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Cannabis is a widely used psychoactive substance, and its use 
is associated with various adverse mental health outcomes, 
including psychosis and schizophrenia1–3. Successful preven-

tion and intervention efforts aimed at reducing cannabis use, mis-
use and related outcomes require a better understanding of why 
some people use cannabis whereas others do not. Lifetime cannabis 
use, defined as any use of cannabis during lifetime, is a heritable 
trait: a meta-analysis of twin studies4 estimated the heritability to 
be approximately 45%. Twin studies have shown there is substantial 
overlap in the genetic factors influencing cannabis use and those 
underlying problematic cannabis use (abuse or dependence)5,6.

Several GWASs have tried to identify genetic variants underlying 
cannabis use phenotypes7–11. Recently, Demontis et al.11 performed 
the largest GWAS for cannabis use disorder to date, with a discov-
ery sample of 2,387 cases and almost 50,000 controls, plus a rep-
lication sample of 5,501 cases and ~300,000 controls. They found 
one genome-wide significant risk locus for cannabis use disorder, a 

single nucleotide polymorphism (SNP) that is a strong marker for 
CHRNA2 expression. Their follow-up analyses showed that canna-
bis-dependent individuals had a decreased expression of this gene 
in the cerebellum, as well as in other brain regions.

The largest GWAS of lifetime cannabis use to date is from the 
International Cannabis Consortium (ICC) and is based on a sample 
size of 32,330 individuals in the discovery sample along with 5,627 
individuals in the replication sample10. Although no individual 
SNPs reached genome-wide significance, gene-based tests identi-
fied four genes significantly associated with lifetime cannabis use: 
NCAM1, CADM2, SCOC and KCNT2. Notably, NCAM1 has previ-
ously been linked to other substance use phenotypes (for example, 
refs. 12,13), and following publication of the study, CADM2 was found 
to be associated with alcohol consumption14, personality15, repro-
ductive success and risk-taking behavior16 in other GWASs. These 
results indicate that CADM2 may play a role in a broader personal-
ity profile of sensation-seeking and risk-taking behavior in general. 
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Cannabis use is a heritable trait that has been associated with adverse mental health outcomes. In the largest genome-wide 
association study (GWAS) for lifetime cannabis use to date (N = 184,765), we identified eight genome-wide significant inde-
pendent single nucleotide polymorphisms in six regions. All measured genetic variants combined explained 11% of the variance. 
Gene-based tests revealed 35 significant genes in 16 regions, and S-PrediXcan analyses showed that 21 genes had different 
expression levels for cannabis users versus nonusers. The strongest finding across the different analyses was CADM2, which 
has been associated with substance use and risk-taking. Significant genetic correlations were found with 14 of 25 tested sub-
stance use and mental health–related traits, including smoking, alcohol use, schizophrenia and risk-taking. Mendelian ran-
domization analysis showed evidence for a causal positive influence of schizophrenia risk on cannabis use. Overall, our study 
provides new insights into the etiology of cannabis use and its relation with mental health.
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Here we present a GWAS of lifetime cannabis use on a substantially 
larger sample, providing more power to identify genetic variants.

As mentioned above, cannabis use has been linked to a variety of 
mental health outcomes, including substance abuse and dependence 
and psychiatric disorders3. In particular, the relationship between 
cannabis use and schizophrenia has been the subject of intensive 
research and debate. It has long been established that the prevalence 
of cannabis use is higher in patients with schizophrenia17,18. A sub-
stantial body of evidence supports the hypothesis that cannabis use 
increases the risk for developing psychoses and schizophrenia19, but 
other hypotheses (namely, schizophrenia increases the use of canna-
bis, or the association is due to (genetic) pleiotropy) have also been 
posed. Previous studies have shown that genetic risk factors for can-
nabis use and schizophrenia are positively correlated20,21. However, a 
genetic correlation does not provide insight in the direction of cau-
sation. With Mendelian randomization it is possible to examine the 
causality of the association between cannabis use and schizophrenia, 
and recently it has become possible to apply this method using sum-
mary statistics from GWASs22. Previous Mendelian randomization 
studies have investigated the link between lifetime cannabis use and 
schizophrenia risk, but findings were inconsistent. Vaucher et al.23 
tested for causal effects from cannabis use to schizophrenia and 
found evidence for a causal influence of cannabis use on schizophre-
nia risk. Gage et al.24 tested bidirectional effects and found weak evi-
dence for a causal effect of cannabis use on schizophrenia risk and  
much stronger evidence for a causal effect in the other direction. The  
results from our GWAS provide more power to examine the causal 
association between cannabis use and liability to schizophrenia.

Here we report the largest GWAS yet for lifetime cannabis use. 
We increased the sample size substantially by meta-analyzing GWAS 
results from the ICC study (N = 35,297), along with new data from 
the UK Biobank (N = 126,785) and 23andMe (N = 22,683). The com-
bined sample size of this study was N = 184,765, five times as large 
as the previous largest GWAS on lifetime cannabis use. We tested 
the association of millions of SNPs with lifetime cannabis use and 
estimated the heritability of lifetime cannabis use based on all SNPs.  
Tests of association for individual genetic variants were comple-
mented with gene-based tests of association and S-PrediXcan analysis.  
The latter was used to identify genes with differential expression 
levels in cannabis users versus nonusers. We further estimated the 
genetic correlation of lifetime cannabis use with other traits, includ-
ing use of other substances and mental health traits, such as schizo-
phrenia. Lastly, we performed bidirectional two-sample Mendelian 
randomization analysis to examine whether there was evidence for 
a causal relationship from cannabis use to schizophrenia risk, and 
from liability to schizophrenia to cannabis use.

Results
Genome-wide association meta-analysis. The meta-analysis 
resulted in eight independent genome-wide significant SNP asso-
ciations (linkage disequilibrium (LD) R2 < 0.1, window size 250 kb)  
on chromosomes 3, 7, 8, 11, 16 and 17 (Fig. 1, Table 1 and 
Supplementary Table 1). The top SNP and two other independent 
associations were located in CADM2 on chromosome 3 (rs2875907, 
P = 9.38 × 10–17; rs1448602, P = 6.55 × 10–11; rs7651996, P = 2.37 × 10–9).  
Other hits were located in ZNF704, SDK1, NCAM1, RABEP2 or 
ATP2A1 and SMG6 (Fig. 2). All SNPs combined explained 11% 
(hSNP

2  = 0.11, s.e. = 0.01) of the individual differences in lifetime 
cannabis use. Supplementary Figs. 1–3 and Supplementary Table 2 
provide information on results of the individual GWASs (ICC, UK 
Biobank and 23andme).

Gene-based test of association and expression. Gene-based tests 
of associations in MAGMA25 identified 35 genes genome-wide 
significantly associated with lifetime cannabis use (Fig. 3, Table 2,  
Supplementary Fig. 4 and Supplementary Table 3). These genes 

were located in 5 regions that were already identified in the  
SNP-based analysis (including those containing CADM2 and 
NCAM1) and in 11 other regions (Supplementary Fig. 5).

S-PrediXcan analysis26 revealed 133 Bonferroni-corrected sig-
nificant associations across tissues targeting 21 unique genes 
(Supplementary Tables 4 and 5). Eight genes were also signifi
cant in the gene-based test, whereas 13 were newly identified.  
For genes identified in multiple tissues, directions of effects were 
largely consistent across tissues (Supplementary Fig. 6). Again, the 
most significant finding was CADM2; genetic variants associated 
with increased liability to use cannabis are predicted to upregulate 
expression levels of CADM2 in eight nonbrain tissues, including 
whole blood (z = 5.88, P = 4.17 × 10–9). Of note, although CADM2 is 
expressed more widely in brain than in other tissues (Supplementary 
Fig. 7), the top SNP, rs2875907, regulates the expression of CADM2 
only in nonbrain tissues (Supplementary Fig. 8). Exploration of 
S-PrediXcan results in UK Biobank data (https://imlab.shinyapps. 
io/gene2pheno_ukb_neale/) showed that CADM2 expression is  
significantly associated with multiple traits, including increased  
risk-taking, body mass index and reduced feelings of anxiety. Like 
the SNP- and gene-based tests of association, the S-PrediXcan 
analysis detected a strong signal in a high-LD region at 16p11.2. 
Supplementary Table 3 provides an overview of all genes that were 
identified in the gene-based test of association and the S-PrediXcan 
analyses, along with information about the gene product and previ-
ously identified associations with the gene.

Genetic correlations with other traits. Using our GWAS results 
and those of other GWASs, we estimated the genetic correlation of 
lifetime cannabis use with 25 traits of interest, including substance 
use, personality and mental health phenotypes. Fourteen traits were 
significantly genetically correlated with lifetime cannabis use after 
correction for multiple testing (Fig. 4 and Supplementary Table 6). 
Positive genetic correlations were found with substance use pheno-
types, including smoking and alcohol use and dependence, as well 
as with mental health phenotypes, including ADHD and schizo-
phrenia. Furthermore, positive genetic correlations were found 
with risk-taking behavior, openness to experience, and educational 
attainment, as well as a negative correlation with conscientiousness.

Causal association between liability to schizophrenia and canna-
bis use: two-sample Mendelian randomization. A positive genetic 
correlation was found between genetic risk factors for cannabis 
use and schizophrenia (rg = 0.25, s.e. = 0.3, P < 0.001). To examine 
whether there was evidence for a causal effect of cannabis use on 
schizophrenia risk and vice versa, we performed bidirectional two-
sample Mendelian randomization analysis22. In our main analysis, 
inverse-variance-weighted (IVW) regression analysis, we found 
some weak (nonsignificant) evidence for a causal influence of life-
time cannabis use on schizophrenia risk, but only for the genetic 
instrument containing SNPs associated with cannabis use under 
the P-value threshold 1 × 10–5. The IVW regression odds ratio was 
1.10 (95% confidence interval (CI) 0.99–1.21, P = 0.074). We found 
stronger evidence for a causal positive influence of schizophrenia 
risk on lifetime cannabis use, the IVW regression odds ratio being 
1.16 (95% CI 1.06–1.27, P = 0.001; see Table 3, Supplementary  
Figs. 9 and 10, and Supplementary Tables 7–9).

To determine the robustness of these findings, we performed 
four sensitivity analyses that rely on distinct assumptions regarding 
instrument validity. The sensitivity analyses showed a consistent pat-
tern supporting weak evidence for a causal effect of cannabis use on 
schizophrenia risk and strong evidence for a causal effect of liabil-
ity to schizophrenia on cannabis use (Table 3). As an exception, the 
evidence provided by MR-Egger SIMEX (Mendelian randomization 
Egger simulation extrapolation) for a causal relation from liability to 
schizophrenia risk to cannabis use was very weak. However, since the 
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Egger intercept was not significantly different from 0 (Supplementary 
Table 10), indicating no pleiotropic effects for the SNPs included in 
the genetic instruments27, it is likely that this method simply lacked 
power to be able to reject the null hypothesis of no causal effect28.

Discussion
SNP- and gene-based tests revealed several SNPs and genes strongly 
associated with lifetime cannabis use. Overall, 11% of the varia-
tion in the phenotype was explained by the combined effect of  

SNPs, which amounts to approximately 25% of twin-based herita-
bility estimates4. CADM2 and NCAM1, both identified in the origi-
nal ICC meta-analysis10, were among the strongest findings in the 
SNP-based and gene-based tests. The CADM2 gene (cell adhesion 
molecule 2) is a synaptic cell adhesion molecule and is part of the 
immunoglobulin superfamily. Notably, CADM2 has previously been 
identified in GWASs of other behavioral phenotypes, including alco-
hol consumption14, processing speed29, and number of offspring and 
risk-taking behavior16. A large-scale phenome-wide scan showed that 
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Fig. 1 | Q–Q and Manhattan plot of the GWAS meta-analysis. a, Q–Q plot of the distribution of the –log 10(P) observed for the SNP associations with lifetime 
cannabis use against those expected under the null hypothesis. Expected –log 10(P) values under the null hypothesis are indicated by the red line. Genomic 
inflation is indicated by λ in the plot. There was no evidence for population stratification (LD score regression b0 = 1.00, s.e. = 0.007). b, Manhattan plot 
for the SNP-based GWAS meta-analysis. Results are based on N = 184,765 individuals and NSNPs = 11,733,371 SNPs. The SNP with the lowest P-value for 
each independent (R2 < 0.1, window size 250 kb) genome-wide significant locus is annotated by a red circle with rs-number. The red line represents the 
conventional genome-wide significance threshold of P < 5 × 10–8. The statistical test comprised linear regression; significance was tested two-sided.

Table 1 | Association results of eight independent SNPs that are significantly associated with lifetime cannabis use

SNP Chr Gene BP A1 A2 Freq A1 N β SE P-value Direction

rs2875907 3p12.1 CADM2 85,518,580 A G 0.352 181,675 0.070 0.009 9.38 × 10–17 +++
rs1448602 3p12.1 CADM2 85,780,454 A G 0.756 184,765 –0.062 0.010 6.55 × 10–11 – – –

rs7651996 3p12.1 CADM2 85,057,349 T G 0.477 184,765 0.049 0.008 2.37 × 10–9 +++
rs10085617 7p22.2 SDK1 3,634,711 A T 0.416 184,765 0.046 0.008 2.93 × 10–8 +++
rs9773390 8q21.13 ZNF704 81,565,692 T C 0.933 44,595 –0.171 0.029 5.66 × 10–9 – –?

rs9919557 11q23.2 NCAM1 112,877,408 T C 0.614 180,428 –0.055 0.009 9.94 × 10–11 – – –

rs10499 16p11.2 RABEP2, ATP2A1 28,915,527 A G 0.651 179,767 0.053 0.009 1.13 × 10–9 +++

rs17761723 17p13.3 SMG6 2,107,090 T C 0.346 184,765 0.047 0.009 3.24 × 10–8 +++

Independent hits were defined as R2 < 0.01, window size 250 kb. The threshold was set at P < 5 × 10–8 (conventional genome-wide significant threshold; significance was tested two-sided). Table gives 
chromosomal region (Chr), gene the SNP is located in or the nearest gene (within 500 kb), base pair (BP) location SNP on Hg19, allele 1 (A1), allele 2 (A2), frequency of allele 1 (Freq A1), number of individuals 
for which variant was included (N), β coefficient of the effect allele A1, standard error (SE) of the β coefficient, and direction for each sample: allele A1 increases (+) or decreases (–) liability for cannabis use, 
or sample did not contribute to this SNP (?). Order of samples within the Direction column, from left to right: ICC, 23andMe, UK Biobank. Independent SNPs were selected as SNPs with linkage disequilibrium 
R2 < 0.1 using a window size of 250 kb. SNP rs9773390 was not present in the UK Biobank sample and its effect is rather isolated (see Figs. 1b and 2); it might not represent a robust association.
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CADM2 was associated with various personality traits, with the risk 
variant being associated with reduced anxiety, neuroticism and con-
scientiousness and with increased risk-taking15. Taken together, these 
findings suggest that risk variants in CADM2 are associated with a 
broad profile of a risk-taking, optimistic and care-free personality15. 
Cannabis use has previously been associated with related personal-
ity traits, including high levels of impulsivity and novelty seeking30,31.

NCAM1 (neural cell adhesion molecule 1) also encodes a cell 
adhesion protein and is member of the immunoglobulin superfam-
ily. The encoded protein is involved in cell–matrix interactions and 
cell differentiation during development32. NCAM1 is located in the 
NCAM1–TTC12–ANKK1–DRD2 gene cluster, which is related to 
neurogenesis and dopaminergic neurotransmission. This gene clus-
ter has been associated with smoking, alcohol use and illicit drug 
use12,33–35 and has been implicated in psychiatric disorders, such as 
schizophrenia and mood disorders36,37.

A putatively novel finding comprises the 16p11.2 region 
(identified in the SNP and gene-based tests of association and in 
S-PrediXcan analysis). Deletions and duplications in this region 
have previously been reported to be associated with autism and 
schizophrenia38,39, while a common 16p11.2 inversion underlies 
susceptibility to asthma and obesity40. The inversion explains a 
substantial proportion of variability in expression of multiple 
genes in this region, including TUFM and SH2B140. Given the 
high LD in this region and high levels of coexpression of the dif-
ferentially expressed genes, follow-up studies will be needed to 
determine which genes are functionally driving the association 
with cannabis use.

Several of the top genes from the gene-based and/or S-PrediXcan 
analyses have previously shown an association with other traits, 
including schizophrenia (for example, TUFM, NCAM1), body  
mass index or obesity (for example, SH2B1, APOBR, ATXN2L), 
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alcohol use (for example, ALDH2), intelligence and cognitive per-
formance (CNNM2, CCDC101) and externalizing and impulsive 
phenotypes (for example, CADM2; see Supplementary Table 3). 
Also of note is the association with HTR1A; this gene has been impli-
cated in alcohol and nicotine codependence41, body mass index42, 
psychiatric disorders43,44 and antipsychotic pharmacological treat-
ment response45. At the phenotypic level, associations between can-
nabis use and psychiatric disorders2 and use of other substances30 are  
well established.

There are two previous studies that found significant SNP asso-
ciations for a cannabis use phenotype. Sherva et al.46 found three 
SNPs significantly associated with cannabis dependence. In our 
results only one of the SNPs was available (rs77378271) and was not 
significantly associated with lifetime cannabis use (P = 0.144). The 
other two SNPs (rs143244591 and rs146091982) or their high-LD 
proxies were not available in our data. The SNPs rs77378271 and 
rs146091982 were located in genes CSDM1 and SLC35G1, respec-
tively, and neither of those were significant in our gene-based results 
(P = 0.96 and P = 0.49, respectively). Demontis et al.11 found one 
independent significant signal on chromosome 8 to be associated  
with cannabis dependence (with top SNP rs56372821, a strong 
expression quantitative trait locus (eQTL) for CHRNA2). Neither 
the SNP (P = 0.55) nor the gene (P = 0.52) was significantly associ-
ated with lifetime cannabis use in our study. The protein encoded 
by CHRNA2 is a subunit of certain nicotinic acetylcholine receptors, 
and Demontis et al.11 offer three potential biological explanations 
for the link between cannabis intake and CHRNA2. However, it is 
possible that while CHRNA2 is associated with cannabis depen-
dence, it does not act in the initial stages of cannabis use, which are 

more related to personality and risk-taking behaviors and less to the 
actual effects of cannabis intake on the brain.

The genetic correlation analyses revealed genetic overlap of can-
nabis use with a broad range of traits, including positive associations 
with substance use and mental health phenotypes. Furthermore, 
positive genetic correlations were found with risk-taking behavior, 
openness to experience, and educational attainment, as well as a 
negative correlation with conscientiousness. The range of correla-
tions suggests that genetic liability to lifetime cannabis use should 
be viewed in a broader context of personality and mental health 
traits. Specifically, the substantial genetic correlations with risk-
taking behavior and openness to experience may indicate that 
liability to start using cannabis is an indication of one’s personal-
ity. The positive genetic correlation between lifetime cannabis use 
and educational attainment was unexpected and in contrast to a 
previous study that found a negative genetic correlation between 
cannabis dependence and educational attainment11. We therefore 
investigated phenotypic associations of cannabis use with house-
hold income and fluid intelligence using UK Biobank data. Within 
Caucasian participants of UK Biobank (N = 438,870), categorically 
rated household income was higher among lifetime cannabis users 
compared to nonusers (χ2(4) = 2,243, P = 2.2 × 10–16). Cannabis 
users also scored higher on fluid intelligence (t(50,856) = 25.13, 
P < 2 × 10–16). These findings are in agreement with observations 
by Patrick et al.47, who showed that cannabis use is associated with 
higher childhood family social economic status in a survey of US 
families. Possibly, environments more often experienced by those 
with backgrounds of higher social economic status, such as univer-
sities, increase accessibility to cannabis, explaining how a positive 
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Table 2 | Genes significantly associated with lifetime cannabis use, as identified in the MAGMA and/or S-PrediXcan analyses

Locus Top genes BP start BP stop SNPs z P-value

1p36.31 KLHL21 6,640,784 6,672,958 96 4.81 7.65 × 10–7

PHF13 6,663,756 6,694,093 84 4.61 1.99 × 10–6

2p12 LRRTM4 76,969,849 77,754,502 3,621 5.19 1.03 × 10–7

3p12.1 CADM2 85,003,133 86,128,579 4,287 8.96 1.59 × 10–19

4p16.3 MSANTD1 3,240,766 3,283,465 231 4.59 2.22 × 10–6

5q12.3 HTR1A 63,245,875 63,268,119 64 4.57 2.41 × 10–6

6p12.1 BEND6 56,814,773 56,897,450 252 5.22 2.60 × 10–8

KIAA1586 56,906,343 56,925,023 58 5.09 1.75 × 10–7

RAB23 57,046,790 57,092,112 86 5.86 2.32 × 10–9

6q21 REV3L 111,610,234 111,814,421 539 4.61 1.99 × 10–6

6q25.3 ARID1B 157,093,980 157,536,913 1,344 5.59 1.15 × 10–8

8q24.3 ADGRB1 143,535,377 143,636,369 275 4.71 1.23 × 10–6

10q24.32–33 NEURL 103,493,890 103,592,552 17 5.22 1.83 × 10–7

BORCS7 104,603,967 104,634,718 87 4.72 1.19 × 10–6

AS3MT 104,624,183 104,666,656 177 5.54 1.53 × 10–8

CNNM2 104,673,075 104,843,344 549 4.80 8.02 × 10–7

NT5C2 104,842,774 104,958,063 389 4.81 7.64 × 10–7

11q23.2 NCAM1 112,826,969 113,154,158 1,263 6.21 2.63 × 10–10

12q24.12 BRAP 112,069,950 112,133,790 97 4.87 5.48 × 10–7

ACAD10 112,118,857 112,199,911 141 5.22 8.96 × 10–8

ALDH2 112,199,691 112,252,789 112 4.96 3.61 × 10–7

MAPKAPK5 112,275,032 112,336,228 195 4.87 5.58 × 10–7

TMEM116 112,364,086 112,456,023 222 4.94 3.96 × 10–7

16p11.2–16q12.1 SBK1 28,303,840 28,335,170 23 5.47 4.52 × 10–8

NPIPB7 28,467,693 28,481,868 10 5.44 5.46 × 10–8

CLN3 28,483,600 28,510,897 62 5.84 2.56 × 10–9

APOBR 28,500,970 28,515,291 49 5.66 7.56 × 10–9

IL27 28,505,683 28,523,155 57 5.66 7.48 × 10–9

CCDC101 28,560,249 28,608,111 181 4.90 4.87 × 10–7

SULT1A2 28,603,264 28,608,391 25 5.40 6.66 × 10–8

SULT1A1 28,605,196 28,623,625 51 5.30 1.14 × 10–7

CDC37P1 28,700,176 28,701,611 31 5.26 1.42 × 10–7

EIF3C 28,722,782 28,747,053 14 5.37 8.08 × 10–8

EIF3CL 28,722,785 28,747,053 23 5.47 4.55 × 10–8

NPIPB9 28,742,728 28,772,850 8 5.41 6.29 × 10–8

ATXN2L 28,829,369 28,853,558 89 5.85 2.50 × 10–9

TUFM 28,848,732 28,862,729 55 5.83 2.83 × 10–9

SH2B1 28,867,939 28,890,534 71 5.72 5.46 × 10–9

ATP2A1 28,884,192 28,920,830 89 5.97 1.20 × 10–9

NFATC2IP 28,962,318 28,977,767 8 5.35 8.82 × 10–8

RABEP2 28,910,742 28,942,339 71 5.43 2.84 × 10–8

17p13.3 SRR 2,202,244 2,233,553 121 5.33 5.03 × 10–8

TSR1 2,220,972 2,245,678 90 5.59 1.12 × 10–8

18q11.2 C18orf8 21,078,434 21,118,311 132 5.30 5.65 × 10–8

NPC1 21,081,148 21,171,581 257 5.30 5.87 × 10–8

For the gene-based test, the P-value was set at P < 2.74 × 10–6, Bonferroni corrected threshold of P < 0.05 adjusted for 18,293 tests. For the S-PrediXcan analysis, P < 1.92 × 10–7, Bonferroni corrected 
threshold of P < 0.05 adjusted for 259,825 tests. The MAGMA statistical test is based on multiple regression. Significance was tested two-sided in both analyses. Genes that were significant in both 
analyses are bolded; the others were significant in the S-PrediXcan analysis alone. Table gives location in base pairs (hg19) at beginning and end of gene (BP start and BP stop, respectively), number 
of SNPs included in the gene, and test statistic for the test of association (z). The CDC37P1 gene was significant in two different tissues; information presented here is based on the association with the 
smallest P-value. For full results, see Supplementary Table 4.
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correlation between lifetime cannabis use and educational attain-
ment in our study could arise.

We also found a significant genetic correlation between canna-
bis use and schizophrenia (rg = 0.25), which is in line with previous 
findings20,21, indicating that genetic risk factors for cannabis use and 
schizophrenia are positively correlated. As for the causal direction 
of this correlation, we found weak evidence for a causal link from 
cannabis use to schizophrenia risk and much stronger evidence for a 
causal link from liability to schizophrenia to cannabis use. This sug-
gests that individuals with a higher liability to schizophrenia have a 
higher risk to start using cannabis. These results are in contrast with 
results from a Mendelian randomization study by Vaucher et al.23, 
who found strong evidence for a causal effect from cannabis use to 
schizophrenia risk (causality in the other direction was not tested). 

However, our findings are in line with a Mendelian randomization 
study by Gage et al.24, who used genetic instruments similar to ours 
and also found weak evidence for a causal effect of cannabis use to 
schizophrenia risk and much stronger evidence for a causal effect 
in the other direction. Our findings may indicate that individuals at 
risk for developing schizophrenia experience prodromal symptoms 
or negative affect that make them more likely to start using cannabis 
to cope or self-medicate48. The lack of strong evidence of a causal 
influence of cannabis use on schizophrenia risk may be due to the 
lower power of the instrumental variables. The instrumental vari-
able based on schizophrenia SNPs explained 3.38% of variance in 
liability to schizophrenia. For cannabis use, the genetic instruments 
explained 1.12% and 0.15% of the variance in cannabis use for SNPs 
included with P < 1 × 10–5 and P < 5 × 10–8, respectively.

The results of our study should be interpreted in view of its 
strength and limitations. Important strengths of this study include 
the analyses of the largest population sample to date, which has 
led to a substantial increase in power to identify genetic variants 
associated with lifetime cannabis use. The association analyses were 
complemented with several follow-up analyses to further investi-
gate the genetic basis of cannabis use and the extent to which the 
genetic etiology of cannabis use overlaps with that of other complex 
phenotypes. Strong genetic correlations across a wide spectrum of 
traits are observed, confirming that lifetime cannabis use is a rel-
evant measure of an individual’s vulnerability.

Our study also has several limitations. First, lifetime cannabis 
use was analyzed as a dichotomous measure combining experimen-
tal and regular users in a single group. Additionally, the different 
samples varied substantially regarding the age of the participants, 
the prevalence of cannabis use, and the country’s policies regard-
ing cannabis use. All these factors may introduce heterogeneity 
that may reduce the power to detect genetic associations. Second, 
power of some analyses may have been limited. For example, the 
Mendelian randomization analysis from cannabis to schizophrenia 
risk was based on an instrument of only five SNPs, and the sum-
mary statistics of some traits used for the genetic correlation analy-
ses in LD-score regression (for example, cannabis dependence) were 
based on a small sample size. Finally, some regions identified in 
the SNP-based analyses did not appear in the gene-based analyses.  
In particular, inspection of the region around rs9773390 (in ZNF704)  
showed that the top SNP in this region was isolated and that the SNP 
was only available in two of the three datasets (not in UK Biobank). 
SNPs in LD with the top SNP that were included in all three datasets 
were not genome-wide significant. Thus, this result may not repre-
sent a robust association.

In summary, our GWAS of lifetime cannabis use, which is the 
largest to date, revealed significant SNP and gene associations in 16 
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Fig. 4 | Genetic overlap between lifetime cannabis use and other 
phenotypes. Blue dots represent point estimates of the genetic correlation, 
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indicate significant associations after correction for multiple testing 
(two-sided P < 0.002, Bonferroni corrected threshold of P < 0.05 adjusted 
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Table 3 | Results of the bidirectional two-sample Mendelian randomization analysis between lifetime cannabis use and schizophrenia 
risk, including results of four sensitivity analyses

Cannabis–schizophrenia 
(P < 5 × 10–8, 5 SNPs)

Cannabis–schizophrenia 
(P < 1 × 10–5, 69 SNPsa)

Schizophrenia–cannabis 
(P < 5 × 10–8, 109 SNPsb)

B SE(B) OR P-value B SE(B) OR P-value B SE(B) OR P-value

IVW 0.039 0.158 1.04 0.806 0.091 0.051 1.10 0.074 0.151 0.046 1.16 0.001
Weighted median –0.048 0.105 0.95 0.649 0.069 0.049 1.07 0.156 0.163 0.049 1.17 0.001
MR-Egger SIMEX –0.044 0.190 0.96 0.827 0.106 0.110 1.11 0.340 0.071 0.293 1.07 0.810

Weighted mode –0.084 0.125 0.92 0.536 0.016 0.071 1.02 0.823 0.315 0.178 1.37 0.080

GSMR after HEIDI filtering – – – – 0.192 0.080 1.21 0.017 0.237 0.038 1.27 5.36 × 10–10

Significant results (P < 0.05, tested two-sided) are shown in bold. IVW, inverse-variance-weighted regression analysis; MR-Egger SIMEX, Mendelian randomization Egger simulation extrapolation; 
GSMR, generalized summary-data-based Mendelian randomization (HEIDI outlier analysis detects and eliminates from the analysis instruments that show significant pleiotropic effects on both risk 
factor and disease); B, risk coefficient representing the change in outcome for a one-unit increase in the exposure variable; SE(B), standard error of the B coefficient; OR, odds ratios representing the odds 
of schizophrenia for lifetime cannabis users versus nonusers (when cannabis is the exposure) or the odds of lifetime cannabis use for those with a schizophrenia diagnosis versus those without (when 
schizophrenia is the exposure). aNumber of SNPs in instrument was 74 for the GSMR analysis. bNumber of SNPs in instrument was 102 for the GSMR analysis.
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regions, 14 of which have not been previously implicated in canna-
bis use. The most promising candidates for future functional studies 
are CADM2, NCAM1 and multiple genes located at 16p11.2. Our 
findings further indicated a causal influence of liability to schizo-
phrenia on cannabis use and substantial genetic overlap between 
cannabis use mental-health-related traits, personality traits and use 
of other substances, including smoking and alcohol use, schizo-
phrenia, ADHD and risk-taking.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41593-018-0206-1.
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Methods
Samples. Data from three sources were obtained: ICC, 23andMe and UK Biobank 
(total N = 184,765). We used existing GWAS summary statistics from the ICC, 
based on data from 35,297 individuals of European ancestry from 16 cohorts from 
North America, Europe and Australia10. Details regarding ethical approval and 
informed consents of the ICC cohorts can be found in the original ICC paper10. 
The overall sample included 55.5% females and the age ranged between 16 and 
87 years with a mean of 35.7 years. An average of 42.8% of the individuals had 
used cannabis during their lifetime. The second set of results was derived from 
the personal genetics company 23andMe Inc. Data were available for 22,683 
individuals of European Ancestry who provided informed consent and answered 
surveys online according to a human subjects protocol approved by Ethical & 
Independent Review Services, a private institutional review board. The sample 
included 55.3% females and the age ranged between 18 and 94 years with a mean 
of 54.0 years. Within the sample, 43.2% had used cannabis during their lifetime. 
The third sample was obtained from UK Biobank. Data were available for 126,785 
individuals of European ancestry. The sample included 56.3% females and the age 
ranged between 39 and 72 years with a mean of 55.0 years. Within the sample, 
22.3% had used cannabis during their lifetime. Ethical approval for UK Biobank 
data collection procedures has been provided by the North West Multi-center 
Research Ethics Committee (MREC), the National Information Governance Board 
for Health & Social Care (NIGB) and the Community Health Index Advisory 
Group (CHIAG).

Phenotype and covariates. For all participants, self-report data were available on 
whether the participant had ever used cannabis during their lifetime: yes (1) versus 
no (0). Measurement instruments and phrasing of the questions about lifetime 
cannabis use differed across the samples. For the ICC study this has been described 
for each cohort in the original paper10. As part of their online questionnaire, 
23andMe used the following phrase to examine lifetime cannabis use: “Have you 
ever in your life used the following: Marijuana?” The UK Biobank, as part of an 
online follow-up questionnaire, asked: “Have you taken CANNABIS (marijuana, 
grass, hash, ganja, blow, draw, skunk, weed, spliff, dope), even if it was a long  
time ago?”

Genotyping and imputation. Genotyping was performed on various genotyping 
platforms and standard quality control checks were performed before imputation. 
Genotype data were imputed using the 1000 Genomes phase 1 release reference 
set49 for ICC and 23andMe, and the Haplotype Reference Consortium reference 
set50 for the UK Biobank sample. Information about samples, genotyping, 
imputation and quality control is summarized in Supplementary Tables 11 and 12. 
After quality control, the ICC sample comprised 35,297 individuals and 6,643,927 
SNPs, the 23andMe sample 22,683 individuals and 7,837,888 SNPs, and the UK 
Biobank sample 126,785 individuals and 10,827,718 SNPs.

Statistics. All statistical tests were two-sided and, unless stated otherwise, we 
used the conventional P-value of 0.05 for significance testing. When necessary, 
Bonferroni correction for multiple testing was applied. Randomization and 
blinding procedures do not apply to our study design.

Genome-wide association analyses and meta-analysis. We conducted the GWASs 
in 23andMe and UK Biobank samples separately. Associations between the binary 
phenotype and SNPs were tested using a logistic regression model accounting for 
the effects of sex, age, ancestry and genotype batch (and age2 in the UK Biobank 
sample). The GWAS for UK Biobank was performed in PLINK 1.951 and the GWAS 
for 23andMe using an internally developed pipeline. We then meta-analyzed the 
GWAS results from ICC, 23andMe and UK Biobank. Prior to conducting the 
meta-analysis, additional quality control of the summary statistics of each study 
was conducted in EasyQC52. Because of varying GWAS methods and sample 
characteristics (Supplementary Table 11), slightly different quality control criteria 
were used for the three samples (Supplementary Table 12). All three samples 
were aligned with the Haplotype Reference Consortium panel using the EasyQC 
R-package52, to ensure that rs-numbers and chromosome-basepair positions 
referred to the same variants and to correct for strand effects. Variants were deleted 
if they had a minor allele frequency (MAF) diverging more than 0.15 from that in 
the reference panel.

We applied genomic control to the three GWAS files before meta-analysis. 
Inflation due to stratification was estimated using LD-score regression, which 
can differentiate inflation due to population stratification from that due to 
real signal. The intercept was used to correct the standard errors (SEs) of the 
estimated effect sizes as follows: = ×SE LDSC intercept SEGC

2 . The intercepts 
were b0 = 1.005 (s.e.= 0.007) for ICC, b0 = 1.004 (s.e. = 0.007) for 23andMe and 
b0 = 1.022 (s.e. = 0.008) for UK Biobank. We then performed a fixed effects meta-
analysis based on effect sizes (log odds ratios) and standard errors in METAL53. 
We applied the conventional P-value threshold of 5 × 10–8 as an indication of 
genome-wide significance. The meta-analysis was performed on 11,733,371 SNPs 
that passed quality control. The combined sample size of the meta-analysis was 
184,765 individuals, although the sample size varied per SNP due to differential 
missingness across samples.

Manhattan and Q–Q plots for the GWASs, meta-analysis and gene-based test 
results were created using the R-package qqman54. Regional plots were created 
using LocusZoom55, with varying window size for optimal visualization.

Gene-based test of association. Testing associations on the level of protein-coding 
genes can be more biologically meaningful and is more powerful (lower multiple 
testing burden) than testing solely on the level of SNPs. Gene-based analysis was 
used to test associations for the combined effect of SNPs in protein-coding genes 
taking into account LD between the SNPs and the size of the gene. The analysis 
was conducted in MAGMA (v 1.6)25, which uses the 1000 Genomes reference 
panel (Phase 3, 2012) to control for LD. SNPs were mapped to genes if they were 
located in or within 10 kb of the gene; 5,710,956 SNPs (49%) could be mapped to 
at least one of 18,293 protein-coding genes in the reference panel. The significance 
threshold was set at P < 2.74 × 10–6 (Bonferroni corrected P-value for 18,293 tests).

Identification of genes with differential expression levels between cannabis users and 
nonusers. We used S-PrediXcan to integrate eQTL (expression quantitative trait 
loci) information with our GWAS summary statistics to identify genes whose 
genetically predicted expression levels are associated with cannabis use26. Briefly, 
S-PrediXcan estimates gene expression weights by training a linear prediction 
model in samples with both gene expression and SNP genotype data. The weights 
are then used to predict gene expression from GWAS summary statistics, while 
incorporating the variance and covariance of SNPs from an LD reference panel. 
We used expression weights for 48 tissues from the GTEx Project (V7) and the 
DGN whole blood cohort generated by Gamazon et al.56, and LD information from 
the 1000 Genomes Project Phase 357. These data were processed with β values and 
standard errors from the lifetime cannabis use GWAS meta-analysis to estimate the 
expression–GWAS association statistic. We used a transcriptome-wide significance 
threshold of P < 1.92 × 10–7, which is the Bonferroni corrected threshold when 
adjusting for all tissues and genes (i.e., N = 259,825 gene-based tests in the GTEx 
and DGN reference sets).

We used the GTEx Portal (https://www.gtexportal.org/home/; GTEx Analysis 
Release V7)58 to obtain gene expression levels of CADM2 across tissues. We used 
the same portal to plot a multi-tissue eQTL comparison of the top SNP, rs2875907. 
The multi-tissue eQTL plot shows both the single-tissue eQTL P-value and the 
multi-tissue posterior probability from METASOFT59.

SNP-based heritability analysis. The proportion of variance in liability to cannabis 
use that could be explained by the aggregated effect of the SNPs (hSNPs

2 )  
was estimated using LD-score regression analysis60. The method is based on 
the premise that an estimated SNP effect size includes effects of all SNPs in LD 
with that SNP. A SNP that tags many other SNPs will have a higher probability 
of tagging a causal genetic variant compared to a SNP that tags few other SNPs. 
The LD score estimates the amount of genetic variation tagged by a SNP within a 
specific population. Accordingly, assuming a trait with a polygenic architecture, 
SNPs with a higher LD score have on average stronger effect sizes than SNPs with 
lower LD scores. When regressing the effect size from the association analysis 
against the LD score for each SNP, the slope of the regression line provides an 
estimate of the proportion of variance accounted for by all analyzed SNPs60.  
For this analysis, we included 1,179,898 SNPs that were present in all cohorts  
and the HapMap 3 reference panel. Standard LD scores were used as provided 
by Bulik-Sullivan et al.60 based on the Hapmap 3 reference panel, restricted to 
European populations61.

Genetic correlations with other substances and mental health phenotypes. We used 
cross-trait LD-score regression62 to estimate the genetic correlation between 
lifetime cannabis use and 25 other traits using GWAS summary statistics. The 
genetic covariance is estimated using the slope from the regression of the product 
of z-scores from two GWASs on the LD score. The estimate represents the genetic 
covariation between the two traits based on all polygenic effects captured by SNPs. 
Summary statistics from well-powered GWASs were available for 25 relevant 
substance use and mental health traits, including nicotine, alcohol and caffeine 
use, schizophrenia, depression, bipolar disorder and loneliness (Supplementary 
Table 6). To correct for multiple testing we adopted a Bonferroni corrected P-value 
threshold of significance of 0.002 (0.05/25). LD scores were based on the HapMap 
3 reference panel, restricted to European populations.

Causal association between cannabis use and schizophrenia: two-sample Mendelian 
randomization. We performed two-sample Mendelian randomization analyses 
(MR)22 to examine whether there was evidence for a causal relationship from 
cannabis use to schizophrenia and vice versa. Analyses were performed with 
the R package of database and analytical platform MR-Base63 and with the gsmr 
R package, which implements the GSMR (generalized summary-data-based 
Mendelian randomization) method64.

MR utilizes genetic variants strongly associated with an exposure variable as an 
‘instrument’ to test for causal effects of the exposure on an outcome variable. This 
approach minimizes the risk of spurious findings due to confounding or reverse 
causation present in observational studies, provided that the following assumptions 
are met: (i) the genetic instrument is predictive of the exposure variable, (ii) the 
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genetic instrument is independent of confounding effects, and (iii) the genetic 
instrument is not directly associated with the outcome variable, other than by its 
potential causal effect through the exposure (i.e., there is no directional pleiotropy)65. 
Two-sample MR refers to the application of MR methods to well-powered summary 
association results estimated in non-overlapping sets of individuals22 in order to 
reduce instrument bias toward the exposure–outcome estimate.

Bidirectional causal effects were tested between lifetime cannabis use and 
schizophrenia. We used genetic variants from our cannabis GWAS, as well as those 
from the largest schizophrenia GWAS66, to serve as instruments (gene–exposure 
association). For lifetime cannabis use we used two genetic instruments: (i) an 
instrument including all independent genetic variants that were genome-wide 
significantly associated with lifetime cannabis use (P < 5 × 10–8; 5 SNPs) and (ii) 
an instrument including independent variants with a more lenient significance 
threshold (P < 1 × 10–5; 69 SNPs). For schizophrenia we used one genetic 
instrument, including independent genetic variants that were genome-wide 
significantly associated with schizophrenia (instrument P < 5 × 10–8; 109 SNPs). 
Information on the included SNPs in the genetic instruments is provided in 
Supplementary Table 7.

Genetic variants were pruned (R2 < 0.001) and the remaining genetic variants 
(or proxies (R2 ≥ 0.8), when an instrumental SNP was not available in the other 
GWAS) were then identified in GWAS summary-level data of the outcome variable 
(gene–outcome association). Note that not all independent SNPs identified in the 
exposure dataset have been included in the analyses because not all exposure SNPs 
or their proxies were also available in the outcome dataset and because some SNPs 
were palindromic (see Supplementary Table 7).

Evidence for both a gene–exposure and a gene–outcome association suggests 
a causal effect, provided that the MR assumptions are met. To combine estimates 
from individual genetic variants, we applied inverse-variance-weighted (IVW) 
linear regression67. In addition, four sensitivity analyses more robust to horizontal 
pleiotropy were applied, each relying on distinct assumptions regarding instrument 
validity: weighted median68, MR-Egger SIMEX27, weighted mode69 and generalized 
summary-data-based Mendelian randomization (GSMR)64. These sensitivity 
analyses rely on orthogonal assumptions, making their inclusion important for 
triangulation. The weighted median approach provides a consistent estimate of the 
causal effect even when up to 50% of the weight comes from invalid instruments68. 
MR-Egger regression applies Egger’s test to MR instruments that consist of multiple 
genetic variants27,28. MR-Egger provides a consistent estimate of the causal effect, 
provided that the strength of the genetic instrument (the association between 
SNPs and exposure) does not correlate with the effect the instrument has on 
the outcome (i.e., the InSIDE assumption: instrument strength independent of 
direct effect). This is a weaker assumption than the assumption of no pleiotropy. 
MR-Egger may, however, be biased when the NOME (no measurement error) 
assumption is violated—i.e., the assumption that the SNP–exposure associations 
are known rather than estimated. Violation of NOME can be quantified with 
the I2 statistic, which ranges between 0 and 1. A value below 0.9 indicates a 
considerable risk of bias. This bias can be corrected for with MR-Egger simulation 
extrapolation, SIMEX70. Since I2 ranged between 0.7 and 0.9 for our analyses, we 
report results from MR-Egger SIMEX in Table 3. The weighted mode methods can 
produce an unbiased result, as long as the most common causal effect estimate is a 
consistent estimate of the true causal effect: the zero modal pleiotropy assumption 
(ZEMPA)69. Finally, we performed GSMR, a method that leverages power from 
multiple genetic variants while accounting for LD between these variants64. Because 
GSMR accounts for LD, genetic variants that were included in GSMR instruments 
were pruned at a higher threshold of R2 < 0.05 (instead of R2 < 0.001 for the other 
MR analyses). Zhu et al.64 showed that the gain of power from including SNPs 
in higher LD than 0.05 is limited. GSMR also allows extra filtering for SNPs that 
are suspected to have pleiotropic effects on both the exposure and the outcome 
(HEIDI filtering).

To calculate variance explained (R2) by the instrument, first we selected a 
single SNP to obtain an estimate of the phenotypic variance, var(y). Assuming 
effect sizes are normally distributed, we used the quantile function of the 
Student t-distribution to transform the P-value of the SNP association into an 
estimate of t, ̂t . The number of degrees of freedom and N were based on the 
effective sample size, +4 / (1 / cases 1 / controls) . The effective sample sizes were 
estimated at N = 130,072 for schizophrenia and N = 180,934 for cannabis use. The 
corresponding value of r was calculated using the formula = − −t r R N/ (1 ) / ( 2)2 , 
and we obtained the R2 that corresponds to t with the online tool http://vassarstats.
net/rsig.html. Subsequently, we approximated the variance of the phenotype y 
using var(y) = [2 × MAF × (1 – MAF) × β2]/R2, in which MAF denotes the minor 
allele frequency and β the effect size of the specific SNP. Finally, we used the 
estimated value of var(y) to calculate the R2 for the remaining SNPs of interest 

using R2 = (2 × MAF × (1 – MAF) × β2)/var(y) and summed the R2 of all SNPs of 
interest included in the instrumental variable to obtain an estimate of the total R2 
explained by the instrument.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. Summary statistics based on the UK Biobank and ICC samples 
and full results from the top 10,000 SNPs based on all three subsamples (i.e., 
including the 23andMe sample) are available via LDhub (http://ldsc.broadinstitute.
org/gwashare/) and https://www.ru.nl/bsi/research/group-pages-0/substance-use-
addiction-food-saf/vm-saf/genetics/international-cannabis-consortium-icc/. Code 
and scripts are available upon reasonable request. Full summary statistics can only 
be provided after permission by 23andMe.
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Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection For this study, we meta-analyzed genetic and phenotype data from 3 different cohorts. Data collection procedures differed per cohort 
and are summarized in the Methods section (for details on data collection in the ICC cohorts see Stringer et al., 2016). In general, DNA 
was extracted from blood or saliva samples, genotyped, and imputed using European reference data. Phenotype information was 
collected using paper-and-pencil or online surveys.

Data analysis PLINK 2.0- genomewide association tool; MAGMA v1.06- gene-based tests;  S-PrediXcan - gene expression analysis; LD score regression - 
genetic correlations and heritability; R qqman - visualisation of GWAS results; LocusZoom - creation of regional plots; GTEx Analysis 
Release V7 - eQTL; METASOFT - eQTL forest plot; MR-Base - mendelian randomization; R gsmr - mendelian randomization; METAL - 
meta-analysis  
*all software mentioned here is publicly available

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Summary statistics based on the UK-Biobank and ICC samples and full results from the top 10,000 SNPs based on all three subsamples (i.e. including the 23andMe 
sample) will be available via LDhub (http://ldsc.broadinstitute.org/gwashare/). Codes and scripts are available upon reasonable request. Full summary statistics can 
only be provided after permission by 23andMe.  

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size A previous GWAS of the International Cannabis Consortium with a sample size of ~33,000 had limited power to detect genomewide significant 
hits. We expanded this sample with all available data that we had access to, resulting in a 5-fold increase in sample size, providing sufficient 
power to detect genomewide signals.

Data exclusions Extensive quality control procedures were used to select valid SNPs and individuals using pre-established criteria. 
These have been described in Supplementary Table S12 and include exclusion of related individuals and individuals with missing data, variants 
with a low HWE, a low minor allele frequency, a low imputation quality score, or high missingness rates, and variants whose alleles and allele 
frequency differ from those in reference panels. For secondary analysis, sometimes a subset of the genome-wide data was used (i.e., SNPs 
that could be mapped to a gene in gene-based tests, SNPs that were present in reference files that were used by LocusZoom, LDscore 
regression, or S-PrediXcan). 

Replication We did not divide our sample into a discovery and replication sample, so that we had one large sample with 
sufficient power to detect a genome-wide signal. We have been as transparant as possible about our methodology 
and summary statistics will be made available, so that replication can be attempted by other research groups.

Randomization N/A; we did not use an experimental design.

Blinding N/A; we did not use an experimental design. Analists were not blind to case-control status. 

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics The sample included N=184,765 individuals, with 55,5% females and a mean age of 35.7 (range 16-87). Only individuals from 
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Population characteristics European ancestry were included. Using principal components for population stratification, we controlled for systematic 
ancestry differences within this European cohort.

Recruitment Recruitment strategies differed for the 3 cohorts (ICC, 23andMe, UKB) and within the different cohorts making up the ICC cohort 
(Stringer et al., 2016). 23andMe is a commercial platform where individuals can have their DNA genotyped at their own costs, 
and can provide permission to make their material available for research. UKB and ICC participants are volunteer samples. 
Information about recruitment can be found in our supplementary material and in the supplementary material of Stringer et al., 
2016.  
 
 
 
Stringer, S. et al. Genome-wide association study of lifetime cannabis use based on a large meta-analytic sample of 32 330 
subjects from the International Cannabis Consortium. Translational psychiatry 6, e769, doi:10.1038/tp.2016.36 (2016).
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