
VU Research Portal

Defeating software mitigations against rowhammer

Tatar, Andrei; Giuffrida, Cristiano; Bos, Herbert; Razavi, Kaveh

published in
Research in Attacks, Intrusions, and Defenses
2018

DOI (link to publisher)
10.1007/978-3-030-00470-5_3

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Tatar, A., Giuffrida, C., Bos, H., & Razavi, K. (2018). Defeating software mitigations against rowhammer: A
surgical precision hammer. In M. Bailey, S. Ioannidis, M. Stamatogiannakis, & T. Holz (Eds.), Research in
Attacks, Intrusions, and Defenses: 21st International Symposium, RAID 2018, Proceedings (pp. 47-66). (Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Vol. 11050). Springer/Verlag. https://doi.org/10.1007/978-3-030-00470-5_3

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 13. Sep. 2021

https://doi.org/10.1007/978-3-030-00470-5_3
https://research.vu.nl/en/publications/5a733035-21da-40ff-848f-cfcfd312139e
https://doi.org/10.1007/978-3-030-00470-5_3

Defeating Software Mitigations Against
Rowhammer: A Surgical Precision

Hammer

Andrei Tatar(B), Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi

Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
{a.tatar,c.giuffrida,h.j.bos,k.razavi}@vu.nl

Abstract. With software becoming harder to compromise due to mod-
ern defenses, attackers are increasingly looking at exploiting hardware
vulnerabilities such as Rowhammer. In response, the research commu-
nity has developed several software defenses to protect existing hardware
against this threat. In this paper, we show that the assumptions existing
software defenses make about memory addressing are inaccurate. Specif-
ically, we show that physical address space is often not contiguously
mapped to DRAM address space, allowing attackers to trigger Rowham-
mer corruptions despite active software defenses. We develop RAMSES, a
software library modeling end-to-end memory addressing, relying on pub-
lic documentation, where available, and reverse-engineered models oth-
erwise. RAMSES improves existing software-only Rowhammer defenses
and also improves attacks by orders of magnitude, as we show in our eval-
uation. We use RAMSES to build Hammertime, an open-source suite of
tools for studying Rowhammer properties affecting attacks and defenses,
which we release as open-source software.

Keywords: Rowhammer · Hammertime · DRAM geometry

1 Introduction

To increase the capacity of DRAM, manufacturers are packing more transis-
tors into DRAM chips. This has resulted in reduced reliability of DRAM in the
wild [12,16]. A prime example of these reliability problems that plague a large
percentage of currently deployed DRAM is the Rowhammer vulnerability [13].
DRAM consists of stacks of rows which store information and the Rowhammer
vulnerability allows for corruption of data in form of bit flips by repeatedly acti-
vating some of these rows. The past two years have witnessed a proliferation
of increasingly sophisticated Rowhammer attacks to compromise various soft-
ware platforms. Mark Seaborn showed that Rowhammer bit flips can be used
to escalate privileges of a Linux/x86 user process in 2015 [20]. Various academic
research groups then showed that the same defect can also be used to compro-
mise Web browsers [7,9], cloud virtual machines [19,22], and even mobile phones
with a completely different architecture [21].
c© Springer Nature Switzerland AG 2018
M. Bailey et al. (Eds.): RAID 2018, LNCS 11050, pp. 47–66, 2018.
https://doi.org/10.1007/978-3-030-00470-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00470-5_3&domain=pdf

48 A. Tatar et al.

Given the possibilities for building such powerful attacks, we urgently need to
protect users against their threat. While hardware-based defenses such as error-
correcting code or target row refresh [11] can potentially protect future hardware,
a large portion of existing hardware remains exposed. To bridge this gap, recent
work [5,8] attempts to provide software-only protection against the Rowhammer
vulnerability. ANVIL [5] provides system-wide protection by detecting which
rows in physical memory are accessed often, and if a certain threshold is reached,
it will “refresh” the adjacent rows by reading from them, similar to target row
refresh [11]. In contrast, instead of providing system-wide protection, CATT [8]
protects the kernel memory from user processes by introducing a guard row
between kernel and user memory. Given that Rowhammer bit flips happen in
DRAM, both these defenses attempt to operate at DRAM level, having to make
judgement calls on where the “next” or “previous” row of a given address is.

Fig. 1. Example of nonlinear physical address to DRAM address mapping.

To remain agnostic to the underlying DRAM hardware, both these defenses
make simplifying assumptions about how DRAM is addressed by modern mem-
ory controllers. Specifically, they assume that physical memory addresses are
mapped linearly by the memory controller to DRAM rows. We investigate
whether this important assumption is valid using a representative set of DRAM
modules and memory controllers. We discover that memory controllers often
non-trivially map physical address to DRAM addresses and DRAM modules
may internally reorder rows. These findings highlight the need to differentiate
between the physical address space, what the CPU uses to address memory, and
DRAM address space, the chip select signals along with bank, row and column
addresses emitted by the memory controller. Subtle differences in mapping one
address space to the other determine the physical address distance between two
rows co-located in hardware, which in turn determines where a Rowhammer
attack could trigger bit flips. Figure 1 shows an empirical example of how a
naive address mapping makes inaccurate assumptions.

Our conclusion is that to build effective software defenses, we cannot treat
the underlying hardware as a black box. To concretize our findings, we develop
RAMSES, a software library modeling the address translation and manipulation

Defeating Software Mitigations Against Rowhammer 49

that occurs between the CPU and DRAM ICs. We employ RAMSES to advance
the current state of Rowhammer research in multiple dimensions:

– We show how a memory addressing aware attacker can defeat existing
defenses: we could trigger bit flips on ANVIL [5] which aims to mitigate
Rowhammer altogether, and we could trigger bit flips with enough physi-
cal address distance from their aggressor rows to sidestep the guard area of
CATT [8].

– We show that existing attacks can significantly benefit from RAMSES when
looking for exploitable bit flips: we can find many more bit flips when com-
pared to publicly available Rowhammer tests or the state of the art [17].
Specifically, within the same amount of time, we could find bit flips on DRAM
modules that state of the art reported to be safe from Rowhammer bit flips.
On other DRAM modules, we could find orders of magnitude more bit flips.
These findings already significantly increase the effectiveness and impact of
known attacks.

– We build a DRAM profiling tool that records a system’s response to a
Rowhammer attack into a portable format called a flip table. We run this
tool on a representative set of memory modules to collect detailed data about
bit flip location and direction. We build an attack simulator that uses flip
tables to perform fast, software-only feasibility analyses of Rowhammer-based
attacks, and use it to evaluate several published Rowhammer exploits. We
release these tools along with collected flip tables open-source as Hammer-
time.

Outline. We provide a background on DRAM architecture and Rowhammer in
Sect. 2. We then describe the design and implementation of RAMSES based on
these parameters in Sect. 3 and explore applications of RAMSES in Sect. 4. We
present the results of our DRAM profiling and evaluate the impact of memory
addressing on existing attacks and defenses in Sect. 5. Finally, we discuss related
work in Sect. 6 and conclude in Sect. 7.

Fig. 2. Functional overview of DRAM addressing

50 A. Tatar et al.

2 Background

We first briefly look at how modern DRAM is addressed before discussing the
Rowhammer vulnerability. We then show how recent attacks exploit Rowhammer
to compromise systems without relying on software vulnerabilities.

2.1 DRAM Architecture

Figure 2 shows an overview of the devices and addresses involved in accessing
system RAM. There are four types of addresses used, corresponding to different
address spaces:

Virtual Addresses are the way nearly all software running on the CPU
accesses memory. It is often a large, sparsely allocated address space, set up
for each process by the kernel. Physical Addresses are what the CPU uses
to access the “outside” world, including devices such as RAM, firmware ROM,
Memory-Mapped I/O (MMIO) and others. The address space layout is machine-
specific, usually set up by system firmware during early boot. Linear Memory
Addresses are used to index all RAM attached to a controller in a contiguous,
linear fashion. These addresses are internal to the northbridge logic and, due to
the tight coupling between the physical address router and memory controller,
are specific to hardware implementations. DRAM Addresses are the actual
signals on the memory bus used to access RAM and uniquely identify memory
cells. These signals consist of channel, DIMM, rank and bank select signals, along
with row and column addresses [10]. We take a closer look at the components
translating addresses between these address spaces, as well as some techniques
used in translation.

CPU. The Memory Management Units (MMUs) in modern general-purpose
processors use page tables to translate virtual addresses into physical addresses.
Page tables are architecture-specific data structures in RAM that specify the
virtual memory map of each process, usually set up and maintained by the
operating system. The MMU “walks” these tables for every virtual memory
address translation requested by the CPU. For better performance, a specialized
cache called a Translation Lookaside Buffer (TLB) is often included in the MMU.

Physical Address Router. The CPU uses physical memory addresses to access
more than just RAM. System ROM, non-volatile RAM and PCI device memory
are just a few examples of devices mapped into the system’s physical address
space. Routing physical memory requests to the appropriate device is accom-
plished by the physical address router. From a memory addressing perspective,
the physical address router maps the regions in the physical address space corre-
sponding to RAM into a contiguous, linear memory address space. The specifics
of how this mapping is achieved will vary not only between architectures, but
also depending on system hardware configuration.

Memory Controller. Memory requests on route to system RAM are serviced
by the memory controller, which is responsible for managing the memory bus. To

Defeating Software Mitigations Against Rowhammer 51

achieve this, the linear memory addresses of incoming requests must be mapped
to a multidimensional address space specific to the memory configuration in use.
These DRAM address tuples consist of channel, DIMM and rank select signals,
along with bank, row and column addresses. Each memory bank comes equipped
with a row buffer, a cache for the bank’s current active row, to which accesses
complete with minimal delay. Consequently, a request to a different row within
the same bank—an event known as a bank conflict—will incur a significant delay
while the old row is closed and the new one opened. A well-performing memory
controller will therefore map linear addresses to DRAM in such a way as to
minimize the occurrence of bank conflict delays for common usage patterns. The
specific DRAM address mappings used by controllers are either documented by
the vendor [2] or reverse-engineered [17].

DIMM Circuitry. The memory controller is not the last step in memory
addressing, as DIMM circuitry itself can change the signals that individual
DRAM ICs receive, including bank and address pins, an example of which is
DDR3 rank mirroring [10]. Other remapping strategies exist, which we will dis-
cuss in Sect. 3.1.

2.2 The Rowhammer Vulnerability

Due to the extreme density of modern DRAM arrays, small manufacturing
imperfections can cause weak electrical coupling between neighboring cells. This,
combined with the minuscule capacitance of such cells, means that every time a
DRAM row is read from a bank, the memory cells in adjacent rows leak a small
amount of charge. If this happens frequently enough between two refresh cycles,
the affected cells can leak enough charge that their stored bit value will “flip”,
a phenomenon known as “disturbance error” or more recently as Rowhammer.
Kim et al. [13] showed that Rowhammer can be triggered on purpose, a pro-
cess known as hammering, by using an FPGA to saturate the memory bus with
requests to a single row. To trigger Rowhammer flips with similar effectiveness
from the CPU (a much stronger threat model), we need to ensure that memory
accesses go to DRAM and reach their designated target row as many times as
possible between two refresh cycles. To achieve these goals, we have to deal with
CPU caches, the row buffer and DRAM addressing.

Avoiding caches has been heavily studied before. Attackers can use
cache flushing instructions [19,20,22], uncached (DMA) memory [21], eviction
buffers [5,7,9] and non-temporal load/store instructions [18]. Bypassing the row
buffer is possible by repeatedly reading from two rows as to cause a bank con-
flict [13]. If these bank-conflicting rows happen to be exactly one row apart,
their respective disturbance errors add up in that middle row, greatly increas-
ing the number of observed Rowhammer bit flips. This technique is known as
double-sided Rowhammer [20] as opposed to single-sided Rowhammer where the
bank-conflicting row is arbitrarily far away and does not directly participate in
inducing disturbance errors. Lastly, making use of end-to-end DRAM address-
ing to precisely select Rowhammer targets has not been adequately explored

52 A. Tatar et al.

and presents several advantages over the state of the art, as we will discuss in
Sect. 4.1 and evaluate in Sect. 5.

2.3 Rowhammer Attacks

Published Rowhammer exploits [7,9,19–22] go through three phases. They first
hammer and scan memory for exploitable bit flips; each memory page stores
many thousands of bits, of which only a few are useful to the attack in any
way if flipped. If a bit flip is found with the right offset and direction (1-to-0 or
0-to-1) to be useful, we call it an exploitable bit flip. In the second phase of the
attack, security-sensitive information has to be precisely placed on the memory
page prone to exploitable Rowhammer flips. This is done by either releasing the
target memory page and then spraying security-sensitive information in memory
for a probabilistic attack [9,20], or by massaging the physical memory to store
security-sensitive information on the vulnerable page for a more targeted and
deterministic attack [19,21]. Once the security-sensitive information is stored on
the vulnerable memory page, in the third step the attacker triggers Rowhammer
again to corrupt the information resulting in a compromise.

Selecting targets for hammering is often done heuristically: attacks assume
physical contiguity and split memory into consecutive blocks associated with
a particular row number. These blocks aim to contain all pages that map to
the same row index, regardless of channel, DIMM, rank or bank and are sized
according to assumptions about memory geometry (e.g. 256KiB for two dual-
ranked DDR3 DIMMs). Once two blocks are selected as targets, hammering
works by exhaustively hammering all page pairs and checking for flipped bits.
Alternatively, a timing side-channel based on DRAM bank conflicts can reduce
the number of tried pairs significantly.

2.4 Rowhammer Defenses

In response to the proliferation of Rowhammer attacks several software-only
defenses were developed. ANVIL [5] attempts to prevent Rowhammer altogether
by monitoring memory access patterns and forcibly refreshing the rows neigh-
boring a potential Rowhammer target row. To achieve this, it uses a reverse-
engineered mapping scheme and assumes consecutive numbering of rows with
ascending physical addresses.

An alternative approach, CATT [8], attempts to mitigate the security impli-
cations of Rowhammer by preventing bit flips from crossing the kernel-userspace
boundary. To achieve this, it partitions physical memory into userspace and
kernel sections separated by a contiguous guard area, whose size is computed
similarly to the target blocks of attacks we presented earlier. This approach
relies on two assumptions: first, that a sufficiently large physically contiguous
memory block will contain all instances of a particular row index across all chan-
nels, DIMMs, ranks and banks, and second, that such blocks corresponding to
consecutive row indices are laid out consecutively in physical memory.

Defeating Software Mitigations Against Rowhammer 53

3 RAMSES Address Translation Library

3.1 Design

In this section we discuss our approach to the main challenges facing an end-to-
end model of computer memory addressing. First we consider the address spaces
at play and define relationships between individual addresses. Second we look at
modeling the physical to DRAM address mapping done by memory controllers.
Third we discuss any further DRAM address remappings performed on route
to DRAM ICs. Finally, we consider how to efficiently map contiguous physical
memory to the DRAM address space.

Address Spaces. Among the address spaces discussed in Sect. 2.1, virtual,
physical and linear memory addresses can be intuitively defined as subsets of
natural numbers, which have familiar properties. DRAM, however, is addressed
quite differently. Hardware parallelism is evident from the channel, DIMM, rank
and bank select signals, and once a particular bank is selected, a memory word
is uniquely identified by a row and column address. To accommodate all these
signals we define a DRAM address to be a 6-tuple of the form <channel, DIMM,
rank, bank, row, column>, with the order of the fields reflecting hardware hier-
archy levels. We have no universal way of linearizing parts of a DRAM address
since memory geometry (i.e. DIMMs per channel, ranks per DIMM, etc.) is
highly dependent on what hardware is in use. Moreover, concepts like ordering
and contiguity are not as obvious as for physical addresses and are more limited
in scope.

To define these concepts, we first need a measure of hardware proximity of
two DRAM addresses. We say two addresses are co-located on a particular hier-
archy level if they compare equal on all fields up to and including that level (e.g.
two addresses are bank co-located if they have identical channel, DIMM, rank
and bank fields). Ordering is well defined on subsets of co-located addresses, such
as columns in a row or rows in a bank, and carries meaning about the relative
positioning of hardware subassemblies. A more general ordering, such as com-
paring field-by-field, while possible, carries little meaning beyond convenience
and does not necessarily reflect any aspect of reality. Co-location also enables us
to define a limited form of contiguity at memory cell level: we say two DRAM
addresses are contiguous if they are row co-located and have consecutive column
indexes.

Address Mapping. As we have discussed in Sect. 2.1 translation between phys-
ical and DRAM addresses is performed chiefly by the memory controller. The
exact mapping used varies between models, naturally, but individual controllers
often have many configuration options for supporting various memory geome-
tries and standards as well as performance tweaks. As an example, AMD [2]
documents 10 DDR3 addressing modes for bank, row and column addresses,
with multiple other options for controlling channel, DIMM and rank selection as

54 A. Tatar et al.

well as features such as bank swizzle, interleaving and remapping the PCI hole.
It is therefore necessary for an accurate model to account for all (sane) combina-
tions of memory controller options, ideally by implementing the mapping logic
described in documentation. When documentation is unavailable, mappings can
be reverse-engineered and further improved by observing side-channels such as
memory access timings and Rowhammer bit flips.

Remapping. In Sect. 2.1 we presented the fact that DRAM addresses can be
altered by circuitry in between the memory controller and DRAM ICs, as long
as memory access semantics are not violated. We used as an example DDR3
rank address mirroring, where bank bits BA0 and BA1, as well as address bits
A3 and A4, A5 and A6, A7 and A8, are respectively interchanged in order to
make the circuit layout simpler on the “rank 1” side of DIMMs. Rank address
mirroring is part of the DDR3 standard [10] and its presence is usually accounted
for by compliant memory controllers by “pre-mirroring” the affected pins, mak-
ing it transparent to the CPU. However, as we will discuss in Sect. 5, we have
found several DIMMs behaving like rank-mirrored devices when viewed from
software, a fact significantly affecting the effectiveness of Rowhammer. While
this information is public, previous work has mostly ignored it [17,22].

In addition to standard-compliant rank mirroring, other custom address
remappings can exist. During our research we discovered one particular on-
DIMM remapping among several particularly vulnerable DIMMs: address pin
A3 is XORed into bits A2 and A1. We came across this after discovering peri-
odic sequences of 8 row pairs either exhibiting many bit flips or none at all on
some very vulnerable DIMMs. That lead us to try linear combinations of the 4
least significant DRAM bits until we consistently triggered bit flips over all row
pairs—and therefore reverse-engineered the remapping formula.

We remark that on-DIMM remappings can be arbitrarily composed, and we
found several DIMMs where both rank mirroring and the custom remapping was
in effect, as we will show in Sect. 5.

Efficiency Considerations. An issue worth addressing is the efficient map-
ping of a physical memory area to DRAM address space—computing the DRAM
addresses of all memory words in the area. Most generally, one would have to
translate the addresses of every word, since there are no contiguity guarantees.
To address this, we define a property named mapping granularity, which spec-
ifies the maximum length of an aligned physically-contiguous area of memory
that is guaranteed to be contiguous in DRAM address space for a particular
combination of memory controller and chain of remappings, taking into account
any interaction between them. This mapping granularity is often much larger
than a memory word, reducing the number of required computations by several
orders of magnitude.

Defeating Software Mitigations Against Rowhammer 55

3.2 Implementation

We implemented RAMSES as a standalone C library in less than 2000 lines
of code. We provide mapping functions for Intel Sandy Bridge, Ivy Bridge and
Haswell memory controllers based on functions reverse engineered in previous
work [17]. Support for DDR4 memory controllers, as well as AMD CPUs is a
work in progress. We provide DDR rank mirroring and the on-DIMM remap-
pings discussed in the previous section, with the possibility to easily add new
remappings once they are discovered.

4 Applications of RAMSES

In this section we discuss applications of the end-to-end memory addressing
models provided by RAMSES. We first look at a Rowhammer test tool and
profiler, which we will compare with the state of the art in Sect. 5 as well as use it
to evaluate existing defenses. We then briefly discuss the output of our profiler—
flip tables. Finally, we present an attack simulator to use the profiler’s output to
quickly evaluate the feasibility of Rowhammer attacks. These applications, along
with miscellaneous small related utilities are released together as Hammertime.

4.1 Hammering with RAMSES

Targeting. The most used hammering technique thus far, double-sided
Rowhammer, relies on alternately activating two “target” rows situated on each
side of a “victim” row. Given that modern DRAM modules have up to millions of
individual rows, target selection becomes important. We have already discussed
how present attacks use heuristics to select targets in Sect. 2.3. A quite different
strategy is to assume (near-)perfect knowledge about all aspects of the memory
system, which in our case is provided by RAMSES. Armed with such a mapping
function, a Rowhammer test tool can accurately select both target and victim
rows, minimizing the search space to precisely target the DRAM region of inter-
est. A benefit of such precision, aside from the obvious speedup, is the ability
to study Rowhammer and argue about the results in terms of actual physical
DRAM geometry entirely from software. In particular, Rowhammer itself can be
used as a side-channel to reverse-engineer memory mappings, a method we our-
selves used to pin down the non-standard DRAM address remapping discussed
in Sect. 3.1. This opens the door to commodity hardware being used for rapid
data collection about different aspects of Rowhammer. Given that the same com-
modity hardware is also likely to be targeted by a Rowhammer-based exploit,
making a fast and complete test is useful in assessing the vulnerability of a given
system.

Preparation and Hammering. While our profiler is designed to work with
arbitrary memory allocations, some options are provided that can increase
effectiveness or fidelity. Namely, memory locking informs the kernel to keep

56 A. Tatar et al.

page allocations unchanged throughout the lifetime of the buffer. This prevents
swapout or copy-on-write events from changing page mappings, which would
invalidate target selections. Huge Pages can allocate the buffer using huge
page sizes (2 MiB or 1 GiB on x86 64). This forces the buffer to be more contigu-
ous in physical memory, potentially increasing the number of targetable rows.
In addition, huge pages are also implicitly locked.

Because sandboxing or program privileges are no issue in implementing our
profiler, we are free to make use of hardware features to bypass the cache, which
on x86 is the unprivileged native instruction clflush. The number of reads for a
hammer attempt is automatically calibrated at runtime to saturate the memory
bus for a set number of refresh intervals.

4.2 Flip Tables

To keep the experimental data obtained from the profiler reusable, we keep all
addresses used in output in a format as close to the hardware as possible, namely
DRAM addresses. This allows examining the effects of Rowhammer on various
DRAM modules at the hardware level, regardless of the particularities of the
system the data was collected on. Profiler output is a sequence of hammerings,
each consisting of a set of target addresses along with bit flip locations in the
victim rows, if any occur. We collect this output in a machine-readable plain
text file we term the flip table. We release all flips tables for the DIMMs we
experimented with as part of Hammertime and will further maintain a repository
so that others can contribute additional flip tables.

4.3 Attack Simulator

Design. The goal of simulation is to provide a lightweight alternative to full
program execution for evaluating the feasibility of Rowhammer-based attacks.
What exactly constitutes a useful bit flip is up to each individual attack to
decide. A page table entry (PTE) attack could, for example, be interested in
0 → 1 bit flips at page offsets corresponding to read/write flags in PTEs. A user
of the Hammertime simulator would specify bit flip positions of interest and
receive realistic estimates of success rate and average time to find the first bit
flip for a large number of DIMMs. At the same time, the simulator allows for
more complex attack plans if desired.

Implementation. To make the simulation interface user-friendly and easily
extensible we implemented it in Python. It consists of two programming inter-
faces: a lower-level view of flip tables, allowing their contents to be programati-
cally accessed, and a higher-level exploit simulation interface which presents bit
flips as they would occur in software: as bit offsets within a virtual page.

Published Rowhammer attacks [7,9,19–22] rely on flipping bits at precise
memory locations for successful exploitation. To achieve this goal, attacks have
an initial “templating” phase where they look for vulnerable memory pages with

Defeating Software Mitigations Against Rowhammer 57

Listing 1.1. Implementation of Dedup Est Machina in Hammertime’s simulator

class DedupEstMachina(estimate.ExploitModel):
def check_page(self , vpage):

useful = [
x for x in vpage.pulldowns
if x.page_offset % 8 == 0 # Bits 0-7
or (x.page_offset % 8 == 1 and (x.mask & 0x7)) # Bits 8-10
or x.page_offset % 8 == 7 # Bits 56-63
or (x.page_offset % 8 == 6 and (x.mask & 0xf0)) # Bits 52-55

]
return len(useful) > 0

a bit flip at the desired offset within a page. The victim process (or kernel) is then
coerced into storing data structures within these pages. After that, the attacker
uses Rowhammer again in order to cause a bit flip in the target data struc-
tures. Overlooking the problem of actually triggering Rowhammer, the simula-
tion interface provides a fast way of evaluating the prevalence of “good” victim
pages across a huge number of memory configurations.

An exploit is represented in the simulator by an Exploit Model. In the simplest
case, an Exploit Model provides a function answering one yes-or-no question: is
a given memory page useful to exploit. An example of an attack implemented as
exploit model can be seen in Listing 1.1. More advanced victim selection strate-
gies are also supported by providing hooks at single hammering or fliptable
granularity.

5 Evaluation

We tested Hammertime on two identical systems with the following configura-
tion:

CPU: Intel Core i7-4790 @ 3.6 GHz
Motherboard: Asus H97M-E

Memory: DDR3; 2 channels, 4 slots, max 32 GiB
Kernel: Linux 4.4.22

The systems network-boot from a “golden” image and discard all local filesys-
tem changes on power off, ensuring that no state is kept between profiling runs
and that each test starts from a known clean state. This also prevents accidental
persistent filesystem corruption due to Rowhammer—a valid concern considering
the workloads involved.

We tested a total of 33 memory setups: 12 single DRAM modules and 21
dual-channel sets, of sizes ranging from 4 to 16 GiB. Out of these, 14 exhib-
ited Rowhammer bit flips during an initial test run and were selected for fur-
ther experimentation. The vulnerable memory setups in question are detailed in
Table 1. These initial results show that on DIMMs that we looked at, only 42%
are vulnerable when profiling is performed from the CPU, a contrast with 85%
that is reported in the original Rowhammer paper which uses an FPGA plat-
form for testing [13]. Given that realistic attack scenarios are performed from the
CPU, 42% is more representative of the number of vulnerable DDR3 systems.

58 A. Tatar et al.

Table 1. Detailed information on the set of DIMMs vulnerable to Rowhammer used
for evaluating Hammertime and generating its flip tables.

Brand Serial Number ID Size

[GiB]

Freq.

[MHz]

Ch. Ranks

/DIMM

Rank

mirror

DIMM

remap

Corsair CMD16GX3M2A1600C9 A1 16 1600 2 2 ✓ ✓

CML16GX3M2C1600C9 A2 16 1600 2 2 ✓

CML8GX3M2A1600C9W A3 8 1600 2 1

CMY8GX3M2C1600C9R A4 8 1600 2 2 ✓ ✓

Crucial BLS2C4G3D1609ES2LX0CEU B1 8 1600 2 2 ✓

Geil GPB38GB1866C9DC C1 8 1866 2 1

Goodram GR1333D364L9/8GDC D1 8 1333 2 2 ✓

GSkill F3-14900CL8D-8GBXM E1 8 1866 2 1 ✓

F3-14900CL9D-8GBSR E2 8 1866 2 1

Hynix HMT351U6CFR8C-H9 F1 8 1333 2 2

Integral IN3T4GNZBIX G1 4 1333 1 2 ✓

PNY MD8GK2D31600NHS-Z H1 8 1600 2 2 ✓

Samsung M378B5173QH0 I1 4 1600 1 1 ✓

V7 V73T8GNAJKI J1 8 1600 1 2 ✓

5.1 Profiling Bit Flips

Our profiling run consists of three hammer strategies: Single represents single-
sided Rowhammer. A single target row is selected and hammered along with
a second distant row, allocated in a separate buffer and automatically selected
in order to trigger a bank conflict. Amplified targets two consecutive rows for
hammering. Double represents double-sided Rowhammer and selects as targets
rows separated by one victim row. We ran each strategy with all-ones/all-zeroes
and all-zeroes/all-ones data patterns for victim/target rows, respectively, and
with a hammer duration of 3 refresh intervals. We profiled 128 MiB of each
memory setup, allocated using 1 GiB hugepages for 8 GiB and 16 GiB setups
and 2 MiB hugepages for 4 GiB setups.

Table 2 shows the results of the three hammer strategies mentioned earlier
applied to the 14 memory setups. Overall we see double-sided Rowhammer by
far outperforming single-sided and amplified Rowhammer on all memory setups.
Using single-sided Rowhammer as a baseline, the “Amplified” strategy manages
to be significantly more effective for some setups (A2, E2, H1), while proving
inferior for others (A4, B1, E1). We also see the breakdown of bit flip num-
bers into 0 → 1 (pullups) and 1 → 0 (pulldowns). Several setups (A3, E2, G1,
H1, J1) show a significant difference in the ratio of pullups versus pulldowns
between single-sided and amplified/double-sided hammer strategies, which sug-
gests different Rowhammer variants induce intereferences of different nature at
the DRAM level.

We evaluate the reliability with which bit flips occur repeatedly by perform-
ing 10 consecutive 32 MiB profiling runs on a subset of memory setups and
comparing the obtained flip tables. We found that the vast proportion (80–90%)

Defeating Software Mitigations Against Rowhammer 59

Table 2. Profiling results for vulnerable DIMMs.

ID Single Amplified Double

Vuln.

rows[%]

Total

flips

0 → 1 1 → 0 Vuln.

rows[%]

Total

flips

0 → 1 1 → 0 Vuln.

rows[%]

Total

flips

0 → 1 1 → 0

A1 0.56 92 0 92 0.08 13 0 13 98.95 200468 4367 196107

A2 0.98 161 159 2 20.29 5404 5404 0 69.13 21542 21538 4

A3 3.01 512 18 494 4.54 809 438 371 16.13 2926 1541 1385

A4 0.99 161 1 160 0.18 29 1 28 99.58 256359 5577 250796

B1 2.17 358 0 358 1.62 272 0 272 8.77 1504 1 1503

C1 0.01 1 0 1 0.00 0 0 0 63.01 16489 1365 15124

D1 2.93 488 0 488 2.30 385 0 385 12.14 2131 0 2131

E1 1.10 181 0 181 0.19 31 0 31 99.77 202630 4175 198464

E2 13.69 3108 142 2966 24.58 6273 4183 2090 74.56 24587 16320 8267

F1 2.63 442 0 442 0.70 116 0 116 88.67 413796 5927 407906

G1 12.98 2447 154 2293 18.61 3803 1934 1869 62.95 15990 7851 8139

H1 9.79 1983 55 1928 18.46 3930 2575 1355 59.31 16087 10608 5479

I1 0.49 78 2 76 0.09 15 2 13 99.29 130187 4781 125410

J1 4.50 811 15 796 9.29 1741 1153 588 35.25 7185 4725 2460

Fig. 3. Effect of address remapping strategies on Rowhammer effectiveness

of bit flips show up reliably in all runs, with minor variation between memory
setups.

Figure 3 shows the effectiveness of newly discovered addressing information
such as on-DIMM remapping and rank mirroring on the number of discovered
bit flips using different set of vulnerable DIMMs. In particular, we see that both
rank mirroring and custom remapping are required for the best results. This
was, however not the case for all DIMMs, as can be seen in Table 1.

5.2 Comparison

We compare the effectiveness in exploiting Rowhammer and finding bit flips
of Hammertime’s profile with several state-of-the-art double-sided Rowham-
mer testing tools: Google Project Zero (GPZ) double-sided rowhammer [20], the

60 A. Tatar et al.

native rowhammer binary from the Rowhammer.js project [9], and the binary
provided by the Flip Feng Shui authors [19]. Each tool was tested on memory
from the A1 set (one of the most vulnerable DIMMs) under three setups:

Setup I: 15 min testing 4 GiB out of 8 GiB total; 1 channel, 1 DIMM,
2 ranks/DIMM

Setup II: 30 min testing 8 GiB out of 16 GiB total; 2 channels; 1 DIMM/channel;
2 ranks/DIMM

Setup III: 30 min testing 8 GiB out of 16 GiB total; 1 channel;
2 DIMMs/channel; 2 ranks/DIMM

Information about memory geometry, in particular the number of DIMMs, was
configured for each tool using runtime flags or compile-time constants, where
possible. Memory allocation was done using regular (non-huge, 4 KiB) pages for
GPZ test and Rowhammer.js, and using 2 MiB hugepages for Flip Feng Shui.

To make comparison with other tools easier, profile ran with two config-
urations: the first, compatibility mode, allocated memory using regular pages,
and only used basic memory configuration—no support for rank mirroring or
on-DIMM remapping. The second, optimized run uses hugepage allocation, as
well as taking into account rank mirroring and on-DIMM remapping.

Table 3 shows the results of the test runs. The middle section presents the
relevant Rowhammer parameters of each run, namely the number of reads and
knowledge of memory geometry. The “Rows tested” column shows the number of
rows as reported by each test tool. As we have seen in Sect. 2.3 however, different
tools have different definitions of what a “row” is. The “Addr pairs/row pair”
column highlights these differences, showing how many individual address pairs
the tool tries hammering for each individual row it tests. We also provide the
“MiB covered” column, which takes into consideration each tool’s definition of
a “row”, providing a common metric.

First, we notice great variation in testing speed (i.e. number of rows tested per
unit time) between different tools and setups. This is indicative of the targeting
strategies used: the three tools all search over contiguous blocks, as presented in
Sect. 2.3, optionally with heuristics narrowing down the search space. The GPZ
test exhaustively tries all pages in these blocks, resulting in the slowest overall
performance of the set. Rowhammer.js native, on the other hand, uses some
information about the memory controller and geometry to select its targets,
leading to better search speeds and adapting well to different memory setups.
Flip Feng Shui uses a pre-tuned timing side-channel to select potential targets.
Judging by the results, the hard-coded timing threshold it uses is tuned for dual-
channel memory: Setup II has much improved search rate, while Setups I and III
are virtually identical to the exhaustive search done by the GPZ test. In contrast
to all of these, Hammertime’s profile uses extremely precise targeting to make
every test count, leading to consistent performance that is orders of magnitude
better than that of other tools.

Secondly, we look at the effectiveness with which tools induce bit flips in
memory. Project Zero’s test failed to detect any bit flips under all three setups,

Defeating Software Mitigations Against Rowhammer 61

Table 3. Comparison between Hammertime profile and other Rowhammer test tools.

aAccurate row address computation which takes rank mirroring and on-DIMM remap-
ping into account.
bAddress pairs selected using a timing side-channel.
cAuto-calibrated for two 64ms refresh intervals.

suggesting that it has certain hard-coded assumptions about memory organiza-
tion which turn out to be wrong. Rowhammer.js native, on the other hand, suc-
cessfully detects flips in both single-DIMM and dual-channel modes, while none
are reported for dual-DIMM. This is consistent with expectations, as the memory
addressing model used by this tool assumes dual-channel operation for multiple
DIMMs. Flip Feng Shui, unsurprisingly, produces bit flips only when run under
conditions it has been tuned for, similarly to how its search speed varies. In keep-
ing with its superior search rate, profile also detects orders of magnitude more
bit flips than the other tools. This is partly due to more rows being tested, but
also due to better sensitivity from knowing where to look—other tools manage
at most slightly above 1 flip per row, while Hammertime consistently produces
between 7 and 9 flips per row. Furthermore, in the last setup, none of the test-
ing tools could find any bit flips. This is particularly important because it shows
that DIMM setups that would be considered secure by state-of-the-art tools,
should now be considered vulnerable assuming precise geometry information for
Rowhammer attacks. These insights hint that Rowhammer-vulnerable memory
cells are much more prevalent than existing software tools would suggest.

5.3 Defenses

We examine the effectiveness of published Rowhammer defenses using the new
insights we have gained about memory addressing.

First, we examine ANVIL [5], which monitors memory accesses and
selectively refreshes what it considers neighboring rows when it discovers
Rowhammer-like activity. To do so, we built and deployed the ANVIL kernel

62 A. Tatar et al.

Table 4. ANVIL evaluation

Defense Bit flips

A1 A3

None 7328 96

ANVIL (default) 4238 45

ANVIL (aggressive) 4211 45

Table 5. CATT evaluation

ID Rank
mirror

DIMM
remap

CATT
guard
row

Minimum
guard

Safe

A1 ✓ ✓ 256 KiB 128 MiB ✗

A2 ✓ ✗ 256 KiB 128 MiB ✗

E1 ✗ ✓ 128 KiB 2 MiB ✗

F1 ✗ ✗ 256 KiB 256 KiB ✓

module in two configurations: default, and aggressive, with sample periods and
thresholds reduced by a factor of 10, and ran profile on the protected system.
We used the source code freely provided by the authors [1], with a modification
to disable its use of the precise store event, as this was unavailable on the Haswell
CPUs of our test systems. We consider this change inconsequential to the results
of this evaluation as profile only uses loads to trigger bit flips.

Table 4 shows the results of an 8 MiB run for two memory setups. We see
a roughly 50% dropoff in bit flip counts when ANVIL is in use, while minimal
differences between the default and aggressive runs. This suggests that bit flips
got through not due to poor detection sensitivity, but rather due to fundamen-
tal issues in identifying which rows are in danger and, consequently, failure in
refreshing them. Indeed, the ratio between prevented/unprevented bit flips is
consistent with the increases in Rowhammer effectiveness due to new insights
into memory addressing, as previously shown in Fig. 3. We propose enhancing
ANVIL with detailed models of memory addressing in order to better identify
potential Rowhammer targets and be able to accurately refresh them.

Second, we examine CATT [8], which attempts to mitigate the damage of
Rowhammer attacks crossing the kernel-userspace boundary by partitioning
the physical address space in two contiguous regions, one for kernel, one for
userspace, with a “buffer” or “guard” row in between. CATT computes the size
of this guard row by accounting for the number of banks, ranks, DIMMs, and
channels of memory in use, multiplying the standard DRAM row size (8 KiB)
by each of these in turn. This is a fine approach, assuming a linear and mono-
tonic mapping between physical and DRAM address spaces. However, as we have
shown before in Fig. 1 this assumption can be false.

Table 5 presents the results for four representative memory configurations,
showcasing all combinations of the rank mirroring and on-DIMM remapping
features. For every setup we mark as unsafe we have repeatedly and consistently
found bit flips that are far enough away in physical address space from both of
their aggressor rows to “jump over” the guard area and thus defeat the linear
protection guarantees of CATT. In the “Minimum guard” column, we provide
the minimum size a CATT-like contiguous guard zone separating two physical
address areas needs to be in order to fully protect them against hammering each
other. In cases where this minimum contiguous guard distance is inconveniently

Defeating Software Mitigations Against Rowhammer 63

large, a non-wasteful isolation-based defense must support accurate memory
addressing and non-contiguous guard buffers.

Attack Simulator

To demonstrate Hammertime’s simulator, we implemented several published
Rowhammer attacks as exploit models: Page Table Entry Exploits rely on
flipping bits in memory used to hold page tables. Previous work [20] has sug-
gested exploiting flips in the page frame pointer bits of a PTE. Other potentially
useful attacks are setting the U/S bit of a PTE, allowing userspace access to a
kernel page, and clearing of the NX bit, marking memory as executable. Dedup
Est Machina [7] which exploits 1 → 0 flips in bits 0 − 10 and 52 − 63 of
64-bit words in a page. The entire code is presented in Listing 1.1. Flip Feng
Shui [19] relies on triggering bit flips at specific page offsets in order to corrupt
the contents of sensitive files in the page cache.

Table 6. Results of attack simulation

Attack Run ID Success
Rate

Min
Mem
[KiB]

Time
[s]

Pagetable
PFN

Best F1 68.8% 16 0.3
Median G1 5.3% 152 3.8

Worst B1 0.3% 2456 61.3

Pagetable
U/S bit

Best A2 3.5% 232 5.6
Median J1 0.3% 2376 59.3

Worst B1 0% N/A N/A

Pagetable
NX bit

Best F1 23.0% 40 0.9
Median E2 0.7% 1152 28.6

Worst A2 0% N/A N/A

Dedup Est
Machina

Best A4 98.4% 16 0.2
Median E2 13.1% 64 1.5

Worst A2 <0.1% 65024 1625

FFS GPG Best F1 2.3% 360 8.8

Median C1 0.1% 9328 233.1

Worst B1 0% N/A N/A

FFS
sources.list

Best F1 23.0% 40 0.9
Median C1 0.9% 880 21.9

Worst B1 <0.1% 16256 406.4

We evaluated each model with
all double-sided flip tables pre-
sented in Sect. 5.1. The results are
presented in Table 6. The “Min
Mem” column represents the mini-
mum amount of physically contigu-
ous memory required (on average)
to find one single useful bit flip.
The “Time” column is an estimate
of the mean time to the first bit
flip, assuming precise targeting and
200ms spent on each Rowhammer
test.

We see that an attack’s suc-
cess rate depends not only on how
vulnerable memory is, but also on
the specific bit flips pursued. Data
dependency is one issue: as evi-
denced in Table 2, memory can have
a preference for flipping in one direction more than the other. An exploit such
as the Page Table U/S bit attack, which relies on 0 → 1 bit flips can achieve
relatively poor success rates on otherwise very vulnerable (albeit in the oppo-
site direction) RAM. The second issue is the “rarity” of the required bit flips
for each attack in terms of bit offsets in a given memory page. Attacks such as
Page Table PFN or Dedup Est Machina, which make use of flips located at one
of potentially many page offsets show significantly better results than attacks
which require flips in very precise positions, such as Flip Feng Shui.

64 A. Tatar et al.

6 Related Work

To our knowledge, there are no studies systematically applying accurate memory
addressing models to implement either Rowhammer attacks or defenses. Like-
wise, there are no studies looking into address manipulation beyond the memory
controller in the context of exploiting Rowhammer.

The first to describe the Rowhammer bug in widespread commodity hardware
were Kim et al. [13] in their study on the prevalence of bit flips on DDR3. Coming
from the hardware community, the researchers probed the DIMMs directly with
an FPGA. Besides identifying the phenomenon, the authors discovered that the
root cause of the problem was the repeated toggling of the DRAM row buffer.
They also found that many bits are susceptible to flips and that flipping bits
requires modest amounts of memory accesses (in their experiments fewer than
150K).

While the authors identified the hardware bug as a potential security prob-
lem, it was unclear whether it could be exploited in practice. One year later,
Seaborn presented the first two concrete Rowhammer exploits, in the form of
escaping the Google Native Client (NaCl) sandbox and escalating local privileges
on Linux [20]. In addition, Seaborn discovered that the bit flip rate increased
significantly with double-sided Rowhammer. The exploits relied on Intel x86’s
CLFLUSH instruction to evict a cache line from the CPU caches in order to read
directly from DRAM. CLFLUSH was quickly disabled in NaCl, while Linux mit-
igated the local privilege exploit by disabling unprivileged access to virtual-
to-physical memory mapping information (i.e., /proc/self/pagemap) used in
the exploit to perform double-sided Rowhammer. Soon after, however, Gruss
et al. [9] showed that it is possible to perform double-sided Rowhammer from
the browser, without CLFLUSH, and without pagemap—using cache eviction sets
and transparent huge pages (THP) [4]. They also found that hammering a pair
of neighboring rows, increases the number of flips in the rows adjacent to the
pair. In addition, Qiao et al. [18] showed how Rowhammer can be triggered
using non-temporal memory instructions in lieu of cache flushing. Bosman et
al. showed that it is possible to flip bits from JavaScript in a controlled fashion
using probabilistic double-sided Rowhammer without the need for huge pages [6].
Meanwhile, Xiao et al. [22] presented a second cross-VM attack that built on the
original Seaborn attack while improving on our knowledge of DRAM geometry.

Research so far predominantly targeted DDR3 RAM and x86 processors.
Aichinger [3] then analyzed the prevalence of the Rowhammer bug on server
systems with ECC memory and Lanteigne performed an analysis on DDR4 mem-
ory [14]. Despite initial doubt among researchers whether the memory controller
would be sufficiently fast to trigger the Rowhammer effect, Van der Veen et
al. [21] demonstrated that ARM-based mobile devices are equally susceptible
to the Rowhammer problem. New attack techniques focus on the DRAM itself.
For instance, Lanteigne [14,15] examined how data and access patterns influ-
enced on bit flip probabilities on DDR3 and DDR4 memory on Intel and AMD
CPUs. Meanwhile, Pessl et al [17] demonstrated that reverse engineering the

Defeating Software Mitigations Against Rowhammer 65

bank DRAM addressing can reduce the search time for Rowhammer bit flips.
These techniques are complementary to our work.

7 Conclusion

Rowhammer is constantly on the news and increasingly sophisticated Rowham-
mer attacks surface both in industry and academia. In response, defenses have
quickly been developed, aiming to either prevent Rowhammer from occurring or
mitigating the security impact of bit flips. Both attacks and defenses however
make simplifying assumptions about memory layout and addressing which limits
their generality, reproducibility and effectiveness.

To fill this gap, we took a closer look at precisely how an accurate memory
addressing model impacts Rowhammer. Our analysis shows that software’s abil-
ity to trigger, as well as protect against, Rowhammer is greatly influenced by the
addressing schemes used by the memory subsystem. We introduce an end-to-end
model of DRAM addressing, including the previously unexplored techniques of
rank mirroring and on-DIMM remapping. We show that by using such an address
model to select Rowhammer targets, attackers can trigger significantly more bit
flips than previously assumed and even trigger bit flips on DIMMs where the
state of the art fails, amplifying the relevance of existing attacks. We also show
that existing defenses do not properly account for memory addressing can be
bypassed by sufficiently informed attackers.

To support our work, we introduced Hammertime, a software suite for
Rowhammer studies. Hammertime allows researchers to profile a large set of
DIMMs for bit flips and later use the resulting data to simulate the Rowhammer
defect in software. More importantly, Hammertime makes Rowhammer research
much faster, more comparable, and more reproducible. For example, Hammer-
time’s simulator allows researchers to quickly prototype a new Rowhammer vec-
tor and evaluate its effectiveness on a given set of existing flip tables. To foster
further Rowhammer research and in support of reproducible and comparable
studies, we are releasing Hammertime as open source.

References

1. ANVIL source code (2016). https://github.com/zaweke/rowhammer/tree/master/
anvil. Accessed 03 Apr 2018

2. Advanced Micro Devices: BIOS and Kernel Developers Guide (BKDG) for AMD
Family 15h Models 60h–6Fh Processors, May 2016

3. Aichinger, B.: DDR memory errors caused by row hammer. In: HPEC 2015 (2015)
4. Arcangeli, A.: Transparent hugepage support. In: KVM Forum (2010)
5. Aweke, Z.B., et al.: ANVIL: software-based protection against next-generation

rowhammer attacks. In: ASPLOS 2016 (2016)
6. Bosman, E., Razavi, K., Bos, H., Giuffrida, C.: Over the edge: silently owning

Windows 10’s secure browser. In: BHEU 2016 (2016)
7. Bosman, E., Razavi, K., Bos, H., Giuffrida, C.: Dedup Est machina: memory dedu-

plication as an advanced exploitation vector. In: SP 2016 (2016)

https://github.com/zaweke/rowhammer/tree/master/anvil
https://github.com/zaweke/rowhammer/tree/master/anvil

66 A. Tatar et al.

8. Brasser, F., Davi, L., Gens, D., Liebchen, C., Sadeghi, A.R.: Can’t touch this:
software-only mitigation against rowhammer attacks targeting kernel memory. In:
26th USENIX Security Symposium (USENIX Security 2017), Vancouver, BC,
pp. 117–130. USENIX Association (2017). https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/brasser

9. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced
fault attack in JavaScript. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.)
DIMVA 2016. LNCS, vol. 9721, pp. 300–321. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40667-1 15

10. JEDEC: DDR3 SDRAM STANDARD. JESD79-3C, November 2008
11. Kasamsetty, K.: DRAM scaling challenges and solutions in LPDDR4 context. In:

MemCon 2014 (2014)
12. Khan, S., Wilkerson, C., Wang, Z., Alameldeen, A.R., Lee, D., Mutlu, O.: Detect-

ing and mitigating data-dependent DRAM failures by exploiting current memory
content. In: MICRO 2017 (2017)

13. Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental
study of DRAM disturbance errors. In: ISCA 2014 (2014)

14. Lanteigne, M.: A Tale of Two Hammers: A Brief Rowhammer Analysis of AMD
vs. Intel, May 2016. http://www.thirdio.com/rowhammera1.pdf

15. Lanteigne, M.: How Rowhammer Could Be Used to Exploit Weaknesses in Com-
puter Hardware. SEMICON China (2016)

16. Meza, J., Wu, Q., Kumar, S., Mutlu, O.: Revisiting memory errors in large-scale
production data centers: analysis and modeling of new trends from the field. In:
DSN 2015 (2015)

17. Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: DRAMA: exploiting
DRAM addressing for cross-CPU attacks. In: SEC 2016 (2016)

18. Qiao, R., Seaborn, M.: A new approach for rowhammer attacks. In: 2016 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), pp.
161–166, May 2016. https://doi.org/10.1109/HST.2016.7495576

19. Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., Bos, H.: Flip Feng
Shui: hammering a needle in the software stack. In: SEC 2016 (2016)

20. Seaborn, M.: Exploiting the DRAM rowhammer bug to gain kernel privileges. In:
BH 2015 (2015)

21. van der Veen, V., et al.: Drammer: deterministic rowhammer attacks on mobile
platforms. In: CCS 2016 (2016)

22. Xiao, Y., Zhang, X., Zhang, Y., Teodorescu, M.R.: One bit flips, one cloud flops:
cross-VM row hammer attacks and privilege escalation. In: SEC 2016 (2016)

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/brasser
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/brasser
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
http://www.thirdio.com/rowhammera1.pdf
https://doi.org/10.1109/HST.2016.7495576

	Defeating Software Mitigations Against Rowhammer: A Surgical Precision Hammer
	1 Introduction
	2 Background
	2.1 DRAM Architecture
	2.2 The Rowhammer Vulnerability
	2.3 Rowhammer Attacks
	2.4 Rowhammer Defenses

	3 RAMSES Address Translation Library
	3.1 Design
	3.2 Implementation

	4 Applications of RAMSES
	4.1 Hammering with RAMSES
	4.2 Flip Tables
	4.3 Attack Simulator

	5 Evaluation
	5.1 Profiling Bit Flips
	5.2 Comparison
	5.3 Defenses

	6 Related Work
	7 Conclusion
	References

