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A B S T R A C T

The selection of an alternative based on the results of a comparative environmental assessment such as life cycle
assessment (LCA), environmental input-output analysis (EIOA) or integrated assessment modelling (IAM) is
challenging because most of the times there is no single best option. Most comparative cases contain trade-offs
between environmental criteria, uncertainty in the performances and multiple diverse values from decision
makers. To circumvent these challenges, a method from decision analysis, namely stochastic multi attribute
analysis (SMAA), has been proposed instead. SMAA performs aggregation that is partially compensatory (hence,
closer to a strong sustainability perspective), incorporates performance uncertainty in the assessment, is free
from external normalization references and allows for uncertainties in decision maker preferences. This paper
presents a thorough introduction of SMAA for environmental decision-support, provides the mathematical
fundamentals and offers an Excel platform for easy implementation and access.

1. Introduction

Quantitative environmental assessments such as life cycle assess-
ment (LCA), environmental input-output analysis (EIOA) and in-
tegrated assessment modelling (IAM) can be used to inform en-
vironmentally motivated choices by government, industry and
consumers (Arvesen et al., 2018; Castellani et al., 2016; Cellura et al.,
2013; Gagnon et al., 2002; Groen et al., 2014; Hellweg and Mila i
Canals, 2014; Hertwich et al., 2000; Pauliuk et al., 2017). These as-
sessments are a particular type of environmental assessment, where the
environmental impact is life cycle based, meaning it considers the
systemic, cumulative impacts that a product, technology or service has
in the environment. Results are based on a so-called functional unit
which can vary in scale (from a consumer product, to a national wide
policy implementation) and they quantify environmental impacts ac-
cording to some already established set of indicators representing im-
pact categories, such as global warming, ecotoxicity and acidification.
However, while life cycle based assessments provide insight about
broad environmental implications of a system, product or policy, results
with several environmental indicators are difficult to interpret because
there usually is no single best alternative (Finnveden et al., 2009;
Laurin et al., 2016). Decision makers are then left to compare

alternatives side by side across environmental indicators. Several en-
vironmental indicators alone can leave decision makers and practi-
tioners alike subject to cognitive biases when determining the most
preferable alternative (Hertwich and Hammitt, 2001). In the presence
of trade-offs, studies often tend to narrow the analysis to a single en-
vironmental indicator (such as a carbon footprint), leaving decision
makers to interpret several environmental indicators with no guidance,
or generate a single score via a weighted sum with either ad-hoc or
generic weight factors.

Calculation of an overall measure of environmental performance via
a weighted sum W for each specific product alternative j, thus in-
troducing Wj by Equation (1).

∑= = …
=

W w h j n( 1, , )j
i

m

i ij
1 (1)

where wi is the weight of criterion (impact category) i and hij is product
j’s indicator value for that criterion. The approach has received fun-
damental criticisms with respect to the possibility of compensation
(Norris, 2001; Pollesch and Dale, 2015, 2016; Rowley et al., 2012), and
there are several practical limitations in compiling external references
which are needed to ensure congruence and commensurability
(Heijungs et al., 2007; Prado et al., 2017; White and Carty, 2010).
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Besides concerns of oversimplification and subjectivity of a single score,
practical challenges to the weighted sum are mostly due to data gaps
and data constraints in the compilation of the external reference (Kim
et al., 2013; Lautier et al., 2010). Any underestimation or over-
estimation of the external reference will distort the scaled result and
ultimately the weighted results (Heijungs et al., 2007). In LCA for in-
stance, some external references (e.g., for climate change) are easier to
compile than others. Toxicity references for instance, have been a dif-
ficulty in LCA practice where the reference suffers from data gaps
(Aboussouan et al., 2004; Pizzol et al., 2011) and as a result, scaled
results consistently highlight the same aspects across diverse applica-
tions (Castellani et al., 2016; Prado et al., 2017). Some argue that these
practical challenges can be solved with more complete external refer-
ences (Kim et al., 2013), while others argue that the problem of the
weighted sum goes beyond data repair efforts (Cucurachi et al., 2017;
Prado et al., 2017). The weighted sum applies a linear aggregation
approach which is fully compensatory. This means, that as long as an
alternative continues to improve on a single issue, it will continue to
compensate, and make up for poor performances in other criteria in-
definitely, a property which has been linked to a weak sustainability
perspective (Munda and Nardo, 2009; Pollesch and Dale, 2015; Rowley
et al., 2012).

In addition to compensation, others call for the importance of taking
into account mutual differences between alternatives, which is not
taken into account in a weighted sum. This is an issue because in a
comparison it is the distinct aspects that influence the decision (Prado-
Lopez et al., 2015). In the field of decision analysis this has been re-
ferred to as the range sensitivity principle (Fischer, 1995), which shows
how our preferences for a particular aspect (or criterion) change de-
pending on how different alternatives perform in that aspect. For ex-
ample, when evaluating the options of an important purchasing deci-
sion, price may be an important factor, but if options are very similar in
price, price becomes less important for that particular decision – no
point at bickering for the price, if all options cost practically the same.
The aim is being able to incorporate such mechanisms of decision
making in the decision support for environmental problems. For life
cycle based assessments, there are multiple interpretation methods at
the indicator level that evaluate mutual differences (Mendoza Beltran
et al., 2018), but these do not necessarily lead to aggregation into a
single score, and thus do not help resolve trade-offs between alter-
natives. In essence, current approaches of either a weighted sum, re-
ducing the decision to a single indicator or applying analysis for each
pair of alternatives at the indicator level, can unintentionally lead to
burden shifting and/or suboptimal decisions.

Summing up, while there is valuable insight to be gained from
quantifying a range of environmental impacts, the complexity of results
hinders the capabilities to inform sensible decision making. To resolve
these issues, some researchers have implemented methods from the
multi criteria decision analysis (MCDA) field that can avoid full com-
pensation and take into account mutual differences (see Brüggemann
and Patil (2011), Janssen (1992) and Munda (2008) for a general
overview of MCDA approaches and ranking problems). Among these,
outranking algorithms stand out due to the fact that they are partially

compensatory, scale alternatives according to mutual differences, rely
on predefined value functions, can handle qualitative and quantitative
criteria, and have been shown to incorporate uncertainty in the results
(Benoit and Rousseaux, 2003; Cinelli et al., 2014; Matarazzo et al.,
2013; Prado et al., 2012; Rogers and Seager, 2009; Rowley et al., 2012).
Although some authors in the literature call for case specific value
functions in environmental problems (Reichert et al., 2007), for the
case of LCA type assessments this would be unsuitable given the varying
scales of these assessments and the nature of environmental indicators
used. For instance, there is no notion of how much should be the al-
lowed cumulative ozone depletion impact of a load of laundry, a pair of
jeans or a litre of biofuel. The information needed for creating value
functions is not existent and attempting would make the assessment too
laborious and out of reach for the majority of studies. Therefore, pre-
defined value functions as in outranking are useful in the interpretation
of comparative LCA type studies. Specifically, outranking based Sto-
chastic Multi Attribute Analysis (SMAA) has been used in a number of
comparative LCA studies as a way to aggregate results in a range of
applications such as transportation fuels (Rogers and Seager, 2009),
carbon nanotubes (Canis et al., 2010), detergents (Prado-Lopez et al.,
2014), biofuel feedstocks (Rajagopalan et al., 2016), and photovoltaics
(Ravikumar et al., 2018; Wender et al., 2014). Note that SMAA can also
be used to refer to stochastic methods which may have different un-
derlying aggregation algorithms such as SMAA-TOPSIS (Zhu et al.,
2018), which is fully compensatory. Here, we focus the attention to a
specific type of SMAA which combines a set of properties favourable for
LCA type applications. SMAA has a potential to be applied in other
types of environmental assessments and case studies, but the detailed
working of SMAA for life cycle based assessments is not well described
in literature, as most authors rely on implementations in specialised
software.

This paper provides the mathematical foundations of how to im-
plement SMAA in comparative multi impact quantitative environ-
mental assessments with uncertain information, with an emphasis on
life-cycle based analyses, such as LCA. For illustrative purposes, it
contains a hypothetical example of three alternatives and three en-
vironmental indicators. We have added an Excel file as supplementary
information in which all steps can be traced and modified when ap-
propriate.

This paper is organized as follows. Section 2 presents the metho-
dological approach starting with the hypothetical case study followed
by a description of the calculation steps in SMAA. Section 3 shows the
SMAA results, including intermediate results, as applied to the hy-
pothetical case study. Section 4 discusses the meaning and implication
of results and concludes the manuscript with closing remarks and areas
for further research.

2. Methodology of SMAA

2.1. Outranking

Outranking refers to a family of methods to solve multi criteria
decision analysis (MCDA) problems first developed by Bernard Roy
(1985). Within outranking, there are different variations. ELECTRE
(Elimination and Choice Expressing Reality) and PROMETHEE (Pre-
ference Ranking Organization METHod for Enrichment of Evaluations)
are most widely used. PROMETHEE is considered to be easier to com-
prehend and perform (Behzadian et al., 2010; Benoit and Rousseaux,
2003; Figueira et al., 2016) and ELECTRE is often used for classification
as opposed to ranking purposes (Domingues et al., 2015). Outranking
methods can be described as decision aid methods rather than as de-
cision analysis given their pragmatic approach to value functions
(Hertwich and Hammitt, 2001; Tsoukiàs, 2008). Rather than con-
structing each value function on each criterion, demanding large cog-
nitive efforts from stakeholders, outranking uses pair-wise comparisons
and a predefined value function per criterion which facilitates its

Software information

Name of software or data set Stochastic multi attribute analysis
Developer and contact address, telephone, fax and email
numbers Same as authors
Year first available 2018
Hardware required, software required Computer and Microsoft

office license
Availability and cost Free of charge given MS office
Program size 1.61MB

V. Prado, R. Heijungs Environmental Modelling and Software 109 (2018) 223–231

224



application in assessments over different scales (Benoit and Rousseaux,
2003; Rowley et al., 2012; Prado et al., 2012). This paper applies a
stochastic version of PROMETHEE II that can generate an overall
ranking of alternatives, taking into account uncertainty in the perfor-
mances.

2.2. Hypothetical comparative LCA case study

To illustrate the idea of SMAA in environmental assessments, we
apply a hypothetical comparative case study consisting of three alter-
natives (A, B, and C) and three environmental indicators (X, Y and Z).
Distributions of environmental indicator results for each alternative for
each indicator are defined as a probability density function (Fig. 1). The
hypothetical example has been created in a way that each alternative is
at least the best in one environmental aspect so to illustrate a difficult
decision problem. From each distribution, a Monte Carlo sample is
created with sample size =R 1000. Table 1 shows the first two Monte
Carlo runs for the performances of alternatives A, B and C over en-
vironmental indicator X. Note the method is not limited to =R 1000
and the number of Monte Carlo runs can be increased as needed. Also
note that for all criteria, given it is representative of environmental
impact, a lower-is-better preference is applied.

2.3. Basic equations and example implementation

The following outranking steps are taken.

2.3.1. Defining a preference function
Outranking relies on pair-wise comparisons in each criterion (en-

vironmental indicator). First, dijkr corresponds to the difference between
alternative pairs j and k on impact category i in Monte Carlo run
r (Equation (2)). Table 2 shows sample calculation of for alternatives A,
B and C for the first two Monte Carlo runs in environmental indicator X.

= − = … = … = …d h h i m j k n r R( 1, , ; , 1, , ; 1, , )ijkr ijr ikr (2)

The distinction between preference and indifference is made with a
preference threshold (Pi) and an indifference threshold (Qi) shown at
the horizontal axis of Fig. 2. Preference thresholds can be derived from
expert elicitation or from uncertainty in the performance. Following
previous applications of SMAA in environmental problems, we derive
preference thresholds from uncertainty in the performance as it is easier
to apply in broader problems (Rogers and Bruen, 1998). Environmental
assessments can pertain to scales at consumer product level where there
is no notion of what could be considered an allowed difference in
performance. In this respect, uncertainty based preference thresholds
represent an advancement over previous applications (Tan, 2005), be-
cause it avoids subjective information at the scaling step and rather
takes a more data exploratory approach (Brüggemann et al., 2008).
Calculation of Pi and Qi thresholds from the uncertainty aligns with
previous efforts of distinguishability analysis for dealing with un-
certainty in LCA (Basson and Petrie, 2007) (see Table 2).

Calculation of Pi and Qi thresholds uses propagated uncertainty
(Equations (3) and (4)), as in the estimated standard deviation of the
data (sij as shown in Equations (5) and (6)). Results for the hypothe-
tical case study are shown in Table 3.

∑= − = …
=

P
n

s i m1 ( 1, , )i
j

n

ij
1 (3)

= = …Q P i m1
2

( 1, , )i i (4)

∑=
−

− = … = …
=

s
R

h h i m j n1
1

( ) ( 1, , ; 1, , )ij
r

R

ijr ij
1

2

(5)

∑= = … = …
=

h
R

h i m j n1 ( 1, , ; 1, , )ij
r

R

ijr
1 (6)

The relative performance of alternatives is measured by the out-
ranking score (vertical axis of Fig. 2), θijkr , ranging from 0 to 1 and it is a
function of the mutual difference of the pair of alternatives, dijkr ,
(Equation (7)).

=
⎧

⎨
⎪

⎩⎪

≥
≤

< <

= … = … = …

−
−

θ

d Q
d P

P d Q
i

m j k n r R

0 if (indifference)
1 if (complete preference)

if (partial preference)
(

1, , ; , 1, , ; 1, , ))

ijkr

ijkr i

ijkr i
Q d

Q P i ijkr i
i ijkr

i i

(7)

The fact that the outranking score has a non-linear preference
function with a limited range in outranking score implies that it avoids
full compensation between criteria. This can help protect the outcome
of results against extremes, where one exceptionally good performance

Fig. 1. Plots of probability density functions of results of alternatives A, B and C
over environmental indicators X, Y and Z.

V. Prado, R. Heijungs Environmental Modelling and Software 109 (2018) 223–231

225



can compensate for poor performances in other areas and eventually
dominate the final results (Stewart, 2008; Pollesch and Dale, 2015;
Prado et al., 2017).

2.3.2. Calculating the outranking scores
The Monte Carlo ( = …r R1, , ) runs for all alternative ( = …j n1, , )

and all impact categories ( = …i m1, , ) yield values of the thresholds
that define the preference functions in step a). A sample of results is
shown in Table 4.

The relative performance of alternatives can be classified as:

• Complete preference: When there is enough evidence to determine
that one alternative outperforms the other. The alternative obtains
an outranking score of 1. As it is the case for alternative A as com-
pared to B in the second MC run of environmental indicator X
(Table 4, 2nd column, runs 1, 2 and 4).

• Partial preference: When there is a weaker preference between the
pair of alternatives. The alternative will obtain an extrapolated
outranking score between 0 and 1. For example alternative A as
compared to B in run 5, achieves an outranking score of 0.86 be-
cause while it outranks B it does not reach full preference. When
compared to alternative A, alternative B obtains a 0.

• Indifference: When the difference can be considered negligible, this
is a “tie”, or the alternative is sufficiently outperformed by the other
and the alternative obtains an outranking score of 0.For the first
case, this can be observed in Table 4 in run 3 where alternatives all
show a negligible differences with each other and they all obtain a 0
– a “triple tie”. Examples of an outranking score of 0 due to a “loss”
(consequence of being compared to a superior alternative reaching
complete preference) can be observed in run 4 where for each pair,
there is a winning and losing alternative with outranking scores of 1
and 0 respectively.

In the MCDA literature the values θijkr are known as positive and
negative flows respectively (Behzadian et al., 2010). Positive when it
indicates how much alternative j outranks alternative k and negative
when it measures how much alternative j is outranked by alternative k.
Note the term “flow”, refers to the outranking score of one alternative
with respect to another per environmental indicator, not to material
flows as it is commonly understood in the field of industrial ecology and
related environmental analyses. (see Table 5).

2.3.3. Calculating the net flows
In every run, there will be an outranking score per pairwise com-

parison per environmental indicator. Over all runs, these result in the
net flow, πijr (Equation (8)).

∑= − = … = … = …
=
≠

π θ θ i m j n r R( ) ( 1, , ; 1, , ; 1, , )ijr
k
k j

n

ijkr ikjr
1

(8)

2.3.4. Generating stochastic weights
In multi criteria decision methods, there are two types of subjective

weights: trade-off weights and importance weights. Trade-off weights
represent how much gains of a criterion (impact category) makes up for
losses in another (Keeney, 2002). For instance, in a given problem, it
could be that we are willing to increase impact by 5 kg of SO2 eq, if that
means a reduction of 2 kg of CO2 eq - this would be the trade-off, the
“even swap” (Hammond et al., 1999; Keeney, 2002). Importance
weights on the other hand, reflect the relative importance of criteria
according to the decision maker(s) values and do not depend on how
alternatives perform. The application of either weight type depends on
the preceding scaling method used. Outranking, in this case, the scaling
method, applies importance weights (Riabacke et al., 2012).

Importance weights require preference information from either a
panel or a decision maker. However, given that preference information
is often unknown to stakeholders and analysts, we prefer in SMAA to
use stochastic weights to reflect an inherent lack of knowledge about
the weights. We define weight factors to have a range between 0 and

Table 1
Values of environmental indicator X for alternatives A, B and C in the first two
Monte Carlo runs.

Alternative ( j) A B C

Run (r ) hXAr hXBr hXCr
1 37.53 67.93 34.95
2 46.13 59.14 37.85
… … … …

Table 2
Values of the pair-wise differences (both directions) of alternatives A, B and C in
environmental indicator X in the first two Monte Carlo runs.

Alternative ( j k, ) A-B, (B-A) A-C, (C-A) B-C, (C-B)

Run (r ) dXABr , d( )XBAr dXACr , d( )XCAr dXBCr , d( )XCBr
1 − 30.40, (30.40) 2.58, (− 2.58) 32.98, (− 32.98)
2 − 13.02, (13.02) 8.28, (− 8.28) 21.30, (− 21.30)
… … … …

Fig. 2. Outranking preference function used in the case study where lower
environmental impact is preferred.

Table 3
Preference and indifference threshold values for environmental indicators X, Y
and Z.

Impact Category (i) siA siB siC Pi Qi

X 5.01 8.20 4.71 −5.97 −2.99
Y 15.54 9.68 12.06 − 12.43 − 6.21
Z 9.89 10.13 10.25 − 10.09 − 5.04

Table 4
Values of the pairwise outranking scores (both directions) of environmental
indicator X in the first five Monte Carlo runs.

Alternative j k, , (k, j) A vs. B, (B vs. A) A vs. C, (C vs. A) B vs. C, (C vs. B)

Run (r ) θXABr , (θ )XBAr θXACr , θ( )XCAr θXBCr , θ( )XCBr
1 1, (0) 0, (0) 0, (1)
2 1, (0) 0, (1) 0, (1)
3 0, (0) 0, (0) 0, (0)
4 1, (0) 0, (1) 0, (1)
5 0.86, (0) 0, (1) 0, (1)
… … … …
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100, where the sum of weights equals 100. This information is defines
the possible weight space for each criterion (Tervonen and Lahdelma,
2007). This approach has been proposed as a more inclusive alternative
to the “equal weights” approach that limits evaluation of unknown
weights to a single value (Rogers and Seager, 2009; Tylock et al., 2012).
While single value weights may be defendable in those cases with
knowledge of decision makers’ preferences, it is not a robust approach
in the absence of information regarding preferences. Stochastic weights,
as applied in SMAA, assign a distribution to weight factor values. With
stochastic weight factor values, the analyst obtains an aggregated
overall score that takes into account all possible value systems, within
reasonable bounds. Stochastic weights can also be used to reflect dis-
tinct preference information. Tylock et al. (2012) show how to modify
weight factors according to different levels of importance in criteria
(such as “below average”, “average” and “above average”). In this
study, we limit the illustration to a situation where weight values are
unknown and thus sampled equally for all impact categories. Previous
research shows that the use of beta distributions, generates equally
distributed weight values among criteria (Rogers, 2008). We apply the
unconstrained weights calculation according to the pseudo Markov
Chain by Tylock et al. (2012). Here, the first weight distribution is
sampled from Wi (Equation (9)). Table 6 shows weight factor results
over the first two Monte Carlo runs for the hypothetical case study.

=
⎧
⎨
⎩

− ∑ × = = − = … −

− ∑ =
=
−

=
−W

W beta α β m i m

W i m

(100 ) ( 1, 1) ( 1, , 1)

100 ( )
i

t
i

t

t
i

t

1
1

1
1

(9)

The resulting weight distribution from the fixed value also re-
sembles a beta distribution shape (Fig. 5).

2.3.5. Calculating overall scores
Aggregation of performances of alternatives across environmental

indicators is done by a weighted sum of the net flows with the weight
factors. Note that while the aggregated result can be calculated via a
weighted sum, the scaling step in outranking in non-linear. The overall
score, Zjr , is obtained per run (Equation (10)). The overall score could
be negative, but this is an indication of relative performance to other
alternatives in the comparison (not of an absolute measure of impact or
benefit to the environment) and it is used to rank alternatives where a
higher overall score corresponds to a preferred performance. Table 7
shows the result of the first two Monte Carlo runs for the overall score
of each alternative in the hypothetical case study.

∑= × = … = …
=

z w π j n r R( 1, , ; 1, , )jr
i

m

ir ijr
1 (10)

2.3.6. Rank acceptability index
One way of communicating overall results, consolidated across all

runs, is via the rank acceptability index which does a counting per run
of the rank of each alternative. First, we rank the alternatives per run
(Equation (11), Table 8).

= … = … = …ζ z z j j n r RRank( , , , ) ( 1, , ; 1, , )jr r nr1 (11)

Here, the symbol …z z jRank( , , , )r nr1 denotes the rank to be assigned
to observation j in a series of observations …z z, ,r nr1 (Lahdelma and
Salminen, 2001).

Finally, a rank acceptability index assigns a probability value per
alternative per rank (Lahdelma and Salminen, 2001). See Equation (12)
for more details and Table 9 for an illustration.

∑= = = … = …
=

R
R

δ ζ q q n j n1 ( , ) 1, , ; 1, ,qj
r

R

jr
1 (12)

where = ⎧
⎨⎩

=
≠

δ x y
x y

if x y
( , )

1 if
0

is the Kronecker delta.

If desired, this might be extended by a statistical test of equality of
rank sums through the Kruskal-Wallis test (Cucurachi and Suh, 2015).
However, in a context of Monte Carlo samples, null hypothesis tests
should be treated with care (Heijungs et al., 2016). Therefore, we have
decided not to include it in this exposition.

3. Results

3.1. Stochastic weights

Sampling =R 1000 values according to Equation (8) for =n 3
yields a weight factor distributions (Fig. 3). From this figure it can be
observed that all weight factors value have approximately the same
probability of occurrence in all three environmental indicators X, Y and
Z. So indeed, this represents a default situation of equal weighting in
the absence of real weights, but with a stochastic mindset.

3.2. Overall scores

After application of weight factors to the net flows we generate the
overall scores, zjr . Fig. 4 shows the distribution of zjr for alternatives A,
B and C. From this it can be seen that alternative A and C generate very
similar scores and that alternative B has a relatively lower score.
However, they appear to be competitive alternatives. These results are
further analyzed via the rank acceptability analysis.

3.3. Rank acceptability index

An evaluation of the ranks in each run with the rank acceptability
index (Eq. (12)) generates a probabilistic rank (Fig. 5). Similar to the
spread of overall results, we see that the alternatives are quite com-
petitive with each other. Alternative A and alternative C produce very
similar results with a likelihood to rank first of 46% and 42% respec-
tively. They also share similar rank acceptability indices for the second
place (32% and 31%) and for the third place (23% and 27%). Alter-
native B shows a different profile and it is most likely a third best al-
ternative (51%). Performance at the environmental indicator level
(Fig. 1) shows that Alternative A has a relatively greater advantage in
environmental indicator Y, while Alternative C holds a smaller ad-
vantage over environmental indicator X and Z. The eventual decision
between A and C therefore comes down to the relative importance of
indicators. Currently, all environmental indicators share the same
priority. If a higher weight is placed in X and/or Z it would benefit
alternative C, while if higher weight is placed in Y, then it would benefit

Table 5
Values of the net flows for alternatives A, B and C over environmental indicator
X in the first two Monte Carlo runs. Alternative C, being the one with the lowest
impact in environmental indicator X, tends to have the lowest net score.

Alternative ( j) A B C

Run (r ) πXAr πXBr πXCr
1 1 − 2 1
2 0 − 2 2
… … … …

Table 6
Values of the stochastic weights for each impact category and the first two
Monte Carlo runs.

Environmental Indicator (i) X Y Z

Run (r ) wXr wYr wZr
1 1.94 51.11 46.95
2 16.40 8.32 75.28
… … … …
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alternative A.

4. Discussion and conclusion

This paper uses an example of a problem involving 3 alternatives
and 3 environmental indicators to illustrate SMAA. Performances show
a difficult selection as there is no single best alternative (Fig. 1). By
applying SMAA and evaluating the mutual differences, it was possible
to rank alternatives and while there is not a dominant single alter-
native, it was possible to identify a least preferable alternative (alter-
native B – see Fig. 5). To break the tie between alternatives A and C, it
would be necessary to introduce weights that reflect a preference of an
indicator over another, and/or refine performance data (Fig. 1).
Therefore, given the possibility that this is an iterative approach, it
could be that when faced with these results (a tie for the best alter-
native), the analyst invests research efforts into gathering specific
weights or refines data concerning the underlying parameters affecting
A's and C's performance in environmental indicators X and Z where they
currently have very similar performances (Fig. 1). SMAA can be applied

to other types of environmental assessment with quantitative un-
certainty information and similar properties to life cycle based studies
by means of the Excel tool provided. Extensions of the tool to accom-
modate more alternatives, indicators and/or Monte Carlo runs is
straightforward by following the algorithms presented here. We re-
commend SMAA as a way to provide a sense of the overall relative
ranking of alternatives as an additional way of evaluating results. This
can help identify which alternatives are at the top or bottom based on
overall performance in a way that it fulfills key conditions in environ-
mental management (for an extensive review of the applicability of
other MCDA approaches in sustainability refer to Cinelli et al., 2014).

The use of outranking in SMAA holds a strong sustainability per-
spective by limiting compensation with a nonlinear aggregation func-
tion. This will generate a more balanced outcome where a single good
performance does not drive results (Pollesch and Dale, 2015; Prado
et al., 2017). Moreover, value functions of outranking are applicable to
any problem without the need of elicitation - a process known to be
resource-intensive and ineffective depending on the scale of assessment
(Kiker et al., 2005; Polatidis et al., 2006). For instance, what could be
the allowed acidification potential of a kg of produce or a load of
laundry? This process takes large cognitive efforts from stakeholders
whom are not always available in environmental assessments.

Another key feature of SMAA as applied here is setting the pre-
ference thresholds in outranking as a function of the spread of the data
to take into account mutual differences with respect to uncertainty. This
means that the ultimate rank is sensitive to changes in uncertainty and
hence responsive to changes in the quality of information. When the
level of uncertainty changes, this will affect the calculation of the P and
Q thresholds and the corresponding outranking scores, θijkr (Eq. (7)).
For example, when the standard deviation of alternatives A, B and C is
twice as high (from 5 to 10, 8 to 16 and 5 to 10 respectively) in en-
vironmental indicator X, the rank acceptability indices respond so that
alternative A has the highest likelihood of ranking first (49%) – Fig. 6.
This illustrates the possible changes in the model in the event that new
information comes along that increase the uncertainty propagated re-
lated to a particular environmental indicator. For the hypothetical case
study, we see that when the difference between alternatives in en-
vironmental indicator X becomes less significant (same mean value, but
larger dispersion), so does the preference for alternative C over alter-
native A. As a result, the likelihood of alternative A to rank first, in-
creases.

Finally, SMAA is applicable under (high) uncertainty of perfor-
mances and weights. With regards to weights, in the absence of real
knowledge regarding preferences, we see sampling of the entire weight
space as an improvement over discrete equal weights. When pre-
ferences are known, then we suggest applying the distinct preferences
in a way that still accounts for those uncertainties (See Tylock et al.,
2012 for an example of modified stochastic weights).

Table 7
Weighted scores of the first two Monte Carlo runs.

Alternative ( j) A B C

Run (r ) zAr zBr zCr
1 57.21 −50.83 −6.38
2 −58.64 33.31 25.33
… … … …

Table 8
Ranked weighted scores of the first two Monte Carlo runs.

Alternative ( j) A B C

Run (r ) ζAr ζBr ζCr
1 1 3 2
2 3 1 2
… … … …

Table 9
Ranked weighted scores for all three alternatives A, B, C.

Rank (q) A B C

1 456
1000

126
1000

418
1000

2 318
1000

367
1000

315
1000

3 226
1000

507
1000

267
1000

Fig. 3. Distribution of weight factors for impact categories
X, Y and Z, based on 1000 Monte Carlo runs.
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Outranking brings benefits to the analysis in the sense that it re-
sponds to changes in mutual differences (and uncertainty), limits
compensation and is compatible with importance weights. However,
the fact that the assessment is context-dependent, makes the analysis
vulnerable to instances of rank reversal when the set of alternatives
changes. Rank reversal is an issue of much debate in the literature,
between the proponents of descriptive versus normative approaches
(Norris, 2001; Prado et al., 2012; Vargas, 1994). There is no verdict in
the matter, rather it is something to take into account when applying
descriptive type methods. To avoid this issue, it is of utmost importance
that the analysts does a filtering of alternatives so to exclude those that

are dominated entirely across environmental indicators.
Although there are studies that apply SMAA to comparative LCA

studies, these represent a minority of cases. Most studies in the LCA
field when aggregating apply a weighted sum (Eq. (1)). Future work in
this area involves making these algorithms more accessible and trans-
parent to broad practitioners in the field, so that aggregation ap-
proaches can move beyond a weighted sum. Practitioners in the field
may not necessarily engage in active decision analysis method devel-
opment, but still need to be aware of the methodological implications of
aggregation and weighting. Part of the dissemination and accessibility
efforts, also involves improving the visualization of results so that in-
formation is easier to understand without losing value. Moving from
discrete to stochastic assessment challenges current state of practice,
communication, methods, expertise and tools. Parallel to the dis-
semination and socialization efforts, it is important to continue to refine
the methodology. Aspects to take a further look into include definition
of preference thresholds given distinct probability distributions, impact
category selection, addition of qualitative criteria for which there may
not be impact categories yet (such as microplastics), and support to
identify areas for improvement in comparative assessments (Ravikumar
et al., 2018). In essence, as LCA type studies become more important in
policy and industry decisions, our ability to interpret and communicate
results needs to move beyond fragmented information so that these
environmental studies can provide actionable insight.

Given the current tendency to consider a broader range of en-
vironmental concerns and even expand decision support to social and
economic aspects (Cucurachi and Suh, 2015; Zamagni, 2012), it is
important to move beyond fragmented or single issue results. Current
environmental assessments such as in LCA typically deal with a dozen
of environmental indicators and yet those of climate change dominate
discussions. In part this is because of the relevance of climate change
policy, but also because our interpretation limitations with regards to
complex decision making. Aggregation can provide additional insight
by including the preferences of decision makers directly into the results.
In doing so, it is important that analysts are aware of the methodolo-
gical implications of an aggregation method.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://
doi.org/10.1016/j.envsoft.2018.08.021.
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