2, s – 1, s � 1, s � 2,
and so forth, with increasing eccentricity from the letter’s true
position leading to weaker activation. This Gaussian noise
renders the system less efficient, but more flexible, and allows
it to account for the transposed-letter priming effect discussed
above. Spatial coding, as used in Davis’s (1999, 2010a, 2010b)
SOLAR model implements flexibility in a fairly similar way, by
adding letter position uncertainty to a spatial code of letter
representations. Additionally, the SOLAR model adopts flexi-
bility through length-independence, meaning, for example, that
stop would also activate stopwatch.

The third modeling approach, relative-position coding, aban-
dons the IAM’s slot-based scheme altogether. Instead, ortho-
graphic input is assumed to activate nodes that represent the
relative position of within-word letter pairs (e.g., the stimulus
rock would activate nodes for ro, rc, rk, oc, ok, and ck; see
Whitney, 2001; Grainger & van Heuven, 2003). These so-called
open-bigram nodes in turn activate all lexical representations
that they belong to. The node ro, for example, would activate
rock, but also rose and ribbon. Accounting for the transposed-
letter priming effect (e.g., rock is primed more strongly by rcok
than by rduk), the lexical representation of rock would be
activated by a larger subset of open-bigram nodes with the
former prime (rc, ro, rk, ck, ok) as compared with the latter
prime (rk).

Although these three modeling approaches have all done a
good job in explaining the experimental findings discussed
above, some recent lines of research may slightly favor relative
position coding over the other approaches. Specifically, it has
been shown that processing of a foveal word is facilitated by
simultaneously presented orthographically similar parafoveal
words (e.g., rock rack) as compared with unrelated words (e.g.,
rock dash; Angele, Tran, & Rayner, 2013; Dare & Shillcock,
2013; Snell, Vitu, & Grainger, 2017). In a similar vein, using
their flanking letters lexical decision (FLLD) paradigm, Dare
and Shillcock (2013) found that lexical decisions about foveal
target words (i.e., indicating whether the target is a word or
nonword) were made faster and more accurately when the target
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was flanked by two parafoveal related letters on each side (e.g.,
ro rock ck) as compared with unrelated letters (sp rock it; see
also Grainger, Mathôt, & Vitu, 2014; Snell, Vitu, et al., 2017).
Crucially, the order of flanker bigrams did not matter (i.e., ck
rock ro facilitated processing as strongly as ro rock ck), indi-
cating the importance of relative- rather than absolute letter
position.1

It is difficult to conceive how noisy slot-based coding would
account for these findings. Regarding the flanker effects reported
by Dare and Shillcock (2013), for example, a noisy slot-based
model would have to assume that the letters in each slot of a
four-letter target word would receive additional activation from a
letter that is five slots away (given that there are five letter spaces
between the r in rock and the r in ro in the example in the
preceding text). Allowing letters to influence one another at such
eccentricities would impair the model’s performance greatly (in-
deed, simulations with the SOLAR model with high position
uncertainty showed that the model was unable to distinguish
extreme anagrams, (e.g., bnoclay–balcony; Davis, 2010b). In con-
trast, open-bigram coding explains these orthographic parafoveal-
on-foveal effects quite effectively. Open-bigram units are location-
invariant, meaning that both rock and rack in rock rack activate the
nodes rc, rk, and ck, thus resulting in faster word recognition.

Considering that the open-bigram model has been applied only
in settings where just one or two words were presented as visual
input (e.g., Hannagan & Grainger, 2012), it remains to be seen
whether the model would fare well processing normal text. A
potential problem is that the visual input during text reading would
activate a larger amount of bigrams compared with the visual input
during single-word reading, subsequently increasing the chance
that incorrect words are activated (e.g., word and bonding, leading
to recognition of wording).

Models of Eye-Movement Control in Text Reading

Despite the important contribution of the aforementioned work
to our understanding of the reading system, it is clear that reading
is more than word recognition. Reading comprises a delicate
interplay of various cognitive mechanisms, involving not only
sublexical orthographic, lexical, and semantic processing, but also
memory, visuospatial attention, and oculo-motor control.

Readers make roughly five saccades (i.e., eye movements) per
second to bring words into the fovea, where visual acuity is the
highest. In between those saccades, fixation durations (the time
spent viewing a word) reflect the time-course of the word recog-
nition process, and can be largely predicted by the length, fre-
quency and predictability of the fixated word (Rayner, 1998, 2009;
Sereno & Rayner, 2000) as well as surrounding (parafoveal) words
(Kennedy & Pynte, 2005), implying an interaction between lexical
processing and oculo-motor control.

Various models of eye-movements in text reading have been
developed in the last few decades, all aiming to understand and
predict reading behavior on the basis of properties of the text being
read. The primary goal of these models is to provide accounts of
when and where the eyes move during reading (Engbert et al.,
2005; Reichle, Pollatsek, Fisher, & Rayner, 1998; Reichle et al.,
2006; Reilly & Radach, 2006). With respect to when the eyes
move, the models generally agree that lexical processing has some
influence on the decision to move the eyes from one word to

another. However, there is much less agreement on the factors
driving lexical processing itself—in particular with respect to the
role of visuospatial attention therein.

There are roughly two schools of theorizing about attention in
reading, represented by sequential attention shift (SAS) models on
the one hand and parallel graded processing (PG) models on the
other. Driven by the general principle that serial word order is
important for sentence comprehension, SAS models operate on the
assumption that attention is allocated to exactly one word at a time
and that attention shifts from one word to the next in strict serial
order (Reichle, 2011; Reichle et al., 1998, 2006). The most prom-
inent of these, the E-Z Reader model of Reichle and colleagues
(1999, 2006, 2009b) has been able to account for many phenomena
in reading behavior, such as the occurrence of word skips (i.e.,
instances where the eyes move from word n to word n � 2) and
refixations (i.e., saccades that update the eye’s fixation position
within the same word), each representing approximately 20% of all
eye-movements in reading (Rayner, 1998).

As has been acknowledged by Reichle, Pollatsek, and Rayner
(2006) however, not all phenomena were accounted for by their
model. In particular, the model does not explain regressive sac-
cades (i.e., backward eye-movements to earlier points in the text),
which make up approximately 10% to 20% of all eye-movements
(Radach, Reilly, & Inhoff, 2007; Rayner, 1998). As of Version 10
of E-Z Reader, Reichle et al. (2009b) did incorporate a postlexical
processing stage, whereby recognized words would have a certain
chance of not fitting with the prior context, thereby prompting a
regressive saccade. This process of fitting recognized words with
the prior context was not actually modeled in E-Z Reader; rather,
regressions were triggered by sampling from a random distribu-
tion, intended as “[. . .] a placeholder for a deeper theory of
post-lexical language processing during reading” (Reichle, War-
ren, & McConnell, 2009b, p.7). Although such an approach would
indeed allow a model to generate any desired number of regres-
sions, the result is a model that mimics, rather than explains,
reading behavior.

E-Z Reader determines its next saccade target by aiming for the
center of the closest unrecognized word. The final saccade ampli-
tude is subject to random and systematic error, the latter of which
is a tendency to err toward a standard amplitude of seven letters,
hence accommodating the finding that saccades shorter than the
standard amplitude tend to overshoot the target, whereas longer
saccades tend to undershoot the target (McConkie, Kerr, Reddix,
& Zola, 1988).

1 Note, however, that there may be additional mechanisms at play that
allow readers to have some knowledge of absolute letter position—at least
to the extent of knowing whether letters are situated to the right or left of
fixation. In a study using six-letter targets and three-letter flankers, Snell,
Bertrand, and Grainger (2018) found that the order of flankers had an
influence on target recognition speed (e.g., target was recognized faster in
tar target get than in get target tar). Accounting for the discrepancy
between these results and results reported by Dare and Shillcock (2013)
and Grainger et al. (2014) (i.e., ck rock ro and ro rock ck, yielding equal
response times), Snell, Bertrand, et al. (2018) posited that stimuli compris-
ing more letters bear more processing weight, causing increased lateral
activation at early visual processing stages and consequently allowing
higher processing levels to make stronger distinctions between information
stemming from the left and right visual hemifields.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

971OB1-READER



The theoretical alternative to the SAS approach, represented by
PG models, abandons the idea that words are processed in strict
serial fashion. Instead, this approach assumes simultaneous pro-
cessing of multiple words, with the amount of processing per word
being modulated by a visuospatial attentional gradient (e.g., Eng-
bert & Kliegl, 2011). The most prominent PG framework is the
SWIFT model of Engbert et al. (2005). SWIFT is based on
dynamic field theory and assumes that each word in the perceptual
span (i.e., the span of effective vision) has a level of activity that
represents both the extent to which it is recognized as well as the
probability that it is targeted by the next saccade (Engbert &
Kliegl, 2011). The Gaussian distribution of visuospatial attention
causes words near the center of attention to be activated more
strongly, making it likely that foveal words are recognized sooner
than upcoming words. As soon as a word reaches its recognition
threshold (determined by word length and frequency), its activity
falls back to zero, so that it will not be targeted by the next
saccade. It is possible however, that previously fixated (or
skipped) words have not yet been recognizedand that their activa-
tion level triggers a backward saccade. As such, SWIFT has
implemented an account of regressions whereas the E-Z Reader
model of Reichle et al. (1999, 2006, 2009b) has not (even though
the latter model does make regressions, as outlined in the preced-
ing text).

In SWIFT, the decision of when to move the eyes is determined
by sampling from a random distribution, with an inhibition of
random saccade timing by the amount of activation of the currently
fixated word (Engbert & Kliegl, 2011). Thus, whereas SWIFT and
E-Z Reader differ strongly in the decision of where to move the
eyes (dynamic field activation vs. hardcoded selection of the first
unrecognized target, respectively), the decision of when to move
the eyes is made in a similar fashion.

With their Glenmore model, Reilly and Radach (2006) provided
a PG framework that is fairly similar to SWIFT, in that saccade
targets are determined by dynamic field activation. The main
difference between the two models is that Glenmore starts oper-
ating at the letter-level, whereas SWIFT (like E-Z Reader) operates
at the word level only. In Glenmore, the combined activities of a
word’s constituent letters determine the activity of the word, and
the word with the highest activity becomes the next saccade target
(this is fairly similar to SWIFT, in which the most salient word has
the highest probability of being fixated). Despite operating at the
letter level, Glenmore is not a model of orthographic processing in
text reading: each letter unit in the visual field is connected to the
appropriate word a priori, meaning that orthographic processing
and subsequent lexical selection is assumed rather than modeled.
As was acknowledged by Reilly and Radach (2006), the primary
focus of their model was on saccade target selection rather than to
implement a realistic word recognition module.

Glenmore differs from SWIFT and E-Z Reader in the decision
of when to move the eyes. Whereas saccade program initiation in
SWIFT and E-Z Reader operates on a random timer, in Glenmore
saccades are initiated when the summed activation of all letters in
the visual field reaches a certain threshold.

Whether words are processed serially or in parallel is still
disputed. Yet, recent research has provided various types of evi-
dence in favor of parallel processing. The first type of evidence is
provided by corpus data, which has shown that the time spent
viewing word n is influenced by the frequency and length of word

n � 1 (Kennedy, 2008; Kennedy & Pynte, 2005), which is a
natural consequence of parallel but not serial processing. The
second type of evidence comes from experiments using the gaze-
contingent boundary paradigm (Rayner, 1975) to manipulate word
n � 1 during the fixation on word n. Such experiments have shown
not only that (upcoming) parafoveal words can be lexically pro-
cessed prior to being fixated (Hohenstein & Kliegl, 2014; Hohen-
stein, Laubrock, & Kliegl, 2010; Schotter, 2013; Snell, Meeter, &
Grainger, 2017; Veldre & Andrews, 2015, 2016), but also that
processing of the upcoming word can occur simultaneously with
processing of the fixated word (Angele et al., 2013; Dare &
Shillcock, 2013; Inhoff, Radach, Starr, & Greenberg, 2000; Snell,
Vitu, et al., 2017). Finally, a third body of evidence is provided by
the FLLD studies discussed in the Models of Word Recognition
section. In these studies, foveal target word processing was shown
to be influenced by parafoveal flanking stimuli (Dare & Shillcock,
2013; Grainger et al., 2014; Snell, Bertrand, et al., 2018; Snell,
Vitu, et al., 2017), despite the short stimulus on time (150 ms).

Proponents of serial word processing have taken these findings
to argue that parallel processing may occur on a sublexical (letter)
level, but that actual lexical access would still occur on a serial
basis. Yet, using higher-order (syntactic, semantic) variants of the
FLLD paradigm, it has been shown that syntactic decisions (e.g.,
classifying targets as noun/verb) and semantic decisions (e.g.,
classifying targets as natural/artifactual object) were made faster
with respectively syntactically and semantically congruent flank-
ers, as compared to incongruent flankers (Snell, Meeter, et al.,
2017).

On the other hand, similar higher order parafoveal-on-foveal
effects have been elusive in sentence reading (e.g., Angele et al.,
2013; Snell, Meeter, et al., 2017; Snell, Declerck, et al., 2018).
This absence of higher order parafoveal-on-foveal effects in sen-
tence reading being largely regarded as evidence in favor of serial
processing, relatively little attention has been paid to the possibil-
ity that higher order information is simply not integrated across
words during sentence reading, even if parallel processing were
true. As argued by Snell, Meeter, et al. (2017; Snell, Declerck, et
al., 2018), a successful parallel processing model would have to
keep track of which information belongs to which word, rather
than to integrate everything into a single mixture, given that each
word has a unique role in contributing to sentence comprehension.
The solution to this parallel processing problem, as proposed by
Snell, Meeter, et al. (2017; Snell, Declerck, et al., 2018), is that
activated words would be mapped onto a spatiotopic sentence-
level representation, guided by expectations about word length and
syntactic structure. Such a mechanism would prevent parafoveal-
foveal integration of higher order information during sentence-
reading, whereas integration of parafoveal and foveal information
can still be shown outside a sentence-reading setting—postlexi-
cally—for instance at the level of making decisions as has been
shown in the flanker paradigm.

Interestingly, a key argument against parallel processing has
been that a parallel processing system would not be able to
recognize words in the correct order (e.g., Reichle, Liversedge,
Pollatsek, & Rayner, 2009a). The sentence-level representation
effectively overcomes this challenge, by positing that activated
words are associated with plausible locations. For instance, in
“The scientist is here,” is may be recognized before scientist, but
the former is much more likely to be associated with Position 3
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than with Position 2 because of low-level visual cues (a two-letter
word is expected at Position 3 but not at Position 2) and syntactic
constraints (given the article at Position 1, a verb is not expected
at Position 2).

In line with the idea of a spatiotopic sentence-level representa-
tion is the finding that readers can make very accurate regressions
to earlier points in the text to resolve syntactic ambiguity (e.g.,
MacDonald, Pearlmutter, & Seidenberg, 1994; Inhoff, Weger, &
Radach, 2005), which suggests that readers must retain some
representation of the syntactic structure of the sentence in working
memory. Further evidence for the role of a sentence-level repre-
sentation in parallel processing was provided by Snell and
Grainger (2017). In line with Snell, Meeter, et al. (2017; Snell,
Declerck, et al., 2018), they theorized that feedback from the
sentence level to the level of lexical representations would con-
strain the recognition process for individual words. A simple
prediction that follows from this theory is that word recognition
should be better in a syntactically sound context versus a syntac-
tically incorrect context. In line with this prediction, using the
novel rapid parallel visual presentation paradigm, Snell and
Grainger (2017) found that the recognition of target words in
briefly presented (200 ms) four-word arrays was better when those
words formed a correct sentence, compared with when the same
words were presented in a scrambled, ungrammatical order (with
the target being presented at the same location in both conditions).
This sentence superiority effect did not vary as a function of the
target’s position in the sequence, indicating that syntactic infor-
mation was indeed retrieved from all four words during their
200-ms presentation time.

OB1-Reader: Key Features and Architecture

Summarizing the previous section, the single-word recognition
literature has spawned several modeling approaches, with recent
evidence favoring relative position coding. Similarly, although two
competing sets of models exist in the domain of eye-movement
control in text reading, parallel graded processing models have
received somewhat more support recently. These two approaches,
relative position coding for word recognition on the one hand and
PG-modeling for text reading on the other, make quite a natural fit.
Both approaches assume parallel processing, with relative position
coding assuming parallel letter identification in multiletter strings,
and PG-models assuming parallel processing of multiple words.

The question that remains is whether information from multiple
words in a text could be successfully processed by a model that
integrates these two approaches. Indeed, relative position coding
models have only been tested in situations where the visual input
was comprised of one or two words, while PG-models have
abstracted away from the level of sublexical orthographic process-
ing where confusion may occur. Hence, OB1-reader was devel-
oped to test whether a combination of relative letter-position
coding and parallel graded word processing could yield behavioral
patterns that are in accordance both with the literature on word
recognition and the literature on eye-movements in text reading.

In the present section, we turn to a detailed description of
OB1-reader. OB1 has five key components, which are shown in
Figure 1 and which are discussed in the following subsections. An
overview of the model’s parameters is presented in Table 1.

Spatially Distributed Processing

During each fixation, the visual input is comprised of the fixated
word (n), along with words n – 2, n – 1, n � 1, and n � 2.2 Letters
are perceived with variable strength depending on the visual acuity
at those letters’ respective eccentricities and how attention is
distributed across the visual field.

As acuity diminishes with eccentricity, visual input vi generated
by a letter i is assumed to be a decreasing function of eccentricity
ei, computed by assuming a letter size of .33 letters per degree of
visual angle. Moreover, visual input is a function of the attentional
weight ai (see Equation 2) and a masking factor mi. The masking
factor reflects crowding, which causes letters to be less visible in
the word’s center than at its edges or in isolation (Grainger,
Tydgat, & Isselé, 2010; Marzouki & Grainger, 2014; Perea &
Gomez, 2012). Following Marzouki and Grainger (2014) who
found that the recognition of briefly presented (91 ms) letters at
Position 2 was approximately half as good as that of letters at
Position 1, mi is set to 1 when i is an outer positioned (edge) letter,
and it is set to 0.5 when it is an inner positioned letter. Together,
these three factors determine visual input vi in the following way:

vi � ai � mi�1� ce�0.018 � ei � 1
0.64��· (1)

The factor within brackets represents eccentricity’s influence on
the input and is assumed to be proportional to cortical magnifica-
tion in V1 (the increase in cortical space devoted to locations
closer to fixation). The term within parentheses was taken from
Harvey and Dumoulin’s (2011) estimate of cortical magnification
in humans. Because this formula computes millimeters of cortex,
constant ce rescales magnification so that its maximum value,
obtained for letters at the fixation location, equals 1 (ce � 35.56).

Attention (i.e., ai in Equation 1) modulates the input according
to a Gaussian distribution centered on the focus of attention. This
approach to implementing attention is similar to that used in other
parallel graded models of reading, such as SWIFT (Engbert et al.,
2005) and Glenmore (Reilly & Radach, 2006). The attentional
weight ai that a letter i receives is a function of fi—its distance in
letters to the focus of attention and attentional width.

ai � 1
width � e�

(fi)
2

2�(width�asym)2 � ca. (2)

This function describes a Gaussian centered around an attentional
focus, with the standard deviation of the Gaussian functioning as
a changeable width and a hemispheric asymmetry (asym). Asym is
equal to 1 toward the right and 0.25 toward the left, in line with
literature suggesting that the span of effective processing is ap-
proximately four times greater to the right (14 to 15 letters) than to
the left (3 to 4 letters; e.g., Rayner, 1986, 1998). Outside the
Gaussian, the attentional weight is set to constant ca (fixed at 0.25).
The width of the attentional distribution is variable, and is deter-
mined by recent success and failure in word recognition: it in-
creases after successful recognition, and decreases again after
failure so as to produce more precise reading. As such, the atten-

2 Clearly, the visual input during text reading normally comprises more
than five words. However, we assumed that the influence of words beyond
two positions from fixation would be negligible. We therefore limited the
number of visible words to five for computational efficiency.
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tional distribution adapts to the skill of the reader and the difficulty
of the text that is being read (see Ans, Carbonnel, & Valdois, 1998,
for a similar proposal). Width can vary between three and five
letters. It is increased 0.5 with every forward saccade and reset to
3 with every regression. This flexible control of attention was not
investigated extensively in the current simulations but will be in
future work.

Thus, each letter in the visual input is appointed a weight, set by
its eccentricity, its distance from the focus of attention and by
whether or not it is adjacent to a space. The model is simulated in
cycles of 25 ms, with each saccade lasting one cycle. Visual input
is constant during each fixation, and is absent during saccades to
simulate saccadic suppression (Campbell & Wurtz, 1978; Erd-
mann & Dodge, 1898).

Activation of Open-Bigrams

All combinations of letters activate open-bigram nodes that
respect the relative order of their constituent letters in the visual
input. An open-bigram node is only activated when its constituent
letters are within the same word (Grainger et al., 2014) and not
further apart from one another than three letter positions. As in
Grainger and van Heuven (2003), the activation of each open-
bigram node is equal to the square root of its constituent letters’
multiplied weights (as defined in Equation 1). Hence, output Oij of
such a bigram node is computed as follows:

Oij � �vivj if i, j within same word and max. 3 letters apart;

0 otherwise. (3)

Figure 1. Schematic diagram of OB1-reader. (i) OB1 sees multiple words at a time (two words on either side
of the fixated word; i.e., he in this figure). Letters occupy 0.33 degrees of visual angle. Within the visual input,
letter processing is modulated by visual acuity and visuo-spatial attention. The attentional distribution is skewed
towards the right. The focus of attention can be shifted independently of the eye’s fixation. (ii) Open-bigram
nodes are activated by the visual input, with stronger activation of letters that are close to the centers of fixation
and attention, but weaker activation of crowded letters. (iii) Word nodes are activated by nodes coding for
open-bigrams that occur in the word. Word nodes are inhibited by word nodes that share the same bigrams. (iv)
Upon fixating a text, OB1 generates a spatiotopic sentence-level representation that represents expectations
about the length of individual words. Word nodes that reach a recognition threshold are matched to locations
(i.e., “blobs”) in the spatiotopic representation based on length. OB1 recognizes a word only when it can be
mapped onto a plausible location. Recognized words generate expectations about upcoming words, through
feedback activation of word nodes based on cloze-probability. When a word is successfully recognized, attention
moves ahead of the eyes to the most salient location. Each word’s saliency is determined by the proximity of
its letters to the centers of fixation and attention. (v) Whether a saccade program is initiated is stochastically
determined in each 25-ms processing cycle, with successful word recognition increasing the chance of initiation.
The center of the most salient word form in the visual input becomes the saccade target. Saliency-based saccade
targeting is overruled when a word location to the left of fixation has not yet been marked as recognized. Instead,
a regression to that location will be executed. The attentional gradient is widened after each fixation during
which a word is successfully recognized, although it is narrowed after each fixation without successful
recognition. See the online article for the color version of this figure.
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Activity of single-letter bigrams, for example, #i, is computed
using the same formula, with j substituted for i (resulting in vi

being squared). If an open-bigram occurs multiple times in the
visual input (e.g., ta in that task), its activation is the sum of the
output from each individual occurrence.

Activation of Word Nodes

All open-bigram nodes are connected to nodes coding for the
words in which they occur, and during reading those word nodes
receive input equal to the sum of their constituent bigram activi-
ties. Activity of a word w, Sw, is initialized at 0 and is bound to the
interval between 0 and 1. It is updated each time step with the
following difference equation:

�Sw � ��Sw � (1 � Sw) � �c1��i,j�w Oij� � c2��k dw,kSk�	.

(4)

In this equation, the first right-hand term gives passive decay back
to a value of 0 (� � .05). This implements the idea that words’
activities should decline in the absence of visual input (e.g., during
saccades). The second term describes the input to the word node,
multiplied by a factor (1 – Sw) that induces an asymptotic increase
toward the maximum activity (equal to 1).

The input, between brackets, consists of, first, excitatory
input from the bigram nodes that are part of the word. This sum
is multiplied by a constant c1 (set to 0.0044). The second part
of the input comprises inhibition from other word nodes. Dur-
ing word processing, activated lexical representations that share
at least one open-bigram are considered to be lexical compet-
itors (Grainger & van Heuven, 2003). To lower the chance that
a word in the visual input leads to recognition of more than one
word (i.e., instances where multiple word nodes reach the
recognition threshold simultaneously), these lexical competi-

tors exert mutual inhibition. The more active a word node is, the
stronger its inhibition on competing word nodes will be. Addi-
tionally, inhibition is influenced by the amount of orthographic
overlap between each word pair: Words that share many open-
bigrams inhibit each other more than words that do not. This
can be thought of as a weight on the inhibitory connection
between word nodes. Activity from each word node k is there-
fore weighted by a factor dw,k that is equal to the number of
open bigrams shared between the words. This term is multiplied
by constant c2 (equal to 1.4 divided by the size of the lexicon,
since word-to-word inhibition increases with larger lexicons).
This architecture is equal to that used in the open-bigram model
of Grainger and van Heuven (2003).

OB1 recognizes a word when activation of a word node reaches
a recognition threshold. This threshold is influenced by the length,
frequency and predictability (given preceding words) of each re-
spective word (i.e., longer, less frequent and less predictable words
have a higher threshold; e.g., Bicknell & Levy, 2010; Kennedy &
Pynte, 2005; Kliegl, Grabner, Rolfs, & Engbert, 2004; Rayner,
1998) with the following formula:

T � C
c4ln(freqmax) � ln(freqw)

c4ln(freqmax)
�

c5ln(predmax) � ln(predw)
c5ln(predmax)

* (1 � c6
�c7lw). (5)

Here, lw is the length of word w, freqw is the frequency with which
w occurs within a reference corpus (we used SUBTLEX-DE for
German), and freqmax is the frequency of the most frequent word
within that corpus. Predw is the cloze probability of w given the
preceding words (values obtained by Kliegl et al., 2004 and
Laubrock & Kliegl, 2015), and predmax is the maximum cloze
probability within the sentence corpus. Scaling parameters c4 and
c5 determine the size of the effect of frequency and predictability
on the threshold, with lower values indicating stronger effects;

Table 1
OB1 Parameters

Parameter Description Equation Value Determination

� Decay 4 .05 Heuristic fitting
c1 Bigram-to-word excitation 4 .0044 Heuristic fitting
c2 Word-to-word inhibition 4 .0018 Heuristic fitting
ce Scaling cortical magnification 1 35.56 Cortical magnification derived from

Harvey and Dumoulin (2011), scaled
so as to have max. 1

mi Masking factor describing crowding 1 1 for outer letters, .5
for inner letters

Marzouki and Grainger (2014)

Asym Asymmetry of attention 2 1 toward the right, .25
toward the left

Four times greater toward the right than
toward the left (Rayner, 1998)

ca Residual attentional weight outside
of focus of attention

2 .25 A priori

Maximum/minimum
attention

Maximum and minimum size of
attentional window

2 5.0/3.0 A priori

Time step Duration of 1 time step 25 ms Average duration of a saccade
c4 Weight of word frequency in

threshold setting
5 5.5 A priori

c5 Weight of predictability in
threshold setting

5 9.0 A priori

c6 Maximum lowering of threshold for
short words

5 .61 A priori

c7 Scaling of effect 5 .44 A priori

Note. A priori parameters were fixed prior to simulating the Potsdam Sentence Corpus.
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these were set to 5.5 and 9.0, respectively. Scaling parameters c6

and c7 (values 0.61 and 0.44, respectively) alter the size of the
effect of frequency and predictability as a function of word length,
to compensate for the stronger excitation of long words. Overall
scaling value C was set to .22 (C was not an independent free
parameter, because it can be scaled against the input parameters c1

and c2). Similar variable recognition thresholds are used by E-Z
Reader and SWIFT (in contrast, in Glenmore, increased frequency
and predictability lead to stronger per-cycle activation, rather than
a lower recognition threshold).

The Spatiotopic Representation

Because open-bigram information is location-independent, OB1
does not inherently know which activated lexical representation
belongs to which spatial location. However, low-level visual in-
formation allows OB1 to generate expectations about the number
of to-be recognized words in the visual field and their approximate
length; (as is illustrated in Figure 1, to-be recognized words are
initially perceived as “blobs”). This information operates as a
spatiotopic sentence-level representation in working memory, to
which word identities may be appended, or on the basis of which
activated word candidates may be rejected (e.g., Snell, Meeter, et
al., 2017; Snell, Vitu, et al., 2017). As such, word recognition
would be a process of matching activated representations to per-
ceived blobs: The length of the activated representation must meet
the expected word length for the representation to count as recog-
nized. As an example, the phrase sit for dinner may lead to
erroneous recognition of the word sinner (which would be mapped
onto the third word position because it has a matching length) but
not beginner, because the latter representation does not match any
of the word lengths occurring in the phrase. Moreover, if the eyes
were fixated on the first word, but the node coding for for reaches
its threshold earlier than sit, for would be erroneously linked to the
first word position.

The spatiotopic representation is implemented by means of the
creation of an array of word lengths (representing length in number
of letters for words n – 2 to n � 2) on each fixation. The array’s
indices represent word positions, and these are marked either as
recognized or not recognized. Prior to the activation of a given
word in the OB1 lexicon (as per the mechanisms described in the
Activation of Word Nodes section), a check is performed whereby
the word has to match one of the values in the array. When the
word’s length does not approximate any of the values, the word
does not receive activation. Similarly, when a word reaches its
recognition threshold, its length has to approximate one of the
array’s not recognized length values to be count as recognized. It
would not be realistic to assume that OB1 is able to count letters
in the periphery, so word length is estimated with a 15% error
margin, such that a seven-letter representation might also be
matched to a six- or eight-letter word form in the spatiotopic
representation.

Saccade Planning

Research has indicated that it takes approximately 125 ms to
plan and execute a saccade (e.g., Becker & Jürgens, 1979; Meeter
& Van der Stigchel, 2013). Thus, given that the average time spent
viewing a word is short (around 200 ms to 300 ms; see, e.g.,

Rayner, 1998), the decision to execute a saccade has to take place
in the first 100 ms of a fixation (but do note that longer fixations
principally allow for more lenient numbers). This has led research-
ers to argue that word recognition cannot be the sole factor driving
eye-movements in reading (e.g., Reichle, Rayner, & Pollatsek,
2003). In each of the OB1 processing cycles, random sampling
from a Gaussian distribution N(�,�) determines whether a saccade
program is initiated (this approach is similar to that used in SWIFT
and E-Z Reader). Lexical processing influences the decision of
when to move the eyes in so far that a wider range of values from
this distribution is taken as decision to program a saccade when a
word is recognized (� � 125 ms, � � 50), as compared with when
no word has been recognized yet (� � 95 ms, � � 50 ms).
Whenever the time that has elapsed since the last eye movement is
larger than this sample, attention is shifted in the direction of the
upcoming saccade (e.g., Baldauf & Deubel, 2008). Processing of
upcoming words may thus be enhanced during saccade program-
ming. An eye movement rigidly follows 100 ms after each atten-
tional shift. With the 25-ms motor delay, this aligns with the
125-ms estimate for saccade planning.

Under normal conditions, the saccade target location is deter-
mined by the visual salience of word forms in the visual field. This
salience is the sum of the weights of words’ constituent letters, as
determined by crowding, eccentricity, and proximity to the focus
of attention (see the Spatially Distributed Processing section).
Large words close to the focus of attention are usually most salient,
and are thus selected as the target. This approach to saccade target
selection is equal to that employed in the Glenmore model of
Reilly and Radach (2006) and fairly similar the SWIFT model of
Engbert et al. (2005) in which a word’s activity determines the
probability with which it is fixated (in contrast, in the E-Z Reader
model of Reichle et al. [2003], word activation does not play a
role, as the first nonrecognized word is selected as the saccade
target). The center of the target word is taken as the intended
landing location. However, because saccades are imprecise, the
final location is affected by both systematic and random error. The
systematic error reflects the principle that eye movements tend to
overshoot nearby targets and undershoot faraway targets (e.g.,
Kapoula & Robinson, 1986; McConkie et al., 1988) and is mod-
eled as a tendency to err toward a standard distance, D (set to seven
letters). Random error is assumed to be Gaussian, with a standard
deviation increasing as a function of intended saccade size. The
number of letters moved, h, given a target distance d, is therefore
equal to, rounded to the nearest integer:

h � N(	, 
) with 	 � d � .2(d � D), 
 � .18 � .08d.

(6)

For the word that is already being fixated, salience is computed
only for the portion to the right of the currently fixated letter. This
prevents leftward letters from having an influence when the inten-
tion is to make a forward (rightward) saccade. Naturally, that is not
to say that leftward letters are not visible; rather, we assume that
the direction of the saccade (left/right) is determined before the
actual goal of the saccade. Given that the two visual hemifields are
represented in different hemispheres of the brain, the directional
decision entails that saliency is computed for visual input in one
hemisphere without interference from the other.
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It is possible that saliency-based target selection is overruled by
the need to make a regression. This happens when any of the words
that the eyes have already gone past has not yet been marked as
recognized (i.e., there would still be an unmarked blob to the left
of the fixated location in the spatiotopic representation; see the
Spatiotopic Representation section). In such a case, the unrecog-
nized word is marked as the target, prompting a regressive sac-
cade. An unrecognized word can trigger only one regression: If
this does not result in successful recognition, the word is simply
left unidentified (which would reveal a weakness in the OB1 word
identification capabilities).

Evaluation of the Model

We expect OB1 to account for a range of low-level reading
phenomena, such as refixations, regressions, word skips, preview
effects, and spillover effects. Its word recognition mechanisms
should be able to account for orthographic parafoveal-on-foveal
effects (e.g., Angele et al., 2013; Dare & Shillcock, 2013; Grainger
et al., 2014; Snell, Vitu, et al., 2017), neighborhood effects (e.g.,
Acha & Perea, 2008; Grainger et al., 1989; Perea & Pollatsek,
1998) and possibly lexical parafoveal-on-foveal effects as reported
by Kennedy and Pynte (2005). We also expect OB1 to account for
the occasional misreading (i.e., instances of erroneous word rec-
ognition), which is something no previous model of text reading
has been able to simulate. Quantitatively, OB1-reader should de-
pict a distribution of word viewing times similar to that obtained in
experimental settings. In particular, we expect OB1 to show word
length, frequency, and predictability effects, all of which are
well-established in the literature (e.g., Rayner, 1998).

The present section describes how we evaluated these factors.
Our assessment consisted of two parts: First, we let OB1 read
sentences from the Potsdam sentence corpora (PSC; Kliegl et al.,
2004; Laubrock & Kliegl, 2018) and compared simulation results
with their experimental data. Second, we simulated the experiment
of Dare and Shillcock (2013) that obtained an orthographic
parafoveal-on-foveal effect using the gaze-contingent boundary
technique to manipulate word n � 1 during the fixation on word n.
For the sake of consistency, this simulation also made use of the
PSC reading materials, rather than the stimuli used by Dare and
Shillcock.

The PSC Simulation

Reading materials. We used the 577 sentences (4,921 words)
from the EyetrackR package (Laubrock & Kliegl, 2018) as reading
materials. This package comprises the PSC (Kliegl et al., 2004),
PSC2 (the second Potsdam sentence corpus; Laubrock & Kliegl,
2015), and a sample of the Potsdam Commentary Corpus (Stede &
Neumann, 2014). The experimental data obtained with these ma-
terials comprises eye-movement data of 180 participants between
15 and 80 years old. The log-frequency of each word in these texts
was determined with the SUBTLEX-DE database of Brysbaert et
al. (2011) and is based on the occurrence of the word in German
subtitles for film and TV. Kliegl et al. (2004) and Laubrock and
Kliegl (2015) obtained the predictability value for each word using
the incremental-cloze task.3

OB1 was given a mental lexicon comprising all the words
occurring in one or more of the three PSC, such that the lexicon

contained 701 unique word forms. We further made sure that the
200 highest frequency words as indicated by the SUBTLEX-DE
database of Brysbaert et al. (2011) were part of the lexicon, leading
us to add another 75 words to bring the final lexicon size up to 776
words.4

Model parameter fitting. An overview of all parameters is
presented in Table 1. We make a distinction between free and fixed
parameters. Free parameters are parameters for which we could not
make reasonable estimations, and which were thus determined
through trial and error. These include decay, bigram-to-word ex-
citation and word-to-word inhibition. Fixed parameters were de-
termined a priori, with values being based on reasonable theoret-
ical assumptions (e.g., values reported in the literature).

The process of fitting the model’s free parameters (i.e., bigram-
to-word excitation, word-to-word inhibition and per-cycle activity
decay) consisted of, first, taking values representing bigram-to-
word excitation and word-to-word inhibition from the open-
bigram model of Grainger and van Heuven (2003), and second,
repeatedly letting the model read short texts and making continu-
ous slight parameter adjustments to approximate realistic model
output. Here, we mainly focused on word viewing times and
fixation type probabilities. It is possible that a more extensive
parameter search would have yielded better quantitative fits (but
see, e.g., Roberts and Pashler (2000) for arguments against the
importance of quantitative fit). During the heuristic fitting process,
we first fitted Dutch and English short texts, before going on to use
the PSC2 reading set. Switching text language did not noticeably
affect model performance. Note that all final parameter values
were fixed during the actual simulation.

Procedure. The 577 sentences were presented to OB1 as one
continuous sequence of words. Given that its saccade planning
mechanisms make OB1 nondeterministic, we let OB1 read the
materials four times, and the simulation results thus represent an
average of these four simulations. Because of the size of the
stimulus set, each replication yielded similar averages and adding
replications did not alter results.

Simulation results. Figure 2 shows the various fixation type
probabilities for OB1 compared with the Potsdam experimental
data. The simulated fixation type probabilities approach the exper-
imental data quite well, with a slight overestimation of the amount
of refixations and regressions and a slight underestimation of the
amount of single fixations. Moreover, these probabilities were
modulated by word length (see Figure 3), frequency (see Figure 4),
and predictability (see Figure 5) in a way very similar to that
depicted by the Potsdam experimental data.

Like the experimental data, OB1 shows an effect of word length
on word viewing times, with longer words leading to longer
viewing times (see Figure 6). In both the simulated and experi-
mental results this effect is expressed in gaze duration (GD) and

3 In the incremental-cloze task, participants start each trial by guessing
the first word of a sentence, after which the actual word is displayed and
participants have to guess the next word. This process continues until the
end of the sentence is reached (see Kliegl et al., 2004).

4 We acknowledge that the present lexicon size is relatively small
compared with the actual number of words known by skilled readers. It
should be noted, however, that the present lexicon size is comparable to
that used in single-word recognition models. Moreover, larger lexicons
would slow the simulations exponentially.
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total viewing time (TVT), but not in the single fixation duration
(SFD). Here, SFD refers to cases where words were fixated only
once. GD refers to the sum of all first-pass fixations, that is, the
sum of first fixations and refixations but not refixations following
a regression. TVT refers to the sum of all fixations including
regressions. OB1 also depicts an effect of word frequency on word
viewing times similar to that of the Potsdam experimental data (see
Figure 7).

The saccade amplitude (i.e., the distance between two consec-
utive fixations) was slightly less variable in the simulation than in
the experimental data (see Figure 8). The normal forward saccades
(from word n to word n � 1) were slightly shorter in OB1, whereas
word skipping saccades tended to be longer.

We also tested for lag and successor effects, whereby the time
spent viewing word n is influenced by the frequency and predict-
ability of words n – 1 and n � 1 respectively (Kennedy & Pynte,
2005). Although these effects occurred in the experimental data,
they could not be captured in the simulation results (Figures 9 and
10). We address this point in the General Discussion.

The last thing that we tested for in this simulation was the
neighborhood size effect, whereby word recognition is slowed as

the number of existing high-frequency orthographic neighbors
(e.g., blur–blue) increases (Acha & Perea, 2008; Grainger et al.,
1989; Perea & Pollatsek, 1998). We plotted the GD against the
neighborhood size, and indeed found that GD increased with an
increasing amount of high-frequency orthographic neighbors (see
Figure 11).

Unrecognized words. Approximately 1% of the words were
not recognized by OB1. Strikingly, as can be seen in Figure 12,
word recognition probability was the lowest for two-letter words.
It would be difficult to establish how many words are misread
during normal reading, as postlexical processes (which are lacking
in OB1) would probably correct many errors. For example, Angele
and Rayner (2013) have shown that readers tend to not notice (and
skip) the article the when it is at an incorrect position (such as in
this sentence, right after the reference), indicating that in normal
reading, high-frequency function words may go unrecognized as
well.

Simulation of the Boundary Paradigm

Procedure. Next, we simulated the gaze-contingent boundary
technique as used by Dare and Shillcock (2013), Angele et al.
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Figure 2. Fixation type probabilities for the simulated data of OB1 and
the Potsdam experimental data.
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Figure 3. Fixation type probabilities for the simulated data of OB1 (solid
lines) and the Potsdam experimental data (dashed lines), as modulated by
word length. Refix � refixation; Regr � regression. See the online article
for the color version of this figure.
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Figure 4. Fixation type probabilities for the simulated data of OB1 (solid
lines) and the Potsdam experimental data (dashed lines), as modulated by
word frequency (data was split into log-frequency tertiles). Refix � refix-
ation; Regr � regression. See the online article for the color version of this
figure.
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Figure 5. Fixation type probabilities for the simulated data of OB1 (solid
lines) and the Potsdam experimental data (dashed lines), as modulated by
word predictability (data was split into predictability tertiles. Refix �
refixation; Regr � regression. See the online article for the color version
of this figure.
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(2013), and Snell, Vitu, et al. (2017). For this simulation, we
filtered all sentences with the occurrence of two adjacent four- or
five-letter words from the reading materials of the EyetrackR
package (e.g., “The people stay here now”). The first of the two
adjacent words was marked as the target in all these sentences,
and for each target we retrieved a control word from the
SUBTLEX-DE database (Brysbaert et al., 2011) that was equal in
length, had no orthographic overlap with the target, and had a
log-frequency value that deviated from the target’s by 1.0 at most
(e.g., stay–jump).

Each of these sentences was presented three times to OB1: once
with the target word (position n) being repeated at position n � 1
during the fixation on n (e.g., “The people stay stay now”; the
repetition condition), once with the control word at position n � 1
(e.g., “The people stay jump now”; the control condition), and
once in the original form (e.g., “The people stay here now”; the
baseline condition). During the saccade from word n to word n �
1, the latter word was changed into its original form (thus, nothing
changed in the baseline condition). The word viewing times on n
were compared across these three conditions.

Simulation results. In line with results reported by Dare and
Shillcock (2013) and Angele et al. (2013), OB1 depicted shorter
viewing times on the target (n) when the target was repeated in n �
1, compared with when n � 1 was an orthographically unrelated
control word (see Table 2). The rate of refixations also decreased
in the repetition condition.

Further aligning with the studies of Dare and Shillcock (2013) and
Angele et al. (2013), differences were observed between the repetition
and baseline condition, whereas results in the baseline and control
condition were virtually equal.5 With respect to effect size, the dif-
ference in SFD between the repetition and control condition was
similar to that reported by Angele et al. (b � 7 ms in their study vs.
5 ms in our simulations), whereas the difference in GD was more
pronounced in OB1 (b � 20 ms vs. 32 ms, respectively).

Hence, these simulation results underline the theoretical plausi-
bility of the idea that orthographic parafoveal-on-foveal effects are
driven by location-invariant activation of sublexical nodes (e.g.,
bigrams, letters) by letter information across the visual field.

General Discussion

In this article, we describe a set of theoretical ideas about word
recognition and eye-movement control in reading, along with a com-
putational model that integrates these ideas. OB1-reader is the first
model of eye-movements in text reading that incorporates a word
recognition module wherein letter information from the visual field
activates lexical candidates. At the same time, OB1-reader distin-
guishes itself from word recognition models by moving from isolated
word recognition to text reading, taking into account evidence that
words are processed not only in—but also beyond—the fovea.

Our simulations show that OB1 successfully recognizes most
words in the text and that it reproduces orthographic effects such
as that of neighborhood size (e.g., Acha & Perea, 2008; Grainger

5 Do note that Snell, Vitu, et al. (2017) observed longer word viewing
times in the control condition compared with in the baseline condition. This
difference was ascribed to readers’ awareness of the syntactically implau-
sible preview at position n � 1 during the fixation on n in the control
condition. Naturally, the lack of postlexical processes in OB1 prevents the
model from capturing such effects.
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Figure 6. Word viewing times across all word lengths occurring in the
corpora, for OB1 (solid lines) and the Potsdam experimental data (dashed
lines). SFD � single fixation duration; GD � gaze duration; TVT � total
viewing time. See the online article for the color version of this figure.

200

250

300

350

400

Fi
xa

ti
on

 d
ur

at
io

n 
(m

s)

SFD OB1

GD OB1

TVT OB1

SFD Potsdam

GD Potsdam

TVT Potsdam

 

Figure 7. Word viewing times as modulated by word frequency (divided
into log-frequency tertiles), for OB1 (solid lines) and the Potsdam exper-
imental data (dashed lines). SFD � single fixation duration; GD � gaze
duration; TVT � total viewing time. See the online article for the color
version of this figure.
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et al., 1989; Perea & Pollatsek, 1998). OB1 also accounts for a
range of text reading phenomena, such as refixations, regressions,
word skips, and preview effects (e.g., Rayner, 1998). Quantita-
tively, OB1 produces a distribution of word viewing times, word
length, frequency and predictability effects, and landing positions
similar to those obtained in experimental settings.

However, the main advance may be theoretical. OB1 is a de-
scendant of the parallel-graded attention line of models of eye-
movement control (e.g., SWIFT, Glenmore) on the one handand
relative position-coding models of word recognition (e.g., open-
bigram model) on the other. Specifically, OB1 adopts the success-
ful approach of SWIFT and Glenmore in addressing the question
of where to move the eyes during reading (i.e., saliency-based
target selection). By adopting the relative position-coding ap-
proach to word recognition, OB1 has a clear means to code for
letter position across multiple words in parallel.6 As is evidenced
by our simulations, the integration of these approaches allows OB1
to account not only for the “traditional” phenomena mentioned
earlier, but also for sublexical parafoveal-on-foveal effects as
reported in more recent research (Angele et al., 2013; Dare &

Shillcock, 2013; Grainger et al., 2014; Snell, Vitu, et al., 2017).
Moreover, this integration allows us to inspect how and when word
identification processes in text reading might go awry—a feature
that is not possessed by other models of text reading.

Another theoretical advancement of OB1 is its use of a spatio-
topic sentence-level representation. This representation answers
the question of how a parallel processing system can successfully
identify multiple words without losing track of word order, hence
meeting one of the major challenges raised against parallel pro-
cessing systems by proponents of serial processing (Reichle et al.,
2009a). Low-level visual information, which is used to associate
activated words with plausible positions, can further be used to
constrain word activation. This provides a valuable counterweight
to the possibility that open-bigrams activated by multiple words in
the visual field are combined to activate an incorrect word (e.g.,
“The butter flies through the room,” butter flies would activate
butterflies if not for the guidance of the spatiotopic representation).
In accordance with this idea is the finding of Inhoff, Radach, Eiter,
and Juhasz (2003) that target words are recognized faster after
viewing length-accurate parafoveal previews, compared with
length-inaccurate previews. Finally, a spatiotopic representation
would explain how readers can make accurate long-range regres-
sions to words earlier in the sentence (e.g., Inhoff et al., 2005;
Macdonald et al., 1994).

Given the pivotal role of the spatiotopic representation in OB1,
one may wonder how readers can be fairly successful in reading
unspaced text (e.g., “youcandefinitelyreadthis”). Regarding this, it
should be noted that while one can indeed read unspaced text, the
removal of interword spaces undoubtedly has a negative impact on
the ease with which the text is read (e.g., Epelboim, Booth, &
Steinman, 1995; Perea & Acha, 2009; Rayner, Fischer, & Pol-

6 In contrast, it is not clear how parafoveal letters should connect to
lexical representations if those letters would be coded for their absolute
position (e.g., Gomez et al., 2008)—especially given the increased posi-
tional noise at increased eccentricities. The SOLAR model of Davis (1999,
2010) forms an exception, as words away from fixation are activated quite
similarly as those at fixation. However, it is not clear how the SOLAR
model would be able to account for orthographic parafoveal-on-foveal
effects.
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latsek, 1998; Mirault, Snell, & Grainger, 2018). OB1 would deal
with the removal of spaces by activating all words containing
present bigrams, regardless of word length. Interestingly, earlier
simulations of the model without length constraint did show fairly
successful reading behavior, albeit with a 9% rate of unrecognized
words (compared with 1% in the present simulations). It is possible
that the human reading system would show a similar number of
errors during unspaced reading but that postlexical processes (e.g.,
determining whether activated words fit with the prior context)
correct for falsely identified words.

Further, whereas low-level visual information (e.g., word
length) may not be available at first glance during unspaced
reading, it is conceivable that readers nonetheless engage a
sentence-level representation. For instance, Mirault et al. (2018)
found that, even in unspaced reading, saccade amplitudes were
influenced by the length of fixated as well as upcoming words,
suggesting that readers mentally parse unspaced text into separate
words at quite a rapid pace, conceivably driven by lexical identi-
fication processes as well as top-down expectations. In any case,
accounting for reading of unspaced text remains an interesting
challenge for ongoing model development, especially considering
the possibility of accommodating alphabetic writing systems that
do not use spaces, such as Thai (e.g., Winskel, Radach, & Luksa-
neeyanawinc, 2009).

Limitations and Future Directions

Although OB1 approaches experimentally observed reading be-
havior quite well, OB1 is not a perfect model of reading. One
weakness is OB1’s inability to recognize some words (see Figure
12), with words of Length 2 having the lowest recognition rate
(95.6%). It may be that certain high-frequency short words have a
dedicated representation that generally allows them to be activated
directly, without having to rely on bigram-to-word activation. In
this regard, it is interesting to note that the most frequent word in
the English language, the, tends to be skipped even when it appears
at an unpredictable and ungrammatical location (Angele & Rayner,
2013), suggesting that it has special status. In any case, the fact that
some words were not recognized is informative in the sense that
even skilled readers may err at times—either consciously or un-
consciously—and it is likely that postlexical processes allow hu-
man readers to correct such mistakes (whereas OB1 cannot).

The implementation of higher order feedback processes, involv-
ing syntactic and/or semantic constraints, may alleviate this short-
coming of the model. As proposed in Snell, Meeter, et al. (2017),
activated words may be categorized syntactically (e.g., noun,
verb), and be appended to a syntactic sentence-level representation
that follows the grammatical rules of a given language. Feedback
from this higher layer to individual word representations (in the
form of activation or inhibition, for syntactically legal and illegal
words respectively) would constrain the recognition process for
those words. For example, if the article ein is surrounded by a verb
at n – 1 and a noun at n � 1, syntactic feedback would strongly
activate ein as one of the few plausible articles for position n, while
inhibiting syntactically implausible words such as the verb
eingestallt. Indeed, as discussed in the Models of Eye-Movement
Control in Text Reading section, Snell and Grainger (2017) pro-
vided evidence in favor of this theory, as word recognition was
found to be better in grammatical than in ungrammatical contexts.

Another imperfection is that OB1 did not capture the lexical lag
and successor effects (e.g., Kennedy & Pynte, 2005) that were
present in the Potsdam experimental data. Orthographic overlap is
a prerequisite for OB1 to display interactions among words in the
fovea and parafovea (i.e., bigram-to-word excitation and word-to-
word inhibition). This implies that, if anything, word viewing
times should be increased by highly frequent adjacent words, as
the nodes belonging to those adjacent words should exert more
inhibition on the node belonging to the foveal word. Yet, the
experimental data showed a reversed pattern with the higher fre-
quency n � 1, leading to a shorter gaze duration on word n and
suggesting that this lexical successor effect is not driven by direct
word-to-word dynamics as displayed by OB1. It rather seems that
high-frequency successors demand fewer processing resources,
subsequently leading to stronger activation of the fixated word.

Applying this conception, future implementations of OB1 may
adopt a different approach to how visuospatial attention is distrib-
uted. In its current form, the model follows the proposal of Ans et
al. (1998) with an attentional distribution that has a variable width
tuned to recent success and failure in word recognition. An alter-
native approach would be to let the width of the attentional
gradient be influenced by the speed with which parafoveal words
become active, with increased activation leading to a narrowed
attentional distribution centered on the fixated word. As such, the
gradient width would not be determined by failure and success, but
rather by anticipated failure and success. Future simulations should
point out whether such an adjustment allows OB1 to effectively
account for lexical lag- and successor effects.

Finally, in the current implementation of the model, the atten-
tional gradient width dynamic is only used to allow the model to
find an optimal size of the attentional window for the input it

Table 2
Average Fixation Duration (in ms) and Refixation Probability
Across Conditions

Condition
Single fixation

duration Gaze duration
Refixation
probability

Repetition 200 210 .13
Control 205 243 .20
Baseline 203 242 .19
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Figure 12. Probability that words were not correctly recognized, as
modulated by word length.
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receives. In the future, this dynamic may be explored in more
detail, as it possibly accounts for the progression of reading with
increased skill—from reading letter-by-letter in beginning readers
to reading whole words in experienced readers (e.g., Rayner,
1998). Suboptimal deployments of attention, such as one where the
gradient width is too large given the reader’s skill (e.g., Collis,
Kohnen, & Kinoshita, 2013; Geiger et al., 2008), which leads to
increased parafoveal interference, might account for cases of poor
reading and dyslexia. OB1 provides a suitable theoretical frame-
work for putting such scenarios to the test.

Concluding Remarks

In conclusion, we believe that OB1-reader provides an impor-
tant step in the convergence of the neighboring domains of single-
word recognition and eye-movement control in text reading. The
model’s architecture successfully accounts for a wide range of
phenomena, including phenomena that were not explained by other
models of text reading (e.g., neighborhood size effects, ortho-
graphic parafoveal-on-foveal effects). The architecture further al-
lows one to track not only normal reading, but also reading
development (e.g., manipulating the width of the attentional win-
dow to simulate differences between beginning and skilled read-
ers) and, potentially, processes involved in dyslexia. Finally, the
connectionist approach of the model allows for easy expansion,
such as the implementation of syntactic constraints as discussed
earlier. Future research will reveal how well OB1-reader fares in
exploring these various domains and components.
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