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Use of Satellite Information on Wetness 
and Temperature for Crop Yield Prediction 
and River Resource Planning

Alan Basist, Ariel Dinar, Brian Blankespoor, David Bachiochi, 
and Harold Houba

Abstract Satellite derived measurements are essential inputs to monitor water 
management and agricultural production for improving regional food security. Near 
real-time satellites observations can be used to mitigate the adverse impacts of 
extreme events and promote climate resilience. Population growth and demand of 
resources in developing countries will increase vulnerability in agriculture produc-
tion and are likely to be exacerbated by the effects of climate change. This paper 
introduces wetness and temperature products as important factors in decision and 
policy making, especially in regions with sparse surface observations. These objec-
tive satellite data serve as: (1) an early detector of growing conditions and thus food 
supply; (2) an index for insurance programs (i.e. risk management) that can more 
quickly trigger release of catastrophic bonds to farmers to mitigate crop failure 
impact; (3) an important educational and informational tool in crop selection, 
resource management, and other adaptation or mitigation strategies; (4) an impor-
tant tool in food aid and transport; (5) and management of water resource allocation. 
The two new indices (surface wetness and temperature) are meant to complement 
currently available datasets, such as the greenness index, soil moisture measure-
ments, and river guages.
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1  Introduction

As world population grows and income increases in developing countries, food 
consumption habits change, requiring more feedstock for animal production. 
Furthermore, climate change will have a direct impact on primary and secondary 
food production, caused by extreme temperatures, precipitation and river flow. This 
variability will have a direct impact on regional and global food and water supplies. 
To help vulnerable regions of the world cope with such challenges the concept of 
climate smart agriculture (CSA) directly addresses the need for adaptation in order 
to mitigate exposure to the hazards associated with interannual variability and cli-
mate change.

The information contained in this chapter demonstrates the value of satellite data 
(the wetness and temperature products) for monitoring crop production, food secu-
rity, river flow, and river basin planning in many regions of the world. These prod-
ucts can serve as valuable climate smart decision-making tools in CSA. Specifically, 
there are several benefits to monitoring growing conditions from objective satellite 
derived observations:

 1. They provide early warning to the available food supply, which mitigates the 
impact of reduced yields;

 2. The wetness and temperature anomalies can be used as indexes in insurance 
programs as triggers in catastrophic bonds used to compensate the farmers for 
their losses in near real time;

 3. The historic record of growing conditions can be used to identify the return 
period for various levels of crop failure, which can be used to define vulnerabil-
ity and return periods for various levels of crop failure, which is essential infor-
mation for risk management and premium calculation in the insurance industry;

 4. Use of the climatology identifies the viability of alternative crop production, 
beyond the crops traditionally grown in the region. The production of multiple 
crops is a valuable hedge against catastrophic crop failure. Benefits may be com-
plementary to mitigation activities, agricultural productivity, climate resiliency 
and natural resource management (Larson et al. 2015).

Since clouds at any one time covers over half of the world, clouds impact most 
of the surface signal of remotely sensed data across the world (Jackson 2005). 
Therefore, this study uses satellite derived microwave signals, since they penetrate 
through most cloud types. Consequently, they are effective in monitoring the sur-
face through most sky conditions. In contrast, before infrared and visible signals can 
be used, they must be processed by sophisticated and complex cloud clearing algo-
rithms, and can only effectively detect the surface under clear skies (Tucker et al. 
2005). Moreover, the most interesting weather usually occurs under partly cloudy to 
overcast conditions. The microwave signal allows us to observe these events.

In an effort to derive surface temperature from microwave observations, it is 
necessary to overcome the primary source of noise in the satellite signal: water near 
the surface. Therefore we developed a technique to identify the magnitude of the 
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water and filter its influence (liquid water reduces emissivity   in the microwave 
spectrum). Specifically, in order to detect land surface temperatures, this low tem-
perature bias must be removed. In the process of accurately identifying the emissiv-
ity reduction associated with liquid water and removing its effect on reduction in 
temperature observations, we were able to accurately identify the magnitude of liq-
uid water near the surface. This byproduct may be more relevant and useful than the 
surface temperature product we were attempting to observe. Therefore, this chapter 
will primarily focus on the utility of the surface wetness product and its applica-
tions. The wetness product detects: (1) Upper-level soil moisture; (2) Water accu-
mulating into the drainage basins (rivers) of the world; (3) Melting snow packs; (4) 
Lakes and bogs; (5) Water in the canopy. Upper level soil moisture is effectively 
used to monitor agricultural yields and river discharge. Consequently, these mea-
surements are essential to water resources management and food production.

There is a need for improvements in crop prediction models, both at high (field 
level) (Becker-Reshef et al. 2010) and moderate (district level) resolution (Deryng 
et al. 2011). The satellite-derived wetness index provides data at a moderate spatial 
resolution. It has been applied in the insurance industry for monitoring likelihood of 
crop failure throughout the world, and by various governmental and international 
organizations (e.g. United States, Canada, China, World Bank and UNDP) for 
assessing yield and food security around the globe, as well as to monitor flow dis-
charge in rivers (e.g. Blankespoor et al. 2012). The goal is to expand the application 
to a larger client base and provide accurate yield predictions during the growing 
season. The product can also provide valuable information about adversity thresh-
olds for various levels of crop failure, which is essential for determination of rates 
for crop insurance underwriting. Moreover, accurate near real monitoring program 
has several important benefits for CSA: (1) The prediction of yield directly impacts 
food security and activates infrastructure to move food from where it is in surplus to 
areas in need; (2) Knowing the wetness and temperature and how they impacts 
development of the various crops, can be used to optimize the crop types to field 
conditions, the information can be spread by agricultural extension agents; (3) 
Planting is one of the most important periods in crop production, it has been shown 
that the wetness and temperature can be used to optimize planting decisions.

Weather, climate, topography, and vegetation cover have the greatest impacts on 
the hydrology of a river basin and the variability of natural flow. However, human 
diversions on river discharge and the effects of climate change confound the predict-
ability of water in the future (Jury and Vaux 2005; Miller and Yates 2006). Since 
changes in flow affect populations and society in profound social and economic 
ways, our lack of confidence in future water resources requires mitigations strate-
gies to address the uncertainty (Palmer et al. 2008). Specifically, hydrologic vari-
ability creates a significant challenge to countries, since high or low flow events 
may lead to flooding damage, severe drought, destruction of infrastructure, and/or 
fatalities. These events promote economic shocks and even generate intra-state vio-
lent conflict (Drury and Olson 1998; Nel and Righarts 2008; Hendrix and Salehyan 
2012). Moreover, water variability affects international political tensions (Adger 
et  al. 2005; Intelligence Community Assessment 2012). This may even occur in 
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basins where mitigating institutions (like water treaties) have been negotiated 
(Drieschova et al. 2008). In other words, uncertainty and lack of predictability in 
flow increases tensions between sectors within a society, as well as between riparian 
states (Ambec et al. 2013), and the availability of water resources is central to CSA 
in many areas of the world.

The importance of having a good estimate of the water supply is the foundation 
of allocation and distribution of irrigation supplies. Since the wetness index is 
highly sensitive to liquid water near the surface, it effectively quantifies the melting 
snowpack, and this water feeds many irrigation supplies around the world. Since the 
origin of the water is monitored, there is a valuable lead-time to communicate with 
decision makers and allocate the water based on CSA principals and guidelines.

Lakes and bogs are generally permanent features observed by the wetness index, 
although they may slowly change in size. Since they are a significant component of 
the surface wetness signal, it is useful to remove these permanent features from the 
variable signal observed by the index:. specifically, water on the upper section of the 
soil and held in the canopy. Since water in the canopy has an association with leaf 
area, part of the signal represents the health of the crop. Our goal is to filter the 
permanent features, the climatology, and the annual cycles, and focus on the inter- 
annual variability in wetness, which is driven by the weather. Anomalies are the best 
tool to achieve this goal. Therefore, the crop models are based on anomalies.

The wetness product is hereafter noted as the Basist Wetness Index (BWI), which 
detects water near the surface from multiple sources (as mentioned above). In order 
to simplify the interpretation of the BWI, it is calculated as the percentage of the 
radiating surface that is liquid water. A reasonable spectrum of this value would be 
zero percent in desert regions, while agricultural areas have values ranging between 
2 and 10% of the surface that is liquid water. Values above 10 usually indicate a very 
wet surface, such as recently melted snow cover or recent rain.

The following section presents the methodology used to define the BWI, and 
as well as how it can be used to estimate present and future water supplies under 
situations where traditional (surface based) observations of surface water are not 
available, as is the case in many countries. Section 3 illustrates the use of these 
satellite drived monitoring tools in three different applications (predicting yield 
of agricultural crops, estimating river flow, and planning in a river basin). The 
chapter discusses several other applications without demonstrating them, for 
space consideration.

2  Methodology

The BWI index is derived from a linear relationship between channel measurements 
(Eq.  1), where a channel measurement is the value observed at a particular fre-
quency and polarization, i.e. the Special Sensor Microwave Imager  (SSM/I) 
observes seven channels (Basist et al. 1998).

A. Basist et al.
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BWI T T v T v T v T vs b b b b= ⋅ = ( ) − ( )  + ( ) − ( ) ∆ε β β0 2 1 1 3 2  

(1)

where the BWI is the percentage of the surface that is liquid water (Basist et al. 
2001), Δε, is empirically determined from global SSM/I measurements, Ts is sur-
face temperature from station measurements, Tb is the satellite brightness tempera-
ture at a particular frequency (GHz), ϑn (n = 1, 2, 3) is a frequency observed by the 
SSM/I instrument, β0 and β1 are estimated coefficients that correlate the relationship 
of the various channel measurements with observed in situ surface temperature at 
the time of the satellite overpass. Specifically, as wetness values increase, the differ-
ences between the observed surface temperature and the observed channel measure-
ments also increase (Williams et al. 2000).

Weekly and monthly average BWI values are very good indicators of the magni-
tude of water near the surface, which has a relationship to water at greater depths. 
These observations have proven valuable in agricultural monitoring during the pre-
vious 25 years of analytical work. The wetness anomalies have proven valuable in 
predicting agricultural yields in many areas of the world (Curt Reynold USDA, 
personal correspondence). Research indicates the wetness product has a gamma 
distribution, much like precipitation (Gutman 1999); therefore a gamma distribution 
is used to derive the variation of wetness from the expected value.

Since most regions of the world have annual cycles associated with their liquid 
water near the surface, it is best to calculate anomalies for each pixel, location and 
time of year. The resolution of the pixel is 33 km by 33 km, and anomalies are cal-
culated on a monthly and weekly basis. A value of 0.01 means that only 1 year in a 
100 would realize a value so low (extremely dry) at the location for a particular time 
of year. Conversely, a value of 0.99 corresponds with an excessively wet event that 
only occurs one out of a 100 years. In summary, values progressively less than 0.5 
indicate increasingly drier conditions and values progressively greater than 0.5 indi-
cate increasingly wetter conditions than the expected value (Fig. 1).

The period of record for these wetness and temperature products begins in 1988 
and they have been maintained in near real time for decades.1 There is a period of 
2 years, 1990 and 1991, when the stability of the microwave satellite instrument was 
deemed unreliable. Therefore, these 2 years are removed from the analysis. The 
climatology we use is based on the 23 years of data from 1988 to 2010. A series of 
operational satellite instruments flown by the United States Meteorological Satellite 
Service comprise the period of observations. Great effort has been made to seam the 
observations between the various satellite instruments into one contiguous record. 
A daily set of observations is composed of 14 orbits across the globe. These obser-
vations are sun synchronous over the equator, at an overpass time around 6 a.m. and 
6 p.m. every day. The morning and afternoon overpasses are processed indepen-
dently and then combined together into one set of observations across the globe. 
Each set of observations is added to this record in near real-time, as both weekly and 
monthly fields of temperature and wetness values.

1 SSMI based temperature and wetness data and algorithms discussed in this chapter are a propri-
etary technology owned by WeatherPredict Consulting, Inc.
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The actual wetness observations (not the anomaly) are valuable for measuring river 
discharge. These values identify the percentage of the radiating surface that is liquid 
water. Moreover, in many river basins there is 1–2 months lag in the time it takes for 
water in the upper section of the watershed to pass a monitoring gauge in the lower sec-
tion of a river basin (where most people live and economic activity takes place). This lag, 
which averages prior month(s) BWI with the concurrent month (hereafter noted as the 
cumulative lag) improves the skill of the model to predict the flow passing through a 
river gauge. It also provides valuable lead-time to predict and mitigate the magnitude of 
drought or flood heading into the lower basin, where the impacts are generally most 
severe. Therefore, the early warning can be used to mitigate the impact of extreme 
events on society. An added advantage of applying a quantitative flow model, which can 
predict flow downstream, is that a consortium of riparian states can use the information 
to determine how the water resources will be distribution under various flow regimes. 
Therefore, treaties have the capacity to allocate water as a function of an independent 
and quantitative measure of flow, providing a simple and accurate predictive model for 
a fair and transparent distribution of water under times of scarcity.

The observations of the BWI spanning national borders allows for an objective 
(independent of national influence) calculation of water resources under almost all 
sky conditions. Since the wetness index is an independent tool that integrates the 

Fig. 1 Global surface wetness anomalies for July 2015. Note: The grey shade of the legend cor-
responds with the expected value, while values to the left (right) of the grey shade correspond with 
increasingly drier (wetter) than average conditions. For example, the value of 0.05 means that only 
5% if the time is it that dry at a location and time of year. Inversely, a value of 0.95 mean that only 
5% of the time is it that wet at a location and time of the year
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accumulation of water across large areas, it has the potential to be used as an index 
and/or trigger for: (1) implementation or call to action in mitigation strategies; (2) 
insurance compensation; (3) allocation of water between sectors of society; (4) dis-
tribution of water between riparian states. These are important applications that 
warrant further research.

The following section demonstrates the use of the BWI tool for: monitoring crop 
yield, monitoring river flow, and river basin management. The Mekong River is 
used as an example. While these applications are site specific, the extrapolation 
from one site to another is easily done and can be accomplished with minimal cost 
to the agency.

3  Application

Currently, the wetness and temperature anomalies have proven valuable for moni-
toring crop development and assessing potential yields during the growing season, 
and have been effectively applied in crop yield prediction models. These models are 
statistically-based, using linear relationships between the wetness and temperature 
anomalies and yield, which serves as the calibration. The statistically-derived model 
parameters are used to predict yield during real time growing conditions and have 
been applied by many organizations around the world to assess future yields, as well 
as support planning policies related to the regional, national and global food secu-
rity (Fig. 2).

There are several limitations in applying the wetness and temperature anomalies 
across various regions of the world. The first is the large footprint (33 km × 33 km), 
which is about 1000 km2. This limits the application into a mesoscale analysis and 
has limited value for high-resolution assessments. Another limitation is coastal 
boundaries. Specifically, locations within 30 km of a coastline (ocean or large inland 
water bodies) will unduly influence the temperature and wetness products, since the 
presence of more than 50% water destabilizes the model, requiring that those sig-
nals be recognized and removed from the data sets. Exposed soils or rocks (dry 
areas) where minerals are exposed on the surface, introduces noise in the signal. 
This is particularly true when limestone is exposed on the surface. In these instances 
the product should be used with caution.

3.1  Monitoring Crop Yield

The yield prediction models are uniquely calibrated for each crop and particular 
locations. Specifically, yield prediction models are calibrated on historical values, 
using the linear variations of temperature and wetness anomalies as predictors. In 
addition, the quadratic of the wetness and temperature interaction is a predictor in 
the model. The models are run as the crop enters the reproductive stage, and 
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continues to be updated on a monthly basis through the maturation stage of the crop. 
The most important month of the growing season is usually reproduction, and there-
fore the influence of this period has a strong relationship to yield. The benefit of the 
interactive term is multifold. Specifically, linear statistical models tend to be mean- 
centric, which means they are challenged to capture extreme events. The quadratic 
component of their interaction generally captures these extreme events in the model.

The models are generally run at the district level. Moreover, each country is 
unique in the way that it reports yield data. The spatial resolution of the yield data 
provided by a country serves as the basis of calibration in the model. Both deviation 
from expected yield and actual yield prediction are presented in the findings of the 
report. The expected yield has been trended to account for linear improvement of 
seed stock and improved agricultural practices. These trends are removed, since 
they are independent of the weather. An example report or the corn belt of the USA 
during the 2015 growing season is presented below.

Figure 3a shows the predicted deviation from trended (expected) corn yields for 
the center of the corn-belt in the United States at the end of August 2015. The rea-
sons this region is chosen are twofold; it produces one of the highest yields and is 
one of the most important growing areas for corn in the world and the sophisticated 
procedure for calculating yield by the United States Department of Agriculture 
(USDA) provides one of the best data sets for calibrating the yield prediction 

Fig. 2 Global surface temperature anomalies for July 2015. Note: The grey shade in the legend 
corresponds with the expected value, while values to the left (right) of the grey shade correspond 
with increasing colder (warmer) than average values. For example the value of −8 means that 
temperatures were −8°C colder than average at the location and time of year. Inversely, a value of 
8 means that it was 8°C warmer than average at a location and time of the year

A. Basist et al.
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Fig. 3 (a) The percentage departure from the expected (trended) yield. (b) The predicted yield in 
Mt/ha. Note: Zero departures are white, and the departures are more amplified the color gets darker 
towards red (below) expected, or green (above) expected yields. They are displayed percentages 
from the expected value

Use of Satellite Information on Wetness and Temperature for Crop Yield Prediction…
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models. August was chosen, as it provides an early warning to projected yield, as 
the crop has already entered seed-pod filling.

Generally, the predictions in this report range from average to above aver-
age yields  for the primary growing regions in the United States. The exceptions are 
in southeastern Minnesota, where predictions are generally below the expected 
value. Yields, which have the greatest deviation above the expected values, include 
much of Illinois and southern Iowa. These areas had near average wetness and 
slightly below average temperatures, thereby promoting healthy growing conditions 
during the corn’s development. The cooler than average temperatures allowed many 
areas with some moisture deficit to achieve near average yields, since the cool tem-
peratures limited the moisture stress in the crop. Figure 3b displays the predicted 
yield as metric tons per hectare. The area with the highest yields occurs in locations 
where corn tends to produce some of the best yields in the world, and these areas 
also had better than aveage growing conditions. Note that the low yields in northern 
Indiana (where yields are near the expected value) indictate that growing conditions 
are generally inferior, compared to some the neighboring crop districts.

Figure 4 shows the wetness and temperature anomalies, which are used to predict 
corn yields for the center of the USA growing area. Predictions include data from 
May, June, July, August, the plot in fig. 4 displays the anomalies for July, which is 
the most important period in the determination of the yield. August  is the time 
when seed pod  filling  occurs, after reproduction, it is the most critical period in the 
development of corn yield.

The above-average temperatures in July across areas of Iowa and most of 
Minnesota introduce heat stress, which reduces potential yield. Fortunately, there 
was ample moisture across most of the area, so the negative impact of excessive heat 
is nominal, in terms of yield reduction. More soil mositure is available in portions of 
Indiana and Illinois, and these areas are the regions with better than expected yields.

The parameters of the predictive model along with its calculation of yield are 
presented in Table 1. These values are presented by crop district for the state of Iowa. 
The location was chosen since it is the most important agricultural state for the pro-
duction of corn. The slope for the trend of corn yields over the period of record is  
0.16 (shared across the state), which means that the average annual increase in yield, 
due to improved seed stock and agricultural practices is 0.16 metric tons/ha/yr. The 
intercept for each crop district is unique, since some crop districts produce higher 
yields than others. The predicted yield is the model derived yield, in metric tons per 
hectare, for each crop district, based upon its wetness and temperature anomalies 
throughout the growing season to August 2015. The trended (expected) yield value is 
based on the 2015 crop season. The last column on the right is the percent variation 
from the expected yield, the parentheses means the value is negative.

Figure 5 illustrates that some crop districts are slightly below the expected value 
in terms of yield. However, the majority of the crop districts had higher than expected 
yield. Therefore, at the end of August the state of Iowa as a whole is predicted to have 
higher than expected yield. At this time of the growing season the seedpods are 
approaching maturity, and they provide a reliable measurement of the final yield.

The regression equation and statistical significance of each predictor variable in 
the model are presented in Table 2. The adjusted R2 for the model is 0.60 with an 
F-statistic of 28.46. The model has 211 degrees of freedom. The predictive variables 
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are temperature and wetness anomalies from May, June, July and August. Also, the 
interaction of temperature and wetness is included as an independent variable in the 
model. The negative coefficients are portrayed in red and are inside parentheses. 
Predictive variables that are significant at the 0.90 confidence level are checked in 
the right-hand column. The most important variables in the model are the interac-
tion of temperature and wetness in June and July, and the temperature in August. 
These three variables are all significant above the 99 percent confident interval.2

2 The interactions of temperature and wetness for June and July are two of the strongest predictor 
variables in the model.

Fig. 4 July values are presented by crop districts: (a) Surface wetness anomalies are displayed by 
color, where shades towards blue (red) are increasingly above (below) the expected surface wet-
ness value (see text for more details). (b) Surface temperature anomalies are displayed by color, 
where shades towards blue (red) are increasingly below (above) the expected surface temperature
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Table 1 Regression-model derived parameters for Iowa

Corn
United States, lowa
Percent variation from trended yield
Crop districts, ASDS based
SSMI collection data date 8/26/2015

Admin region

GeoID Slope Intercept
Pred 
yield

Trend 
yield

Crop 
district mt/ha mt/ha mt/ha mt/ha

Percent variation 
from trended

Buena Vista 19_10 0.16 7.53 11.45 12.05 (0.05)
Butler 19_20 0.16 7.46 11.48 11.98 (0.04)
Allamakee 19_30 0.16 7.26 11.53 11.78 (0.02)
Audubon 19_40 0.16 7.10 12.27 11.62 0.06
Boone 19_50 0.16 7.51 12.19 12.03 0.01
Benton 19_60 0.16 7.22 12.29 11.75 0.05
Adair 19_70 0.16 6.54 12.28 11.06 0.11
Appanoose 19_80 0.16 5.69 12.81 10.21 0.25
Davis 19_90 0.16 6.45 12.74 10.97 0.16

Identifies the slope and intercept for the linear trend in yield derived by the USDA yield values 
from 1988 to 2014
Note: The three columns to the right are predicted yield derived from the wetness and temperature 
anomalies, trended (expected) yield,  and the column on the right is the ratio of the predicted/
trended yield for August 2015 (parenthesis means the values are negative).

Fig. 5 Graphical representation of the variation from trended yield, in Iowa plot is conveyed by 
crop district in the state
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Finally, a scatterplot of the wetness and temperature anomalies for the months of 
July and August at the crop district level is presented (Fig. 6). Note that in the month 
of July the majority of Iowa had slightly below normal  temperatures, while wetness 
values were drier than normal during the month. The lack of heat stress during 
reproduction was for yields. August continued to bring drier than average condi-
tions to the majority of the state, while near average temperatures helped minimize 
soil moisture stress. Therefore yields predictions were near-normal. The forecast 
generally remained the same between the end of July and the end of August, since 
July is the most important month for yield prediction. Although there were changes 
in field conditions across a few crops districts during the August, the addional infor-
mation in August improves the model skill as the crop reached maturity. 

3.2  Monitoring River Flow

Quantitative and indepenedent measurements of river flow levels are essential for 
water rights and planned allocations. Moreover, reliable and independent measure-
ments of available water resources are required for mitigation strategies and 

Table 2 Model coefficients and significance values

Corn
United States, lowa
Statistical model output
Crop districts, ASDS based
Data date 8/26/2015
# observations 225 R-squared 0.62
# variables 13 Adjusted R-squared 0.60
Degrees of 
freedom

211 F-Statistic 28.46

Variables Coefficients() 
negative values

Significance (in 
percent probability)

Significance @ 90% 
confidence

Constant 13.28 0.00 ×
Temp May 0.05 0.01 ×
Temp Jun 0.01 0.69
Temp Jul (0.05) 0.03 ×
Temp Aug (0.17) 0.00 ×
Wet May (0.19) 0.58
Wet Jun (1.06) 0.00 ×
Wet Jul (0.57) 0.24
Wet Aug 0.11 0.78
Interact May (0.00) 0.10
Interact Jun (0.02) 0.00 ×
Interact Jul (0.02) 0.00 ×
Interact Aug (0.01) 0.10

The degrees of freedom in the model, along with its predictive skill, regression coefficients, their 
significance level for each predictor variable Negative coefficients are in parenthesis
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insurance compensation, which are a fundamental component of an effective treaty 
(Dinar et al. 2010) that allows proper planning and allocation of the basin water to 
various water consuming activities. Also, independent monitoring of flow measure-
ments is required to implement an effective treaty, which is based on triggers, 
response and compensation, or to operate reservoirs used for irrigation projects. 
Therefore, high quality flow data are a necessary component of effective treaty stip-
ulations and institutional mechanisms (Dinar et al. 2015), as well as infrastructure 
for reservoirs that can deal with future challenges. Real time data can also provide 
policy makers and researchers with the ability to predict extreme weather events, 
and cooperatively address economic impacts on existing projects. In addition, mod-
els can increase institutional capacity by providing timely (near real time) flow 
information to build climate resilience and effective sharing and allocation of lim-
ited water resources.

Considering the challenges to estimate flow where standard measurements are not 
available, we demonstrate a simple, yet robust model to predict both  present and 
future flow measurements, using   the wetness product in two basins: Zambezi and 
Mekong. The period of record for calibration of the models is from historic river 
gauge values, and these flow values are regressed on the BWI values (the predictor of 

Fig. 6 Scatter plot of wetness and temperature anomalies by crop district for the months of July 
and August. Note: Top left quadrant is above temperature and below wetness, bottom left is below 
both temperature and wetness, top right is above both temperature and wetness, and bottom right 
is below temperature and above wetness
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flow). In order to keep the equation as simple as possible, yet robust, the regression is 
based on one variable and tested in two basins of very different climatology’s, topog-
raphy’s, land use patterns and annual water supply cycles. An important consideration 
between the gauge and BWI values is a lagged relationship between water accumulat-
ing near the surface and detected downstream at the gauge. The lag between the water 
input upstream and the detection of changes in flow downtstream   is based on 
numerous empirical observations and theory that flow models are more accurate when 
they include the prior month(s) due to the time lapse for the water accumulate into the 
major stem of the river (Demirel et al. 2013). The number of prior months used in the 
predictions of flows is directly related to the size of the basin, the influence of snow 
melt  and its topography. Therefore, a lagged term is included in Equation 2, where 
Qm(BWI) is the discharge at a station for month m While n is the number of previous 
month(s) averaged together with the concurrent month BWI value.

 
Q g dm BWI( ) = ( )

 
(2)

where d
BWI

n
i

n

m n= ∑ = −0 .

Table 3 lists model statistics and parameters for the two river basins. The number 
of month(s) lagged prior to the gauge observations is included, along with  the 
parameters of the regression model. Our goal is to define a simple and robust predic-
tion from one variable and explore the utility of the predictor in areas of society that 
could benefit from the models.

The Zambezi model flow signature is clearly curved (Fig. 7a); it has a quadratic 
structure of high wetness values and extremely high  flow. High values display con-
siderable heteroscedasticity (from the studentized Breusch-Pagan test), which 
implies that numerous factors impact the high rate of flow past the gauge. In con-
trast, low BWI values (less than 1) contain a high confidence that the flow will be 
near the base flow. These results compared favorably to model prediction for the 
Zambezi presented by Winsemius et al. (2006), whose predictions were based on a 
more complex model. As a result, the BWI can be a quantitative indicator for peri-
ods and frequencies of flow associated with limited water – of particular relevance 
to obligations and commitments agreed upon in international water treaties. 

Table 3 Parameters from Zambezi, Mekong predictive river flow models

Model Zambezi (BWI) Zambezi (precip) Mekong (BWI) Mekong (precip)

Linear term −420.2 71.9 303.8 75.9
Quadratic term 748.6 0.78 886.6 0.297
Months lagged 2 2 2 2
month observation 148 198 44 44
Predictive skill (R2) 0.89 0.52 0.95 0.97
Residuals 485 1020 645 523
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The lower bound of predicted flow is 288 m3/s (BWI = 1.0) occurs approximately 
28% of the time. Therefore, for the Zambezi River at the Katima Mulilo station, 
approximately 28% of the time the flow is less than 288 m3/s averaged over the 
3 months. The area feeding water to the gauge is defined in Fig. 7b.

Since the SSM/I instrument is currently operational, it is possible to use the fitted 
model to predict recent runoff from monthly wetness values, based on the calibra-
tion period. Due to the accuracy and significance of the models, we chose to explore 
the ability of the BWI to predict seasonality, low flow (e.g. droughts), and high flow 
events (e.g. floods). This analysis was used to explore the utility of the model in 
serving as an early warning indicator.

With regards to the Zambezi, the BWI  model identified and predicted a flood in 
2010, which according to the model is higher than any previous flood over the 
period of the SSMI record (Fig. 8). In April 2010, there is a pattern of large positive 
surface wetness anomalies in Western Zambia (Fig. 9). This broad pattern of purple 
indicates that the area was extremely wet conditions. This extreme event occurred 
across a large section of the basin. In rare instances, when there is an extreme flood 
on the Zambezi, due to heavy rainfall on the highlands in Angola and Zambia, the 
flow can actually accumulate at the Mambova fault. During this instance, the river 
expands over the flat floodplain behind the fault until the waters meet the channel 
cut by the Chobe River in the south. During this extreme flood, the accumulation of 
water from the Zambezi River overcomes the Chobe River, and water begins to flow 
upstream on the Chobe, flowing into Lake Liambezi. At the height of the flood, 
water flowed directly into Lake Liambezi from the Zambezi River through the 
Bukalo Channel on May 8, 2010 (NASA 2010), which is the same time  the BWI 
predicted the highest flow over the period of record.

Next is discussed the Mekong model, which is presented in Table 3. The section 
of the river basin that feeds the Mekong gauge station is presented in Fig. 10b. The 
best explanatory model has a non-linear relation. The Mekong models also used a 

Fig. 7 (a) Cumulative distribution of flow using a gamma distribution (percent. y-axis) and flow 
(m3/s per month. x-axis) of the Zambezi river basin sample area; (b) Map of Zambezi basin (grey) 
with the selected gauge data (point), international border (line) and respective catchment 
(hatched) used in the model
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Fig. 8 The Zambezi values of runoff (m3/s per month, y-axis) and time ( x-axis, January 1988 
through July 2013). The time series  displays seasonality and interanual variability over the pre-
dicted (calibration) period in red (blue). The highest flow occurred in April/May 2010. Missing 
values are due to the lack of reliable SSM/I data

Fig. 9 Surface wetness Values for a section of the Zambezi River: April 2010, where 0.00–0.05 
(red) means that less than 5% of the time is it this dry, 0.45–0.55 (white) is the expected normal 
soil moisture, and 0.95–1.0 (purple) means less than 5% of the time is it this wet
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quadratic form. It also implies that predicted flow below 1215 m3/s (BWI = 1.0) 
occurs less than 25% of the time. There is a limited period of calibration data, and 
some concern about the accuracy of the model. Therefore, an evaluation of the skill 
during the predictive   preiod will demonstarte the robustness of this approach to 
monitor flow from the BWI data.

 The Mekong river model captures the seasonal hydrologic variation (Fig. 11). 
The peak flows typically happen in September (end of the monsoon season), while 
typical low flow is in February. The calibration period ended in 1993, while the 
model predicted extremely high flow in September of 1995. We evlauated the accu-
racy of this predictions with meta data, since guage data was unavailable. Research 
shows that 1995 brought an extreme flood, which was predicted by the BWI. At this 
time over 100,000 ha of the Vientiane Plain was under more than a half-meter of 
water for up to 8 weeks. In human terms, the 1995 flood affected 153,398 people in 
the Vientiane Plain (out of a total population of 653,013 persons), 26,603 house-
holds, or 427 villages (FAO 1999). Importantly, we found that the BWI predictive 
model was robust, even when derived from the limited calibration period. None-the- 
less, it captured this extreme event and its magnitude. Moreover, the BWI provided 
lead-time to the crest of the event, allowing a valuable opportunity to implement 
mitigation strategies. This result promotes confidence in applying the BWI to other 
basins where flow data is limited, which is a considerable number of the world’s 
river.

3.3  River Basin Management: The Case of the Mekong

In locations where irrigation is a major component of agricultural production, eco-
nomic planning around limited water resources is critical to the success of Climate 
Smart Agriculture. Specifically, it applies to allocation of river water to promote 

Fig. 10 (a) Cumulative distribution of flow using a gamma distribution (percent. y-axis) and flow 
(m3/s per month. x-axis) of the Mekong river basin sample area. (b) Map of Mekong basin (grey) 
with the selected gauge data (point) and respective catchment (hatched)
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resilience to climate variability and optimize water allocation for economic growth. 
We provide a modified version of the empirical model used in Houba et al. (2013). 
The range of flow probabilities as measured by the BWI and at the gauging station 
Chiang Saen in Thailand are presented. These probabilities are used to calculate the 
expected value of basin benefits under various climatic scenarios. While the appli-
cation of the BWI is demonstrated with the Mekong River Basin, we argue that it is 
a very simple process to apply the BWI to assist policy guidance in any of the river 
basins around the world, due to the fact that the main information needed for the 
analysis comes from satellite-based data, which is readily available. This applica-
tion can benefit river basin planning, economic opportunities, resource manage-
ment, and agricultural resilience.

3.3.1  Description of the Model

The model is based on a simplified hydrological structure of the basin, where water 
flows from China, hereafter noted as the Upper Mekong Basin (UMB) to the Lower 
Mekong Basin (LMB) and its tributaries, which originate in Thailand, Laos, 
Cambodia, and Vietnam, before the river enters the Delta (estuary), as seen in Fig. 12.

Basin-wide water availability is determined by water arriving from the UMB, 
and precipitation received in tributaries of the LMB. Water uses are aggregated in 
each sub region of the model into (1) industry and households, (2) hydropower 

Fig. 11 The Mekong values of runoff (m3/s per month, y-axis) and time (January 1988 through 
July 2013) display seasonality and the interannual variability over the calibration (predicted) in 
blue (red) period of the time series. Missing values are due to the lack of reliable SSM/I data
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generation, (3) irrigated agriculture, and (4) fisheries (Table  4). Water quality is 
measured in terms of salinity in Houba et al. (2013). In this paper we assume that 
salinity impacts fishery and irrigated agriculture. Hydropower generation is consid-
ered to be an in-flow user, while providing economic opportunities and growth. 
Moreover, water entering the first reservoir of a cascade can be reused and stored, 
over time, in all downstream reservoirs, which expanding capacity for economic 
growth along the river.

The model is calibrated on flow data from 2010 and it is static with an annual 
setup, represented by two seasons’ dynamics (wet and dry) across the entire basin. 
All modifications introduced in this paper comply with the original calibration. The 
water inflow for the mainstream of the LMB consists solely of the outflow received 
from China. Reservoirs/dams are filled in the wet season and the water is used dur-
ing the dry season mainly for irrigation. During the wet season the Mekong water in 
UMB (China) can be used for industrial and household activities, fish production, 
storage for use in the dry season, and non-consumptive hydropower generation. 
Moreover, the wet season water supplies dry season irrigation for Climate Smart 
Agriculture. Moreover, effectively monitored outflow from mainstream UMB and 
tributary dams can promote inundations of wetlands in the delta. This nurtures fish-
eries production and flushes salinity from the estuary (Delta), which improves water 
quality and irrigation supplies.

Upper Mekong Basin
(China)

ChiangSean, Thailand

Lower Mekong Basin
Mainstream

(Laos, Thailand,
Cambodia, Vietnam)

Lower Mekong Basin
Tributaries

(Laos, Thailand,
Cambodia, Vietnam)

Delta

TonleSap

Fig. 12 Simple representation of the Mekong river basin used in our model (Modified from Houba 
et al. 2013). Note: We exclude Burma (Myanmar) from the analysis because it has a negligible 
share of water and land in the basin
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Following Houba et al. (2013) the benefit, cost and loss functions in the model 
are quadratic, with the benefit function being concave (same as the flow parameters 
in the BWI model) and the cost and loss functions being convex to the origin. The 
volume of water that enters the Tonle Sap and then flows out into the Delta wetlands 
is a linear function of the river flow. Benefit functions were used for industry and 
households, hydropower generation, irrigated agriculture, and fisheries. The value 
function of the Tonle Sap and Delta/Wetlands assumes that all fishery production 
concentrates in that lake and surrounding wetlands. Salinity losses are modeled only 
in the LMB agricultural sector.

3.3.2  Applying the BWI to the Mekong Economic Model

A regression equation calibrates the BWI on gauge data from the UMB at Chiang 
Saen. The upper and lower basins have appreciably different geographies, sizes, and 
rainfall. Nonetheless, we applied the upstream hydrological model to the lower 
basin. Our assumption in doing so is that the BWI signal is designed to detect liquid 
water from all sources, and is defined as the percentage of the surface that is liquid 
water near the surface. Therefore, we explore the robustness of the  model to detect 
that amount of water moving through the lower basin. Our hypothesis is that BWI 
values are a robust signal and the model parameters could effectively transcend dif-
ferent geographies.

 There was the possibility of shifting the intercept, since the lower basin is appre-
ciably larger, and therefore its base flow should be higher. However, we wanted to 
minimize any tuning, in order to test the robustness of the model. The only change 
is the lag was reduced from 2 to 1 month, to allow for better integration (time to 

Table 4 Water balances and use by sectors (km3/year) for mean flows at UMB and LMB tributaries

Variable
UMB wet 
season

UMB dry 
season

LMB wet 
season

LMB dry 
season

Inflow water 66.737 9.534 375.920 53.703
River flow from upstream 60.522 7.151
Water availability 66.737 9.534 436.442 60.854
Stored water totala 5.474 12.888
H&I water use 0.741 0.529 1.895 1.352
Outflow water from dams 60.522 13.565 421.659 69.735
Irrigation 6.414 6.579
River flow to Tonle Sap 86.950 −86.950
River flow to downstream/estuaries 60.522 7.151 334.709 150.107
Hydropower water totalb 69.226 74.912 60.003 42.860

Source: Houba et al. (2013)
aWater is stored on main river in UMB and on tributaries in LMB
bHydropower is produced on main river in UMB and on tributaries in LMB
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flow) from the upper basin into  the lower basin. This, in turn, would allow us to 
model the flow as one kinematic wave based on the speed of flow.

In order to calculate the magnitude of water moving through the entire basin, the 
upper and lower basins were weighed in terms of their area (the large lower basin is a 
much larger area, and therefore has higher weights). This allowed us to integrate the 
upper and lower basins into one combined flow. Since the upper basin has a two- month 
lag, the first 2 months of 1988 and 1992 were set to be missing. A simple interpolation 
technique could easily and effectively be applied, since the beginning of the year is not 
a critical period of flow, however we did not apply it in order to minimize assumptions.

The average flow was derived from the BWI values and the model parameters 
over the period of record, in terms of cubic meters/second. To keep our economic 
optimization comparable with previous work Houba et al. 2013, we express water 
in cubic kilometers per year rather than in cubic meters per second (1  m3/s  = 
0.031556926 km3/year). The mean annual flow over the period of record derived 
by the BWI for the UMB and LMB is 424 km3, which is reasonably close to the 
independent assessments of annual mean flow on the Mekong, which range from 
410 (Houba et al. 2013) to 475 (Mekong Water Commission 2009).

We were very encouraged by the fact that the flow numbers derived through the 
BWI wetness values were congruent with the expected flow values. Equally impor-
tant, the monitored variation of flow from month to month, and year to year was 
accurately captured by the BWI values. For example, the major flood of of 1995 and 
smaller flood of 2000 was also predicted by the BWI, providing a one-month lead- 
time to the magnitude of the flood, allowing time to mitigate its consequences. 

We performed a similar analysis using precipitation inputs to predict mean annual 
flow for the Mekong. Specifically, we used the flow model parameters derived from 
the upper basin and applied them to the LMB, in order to determine integrated flow 
for the River as a whole. The calculated flow based on rainfall is 359, while the BWI 
provided a value of 424 km3/year (i.e. the BWI value is much closer to the consensus 
of the mean annual flow). This result was surprising; since the precipitation model 
had a slightly better explanatory power of flow in the upper basin, see Blankespoor 
et al. 2012. We interpreted this finding as demonstrating the robustness of the wet-
ness index, and the ability to apply the model in areas outside of the region where 
they are calibrated. Consequently, we use the BWI flow predictions to enhance CSA, 
climate resilience, and calculate return periods of extreme events (Table 5).

3.3.3  Results of the Economic Model

We ran four scenarios, following the pairs (ai; bi, i= 1,…,4) of flow values from 
Table 5, which correspond to distribution of the flow in both the UMB and the LMB 
tributaries. As can be seen from Table 5, the distribution of the LMB tributaries flow 
is much more skewed towards lower values (drought) than the flow of the 
UMB. Table 6 presents the net welfare in each region for various distributions of the 
flow as obtained from the basin optimization model we run.
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Table 5 Flow data in the UMB and LMB as calculated by the BWI

Description km3/year m3/sec Cumulative probability Probability

a. Flow at Chiang Saen (UMB coming from China)
  a1: Mean – 1 SD 27.863 882 0.117 0.117
  a2: Mean 76.271 2416 0.588 0.471
  a3: Mean + 1 SD 124.679 3950 0.862 0.274
  a4: Mean + 2 SDs 173.087 5484 0.961 0.099
b. Flow of LMB tributaries
  b1: Mean – 1 SD 345.536 10,949 0.414 0.414
  b2: Mean 429.623 13,614 0.576 0.162
  b3: Mean + 1 SD 513.710 16,278 0.710 0.134
  b4: Mean + 2 SD 597.797 18,943 0.809 0.099

Table 6 Net benefit calculations for various flow values in the Mekong basin (billion $)

km3/year

Mean flow – 1 SD Mean flow Mean flow +1 SD Mean flow +2 SD
UMB LMB UMB LMB UMB LMB UMB LMB
27.863 345.536 76.271 429.623 124.679 513.710 173.087 597.797

Net welfare 
created

2.376 3.222 2.656 6.663 2.544 6.445 2.313 6.336

Aggregated 
economic 
value

2.376 6.355 2.656 6.663 2.544 6.445 2.313 6.336

Econ value 
households 
and industry

0.408 1.957 0.408 1.957 0.408 1.957 0.408 1.957

Econ value 
fishery

0.128 2.772 0.241 2.728 0.167 2.077 0.082 1.109

Econ value 
irrigation

1.193 1.421 1.193 1.772 1.193 2.206 1.193 3.065

Econ value of 
hydro in main

0.647 0.815 0.776 0.629

Econ value of 
hydro in 
tributaries

0.205 0.206 0.206 0.206

Aggregated 
economic 
costs

3.133 0.000

Costs 
saltwater 
intrusion

3.133 0.000

Source: Authors’ calculations
Note: SD standard deviation, UMB upper Mekong basin, LMB lower Mekong basin
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As is apparent from Table 6, the net welfare generated in the UMB is $2.656 
billion and that of the LMB is $6.663 billion, annually. Of the net welfare pro-
duced annually in the UMB, hydropower comprises 31%, irrigation 45%, fisher-
ies 9% and households and industry 15%. For the LMB the values are 3%, 27%, 
41%, and 30%, respectively. Table 6 also suggests that the damage from salinity 
due to seawater intrusion in the LMB is 0 for mean flow or above mean flow 
runs. However, losses of $3.133 billion are encountered in the LMB in the case 
of the below mean flow run. It appears that the LMB is much more sensitive to 
flow fluctuations than the UMB. This is also apparent from Fig. 13, which sum-
marizes the results in aggregate terms for different flow distributions by the 
Mekong regions. Both high and low levels of flow have a negative impact on net 
welfare of the basin.

Using the probabilities in Table 5 and the net benefits in Fig. 13 the expected 
total basin net benefit value at $6.359 billion at one standard deviation below mean 
flow. This figure represents only 68% of the basin-wide net benefits ($9.313 billion) 
that was estimated under the mean flow. Having the flow distribution information 
(as provided by the BWI) allows the basin riparians to reconsider arrangements that 
will secure their economies rather than face significant losses under extreme flow 
situations. Having probabilities assigned to the various flow values allows a cost- 
benefit analysis by policy makers who consider their interventions. The information 
can be used directly in Climate Smart Agriculture to promote cooperation for effi-
cient and equable water use in agriculture, as well as serve as a quantitative measure 
to implement early warning strategies to mitigate the losses from limited water 
supplies.
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4  Concluding Discussion

This chapter demonstrates several applications of the satellite derived surface wetness 
and temperature data to promote  CSA. First, the early detection of growing conditions 
and predicting the availability of food directly improves climate resilience and food 
security. Second, insurance (risk management) programs can use the indexes in trig-
gers for a quick release of catastrophic bonds to farmers adversely impacted by the 
weather in order to mitigate the impact of crop failure. Third, these tools provide infor-
mation to educate farmers about the viable yields from various crops under current and 
changing climatic conditions. Fourth, an early warning system distributed across the 
globe can help identify and expedite the exportation of food supplies from areas where 
they are in excess into areas where a deficiency is likely to occur.

The BWI has skill to predict river flows in several geographies and locations around 
the world, where it  captured the integration of rainfall, melting snow cover, the change 
in wetland areas in a quantitative measure of river flow. It also provides a quantitative 
measurement that is independent of local governmental reports.We realize that more 
sophisticated models can generate more accurate calculations of flow. However these 
models require detailed parameterizations and assumptions, which means they are dif-
ficult to run and maintain, and they must be trained for each basin. Whereas the 
approach taken in this study is a simple, yet robust variable that has expanded applica-
tion and portability to other basins and periods of time beyond the calibration time and 
location. This expands the accuracy and utility of the product for CSA.

In terms of adding new variables to interact with the wetness and temperature 
products, the Normalized Difference Vegetative index (NDVI) is a natural comple-
ment, since it is a direct measurement of canopy greenness. The three products 
together can be used as a superior signal of crop conditions and potential yields. The 
CSA will benefit directly by improving  near real time monitoring capacity. In this 
situation the synergy between the three observations can create a superior tool for 
crop yield predictions, insurance triggers, trends and return period of extreme 
events, all of which improve  climate resilience.

In order to maximize the skill of crop prediction models, it is essential to calibrate 
the models with reliable yield data from at least 10 years and preferably  20–25 years. 
Most countries collect field data and calculate yields, however the spatial resolutions 
of the values can range from county (districts) to province (states, oblast), all the way 
to country-wide estimates. Since these yield values are always best guesses, CSA 
needs independent, objective and transparent tools to assess the food production at 
the regional level in across the globe in near real time. This is a particularly important 
requirement, since many countries do not release their best estimates; instead the 
data they do release is manipulated data for national security, political and economic 
reasons. Consequently, models based on these yield data lack both skill and confi-
dence in their predictions. One approach is to use analogues from areas that grow the 
same crop and share similar climate, soils, and irrigation practices. In this case, the 
models developed in the analogue region can be applied to the target area.
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Another application to the CSA is using the indexes and predictions as triggers 
to release catastrophic bonds to farmers having substantial crop failure. There are 
several advantages to index-based insurance that support CSA.

 1. The cost of the premium is substantially lower than the traditional indemnifica-
tion insurance programs, since no adjuster or field survey are required.

 2. The funds are released in near real time, mitigate the impact of the financial 
losses of the harvest.

 3. It is an objective program that can be readily underwritten by numerous sources, 
thereby the distribution of the losses through various  government and financial 
institutions, reducing exposure to a particular organization. Insurance based on a 
composite of indexes (used as triggers) has been tried with some success. 
However, one of the major obstacles is confidence in the triggers by both the 
insurance companies and the farmers. One intention of the study is to support the 
CSA’s ability to identify reliable and easy to apply triggers in the crop insurance 
industry.

The value of the wetness index for monitoring and predicting river flow is 
multifold.

 1. Improved knowleddge on  the distribution of water resources and the probability 
of various levels of water for agriculture, commercial, industrial and human con-
sumption is critical to sustainability and development strategies.

 2. Mitigate  the impact of flood and drought with a reliable early warning system, 
which  provides valuable lead-time about upcoming extreme events.

 3. Provide  a reliable and objective source of information about the available water 
resources, in planning and promoting water sharing between riparian states .

 4. Use objective measurements to establish an insurance program that protects sec-
tors of society against extreme events, and provides financial compensations for 
mitigating impacts on infrastructure and society’s welfare.

We introduced a model to demonstrate how to qunatify the value on water 
resources in various sectors of society. The model broke the impacts across the agri-
culture, fishing, commercial and human consumption. Ther are many benefits to use 
the BWI to quantify these relationships, in terms of social and economic costs/
benefits related to water resource management and mitigation strageties against 
extreme events.  This chapter demonstrates the application of both the wetness and 
temperature data for monitoring growing conditions and predicting yields, which 
directly support CSA around the world. We plan to integrate these products with 
various datasets, such as in situ surface temperature, the greenness index, and soil 
moisture data, in order to expand their complementary value and utility. We are 
excited about collaborating with organizations that would like to apply these prod-
ucts in various sectors. Since the data is global and has more than 25 years of obser-
vations, we believe that the potential for application is vast and look forward to 
developing that potential in many areas. The goal is to assist the CSA by applying 
these products to support resource management, food security, climate resilience, as 
well as mitigate the adverse impacts of extreme events.

A. Basist et al.



103

References

Adger, N., T. Hughes, C. Folke, S. Carpenter, and J. Rockström (2005), Social ecological resilience 
to coastal disasters. Science, 309, 5737,1036–1039.

Ambec, S., A. Dinar, and D. McKinney (2013), Water sharing agreements sustainable to reduced 
flows, Journal of Environmental Economics and Management, 66(3), 639–655.

Basist, A., Grody, N. C., Peterson, T. C., and Williams, C. N. (1998), “Using the Special Sensor 
Microwave / Imager to Monitor Land Surface Temperatures, Wetness, and Snow Cover,” 
Journal of Applied Meteorology, 37(September): 888–911.

Basist, A., C.  Williams Jr, T.  F. Ross, M.  J. Menne, N.  Grody, R.  Ferraro, S.  Shen, and A.  T. 
C. Chang (2001), Using the Special Sensor Microwave Imager to monitor surface wetness, 
Journal of Hydrometeorology, 2(3), 297–308.

Becker-Reshef I, Vermote E, Lindeman M, Justice C (2010) A generalized regression-based model 
for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing 
of Environment 114: 1312–1323

Blankespoor, B., A.  Basist, A.  Dinar and S.  Dinar (2012), Assessing Economic and Political 
Impacts of Hydrological Variability on Treaties: Case Studies of the Zambezi and Mekong 
Basins Policy Research Working Paper No. 5996, 1–56 pp, World Bank, Washington, DC.

Demirel Mehmet C., Martijn J. Booij and Arjen Y. Hoekstra (2013) Identification of appropriate 
lags and temporal resolutions for low flow indicators in the River Rhine to forecast low flows 
with different lead times Hydrological Processes. 27(19): 2742–2758,

Deryng, D., W. J. Sacks, C. C. Barford, and N. Ramankutty, 2011: Simulating the effects of climate 
and agricultural management practices on global crop yield. GLOBAL BIOGEOCHEMICAL 
CYCLES, VOL. 25, GB2006, 1-18.

Dinar, A., B. Blankespoor, S. Dinar, and P. Kurukulasuriya (2010), Does precipitation and run-
off variability affect treaty cooperation between states sharing international bilateral rivers?, 
Ecological Economics, 69(12), 2568–2581.

Dinar, S., D.  Katz, L.  De Stefano, and B.  Blankespoor (2015), Climate Change, Conflict, and 
Cooperation: Global Analysis of the Effectiveness of International River Treaties in Addressing 
Water Variability. Political Geography.

Drieschova, A., M. Giordano and I. Fischhendler (2008), Governance mechanisms to address flow 
variability in water treaties. Global Environmental Change, 18, 285–295.

Drury, A. C., and R. S. Olson (1998), Disasters and Political Unrest: An Empirical Investigation, 
Journal of Contingencies & Crisis Management, 6(3), 153.

(FAO) Food and Agricultural Organization of the United Nations, Mekong River Commission 
Secretariat and Department of Irrigation, Ministry of Agriculture and Forestry of LAO P.D.R. 
(1999), Flood Management and Mitigation in the Mekong River Basin, 40pp, FAO, Bangkok. 
Accessed 2014–10 at: http://www.fao.org/3/a-ac146e/AC146E01.htm

Gutman, Nsthaniel B. 1999: Accepting the standardized precipitation index: A Calculation algo-
rithm, Journal of the American water resources association. Vol. 35, No.2, 311–322.

Hendrix, C. S., and I. Salehyan (2012), Climate change, rainfall, and social conflict in Africa, 
Journal of Peace Research, 49(1), 35–50.

Houba, H., Kim Hang Pham Do, and X. Zhu (2013), Saving a river: a joint management approach 
to the Mekong River Basin, Environment and Development Economics, 18:93–109.

Intelligence Community Assessment (2012), Global water security. Office of the Director of 
National Intelligence, February 2.

Jackson, T. Passive microwave remote sensing of soil moisture and regional drought monitoring, 
(2005). V:89–104. in Boken, V. (ed.) Monitoring and Predicting Agricultural Drought. Oxford 
Univ. Press

Jury, W. A., and H. Vaux (2005), The role of science in solving the world’s emerging water prob-
lems, Proceedings of the National Academy of Sciences of the United States of America, 102(44), 
15715–15720.

Use of Satellite Information on Wetness and Temperature for Crop Yield Prediction…

http://www.fao.org/3/a-ac146e/AC146E01.htm


104

Larson, D. F., A. Dinar, and B. Blankespoor (2015), Aligning Climate Change Mitigation and 
Agricultural Policies in ECA, in Asia and the World Economy, edited by J. Whalley, pp. 
69–151, World Scientific, Singapore.

Mekong Water Commission (2009), Annual Report. http://mwcmekong.org.
Miller, K., and D. Yates (2006), Climate change and water resources: a primer for municipal 

water providers, 83 pp., American Water Works Research Foundation and UCAR, Denver, CO.
NASA (2010), Flooding on the Zambezi River: Natural Hazards, edited, NASA, http://earthobser-

vatory.nasa.gov/IOTD/view.php?id=44132.
Nel, P., and M.  Righarts (2008), Natural Disasters and the Risk of Violent Civil Conflict, 

International Studies Quarterly, 52(1), 159–185.
Palmer, M. A., C. A. Reidy Liermann, C. Nilsson, M. Flörke, J. Alcamo, P. S. Lake, and N. Bond 

(2008), Climate change and the world’s river basins: anticipating management options, 
Frontiers in Ecology and the Environment, 6(2), 81–89.ds

Tucker, C.J., M. E. Brown, J. E. Pinzon, D. A. Slayback, R. Mahoney, N. E. Saleous, and E. F. 
Vermote: 2005, “An extended AVHRR 8-km NDVI dataset comparable with MODIS and 
SPOT Vegetation NDVI data,” Int. J. Remote Sens.26:4485–4498.

Williams, C., A. Basist, T. C. Peterson, and N. Grody 2000: Calibration and Verification of Land 
Surface Temperature Anomalies Derived from the SSMI, Bull. Of the Amer. Meteor. Soc. 
2141–2156.

Winsemius, H.  C., H.  H. G.  Savenije, A.  M. J.  Gerrits, E.  A. Zapreeva, and R.  Klees (2006), 
Comparison of two model approaches in the Zambezi river basin with regard to model reli-
ability and identifiability, Hydrol. Earth Syst. Sci., 10, 339–352.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution- 
NonCommercial- ShareAlike 3.0 IGO license (https://creativecommons.org/licenses/by-nc-sa/3.0/
igo/), which permits any noncommercial use, duplication, adaptation, distribution, and reproduction 
in any medium or format, as long as you give appropriate credit to the Food and Agriculture 
Organization of the United Nations (FAO), provide a link to the Creative Commons license and 
indicate if changes were made. If you remix, transform, or build upon this book or a part thereof, 
you must distribute your contributions under the same license as the original. Any dispute related 
to the use of the works of the FAO that cannot be settled amicably shall be submitted to arbitration 
pursuant to the UNCITRAL rules. The use of the FAO’s name for any purpose other than for 
attribution, and the use of the FAO’s logo, shall be subject to a separate written license agreement 
between the FAO and the user and is not authorized as part of this CC-IGO license. Note that the 
link provided above includes additional terms and conditions of the license.

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

A. Basist et al.

http://mwcmekong.org
http://earthobservatory.nasa.gov/IOTD/view.php?id=44132
http://earthobservatory.nasa.gov/IOTD/view.php?id=44132
https://creativecommons.org/licenses/by-nc-sa/3.0/igo/
https://creativecommons.org/licenses/by-nc-sa/3.0/igo/

	Use of Satellite Information on Wetness and Temperature for Crop Yield Prediction and River Resource Planning
	1 Introduction
	2 Methodology
	3 Application
	3.1 Monitoring Crop Yield
	3.2 Monitoring River Flow
	3.3 River Basin Management: The Case of the Mekong
	3.3.1 Description of the Model
	3.3.2 Applying the BWI to the Mekong Economic Model
	3.3.3 Results of the Economic Model


	4 Concluding Discussion
	References


