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a b s t r a c t

Computational models of the human body coupled with optimization can be used to predict the influence
of variables that cannot be experimentally manipulated. Here, we present a study that predicts the
motion of the human body while lifting a box, as a function of flexibility of the hip and lumbar joints
in the sagittal plane. We modeled the human body in the sagittal plane with joints actuated by pairs
of agonist-antagonist muscle torque generators, and a passive hamstring muscle. The characteristics of
a stiff, average and flexible person were represented by co-varying the lumbar range-of-motion, lumbar
passive extensor-torque and the hamstring passive muscle-force. We used optimal control to solve for
motions that simulated lifting a 10 kg box from a 0.3 m height. The solution minimized the total sum
of the normalized squared active and passive muscle torques and the normalized passive hamstring mus-
cle forces, over the duration of the motion. The predicted motion of the average lifter agreed well with
experimental data in the literature. The change in model flexibility affected the predicted joint angles,
with the stiffer models flexing more at the hip and knee, and less at the lumbar joint, to complete the lift.
Stiffer models produced similar passive lumbar torque and higher hamstring muscle force components
than the more flexible models. The variation between the motion characteristics of the models suggest
that flexibility may play an important role in determining lifting technique.

� 2018 Published by Elsevier Ltd.
1. Introduction

Mechanics-based models can represent the human body as
articulated segments that describe the general movement of the
limbs. Coupled with computational methods such models prove
useful in investigating human movement parameters that may
be difficult to directly measure, such as joint torques. We identify
two general approaches to such investigations; First, by using
experimental data to estimate what the human was doing
(inverse-methods), such as (Faber et al., 2011; Kingma et al.,
2004). Second, by simulating or predicting novel control signals,
and computing the corresponding movements and internal physi-
ological states (Burg et al., 2005; Arjmand and Shirazi-Adl, 2006;
Dreischarf et al., 2016; Millard et al., 2017). Predictive simulations
are computationally intensive and require methods, such as opti-
mal control (OC), to generate the control signals specific to various
movement tasks. In general, optimal control solves for state and
control trajectories that satisfy the system dynamics subject to
constraints such that the value of an underlying objective function
is minimized. More commonly, optimal control has been applied to
simulating gait (Anderson and Pandy, 2001; Ackermann and van
den Bogert, 2010; Mombaur, 2016; Sreenivasa et al., 2017) and
sit-to-stand motions (Sadeghi et al., 2013; Mombaur and Hoang,
2017), with relatively limited number of studies focusing on lifting
motions (Arjmand and Shirazi-Adl, 2006; Manns et al., 2017;
Millard et al., 2017; Harant et al., 2017). Despite these challenges,
simulations can help answer biomechanical questions that are
impractical or impossible to answer using experimental analysis
alone. Examples of such questions are those that study the effect
of varying muscle strength (Steele et al., 2012), or the effect of
orthosis stiffness on patient gait (Sreenivasa et al., 2017), or the
influence of varying cost function (Arjmand and Shirazi-Adl,
2006; Sadeghi et al., 2013; Mombaur and Hoang, 2017).

The biomechanics of lifting motions are of particular interest as
they require the coordination of muscles over the whole body
involving concentrated loads over several joints. As a common
ntrol. J.
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daily activity, excessive cumulative lower back loads (CLBL) during
lifting, computed as the integral of net back moments over time,
have been associated with risk of injury and lower-back pain
(Coenen et al., 2013). Physiological factors, as well as the lifting
configuration and speed, can affect the characteristics of an indi-
vidual’s lifting motion and the load on the lower back (Faber
et al., 2011; Kingma et al., 2004; Buseck et al., 1987). However,
there remains a gap in our understanding of the relationship
between an individual’s flexibility and their lifting motion. Note
that for the purpose of this study we use the term flexibility to
denote a combination of kinematic and kinetic characteristics of
the movement about a joint. For example, the musculature around
a less flexible joint would generate higher passive torques at a
given range of motion (ROM) when compared to a more flexible
joint. Previous studies have reported on the lumbar (Dolan et al.,
1994) and hip (Gajdosik et al., 1994) ROM, but do not investigate
the influence of limited ROM on the whole body movement. From
an experimental point-of-view, finding a population of subjects
with suitable range of flexibility and having an objective compar-
ison between their lifting styles is a difficult endeavor.

The goal of this study was to use simulations to investigate the
influence that hip and lumbar flexibility can have on the kinemat-
ics and dynamics of lifting motions. In this context, we developed a
model of the human body and formulated an optimal control prob-
lem (OCP) for predicting lifting motions. Model flexibility was
modified to simulate a stiff, average and flexible person, in order
to answer the question - How does the predicted model motion
change with flexibility? This study was conducted in the context
of wearable robots (exoskeletons) that work in close coupling with
the human body. An additional focus was on the inferences that we
may make from our results towards the design of such
exoskeletons.
Fig. 1. A sagittal plane humanmodel was used to simulate the motions while lifting
a 10 kg box. Illustrated are the human and box degrees of freedom. A line-type
passive hamstring muscle is illustrated as a blue line extending from the pelvis to
the shank segment. Dashed lines indicate kinematic constraints imposed during the
motion between points on the feet and the floor, and the box and the hands. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
2. Materials and methods

2.1. Human models

We modeled the human body in the sagittal plane and com-
bined the left and right limbs. This was done to reduce model
complexity and under the focus of evaluating left-right symmet-
ric motion that occurs primarily in the sagittal plane. The model
consisted of an articulated multibody system with 10 segments
(Fig. 1). The pelvis segment was modeled as a floating base with
two translational and one rotational degrees of freedom (DoF).
All other segments were modeled with one rotational DoF each,
to give a total of 12 DoF. The human model’s segment lengths
corresponded to those recorded from a 35-year old male (1.74
m in height, 81.0 kg in weight). Segment mass and inertia prop-
erties were first approximated from anatomical regression equa-
tions (de Leva, 1996) using the subject’s height and weight. The
ratio of the subject-specific segment lengths to the default
lengths provided by de Leva (1996) were then used to linearly
scale the segment mass and inertia, using the model creation
software ModelFactory (Sreenivasa and Harant, 2018).

All internal DoFs were actuated by pairs of agonist-antagonist
muscle torque generators (MTG) (Millard et al., 2017). Each MTG
represented the torques generated by the active (sA) and passive
(sP) muscle components in one rotational direction as,

s ¼ sA þ sP with; ð1Þ

sA ¼ soa f AðhÞf VðxÞ ð2Þ

sP ¼ sof PEðhÞ 1� b PE x
x M

max

� �
ð3Þ
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where hwere the joint angles,xwere the joint angular velocities, so
was the maximum isometric torque, a was the muscle activation,

f AðhÞ was the value from the active torque-angle curve, f VðxÞ
was the value from the torque-velocity curve, f PEðhÞ was the value
from the passive-torque-angle curve, and, b PE was a normalized
damping coefficient. We chose to use MTGs in this study in favor
of line-type muscles (e.g. Christophy et al., 2012; van Dieën and
Kingma, 2005) as we were interested in the overall coordination
of the limbs rather than in the bone-on-bone contact forces. The rel-
ative simplicity of the MTGs also helps reduce the complexity of the
optimal control problem. We also note that lumbar disk compres-
sive forces have been found to be highly correlated with net
moments about the L5/S1 vertebra (van Dieën and Kingma, 2005),
allowing simpler models such as the one used in this study to be
useful in estimating loading on the vertebral disk.

A total of 18 MTGs produce flexion-extension torques that actu-
ated the segments. We added damping at the model’s joints that
represents the passive damping arising from the musculature and
tissue surrounding the joint. Most of the passive and active muscle
properties were identical to the model defined in Millard et al.
e of hip and lumbar flexibility on lifting motions using optimal control. J.
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Table 1
Flexibility characteristics of the hip and lumbar joints for the stiff, average and
flexible models. The indices specify the relevant joints (see Fig. 1). The values indicate
the target flexion angles and corresponding extension torques used for fitting the
lumbar extensor MTG’s and hamstring muscle’s passive properties. The values for the
hip are with straight knees and only relate to hamstrings tension; with knee flexion
this value increases based on hamstring length.

Model Type

Stiff Average Flexible

Hip h7 59.0� 68.7� 76.7�
sP7 129.4 Nm

Lumbar (h10; h11) 37.4� 51.8� 67.5�
(sP10; sP11) 84.0 Nm
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(2017). The exceptions were the passive torques of the lumbar
extensor, hip extensor and the knee flexor, as detailed further. An
open-source implementation of the MTGs is available as an addon
in the rigid-body dynamics library RBDL (https://rbdl.bitbucket.io).

2.1.1. Passive muscle properties
We modified the contributions from passive muscle compo-

nents to reflect a stiff, average, and flexible person. We limit the
lumbar range-of-motion (RoM) in flexion and modify the passive
extension torque generated by the lumbar-extensor MTG.

Dolan et al. measured the lumbar flexion RoM in healthy adult
males and reported an average of 53:3� with a range from 38:5� to
69:4� (Dolan et al., 1994). The study also reported an average peak
passive lumbar extensor torque of 84.0Nm across all subjects at
97:3% of peak flexion angle. We used Dolan’s findings to model a
stiff, average and flexible lumbar extensor that generates 84.0Nm
of passive lumbar extension torque at 37:4�; 51:8� and 67:5� of
lumbar flexion angle, respectively (note that these angles differ
from the mean and range reported in Dolan et al. as they refer to
the point of the curve where 84.0Nm is developed, which is slightly
less than at 100% flexion). The passive force-length curve of the
lumbar extensor was adjusted such that the normalized-force-
length remained constant and the MTG generated the required
extension torque at the desired lumbar flexion angle. This modifi-
cation is consistent with an optimal fiber length that is shortened
to make a muscle stiffer and lengthened to make it more flexible.

We modeled the passive contribution of the bi-articular ham-
strings by including a line-type muscle spanning the pelvis, hip
and knee joints (Fig. 1). We chose to model the hamstring muscle
and only its passive component based on literature evidence on the
important role played by the hamstring during bending and lifting
tasks, especially in the coordination of the pelvis, hip and knee
(Gajdosik et al., 1994; Kang et al., 2013). The muscle origin point
on the pelvis segment and insertion point on the shank segment
were modeled as per (Brand et al., 1982). The passive force of the
hamstring, f ham, was applied to the origin and insertion points on
the model, and computed as,

f ham ¼ f of
PEð~lÞð1þ b~vÞ ð4Þ

where f o ¼ 4696:0 N was the maximum isometric force as per (Hoy
et al., 1990). Note that here we have doubled the value of f o to
account for our sagittal plane model that combines the right and left

limbs. f PEð~lÞ was the normalized force-length curve as per (Millard

et al., 2013). ~l was the normalized muscle length and calculated as,

~l ¼ l� ltslack
lopt

ð5Þ

where l was the current muscle length, ltslack ¼ 0:385 m and
lopt ¼ 0:107 mwere the tendon slack length and optimal fiber length
as per (Hoy et al., 1990). b was a damping term set to 0.1 and ~v was
the normalized muscle velocity. We assumed a rigid tendon and a
pennation angle of zero.

Gajdosik et al. measured the flexibility in hip flexion across 30
young men during a toe-touch task with the knees straightened
(Gajdosik et al., 1994). Subjects were classified with short, medium
and long hamstrings as being able to reach hip flexion angles of
59:0�; 68:7� and 76:7�, respectively. We modeled the characteris-
tics of a stiff, average and flexible hip such that the hamstring mus-
cle produced 129.4Nm of extension torque at the flexion RoM
corresponding to a short, medium and long hamstring. This value
of extension torque was estimated from inverse-dynamics analysis
of a toe-touch motion of a subject of similar height and weight as
our model (Millard et al., 2017). Hamstring flexibility was modu-
lated by solving for the new optimal fiber length, lopt , such that
the hamstring muscle developed the desired passive extension
Please cite this article in press as: Sreenivasa, M., et al. Predicting the influenc
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torque at the hip joint at the desired hip flexion angle (with
straightened knee).

Note that the passive components, but not the active compo-
nents, of the hip extensor and knee flexor MTGs were turned off,
as these passive forces were now provided by the passive ham-
string muscle. The lumbar passive extensor and hamstring charac-
teristics were co-varied to create 3 model variations corresponding
to a stiff-lifter, an average-lifter and a flexible-lifter (see Table 1 for
summary). The motivation behind co-varying the hip and lumbar
flexibility was evidence that short hamstrings in a person is asso-
ciated with decreased lumbar RoM (Gajdosik et al., 1994).

2.1.2. Activation dynamics
MTG activation was computed using first-order activation

dynamics,

_a ¼ e� a
tad

ð6Þ

where _awas the rate of change in activation, e represents themuscle
excitation signal, and tad the activation-deactivation time constant
(Thelen, 2003). We set tad ¼ 50 ms for the MTGs of the shoulder,
elbow, hand and head, which is equal to the deactivation time con-
stant reported by Thelen (2003). Note that unlike (Thelen, 2003), we
assumed the same time constants for activation and deactivation in
order to have a continuous function for _a. For the MTGs of the hip,
knee, ankle and lumbar joints, we derived the time constants from
recordings of the electromechanical delay (EMD) reported in litera-
ture (Table 2). This was motivated by our observation that the nom-
inal value of tad ¼ 50 ms was too fast for the bigger muscles, such as
those at the back and hip. We assumed that the tasks in the EMD lit-
erature have a dominant frequency of 1 Hz, allowing us to map the
EMD delay to a phase shift, and finally to tad in Eq. (6).

2.2. Optimal lifting motions

We used a multiple shooting method described by Bock and Pitt
(1984) and implemented in the software MUSCOD-II (Leineweber
et al., 2003) to solve for optimal lifting motions. The dynamical sys-
tem solved by the method refers to the equations of motions gov-
erning the MTG actuated multi-body human model. The details of
the OCP setup and numerical method are identical to that in
Millard et al. (2017). Here, we summarize the salient points of
the OCP relevant to the prediction of lifting motions.

The lifting motion was defined as 3 phases; bending, gripping
and lifting (Fig. 2). The constraints between the hands and the
box change across phases which also changes the underlying
dynamics. The objective function was defined as,

min
xð�Þ;eð�Þ;m�

X3
j¼1

Z mjþ1

mj

Xnk
k¼0

ðsA
k Þ

2

ðsoÞ2k
þ ðsPkÞ

2

ðsoÞ2k
þ de2k

( )
þ f ham

f o

� �2
" #

dt ð7Þ
e of hip and lumbar flexibility on lifting motions using optimal control. J.
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where xð�Þ ¼ ½h x a� was a vector of state variables, ek were the con-
trol inputs for the simulation (neural excitations, Eq. (6)),
j ¼ 1; . . . ;3 iterates through the motion phases which begin at time
mj and end at mjþ1, and k ¼ 0; . . . ; nk iterates over the MTGs. The term
de2k was a regularization term that introduced a small cost to the
objective function value and served to smoothen the control inputs.
We set d to 0.1 for our simulations.

Note that this objective function minimizes the passive and
active torques over all MTGs of the model and not just those
at the lower back. This is in contrast to studies in ergonomics,
e.g. Arjmand and Shirazi-Adl (2006) and van Dieën and
Kingma (2005), where mainly lumbar forces/torques are mini-
mized. In the present study, we were interested in simulating
movement of the whole body and only minimizing the lumbar
torques would not have been sufficient for this goal. It is impor-
tant to note that in contrast to Arjmand and Shirazi-Adl (2006)
and van Dieën and Kingma (2005), in this study we were com-
puting a forward simulation that predicted motion kinematics as
well as kinetics. To the best of our knowledge, objective
functions used in ergonomics literature are typically used to
solve for muscle forces under known kinematics and kinetics,
and hence a direct comparison to this study is not possible.
Forward simulations using objective functions are relatively
more commonly used in the simulation of walking and running.
Table 2
Activation-Deactivation time constants, tad (Eq. (6)), derived from
head, shoulder, elbows and hands were set to 50 ms. The values in
the major muscle driving motion in that direction.

Joints

Extension MTG

Hip 132 [110]
(Blackburn et al., 2009

Knee 52 [50]
(Begovic et al., 2014)

Ankle 46 [45]
(Winter and Brookes, 19

Lumbar 169 [130]
(van Dieën et al., 1991

Fig. 2. Motion phases of the optimal control problem. The three motion phases delin
underlying dynamics.

Please cite this article in press as: Sreenivasa, M., et al. Predicting the influenc
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A typically used objective function is one that minimizes the
integral over time of the muscle activations raised to a power
(Ackermann and van den Bogert, 2010), although other formula-
tions have also been proposed (Mombaur, 2016,Afschrift et al.,
2016,Serrancolí et al., 2017,Sadeghi et al., 2013,Mombaur and
Hoang, 2017).

The motivation behind our formulation was to include the influ-
ence of passive muscle components in our simulations, as opposed
to objective functions that are based on muscle activation and
therefore only take active components into account. Note that
our objective function contains the active and passive components
separately, and not as the net MTG torque. This was motivated by
our observation that the formulation based on net MTG torques did
not adequately consider passive muscle components, leading to
movements with unnaturally large passive forces. There is evi-
dence that repeated stretching of spinous ligaments may lead to
back injury (Solomonow et al., 2003). It is plausible that a human
might shape their movements to avoid high muscle forces, because
humans have sensors to provide muscle force information via
golgi-tendon organs. In the following, we describe the main con-
straints that were applied during the motion.

1. Bending - The bending phase started with the human model
standingupright and still,with a 10 kgboxplaced in front (Fig. 2).
reported values of electromechanical delay (EMD). tad for the
dicated refer to the time constants and EMD associated with

tad (ms) [EMD (ms)]

Flexion MTG

52 [50]
) (Begovic et al., 2014)

132 [110]
(Blackburn et al., 2009)

149 [120]
91) (Úbeda et al., 2017)

251 [160]
) (Thelen et al., 1994)

eate the changing constraints on the multi-body system, which also changes the

e of hip and lumbar flexibility on lifting motions using optimal control. J.
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2. Gripping - At the start of the gripping phase, the position of the
point on the hand segment (corresponding to the distal second
metacarpal) was constrained to match the grip point of the box
0.3 m off the ground. The hand translational and rotational
velocities as well as hand forces were set to zero at the start
of gripping.

3. Lifting - At the start of the lifting phase the vertical hand force
was constrained to be equal to the force required to support
the weight of the box. The box and hand were affixed together
in this phase using 3 kinematic constraints. The end of this
phase constrained the human model to stand upright and still.

Additional constraints were active through all phases.

1. We maintained the model’s balance by constraining the vertical
foot contact forces to be strictly positive.

2. The ratio of horizontal to vertical contact forces were con-
strained to not exceed a coefficient of friction of 0.8.

3. The two trunk segments were constrained to move together at
the same angular velocities.

The bending and lifting phase durations were variables of the
OCP. The gripping phase duration was fixed to 0.125 s based on
experimental observations of the time required by subjects to grip
and lift a box off the ground (Harant et al., 2017).

2.3. Experimental comparisons

We compare our predictions to experimental data recorded as
part of a previous study (Harant et al., 2017). We recorded full
body kinematics, ground reaction forces, and hand-box forces of
4 male subjects (age 21–25 years, weight 67–103 kg, height 1.7–
Fig. 3. Joint angles at the (a) hip, (b) knee and (c) lumbar joints. Dashed lines in panes (a)
indicated hip flexion limit (panel (a)) is with a straight-knee. Panels (d), (e) and (f) sho
indicate standard deviation from experimental recordings, scaled to the average model

Please cite this article in press as: Sreenivasa, M., et al. Predicting the influenc
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1.9 m) lifting a 10 kg box using a stoop lift. Joint angle trajectories
were computed from marker positions using least-squares opti-
mization. Joint torques were computed from joint angles, recorded
ground reaction forces, and recorded hand-box forces using
inverse dynamics analysis. Further detail about the experimental
analysis is available in Harant et al. (2017). In addition, we report
the values for lumbar flexion and lumbar net torque from Kingma
et al. (2004) and Faber et al. (2011). The values reported from
Kingma et al. are the average and standard deviation across 10
subjects, using a stoop lift to pick up a 10.5 kg box from a height
of 0.5 m above the ground. Faber et al. reported results from 9 sub-
jects lifting a 16.8 kg box from a height of 0.32 m above the
ground.
3. Results

The predicted joint angles and net joint torques of the average-
lifter match the experimental observations for most of the joints
(Fig. 3). The peak hip, knee and lumbar angles were within 1 s.d.
of the average subject from Harant et al. (2017). The peak lumbar
angle was very close to the average value reported by Kingma et al.
(2004) and close to the +1 s.d. range of that reported by Faber et al.
(2011). Table 3 lists and compares the results from the average-
lifter to the experimental results from Harant et al. (2017).

Modifying the hip and lumbar flexibility produced marked
changes in the joint kinematics (Fig. 3a–c). For each of the lifters,
the peak lumbar flexion reached the limit imposed on that model
type (dashed lines in Fig. 3c). The reduced flexibility at the hip
was overcome by bending the knee, thus relaxing the hamstring
muscle and allowing the hip to flex beyond what is possible with
a straight-knee (dashed lines in Fig. 3a). As the model was made
and (c) indicate the flexion limits for stiff, average and flexible humans. Note that the
w the net torques at the hip, knee and lumbar joints, respectively. Shaded regions
motion duration (Harant et al., 2017).

e of hip and lumbar flexibility on lifting motions using optimal control. J.
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Table 3
Comparison of average-lifter (green lines in Fig. 3) joint angles and joint torques to experimental results from Harant et al. (2017). Reported are the root mean square (RMS)
differences between the average-lifter and the average experimental results, the maximum distance between the average-lifter and the experimental envelope, and the maximum
experimental variation for comparison. Note that the lumbar angle reported here is the summation over the two trunk segments of our model.

Hip Joint Knee Joint Lumbar Joint

Joint angles RMS Average-Lifter vs. Exp. Average 13.4� 14.0� 19.9�
Max. distance Average-Lifter vs. Exp. Range 12.6� 4.2� 21.7�
Max. Exp. Variation 26.2� 16.4� 17.9�

Joint torques RMS Average-Lifter vs. Exp. Average 28.3 Nm 37.1 Nm 17.5 Nm
Max. distance Average-Lifter vs. Exp. Range 53.7 Nm 49.0 Nm 28.1 Nm
Max. Exp. Variation 40.5 Nm 47.3 Nm 43.2 Nm
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more flexible, the optimal solution is one that favors more lumbar
flexion and less hip flexion. This can be observed at the point of lift-
ing by comparison of the model pose (Fig. 5). We observed an abso-
lute difference in hip flexion of 11:2� and 9:6� between the stiff and
average lifters, and the flexible and average lifters respectively. The
corresponding differences in lumbar flexion were 14:2� and 15:5�.

Peak net joint torque at the hip joint (Fig. 3d) increased as the
model was made more flexible. Peak net lumbar joint torque
Fig. 4. Comparison of (a) normalized passive lumbar extensor torque, and (b)
normalized passive hamstring force for the three lifter models.
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(Fig. 3f) and CLBL (area under curves in Fig. 3f) were similar across
models. The ratio of peak lumbar/hip angle increased as the model
was made more flexible. The peak normalized passive lumbar
extension torque was similar across models with values between
14% and 15% (Fig. 4a). Peak normalized passive hamstring forces
decreased from 24:3% to 6:9% with increasing model flexibility
(Fig. 4b). The models took 2.36, 2.32 and 2.29 s to complete the lift,
while the range for the experimental lifts was from 2.72 to 4.32 s.
Table 4 lists and compares the result values across the 3 model
types.
4. Discussion

We have presented results from a human model simulation of
lifting a box and the variation of the model motion as a function
of hip and lumbar flexibility. In general, the lifting motion corre-
sponding to an average person’s model matched results from liter-
ature (Kingma et al., 2004; Faber et al., 2011) (Fig. 3) and
experimental recordings from Harant et al. (2017). There were
however exceptions to this trend; when compared to the average
lumbar flexion angle from Harant et al. (2017), the results from
the stiff-lifter were a closer match than the average-lifter. This
could be because the subjects tested in Harant et al. (2017) were
as a group close to the stiff case. We also note that the results from
Faber et al. (2011) were close to the stiff-lifter in the present study,
and in general there appears to be a large variation in lumbar flex-
ion angles reported in the literature (for equivalent lifting tasks). A
marked difference was found in the profile of the predicted lumbar
angle during the bending and lifting phases, when compared to the
experimental range (green line in Fig. 3c). We speculate that these
differences could be due to an underestimation of muscle damping
in the model, and/or, due to the time-constants used in the activa-
tion dynamics not fitting the subjects very well. To improve the fit
of the lumbar angle profiles, it may be interesting to treat the
damping parameter and activation time constant as free parame-
ters of an optimization problem.

The peak net hip torques in the model were higher than those in
the experimental range (Fig. 3d). The speed of the motion can have
a strong influence on the peak joint torques. Our model simula-
tions typically completed the motion slightly faster than the aver-
age observed across subjects, and this was likely the cause for the
higher torques. A solution could be to include additional terms in
the cost function that penalize fast motions. Another difference
between model and experimental results, was found in the torques
about the knee joint Fig. 3e. While the peak torque at the knee
matched the experimental range, the torque profile during the lift-
ing phase was underestimated. It is possible that the suggested
changes in muscle damping, activation time-constants and penal-
ization of fast motions, may also improve the profile of knee
torques.

The changes in the model’s motion characteristics as a function
of flexibility provided some interesting insights into possible lifting
strategies. The stiff-lifter had the highest knee flexion and hip
e of hip and lumbar flexibility on lifting motions using optimal control. J.
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Fig. 5. Comparison of model pose at start of lifting phase. (a) Stiff vs. average-lifter (b) Flexible vs. average-lifter. In both panels, the average-lifter is colored in gray in the
background.

Table 4
Comparison of torque and force characteristics for the stiff, average and flexible-
lifters. Positive net torques indicate extension torques at the hip and lumbar joints.

Stiff-Lifter Average-
Lifter

Flexible-
Lifter

Norm. Lumbar MTG Passive
Extension Torque

15:0% 14:7% 14:5%

Norm. Hamstring Muscle
Passive Force

24:3% 17:7% 6:9%

Peak Net Hip Joint Torque 216.2 Nm 226.2Nm 250.0Nm
Peak Net Lumbar Joint Torque 198.9 Nm 198.9 Nm 203.0 Nm

Cumulative Lower Back
Load (CLBL)

185.7 Nm
s

189.8 Nm s 184.5 Nm s

Ratio Peak Lumbar/Hip Angle 0.39 0.60 0.87
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flexion, thus allowing the hamstring muscle to relax, while having
the lowest lumbar flexion. In comparison the average and flexible-
lifters used less hip and knee flexion and more lumbar flexion.
Studies have reported similar increases in lumbar flexion with
increased flexibility of the hamstring muscle due to stretching
exercise (Kang et al., 2013), and due to repeated lifts that increase
flexibility (Dolan and Adams, 1998). Our simulations suggest that
the different contributions of passive forces for the three lifters
played a major role in the coordination of the limbs during lifting
(Fig. 4). The additional passive components with increasing model
stiffness, and the associated penalty in the OCP were the likely rea-
son behind the differences in lifting styles. Interestingly, the mag-
nitudes of the normalized passive forces/torques were similar
across models for the lumbar back but not for the hamstring mus-
cle. It is however unclear if this trend extends to real world lifting,
as it may also be possible that a person is more tolerant of passive
forces in the hamstring rather than at the lumbar back (or vice
versa), in which case the cost function used to simulate that per-
son’s lifting style would have to be appropriately weighted. Addi-
tionally, our cost function formulation equally weights the active
and passive muscle components, as well as the relative weighting
between MTGs. It is possible that these weights vary between
joints, active and passive components and additionally between
individuals and tasks. Deducing subject-specific and task-specific
Please cite this article in press as: Sreenivasa, M., et al. Predicting the influenc
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weights is an important and difficult problem. A possible solution
here could be the use of inverse optimal control (Mombaur, 2016;
Clever et al., 2016) that can be used to identify specific optimiza-
tion criteria from recorded experimental data.

The plausibility of the predicted pattern was supported by
results from studies on gender based differences in lifting tech-
nique. Lumbar flexion angle in men has been found to be larger
than that of women (Sullivan et al., 1994). Thomas et al. concluded
that ROM and lifting technique may be contributing factors
towards observed differences between the motion kinematics of
male and female subjects (Thomas et al., 1998). They also reported
that men flex equally at the hip and spine, whereas women use
minimal spine flexion. In our simulations, we observed a similar
trend as (Thomas et al., 1998), with the ratio of peak lumbar/hip
angle increasing with model flexibility.

The strong influence of model stiffness on optimal lifting
motions raises some interesting perspectives towards the design
of assistive devices (exoskeletons) such as the Laevo V2 (Laevo
NL) and backX (US Bionics). Exoskeletons that provide lifting assis-
tance using passive spring-like elements work in parallel with the
body and can change the effective stiffness at the hip and lumbar
joints. Our findings suggest that this could in turn result in changes
in the motion, the passive muscle forces/joint torques, as well as
the cumulative lower back load. These changes have implications
for the design of the exoskeleton from a user-safety point of view,
and as well, for predicting how effective the exoskeleton would be
at reducing overall effort. In order to maximize assistance while
minimizing the change from a person’s natural motion, it may be
necessary to make a careful choice of exoskeleton hip and lumbar
spring stiffness and to take into account the variation in flexibility
between users.

The model used in this study was relatively simple and did not
contain more detailed aspects that affect joint loading such as mul-
tijoint equilibrium and translational DOF in the spine (Dreischarf
et al., 2016). The trade-off here was to have a computationally
tractable problem that simulates motion of the whole body, includ-
ing the lower limbs, arms, and as well the interaction with the
environment (ground reaction forces and hand-box forces). Addi-
tionally, the segment lengths, masses, inertias etc were built by
e of hip and lumbar flexibility on lifting motions using optimal control. J.
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scaling from average properties reported in literature (e.g. (de Leva,
1996)) which may not be close to the average of the subject popu-
lations used for comparison. We also note that in this study we
have only varied some of the aspects that could potentially con-
tribute towards a person’s lifting technique. Additional factors
such as relative muscle strength, anatomical differences and
task-specific requirements may play just as important a role in
deciding motion characteristics. In order to establish the validity
of our simulation results we additionally need to compare to sim-
ilarly grouped populations of stiff, average and flexible persons (for
example in a manner similar to the study design followed by
Gajdosik et al. (1994)).
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