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RESUMO 

Placas reforçadas por vigas são os principais componentes de estruturas de 

plataformas offshore, usadas na prospecção e produção de petróleo. As vibrações geradas 

pelas máquinas propagam-se através da estrutura gerando altos níveis de ruído nos 

alojamentos. Para determinar com precisão o fluxo de potência através de placas reforçadas 

por vigas, um modelo que inclua o efeito das ressonâncias próprias da alma e aba da viga e as 

ondas no plano deve ser considerado, sendo o efeito das ondas no plano importante 

principalmente nas altas freqüências. 

Este trabalho apresenta um modelo para determinar a resposta de placas reforçadas por 

vigas utilizando uma abordagem analítica. Os modelos incluem vigas L e T e uma placa 

reforçada por uma viga L submetida a um carregamento distribuído. Este modelo pode ser 

usado para a determinação dos fatores de acoplamento de estruturas a serem utilizadas em 

uma análise de Análise Estatística Energética (SEA). 

Este método é útil devido ao baixo tempo de processamento comparado aos outros 

métodos existentes e a precisão é consideravelmente boa especialmente nas altas freqüências. 

Os resultados obtidos são validados comparando-se com o Método de Elementos Finitos.  

Outros métodos para a determinação da mobilidade de estruturas tipo placa reforçada 

por vigas também são apresentados neste trabalho. Um destes métodos é o Método de 

Imagens, que envolve a distribuição de fontes e imagens de vibrações de forma que obedeça 

as condições de contorno da estrutura. Este método é aplicável principalmente para estruturas 

de grandes dimensões e alto amortecimento estrutural.  
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ABSTRACT 

Beam reinforced plates are the main components of offshore structures, used in oil 

exploration and production. The vibrations generated by machines propagate through the 

structure and generate usually a high noise level at the accommodation areas. To determine 

with accuracy the power flow through the plate reinforced by beams, a model that includes 

the effect of the web and flange resonances in the beam and the in-plane waves is necessary, 

since in-plane waves are of considerable importance at high frequencies. 

This work presents a model to determine the response of beam reinforced plates using 

an analytical approach. The model includes L and T shaped beams and an L beam reinforced 

plate submitted to a distributed load. This model can be used to calculate coupling loss factors 

in reinforced structures to be used in Statistical Energy Analysis.  

This method is useful since the processing time is low compared with other methods 

and the accuracy is good at high frequencies. The results are compared and validated with the 

Finite Element Method.   

Other methods for determining the mobility of plates are also presented. One method 

is the Image Method, wich involves the correct placing of sources and images of vibrations on 

a plate to obtain the final response satisfying the boundary conditions. This method applies to 

large structures and high structural damping. 

 

 

 

 

 

 



 

 

 

 

 

 

 

CHAPTER 1 

 
 

OVERVIEW OF STRUCTURAL ACOUSTICS 

 

1.1 INTRODUCTION 

 

Beam reinforced plates are the main components of structures such as those offshore 

platforms used in oil prospecting and production. Vibrations generated by machinery on these 

platforms propagate through the structure and can generate high noise levels in the 

accommodation areas. 

The oil platform structure is composed of beams and plates, as shown in Figures 1.1a 

and 1.1b. Beams are used to support machines and equipment, and are organized in a “grill” 

arrangement. Their dimensions range from 2 cm to 20 cm wide, up to 50 cm high, and 5.0 m 

long. The thickness of the plates ranges from 5 mm to 10 mm. 

To determine the power flow and the vibratory energy of such structural components, 

a knowledge of the mean square velocity <v2> is valuable. One way of solving this problem is 

using the Finite Element Method (FEM). The disadvantage of using FEM is the limitation 

regarding the processing time. At high frequencies, the wavelength becomes smaller, 
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increasing the number of elements necessary for a correct representation of the model. This 

method becomes excessively expensive for larger, more complex structures. 

In these kinds of structures, models that include the effects of web and flange 

resonances in the beam and in-plane waves in all the structural components are necessary,  

since both of these are important, particularly when considering high frequencies analyses of 

such structures. This work presents a model to determine the response of beam reinforced 

plates using both an analytical and a direct image method to obtain the component mobility 

functions for arbitrary boundary conditions. This approach is very efficient computationally 

and can generate accurate results up to relatively high frequencies. 

 

 

 

a) 

 

b) 

Figure 1.1: a) typical wall of an offshore platform. 

     b) typical floor of an offshore platform. 
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1.2 LITERATURE REVIEW 

 

The vibration analysis of plate like structures can be made using Statistical Energy 

Analysis (SEA). According to Lyon [1], SEA was created as a methodology for approaching 

the vibration and acoustics problems using both analytical and experimental methods. The 

main variable of this method is the energy and it can be applied to structural and acoustics 

systems. This method is useful in high frequency analysis, where the modal density is usually 

high, particularly for 3-dimensional acoustical subsystems. However, the application of SEA 

demands the knowledge of parameters such as the coupling loss factors and the radiation 

efficiency. Among the parameters used in this methodology, the coupling loss factor requires 

careful attention when applied to this type of structure due to the great influence which the 

beams have on the power flow between plates. 

The statistical energy analysis (SEA) method was first applied to the structural 

vibration problem as an extension of the room acoustics approach in acoustical engineering 

[2]. Developed by Lyon [1] and associates, the method considers the linear responses of 

multimodal structures and the resulting energy flow between the modes of two or more sets of 

substructures. The modes of a substructure are called a subsystem. 

According to Lenzi [3], Statistical Energy Analysis is a non-deterministic 

methodology and an alternative way of calculating the structure response at high frequencies, 

applied to structures of larger dimensions.  

The deterministic methods have the advantage of providing a more accurate response, 

besides allowing analysis of larger structures and higher frequencies. Also, it is possible to 

analyse just the frequency band of interest using deterministic models. 

The existing models for beam reinforced plates mostly deal with plate models coupled 

to beam models. However, the beam models presented in the literature do not take into 
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account the wedge and web resonances. This work consists of determining the in-plane 

response and the transversal displacement of beam reinforced plates, allowing the calculation 

of the mean space response >< 2v , in frequency bands, using a deterministic model. Beams 

are treated as coupled plates and the response is determined analytically. For the correction 

prediction of the structure’s response, it is necessary to obtain the frequency response 

function, for example the mobility function, along the coupling joint line. It is then necessary, 

in a first approach, to develop a beam model considering the out-of-plane and in-plane waves 

for the web and wedge resonances. 

Although some experiments corroborate the analytical models, which take into 

account just the out-of-plane waves, many studies in this area resulted in expressive 

differences between experimental results and those obtained from models based only on  

flexural waves. In this case, the shear coefficient, rotary inertia and the presence of in-plane 

waves are indicated as the cause of this divergence. 

The theory most commonly used to describe the plate problem is the thin plate theory. 

This theory produces good results when the wavelength is much larger than the thickness of 

the plate. The thin plate theory is applied to flexural plane waves propagating in an elastic 

solid which has a dimension much smaller than the other two dimensions. The wave theory 

that complements the in-plane waves is extensional wave analysis of thin plates, which 

describes the motion of the “quasi longitudinal” shear waves. The main hypothesis, in both 

formulations, is that the normal stress,
zz

σ  , is zero, and the line normal to the plane remains 

normal and straight after deformation. 

When the wavelength is of the same order as the plate thickness, other more precise 

theories can be applied, such as the theories of Reissner [4], Uflyand [5] and Mindlin [6]. The 

latter represents an evolution of the thin plate theory approximation, since it includes the shear 
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stress effect in the plate. The applicability is limited to frequencies up to the first shear mode 

of the plate. This limitation is a consequence of the fact that the equations are based on the 

hypothesis that a line straight and normal to the neutral line remains straight, but not 

necessarily normal, after deformation, i.e., it is assumed that shear stress is linearly distributed 

across the plate thickness. In Mindlin’s [6] formulation for bending waves, two slope 

functions, one in each coordinate direction of the plate plane, are defined analogous to the 

slope functions used in the one dimensional beam theory developed by Timoshenko [7], 

where a correction factor is used. 

Leissa [8], in 1969, carried out a very valuable study on plate vibration. It consists of 

the analytical results of several rectangular plate geometries submitted to different boundary 

conditions. Most of the results are natural frequencies of plates. Parametric results of natural 

frequencies are also presented depending on the dimension of the plate, material density and 

Young’s Modulus. 

Cremer and Heckl [9], in 1973, presented in their classic book on structural acoustics 

important basic concepts on vibrations and sound radiation from beams and plates. Basic 

concepts related to longitudinal, in-plane, torsional and flexural waves are presented. The 

theory behind obtaining transmission coefficients for normal and random incidence may be 

found there. These coefficients are applied in Statistical Energy Analysis to determine the 

coupling loss factors between sound fields and plate-like structural components. 

Hwang and Pi [2], in 1973, investigated the mechanism of power flow between 

connected plates, using the Mindlin theory to model the plate vibration problem. In space 

vehicles structures, it is usually assumed that the power flow at high frequencies is due to 

bending and shear waves, and the tension and compression effects are considered to 

contribute minimally to the energy transfer. The major parameters affecting the magnitudes 

and modes of energy transfer include the geometry of the substructures, their boundary 
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conditions, interface configurations (length, geometry, method of fabrication, etc), coupling 

loss factors, modal densities of the connected structures, and location and type of loading. 

These authors made a number of simple test models featuring certain basic similarities in 

order to sort out the various parameters and to reach a rational solution to this complex 

problem. 

In a given connected structure [2], the degree of modal diffusion depends greatly on 

the wavelength in relation to the characteristic dimensions of the structure and on its 

thickness. As the stress waves propagate over the structure, the boundaries and interfaces 

cause a partial or total reflection of the waves. The infinitely numerous possibilities for wave 

propagation and reflection cause a randomly distributed wave pattern (high degree of modal 

diffusion). For waves of medium or long length, the degree of diffusion affects the energy 

transfer through an interface because the directional properties of the waves determine the 

amount of energy transmitted to the neighbouring structure. The effect is believed to be less 

pronounced for shorter-length waves. 

In 1983, the effect of in-plane waves was analyzed by Lyon [10]. It is usually assumed 

that the flexural modes are dominant in energy transmission since they have a better coupling 

with the sound field. This is correct only for directly excited structures or structures with few 

coupled structural components. However, Lyon showed that when transmission occurs 

through various components, the energy transmission by longitudinal and shear waves must 

be considered, otherwise considerable errors in the structural energy transmission analysis 

will be introduced. 

Hagedorn [11], in 1968, reported a study on the response of aerospace structures. This 

type of structure has appendices such as flanges and ribs, in some cases modelled as beams 

and in others as thin plates or shells. In his work, the impedance matrix necessary to 
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accurately describe the dynamic behaviour of rectangular plates with free edge boundary 

conditions was derived. 

Cuschieri and McCollum [12], in 1990, analysed the power flow through the joint line 

between thick connected plates, considering out of plane and in-plane waves. The results were 

used in a SEA model analysis. The rotary inertia of plates and the shear effect according to 

Mindlin [6] theory were considered. It was concluded that in terms of power flow through the 

junction of an L shaped plate, where the two sides of the plate are identical, the rotary inertia 

along with the effects of shear and in-plane waves have a great influence. Considering only 

the out of plane waves, an overestimated power flow was observed at high frequencies and for 

thick plates. For a pinned junction, where there is no in-plane wave motion, an analysis based 

on pure bending indicated a significant overestimation of the power transmission through the 

junction, especially at high frequencies and for thick plates (k h > 0.3). For an unconstrained 

junction and for identical thickness plates, the thick plate bending effects are still important. 

However, for values of k h > 1.0, the in-plane waves produce an additional coupling 

mechanism between the plates, increasing the significance of this in-plane coupling and wave 

transmission as frequency increases. For plates of different thicknesses, the influence of shear 

and rotary inertia on the power transmission becomes less pronounced, while the influence of 

in-plane wave generation is similar to the identical plates case. 

Cuschieri and McCollum [13] used the Mobility Power Flow approach to determine 

the structural power flow through the junctions between two flat plates, coupled in an L-

shaped configuration, for both in-plane and out-of-plane (bending) waves propagation. Power 

flow by both types of waves is included by considering the junction edge between the two 

plates to be free. The results of the analysis show that the in-plane waves do not significantly 

contribute to the structural power flow at relatively low frequencies, that is, for frequencies 

below a bending wave number and plate thickness product of approximately 0.1. One of the 
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relevant results, in this case, is that the power flow results are not different from those 

obtained if the junction is assumed to be pinned, and power is transmitted only by out-of-

plane waves. However, as the frequency increases, and for a bending wave number and plate 

thickness products greater than approximately 1.0, the contribution from the in-plane waves 

dominates. 

Another important conclusion from their work is with regard to the frequency range 

where in-plane waves dominate. In-plane longitudinal are more significant than in-plane shear 

waves, although this has some dependence on the selected L-shaped configuration. The 

results of the analysis show that for low frequencies, k h less than approximately 0.16, the in-

plane waves do not play a significantly role in the transfer of power across the junctions of the 

L-shaped plate structure. The in-plane waves can be neglected without any loss of accuracy in 

the power flow results. The importance of the in-plane waves as a mechanism for the transfer 

of vibrational power across the junction, increases as the frequency increases. For k h greater 

than approximately 1.0, the power transferred by the in-plane waves dominates over that 

transferred by the out-of-plane waves. Comparing vibrational power transferred by the two in-

plane wave components, the in-plane longitudinal waves seem to transfer more power than 

the in-plane shear waves. The inclusion of in-plane waves reduces the predicted value for the 

transferred power ratio. This is due to the fact that the in-plane waves transport some of the 

power back to the source plate, while pure bending modelling overestimates the predicted 

value of the power ratio. 

Cuschieri [14] performed also a power flow  parametric analysis through thin plates 

coupled in L shape, varying parameters, such as thickness, area, material properties, structural 

loss factor and external load distribution. A comparison between power flow method and 

Statistical Energy Analysis (SEA) results showed good agreement. 
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Bercin [15], in 1996, analysed the contribution of the in-plane waves to the power 

flow, using the dynamic stiffness method, which leads to exact responses for certain types of 

structures. The fundamental difference between this technique and the Finite Element Method 

is that in the latter the movement differential equation is solved exactly for each frequency ω. 

In this work, it is shown that the exclusion of the in-plane waves can lead to large errors in the 

energy prediction, unless applied to very simple structures. 

 Baars [16] used the Mobility Method to determine the Power Flow between two 

coupled beams. It was analysed the structural damping and stiffness effects on the power flow 

and between structural components, input power and vibratory energy response. A 

methodology for experimental determination of the input power and power flow is also 

presented. 

 The works reported by Clarkson [17], [18], [19], describe and present results of an 

experimental technique for the determination of coupling loss factors, modal density and 

structural loss factors of coupled structural components. The proposed in situ technique has a 

great advantage of being able to determine the actual loss factors of coupled components, 

which includes the dissipation at the joint line, and the coupling loss factors produced by 

complex joints, such as made by rivets or bolts. 

 Ozelame [20] , in 1997, used Finite Element to analyse the modal densities and 

coupling loss factors for plates reinforced by beams considering out-of-plane (bending) waves 

only. The main conclusion is that the coupling loss factors are fairly constants with frequency. 

The reinforcing beams were modelled as Euler and Timoshenko beams. 

 Bonilha [21], in 1996, developed a hybrid deterministic-probabilistic model for 

Vibroacoustic studies to analyse the acoustic field inside a hard-walled acoustic cavity due to 

the random vibration of one flexible wall. In his work it was verified that the hybrid model 

results approached closely those from a SEA model as the modal density of both systems is 
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increased. The proposed model results agreed well with Finite Element  results in the lower 

frequency range, where both systems are modally-sparse. Narrow band and frequency 

averaged sound pressure level obtained approach closely the  experimental results as long as 

more than eight plate modes are available in a frequency band or the plate model overlap 

factor is higher than unity. 

 Litwinczik [22], in 1997, analysed the effects of a reinforcing beam on sound radiation 

from plates vibrating in bending modes. It was concluded that the radiation efficiency is 

largely dependent upon the space symmetry of the vibrating modes, due to cancellation 

effects. This is more pronounced at low frequencies, where the sound wavelength is larger. 

 Bonifácio [23], in 2003, used a random analysis to predict the response of beams and 

plates subjected to different boundary conditions and to random excitation. The response was 

determined in frequency bands instead of discrete frequencies. Good results were obtained 

regarding processing time when compared to Finite Element Method. 

 Nunes [24], in 2002, developed a deterministic model to calculate the response of 

rectangular plates reinforced by beams on the edge, subjected to free edge boundary 

conditions. It was evaluated the power flow through the structure using mobility functions. 

One of the conclusions of this work is that adding a beam at the plates joint line decreases the 

modal density of the system, due to a stiffening effect. 

 In 2003, Gouveia [25] used the Finite Element Model to analyse the influence of the 

skid of machines on Power Flow to the structure of offshore platforms. It was concluded that 

the reinforcing beams have a great influence on the energy absorbed by the plate. The greater 

the beam stiffness, the lower the power flow transmitted to the plate.  

  Fiates [26], in 2003, used a Finite Element Method to calculate a beam reinforced 

plate velocity and calculated the sound pressure field generated by this velocities. In this 

work, the beam was modeled as plate elements, considering their own modes of web and 
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wedge. Using an optimization routine, the ideal shape of the beam was determined as a 

recommendation to minimize the plate sound radiation. 

 Yoneda [27], in 2002, developed a methodology for determining the transmission loss 

for plate reinforced beams through the Finite Element Method. In his work, it was concluded 

that the reinforcing beams decrease the transmission loss at low frequencies. 

    Heron [28], in 1997, developed a calculation procedure for a general line connection 

of plates. It is based on the use of line wave impedance matrices, analogous to the use of point 

impedance matrices for beam networks. The problem associated with plates attached along 

different lines of the beam section, such as the opposite flanges of an I-beam, is best solved by 

modelling the beam as a series of strip plate elements rather than introducing a special six 

degrees of freedom element as cited in Langley and Heron [29]. In the vast majority of 

applications beams are thin sectioned and should be modelled as a series of strip plates in 

order to accurately predict the beam dynamics at mid and high frequencies. In Heron’s work, 

he concluded that treating the full I-beam as a beam is a good model at lower frequencies but 

introduces errors that exceed 10 dB at frequencies above 1 kHz. It was also concluded that the 

strip plate model is remarkably accurate over the whole frequency range. 

In 1996, Fiates [30] applied the Mobility Functions approach to structures composed 

of beams arranged in a grill configuration. In his work, he analysed the contribution of 

longitudinal, bending and torsional waves to the power flow. It was concluded that 

longitudinal waves are important when considering beams of greater length and at high 

frequencies. The torsional waves are responsible for the transmission of a considerable 

portion of energy when compared with flexural (bending) waves. On the other hand, for 

beams with shorter lengths, the shear effect on flexural waves must be considered. The 

methodology used by this author is analytical, allowing the deterministic response for the 

whole the frequency spectrum. 
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Bonifácio [31], in 1998, also used the Mobility approach to analyse the flexural wave 

response of coupled plates, and determined the flow of vibratory energy transmitted through 

the plate joints, assessing the effects of the main related parameters. In his work, the power 

flow of two plates were analysed and the analysis was then extended to plates having a beam 

in the joint. Plate bending waves were modelled by thin plate theory. He verified that the 

parameters related to the beam modify significantly the magnitude and frequency of the 

power flow between plates. 

Farag and Pan [32], in 1998, developed a model for the coupling of two finite plates 

connected at an arbitrary angle for the prediction of the dynamic response and power flow at 

the coupling edge and at any cross section. The coupling at the joint edge considers bending, 

out-of-plane shear and in-plane longitudinal vibration and no constraint is imposed on the in-

plane displacement perpendicular to the coupling edge. The exact solution for free flexural 

mode shapes and resonance frequencies of rectangular plates with one free edge and the other 

edges simply supported is considered in their work. This exact solution satisfies both the 

displacement and force boundary conditions, and, consequently, it is used in the coupling of 

flat panels. Farag and Pan presented an approximate solution for the in-plane response of the 

same plate panels when excited by in-plane forces perpendicular to the free edge. They also 

showed that the coupling of two plates is mainly due to the moment at frequencies up to the 

cut-off frequency of the first in-plane mode. Above this frequency, the coupling is due to out-

of-plane shear and in-plane vibration with a diminishing participation of the moment in 

transmitting vibrational power through the coupling edge. 

Farag and Pan [33] also developed a mathematical model to predict forced response 

for in-plane point force excitations. They showed the nature of the coupling between in-plane 

longitudinal and in-plane shear waves and the resonance characteristics of the in-plane 

vibrational behaviour of finite flat plates. They concluded that the input power due to in-plane 
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force excitation at the in-plane resonance frequencies is at the same level as that due to out-of-

plane force excitations for the flexural resonances in the same frequency band. 

Langley and Bremmer [34], in 1999, presented a new method for dynamic systems 

analysis based on the partitioning of the system’s degrees of freedom into a global and a local 

set. The global equation of movement is formulated and solved in a traditional way while the 

local degrees of freedom are formulated and treated using Statistical Energy Analysis, using 

the input power of the global degrees of freedom. This method gives good results in the low 

and high frequency regions. 

Souza [35], in 2000, applied, computationally, the Mobility Method to structures like 

beams arranged in a grill shape. They concluded that bending waves concentrate a large 

amount of vibratory energy. However, longitudinal and torsional waves are important in the 

power transmission. 

Gunda et al [36] applied the Image Method or ray tracing techniques in order to 

analyse the harmonic response of beams and rectangular plates. The fundamental solution for 

an infinite plate was employed, in conjunction with appropriately placed images, to obtain the 

dynamic response of simply supported rectangular plates over a wide range of frequencies. In 

their work, simply supported beams were analysed firstly by considering the fundamental 

solution of an infinite beam, and secondly for the case of a narrow plate with simply 

supported and roller boundary conditions. They concluded that both approaches closely match 

the closed form solutions and with measurements taken for two beams. 

 The distribution of vibration over finite structures excited by a force was considered 

by Petersson [37]. To describe the vibration distribution a parameter called motion 

transmissibility was introduced, defined as the ratio of the velocity of the structure at an 

arbitrary point to that at the excitation location. It was found that for rods, beams and shells, 

the motion transmissibility can be estimated by using the corresponding semi-infinite 
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structure. For plates, the motion transmissibility can be estimated by considering the 

corresponding quarter-infinite structure. This method can also be applied to inhomogeneous 

boundary conditions, using a correction term which accounts for free boundary conditions 

[38]. 

In 1999, Sardá [39] analysed the power flow mechanism between two flat plates 

supported by beams using the Finite Element Method. The contribution of the beams and the 

plates to the transmission and the several paths was analysed. The contribution of each type of 

strength (internal forces or moments), associated with the corresponding velocities, to the 

power flow was studied. The coupling loss factor behaviour for plates supported by beams, 

according to the cross sections and dimensions used for the beams, was also analysed. 

Significant differences in the coupling loss factor, vibratory energy and power flow, when 

beams are modelled as beam elements or as plate elements, were observed, since elements 

take into account beam web and wedge resonances, resulting in a more accurate model. The 

analyses were made using ANSYS, version 5.3, up to 1000 Hz. In his work, plates with 

dimensions of 2 m2 were used, where the first plate had 1.1 m length and the second 0.9 m 

length, both with a thickness of 5 mm. The Finite Element mesh size was 2.9 cm, and the 

analysis had, approximately, 2500 elements and 2600 nodes. The processing time for 

calculating all the parameters, such as power flow, vibratory energy and input power, 

oscillated between 12 hours and 20 hours, when using a computer Pentium Pro 200 MHz, 

with a 2.1 Gb hard disk and 64 Mb RAM. 

Sardá analysed different configurations of plates supported by stiff beams and flexible 

beams, arranged in a horizontal plane, where the terms stiff and flexible relate to beams 

modelled by the beam element or plate element, respectively. 

The plates were modelled with SHELL 63 [40] from the ANSYS library. This element 

has four nodes and six degrees of freedom per node, three for translation and three for 
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rotation. The beams used as plate supports were modelled with the beam element BEAM 44 

[41] and the plate element SHELL 63, and results from both cases were compared.  Figure 1.2 

shows the geometry analysed, and the boundary condition used. The excitation consists of 

several point forces distributed over the first plate. In this specific case, several unit forces 

with random phase differences were used. Figures 1.3 and 1.4 show the Finite Element mesh 

used, considering beams modelled as plate elements. 
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Figure 1.2 – Boundary condition used – two clamped nodes 

 

 

 

Figure 1.3 – View of the beam reinforced model plate Finite Element Mesh. 
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Figure 1.4 –  Detailed view of the beam reinforced plate model Finite Element Mesh. 

 

For the geometries analysed, it was noticed that the greater the height of the beam in 

relation to the beam length, the greater the difference between the coupling loss factors 

obtained for beams modelled as beam or plate elements. It was observed, for example, that for 

plates with beams at the junction, the power flow spectrum is totally different at high 

frequencies for the two considered models. For the case where the beam was modelled as a 

plate element, it was noticed that more energy is transmitted, which can be explained by the 

fact that this model has less stiffness at the junction of the plates. Other differences could be 

associated with wedge and web resonances. This is shown in Figures 1.5 and 1.6. It can be 

observed that for an inverted T beam with 5 cm height this difference in power is not so 

evident. However, for the 20 cm height beam, the difference in the power flow is very 

significant. The same is true for coupling loss factors, as seen in Figures 1.7 and 1.8. 
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Figure 1.5 – Power flow between subsystems 1 and 2. Comparison between plate element and beam element, 
inverted T beam, 5 cm height; base 2.5 cm; thickness 0.25 cm.  
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Figure 1.6 – Power flow between subsystems 1 and 2. Comparison between plate element and beam element, 
inverted T beam, 20 cm height; base 10.0 cm; thickness 1.0 cm.  

Po
w

er
 f

lo
w

 [
W

] 
Po

w
er

 f
lo

w
 [

W
] 

Frequency [Hz] 

Plate element 
Beam element using Timoshenko correction 

Plate element 
Beam element using Timoshenko correction 

Frequency [Hz] 



 

 18

100 1 10
31 10

4

1 10
3

0.01

0.1

Obtido através da potência transferida - elemento de placa
Obtido através da potência transferida - elemento de viga
Obtido através da energia - elemento de placa
Obtido através da energia - elemento de viga
Placa plana

frequência [Hz]

Fa
to

r 
de

 a
co

pl
am

en
to

 (
12

)

 

Figure 1.7 – Coupling loss factor for subsystems 1 and 2. Comparison between plate element and beam element, 
inverted T beam, 5 cm height; base 2.5 cm; thickness 0.25 cm.  
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Figure 1.8 – Coupling loss factor for subsystems 1 and 2. Comparison between plate element and beam element, 

inverted T beam, 20 cm height; base 10.0 cm; thickness 1.0 cm. 
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It should be noted that the above mentioned studies take into account models in which 

the web and wedge modes were not considered. From the work by Sardá, it can be concluded 

that for a more accurate prediction of the power flow and the coupling loss factors for beam 

reinforced plates, a plate model for the beams must be used, considering the web and wedge 

modes. It was observed, too, that the Finite Element Method, for this type of structure, has a 

limitation regarding the processing time at high frequencies. These results set the ground 

work for the present study.  Its objective is to develop a model for large structures that has an 

acceptable processing time and takes into account the web and wedge resonances. 

The main objective of this work consists of developing a deterministic model for 

vibrations of inverted T and L beams, taking into account the out-of-plane and in-plane 

waves, and using this model as a support of two connected plates. This model will be 

validated through comparison to the Finite Element Method. 

Other methods for determining the mobility of plates will also be presented. One 

method is the Image Method, with involves the correct placing of sources and images of 

vibrations on a plate to obtain the final response. 

Chapter 2 describes some basic concepts regarding the vibration of plates. It describes 

how to obtain the differential equations for in-plane and out-of-plane vibration and the 

boundary condition used. 

In Chapter 3 the solutions for the in-plane and out-of-plane wave problems are found. 

The in-plane solution is described as two propagating waves, one solution propagating in the 

positive x direction and the other in the negative direction. For out-of-plane waves, the 

differential equation is solved in terms of base functions, since in the y direction and 

propagating waves in the x direction. In this chapter, the analytical out-of-plane and in-plane 

solutions are used to determine the response of an L plate and a T plate configuration 

problem. 
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In Chapter 4 the Image Method is described. This method is an alternative for 

determining Mobility functions for plates. The advantage of the method is its accuracy and the 

fast obtaintion of results when applied to larger plates and high structural damping. In this 

chapter a solution, based on a series, is used to solve the response of a three dimensional 

parallelepiped and the results are compared with the solution obtained analytically. 

In Chapter 5 an analytical model of two connected plates with an L beam, modelled 

using plate equations, is developed. This model considers the in-plane and the out-of-plane 

waves. The results obtained are considered good when compared with a Finite Element 

Model, and the advantage is that it can be used for large plates and at high frequencies. 

Application of the model is very fast when compared with a Finite Element Method. 

Chapter 6 presents the conclusions for the current work and suggestions for future 

works. 
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CHAPTER 6 

 

CONCLUSIONS 

 

  

Procedures for the determination of the response of beam reinforced plates including 

in-plane and out-of-plane waves were presented in this work. The proposed models include 

the analytical solution, the Image Method and a model for vibration of a three dimensional 

parallelepiped, where the latter method can be used for determination of mobilities for free-

free edge boundary conditions for plates and beams. 

Chapter two presented basic concepts on plate vibration, showing the derivation of the 

differential equations of in-plane and the out-of-plane waves motion. The different boundary 

conditions for thin plates were also presented. 

Chapter three presented the in-plane and the out-of-plane waves solution for a bi-

supported rectangular plate in an analytical form, consisting of propagating and evanescent 

waves. Both solutions were coupled to correctly represent solutions for transversal and in-

plane displacements for L and T beams with a distributed applied load. The solutions of the 

models were fast and results were accurate. These observations represent the main advantages 
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of using this method. The presented models can be used in impedance input values 

determination for future analyses for vibrations prediction of reinforced plates. 

As an alternative to the analytical formulation, the Method of Images and the assumed 

solution for a three dimensional parallelepiped were found to be efficient. It was shown that 

the Image Method works very well for large plates and the accuracy of the method increases 

when the plate becomes larger. The number of images to be used for large plates tends to 

decrease, making the method faster for larger structures. It works better for high frequencies, 

where the accuracy is better for the same number of images. This method is applicable to 

different plate boundary conditions, provided the correction factor is calculated. An 

alternative solution for determining the mobilities of a free-free plate or free-free beam using 

the solution obtained for a three dimensional parallelepiped was shown. 

A very valuable model for two connected bi-supported plates with a beam on the joint 

line was presented in Chapter five. A model representing the in-plane and out-of-plane waves 

for all connected plates is shown. This model takes into account the web and wedge 

resonances of the beam (modeled as connected plates). This method was shown to be very 

fast and can be used to obtain coupling loss factors of beam reinforced plates. 

As shown in Chapter 5, the importance of considering the in-plane effects and the 

beam own modes was presented, otherwise the calculated response and power flow could not 

take into account the effect of the resonances of the beam web and wedge. This procedure can 

generate more accurate results for power flow analysis, and consequently, to coupling loss 

factors calculations. 

 

The analytical method can be used for determining the response of reinforced plates 

with larger dimensions compared with the Finite Element Method. The advantage of this 

method is related to the fast calculations with which the response is obtained, for in-plane and 

out-of-plane waves. The model for two connected plates with an L beam on the joint line can 
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be easily used to obtain the coupling loss factors for reinforced structures and also in 

Statistical Energy Analysis calculations. 

 

SUGGESTIONS FOR FUTURE WORKS 

 

 For future works the determination of coupling loss factors of beam reinforced plates 

using the Analytical Method is suggested, as well as the use of the results in Statistical Energy 

Analysis models to predict vibrations of this type of structures. The analysis of larger 

structures having a number of reinforcing beams is also recommended. 

 An analysis of the power flow between beam reinforced plates is suggested. In this 

case, the model could be used to calculate the internal loads on the structure and the 

respective velocities. With this data, the power flow can be easily calculated and analyzed.  

 The use of the Image Method and the solution for the three-dimensional parallelepiped 

to obtain the Mobilities can be employed as an alternative to the analytical solution. The 

solution developed for a transversal force and a moment applied to a plate can be used as an 

alternative for determining the mobility functions to be used in the plate connection. The 

calculation of the coupling loss factor for large structures could be carried out using these 

methods. 
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APPENDIX A 

 

 

 

DERIVATION OF THE EXPRESSIONS FOR θ , yQ , AND M  
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Figure A.1 – Imaging for semi-infinite plate. 
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The normal slope can be calculated as: 
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Finally, for y = 0: 
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The moment yM  can be determined using the expression given by Leissa [8]: 
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The derivatives can be calculated using: 
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Then, using the following expression: 
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 The shear force can be calculated as [10]: 
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 For y = 0: 
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