
VU Research Portal

FAST Approaches to Scalable Similarity-based Test Case Prioritization

Miranda, Breno; Verdecchia, R.; Cruciani, Emilio; Bertolino, Antonia

2018

Link to publication in VU Research Portal

citation for published version (APA)
Miranda, B., Verdecchia, R., Cruciani, E., & Bertolino, A. (2018). FAST Approaches to Scalable Similarity-based
Test Case Prioritization. Paper presented at 40th International Conference on Software Engineering (ICSE
2018), .

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 27. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303682566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/569a276e-af62-4542-9469-57e23d933389

FAST Approaches to Scalable Similarity-based
Test Case Prioritization

Breno Miranda
Federal University of

Pernambuco
Recife 50740-540, Brazil

bafm@cin.ufpe.br

Emilio Cruciani
Gran Sasso Science

Institute
L’Aquila 67100, Italy
emilio.cruciani@gssi.it

Roberto Verdecchia∗

Gran Sasso Science
Institute

L’Aquila 67100, Italy
roberto.verdecchia@gssi.it

Antonia Bertolino
ISTI - CNR

Pisa 56124, Italy
antonia.bertolino@isti.cnr.it

ABSTRACT
Many test case prioritization criteria have been proposed
for speeding up fault detection. Among them, similarity-
based approaches give priority to the test cases that are
the most dissimilar from those already selected. However,
the proposed criteria do not scale up to handle the many
thousands or even some millions test suite sizes of modern
industrial systems and simple heuristics are used instead.
We introduce the FAST family of test case prioritization
techniques that radically changes this landscape by borrowing
algorithms commonly exploited in the big data domain to find
similar items. FAST techniques provide scalable similarity-
based test case prioritization in both white-box and black-box
fashion. The results from experimentation on real world C
and Java subjects show that the fastest members of the family
outperform other black-box approaches in efficiency with no
significant impact on effectiveness, and also outperform white-
box approaches, including greedy ones, if preparation time
is not counted. A simulation study of scalability shows that
one FAST technique can prioritize a million test cases in less
than 20 minutes.

CCS CONCEPTS
•Software and its engineering →Software testing and
debugging; •General and reference →Verification; Met-
rics; •Information systems →Similarity measures;

ACM Reference format:
Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and Antonia
Bertolino. 2018. FAST Approaches to Scalable Similarity-based
Test Case Prioritization. In Proceedings of ICSE ’18: 40th In-
ternational Conference on Software Engineering , Gothenburg,
Sweden, May 27-June 3, 2018 (ICSE ’18), 11 pages.
DOI: 10.1145/3180155.3180210

∗Also with Vrije Universiteit Amsterdam, 1081HV, The Netherlands.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ICSE ’18, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights
licensed to ACM. 978-1-4503-5638-1/18/05. . . $15.00
DOI: 10.1145/3180155.3180210

1 INTRODUCTION
Test case prioritization (TCP) is a very active topic in soft-
ware testing research [4, 15, 21, 33]. The goal of TCP is to
speed up fault detection: It re-orders a test suite so that
those test cases that are most likely to fail are executed first.

TCP is typically applied in regression testing [30, 33]: As
changes are introduced into a software system, previously
saved test cases need to be re-executed to ensure quality and
stability. By Herzig [16], answering the question “what to test
next” is one of the five top things that require automation in
industrial software testing. TCP can help to detect faults
more quickly and to provide confidence that, should testing
be stopped before all test cases are run, the ones executed are
the most effective. In the years, researchers have proposed
many prioritization criteria that exploit different information
related to the test cases: Early approaches were based on
code coverage [9, 30]; more recently, black-box criteria based
on system models [31], on requirements [1], or on historical
failure data [28] are investigated, as with the growing scale of
regression testing, coverage measures can hardly be afforded.

Since [30], the effectiveness of TCP techniques is evalu-
ated by their Average Percentage of Faults Detected (APFD).
This measure captures how fast a re-ordered test suite de-
tects faults, which is certainly an important concern in test
prioritization. However, APFD does not consider how fast
the prioritization approach itself is. As said by Henard et
al. [15], if prioritization takes too long, then it eats into the
time available to run the prioritized test suite.

As also noticed in [34], for real-world software the size of
a test suite can often exceed the size of the system under
test. In contrast, the time available for test execution cycles
decreases, especially with companies migrating towards rapid
release [23] or continuous integration [8] practices. Memon et
al. [27] report that every day at Google an amount of 800K
builds and 150M test runs are performed on more than 13K
code projects. In line with [8, 27], we notice that most TCP
approaches in the literature cannot handle such scale. Our
experimental results show that some TCP approaches become
soon inefficient even for small-medium size benchmarks.

In this paper, we look at TCP from a novel perspective:
We acknowledge that test suite sizes grow at fast pace, and
existing techniques and tools for regression testing become
inadequate. Making the appropriate scale distinctions, the
management of test suites in large scale industrial projects is
becoming a big data problem. Big data are “datasets whose
size is beyond the ability of typical database software tools

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino

to capture, store, manage, and analyze” [24]. In a similar
way, we coin the term “big testsets” to denote sets of test
cases whose dimensions go beyond the capacity of existing
testing tools. A testset dimension can be “big” due to either
the number of test cases (e.g., millions of tests) or the size
of test case related information (e.g., coverage measures for
huge programs), or the combination of both. We borrow well
established data mining techniques for handling big testsets.

Indeed, finding “similar” items is a fundamental problem
in data mining, and very efficient algorithms exist to address
this problem. In software testing, diversity has been shown
to be an effective measure for both selecting and prioritizing
test cases, and several similarity-based approaches have been
proposed [11, 14, 17, 19, 34]. However, such approaches do
not scale up to big testsets. In this paper, we present FAST,1
a family of similarity-based TCP techniques that employs
minhashing and locality-sensitive hashing algorithms [20] for
quickly finding “diverse” test cases within a big set. FAST
can perform white-box (WB) or black-box (BB) prioritization,
and can be tuned to yield higher or lower efficiency by trading
off with precision in similarity estimation.

We assessed the effectiveness, efficiency, and scalability
of five techniques from the FAST family applied to both
WB (function, statement, and branch coverage) and BB
testsets (i.e., 20 techniques in total), against several compet-
ing approaches (17 techniques in total). The results on 10
commonly used benchmarks (both C and Java) showed that
the fastest techniques from the FAST family outperformed
the BB competitors in efficiency with no significant impact
on effectiveness. In comparison with WB approaches, they
required the shortest prioritization time net of preparation
time, even against greedy approaches. Indeed, our simulation
study shows that after preparation is done, FAST efficiency
is independent from the size of the test cases, and one FAST
technique can prioritize 1M size testsets in less than 20 min-
utes, whereas even greedy total performance degrades when
dealing with big dimensions.

Summarizing, the contributions of this work include:
• The first proposal of exploiting data mining algo-

rithms for similarity-based testing of big testsets.
• The definition and implementation of the FAST

family of similarity-based TCP techniques.
• A large scale experimentation of 20 FAST techniques,

compared for effectiveness, efficiency, and scalability
against 17 competing approaches.

• The release of an automated framework and all the
data used for the experiments in order to support
replicability and follow up studies.

The paper is structured as follows. Related work is over-
viewed in the next section. Background information behind
similarity-based TCP and the employed algorithms is pro-
vided in Section 3. The FAST approaches, the performed
experiments, and the results achieved are described in Sec-
tions 4, 5, and 6, respectively. Section 7 concludes the paper.

1FAST is a recursive acronym for FAST Approaches to Similarity-based
Testing.

2 RELATED WORK
This work proposes a family of novel TCP approaches based
on similarity that explicitly addresses scalability.

Related work on test case prioritization. The literature on
TCP is huge, testifying the great interest in the topic from
both academic and industrial perspectives. For an overview
of existing work we refer to [4, 12, 33]. Catal and Mishra [4]
present a systematic mapping study of TCP over the pe-
riod 2001-2011. The work from Yoo and Harman [33] is a
broad survey on regression testing. Concerning TCP, they
categorize techniques based on the information used for order-
ing test cases, including coverage-based, interaction-testing
(which considers different combinations of components), and
“others” (including distribution-based, human-based, prob-
abilistic, requirement-based, model-based). Hao et al. [12]
provide an overview of TCP research considering five aspects:
test adequacy criteria, algorithms used, measures adopted,
constraints considered, and application scenarios. Notably,
they observe that efficiency is important and TCP becomes
unbearable when the prioritization time gets close to test
execution time. This work fully shares such consideration.

Related work on similarity-based TCP. Both Jiang et
al. [17] and Zhou et al. [34] have proposed ART-based priori-
tization techniques guided by code-coverage. ART (Adaptive
Random Testing) [5] is a variant of random test generation
that tries to spread as evenly as possible the test inputs in
the input domain. In our experimentation we compare the
FAST approaches against both [17, 34], which are further
described in Section 5. Also the approach proposed by Fang
et al. [10] is based on code coverage information, from which
they exploit the execution frequency profiles.

Among black-box approaches, Ledru et al. [19] propose a
similarity-based approach solely considering the strings that
express the test cases, i.e., the input data or the JUnit test
cases. We also compare FAST against this approach (see
Section 5). Noor and Hemmati [28] develop a history-based
approach in which, among new or modified test cases, those
that are the most similar to failing ones are prioritized. FAST
does not currently use history data.

Related work on scaling up test prioritization. It is impor-
tant to consider the applicability of proposed TCP approaches
to real world testing environments. Busjaeger and Xie [2]
identify heterogeneity, scale, and cost as the practical realities
to address in TCP and propose to rank the test cases by using
machine learning techniques trained on five features (code
coverage, text path and content similarity, failure history,
and test age). The ROCKET approach by Marijan et al. [25]
implements an automated TCP approach considering failure
history and test execution time, and compares it against
manual approach. Elbaum et al. [8] propose a regression test
strategy for continuous integration environments based on
execution history data that combines techniques of test case
selection and prioritization. We observe that approaches con-
ceived for handling huge test suites generally embed specific
heuristics conceived on the basis of the studied industrial

FAST Approaches to Scalable Similarity-based Test Case Prioritization ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

process. In contrast, FAST is a generally applicable approach
as it does not embed any ad-hoc heuristic.

3 BACKGROUND
3.1 Similarity-based TCP
The TCP problem can be defined as follows [30]: Given a
test suite S, the set P of permutations of S, and an award
function f : P → R, then TCP consists in finding a T ∈ P
such that f(T)≥ f(T ′) for all T ′ ∈ P with T ′ 6= T .

Ideally, the award function f refers to the rate at which
faults are detected in the given ordering. In reality, TCP
approaches can only be based on surrogate criteria [33], and
as discussed in the previous section fairly different techniques
have been suggested. In particular, the idea at the basis of
similarity-based approaches for test prioritization (STP in
short) is to reward the diversity between test cases.

In Figure 1 we provide the scheme of a generic STP process.
It consists of three main activities: (i) encoding of test-related
information; (ii) evaluating similarity; (iii) picking out the
next test case(s). The similarity between two test cases can
be evaluated in many different ways, also depending on the
adopted test strategy. For example, in coverage-based testing
similarity between test cases is evaluated by considering
set similarity measures among their respective coverage, as
in [17, 34]; in model-based testing, instead, by considering
the overlap between the traces covered by the tests over a
state-based model of the system under test, as in [3, 13].
Several other features related to test cases have been taken
into account, e.g., historical data failure, the test input string,
etc. Therefore, before applying any STP, a preparation phase
is needed (Step 1), in which the information related to the test
cases is collected and encoded (other processing of such data
may also be needed depending on the approach). Such data
is then processed to calculate the similarity with respect to
the already picked test cases (Step 2). In fact STP proceeds
in iterations: At each iteration there exists a set of already
picked test cases (denoted as “so-far ordered tests”), to which
the test cases yet to be ordered are compared. Following
Step 2, we obtain a ranking of the coded test information.
From this, one or more test cases are picked and added to the
set of so-far ordered tests (Step 3). The process terminates
when the whole testset is ordered (compatibly with available
resources).

3.2 Algorithms for Similarity Estimation
Finding similar items is a fundamental problem in data min-
ing, and very efficient techniques have been developed to solve
it [20]. Typical tasks that face such problem include finding
plagiarized documents, detecting mirror pages, identifying
articles coming from the same source. As the number of test
cases to prioritize grows in size up to millions [8, 16], the
idea of applying such efficient techniques in STP seems the
natural way to go.

The naive approach for similarity computation between
n items needs to perform all the pairwise comparisons and
becomes inefficient as n grows. In this work we measure the

Coded test
information

Similarity-ranked
test information

(So far) ordered
tests

Next
test(s)

Encoding
test information

Evaluating
similarity

Picking out
next test(s)

Add to
ordered tests

Pick
initial test(s)

Yes No
Finished?Test related

information

1 2

3

Figure 1: Overview of STP.

similarity of two sets A and B as their Jaccard similarity
JS(A,B) = |A∩B| / |A∪B|, and the distance between them
as their Jaccard distance JD(A,B) = 1 − JS(A,B). This
choice allows us to leverage and combine techniques able to
drastically reduce the cost of computing similarity.

The first technique, called Shingling [22], is used to repre-
sent items as sets of “shingles”, out of which the similarity
is computed. Given a string of characters, a k-shingle of
that string is the set of its substrings of length k. For exam-
ple, the 3-shingles set of the string gzip is {gzi, zip}. Any
document can be represented by a set of k-shingles and if
two documents are similar they will have many shingles in
common. We use k-shingles in BB prioritization to make a
set out of the string representation of the input test cases.

Sets of shingles, though, are larger than the original data
and for huge datasets it is not practical to use them directly.
The second technique we leverage is Minhashing [20], which
derives compact representations of sets, called signatures.
Minhash signatures have the nice property of preserving
the Jaccard similarity between the sets they represent. A
minhash of a set S is computed as follows: A given hash
function g is used to hash all the elements in S and the
minimum resulting value becomes the minhash of S. This
process is repeated multiple times, e.g., using h different hash
functions, to generate a sequence of minhashes which forms
the signature of S.2 The estimation of the Jaccard similarity
between two sets can be computed by counting the fraction
of minhashes that agree in the signatures of the sets. For
example, the signatures (1, 1, 3, 2, 4) and (1, 2, 1, 2, 3) have an
estimated Jaccard similarity of 2/5 since they agree in the
first and fourth minhash.

Minhashing helps to compress large items into small sig-
natures, but the signature pairs to be compared can still be
beyond feasibility if the number of items is high. The third
technique we use is Locality-Sensitive Hashing (LSH) [20],
which reduces the scope of comparison to only a subset of
items that are likely to be similar, the candidate set. LSH
works on the signature matrix, i.e., the matrix that has min-
hash signatures as columns, by dividing it into b bands of
r rows each and applying a hash function to them. In par-
ticular, for each band, the vectors of r integers located in
the columns are hashed into several buckets: If it happens

2A signature of length h guarantees an expected error of O(1/
√

h) in
the similarity estimation.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino

that two of these vectors hash into the same bucket then it
means that a portion of their signatures agree and the pair
is added to the candidate set. In the end the candidate set
will contain all the pairs of sets which are likely to be similar,
i.e., all the pairs that have a Jaccard similarity over a certain
threshold s. Such threshold depends on the choice of the
values b and r and a good approximation is s ≈ (1/b)(1/r).

4 APPROACH
Algorithm 1 provides a pseudocode description of FAST.
In the preparation phase (Lines 2 and 3), FAST uses the
coded test information T to create the minhash signatures M .
Note that this is the only operation where FAST handles BB
and WB inputs differently. While for WB the code coverage
information can be directly represented as sets (regardless of
the coverage criterion), for BB the string representation of
the test cases needs to be preprocessed into k-shingles. We
used k = 5 to have a suitable set representation.3 Once the
minhash signatures are computed, T is not required anymore
and only M is used during the prioritization process. We used
a number of hash functions h = 10, which guarantees an
expected error not greater than 0.32 in the estimation of
the Jaccard similarity (and distance) between two signatures.
Even if the error in the estimation is high, the choice of the
next test case is performed over a subset of tests that are all
dissimilar from the so-far-prioritized ones.

Algorithm 1: FAST prioritization.
Input : Coded test suite info T ; (optional) selection function f .
Output : Prioritized test suite P .

1 P ← EmptyList()
2 I ← GetTestCaseIDs(T)
3 M ← MHSignatures(T) . No need of T from here on
4 B ← LSHBuckets(M)

. M(v): Cumulative signature of so-far-ordered test cases
5 M(v) ← MHSignature(∅)
6 while |P | 6= |I| do
7 Cs ← LSHCandidates(B, M(v))
8 if Cs = ∅ then
9 M(v) ← MHSignature(∅)

10 Cs ← LSHCandidates(B, M(v))
11 Cd ← (I − P − Cs) . Complement of Cs

12 s ← Select(M(v), M, Cd, f)
13 M(v) ← UpdateMHSignature(M(v), M, s)
14 M ← Remove(M, s)
15 P ← Append(P , s)

16 return P

17 function Select(M(v), M, C, f)
18 if no f then . FAST-pw
19 return arg max

c ∈ C

{
EstimateJD(M(v), M(c))

}
20 else . FAST-f
21 return RandomSample(C, f)

In Line 4, the collection of LSH buckets is computed.
Basically, B contains b buckets, one for each band, and
3The typical BB input is smaller than 505 characters, which is the
number of all the possible 5-shingles, considering an average of 50
characters (letters and symbols).

each bucket keeps track of all the test cases colliding there.
We defined the number of bands b = 10 and rows r = 1
such that the number of rows in the signature matrix is
equal to the signature size, i.e., h = r · b. These values
guarantee a similarity threshold s ≈ 0.1 for the candidate
set. Notice that, while in finding the most similar items a
higher similarity threshold would be better, for the context
of STP we want to select the test cases that are dissimilar
from the so-far-prioritized ones. Intuitively, with a similarity
threshold s ≈ 0.1 the candidate set will contain almost all
the test cases but the ones that are dissimilar to M(v) (i.e.,
having Jaccard distance greater than 0.9). In fact, the actual
candidate set Cd used by FAST is computed (Line 11) as the
complement of Cs, excluding the so-far-prioritized test cases.

The candidate sets are created inside the while loop (Lines
6 to 15), where the actual prioritization happens, as follows:
M(v) is divided into b bands; each band is hashed; and if
there is a collision with the corresponding bucket in B, then
the test cases of that bucket are added to the candidate set Cs.
M(v) is initialized in Line 5 and is updated whenever new test
cases are selected (Line 13) to keep track of the cumulative
signature of the so-far-ordered test cases. Whenever Cs is
empty, we reset M(v) (Lines 8 to 10) and recompute Cs. For
FAST, such operation is analogous to what is done by some
TCP approaches that reset the coverage vector when 100%
of the achievable coverage is accomplished.

The function Select (Line 17) is where the FAST ap-
proaches differentiate from each other. FAST-pw computes
the estimated Jaccard distance between M(v) and each test
case in the candidate set Cd using minhash signatures, and
selects the candidate that is the farthest away from M(v).
The other approaches, instead, use a function f that is pro-
vided as input to the algorithm to select a random subset of
Cd of size f(|Cd|). In Line 15, the newly selected test case(s)
are appended to the prioritized test suite P . For the experi-
ments in this work we considered the following functions that
progressively increase the efficiency of the prioritization: one,
log, sqrt, all. In general, f is a generic function that can be
tuned to achieve the right balance between the efficiency and
the accuracy required in a particular context.

5 EXPERIMENTS
We describe the experiments conducted to assess the effec-
tiveness, efficiency, and scalability of FAST in comparison
with existing prioritization techniques.

5.1 Research Questions
The ultimate goal of any TCP approach is to reveal faults as
quickly as possible. Therefore, our first and second research
questions investigate the effectiveness and efficiency of FAST:
RQ1: [Effectiveness] How does FAST compare with other

existing prioritization approaches in terms of fault
detection rate?

RQ2: [Efficiency] How does FAST compare with other ex-
isting prioritization approaches in terms of time re-
quired for the prioritization?

FAST Approaches to Scalable Similarity-based Test Case Prioritization ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Effectiveness and efficiency of TCP have been extensively
explored by researchers in previous work, e.g., [14, 15, 21].
However, one dimension that is usually not explicitly consid-
ered is the one of scalability. A given TCP approach might
be effective and efficient for small-sized programs, but to
what extent does it scale to big, real-world-sized, programs?
We address this concern in our third research question:
RQ3: [Scalability] How does FAST compare with other exist-

ing prioritization approaches in terms of scalability?

5.2 Compared TCP Approaches
In order to conduct our experiments we had to decide which
TCP approaches to consider for the comparison with FAST.
We limited the scope of our study to TCP approaches that
require only test cases and/or coverage information as input.
This decision is justified by the fact that other types of inputs
used by some TCP techniques (e.g., models or requirements)
are not easily available for experimentation. Moreover, as
these are the only inputs that FAST techniques require, this
decision supports a fair comparison.

Because FAST is based on similarity, we started by search-
ing the literature for state-of-the-art STP techniques that
would meet our selection criterion. At this phase, the fol-
lowing approaches were selected (in bold within brackets we
introduce the acronym used in the experiment description):

Jiang et al. [17] [ART-D] proposed a family of ART-based
TCP techniques guided by coverage information. At each
iteration, a candidate set is dynamically4 created by randomly
picking test cases from the set of not-yet-prioritized tests
as long as they can increase coverage. The test case within
the so built candidate set that is the farthest away from
the set of already-prioritized tests is selected. The authors
proposed and assessed different set distance functions; for
our experiments we implemented the version that performed
better (i.e., “maxmin”).

Zhou et al. [34] [ART-F]: The essence of this TCP ap-
proach is the same of ART-D. The main differences are in
the way the candidate set is created and in the distance
metric adopted. While in [17] the candidate set has a flexible
size, Zhou et al. [34] proposed a fixed5 size (i.e., 10) for the
candidate set. Besides, the authors used Manhattan distance
instead of the Jaccard distance adopted by Jiang et al. [17].

Ledru et al. [19] [STR]: As said in Related work, this
approach only uses test input strings. A greedy algorithm is
applied that, at each iteration, picks the test case that is the
most distant from the set of already prioritized ones. Several
distance functions are evaluated, and Manhattan distance is
the one recommended.

Considering other non-similarity based approaches, two
natural choices are the well-known [30] Greedy Total [GT]
and Greedy Additional [GA], which pick as the next test
case the one that covers the largest number of entities in
total or among those yet uncovered, respectively.

4This is why the D in the name label.
5This is why the F in the name label.

We finally looked at the results from some recent studies
comparing TCP approaches, with the intent of selecting those
emerging as the best ones. Excluding among the best TCP
techniques indicated in [15] those already included in our list
or using models in input, we could add 2 more competitors,
one WB and one BB, described below.

Additional Spanning [GA-S] is a variant of GA that at
each iteration picks the test case that covers the largest num-
ber of not-yet-covered entities among those in the “spanning
set”. In coverage testing an element subsumes another if
covering the former guarantees also covering the latter: The
notion of a spanning set was introduced in [26] to denote the
subset of non-subsumed entities.

Feldt et al. [11] [I-TSD]: This approach proposes to use
the Normalized Compression Distance between multisets
introduced by [6] to measure the diversity of sets of test cases.
While the measure is originally proposed as “universally”
applicable to any test-related feature, the version performing
better in [15] considers test inputs.

We also looked at the approaches compared in [21]. In
this case, excluding the ones requiring additional information
would yield to no new competing technique with respect to
those already selected. Thus, summarizing, we collected as
competing approaches: 2 BB ones, i.e., STR and I-TSD,
and 5 WB ones, i.e., ART-D, ART-F, GA, GT, GA-S. For
each WB approach, we implemented three variants, address-
ing function, statement, and branch coverage, totalizing 17
competitors techniques.

5.3 Evaluation Metrics
In order to assess prioritization effectiveness (RQ1), we use
the Average Percentage of Faults Detected (APFD) [29].
APFD is calculated according to Equation (1), in which,
given a test suite T containing n test cases and a set F of
m faults revealed by T , for each ordering of T we denote as
TFi the position of the first test case that reveals fault i.

APFD = 1− TF1 + TF2 + . . .+ TFm
nm

+ 1
2n. (1)

To answer our research questions on efficiency (RQ2) and
scalability (RQ3) we assess the investigated TCP approaches
in terms of preparation time and prioritization time.
The preparation time considers the time spent by each TCP
approach on tasks other than the prioritization itself (e.g.,
precomputing pairwise similarity between test cases), whereas
the prioritization time considers only the time to process the
already prepared test information and order the test suite.
In reporting our results we also refer to total time, which
is simply the sum of preparation and prioritization times.
All times refer to the actually spent CPU time, which we
measured by using Python’s time.clock() function.6

5.4 Study Subjects
To answer research questions RQ1 and RQ2 we conducted
experiments on 5 C and 5 Java programs. The C programs
6This is the function recommended by the Python Software Foundation
for benchmarking or timing algorithms.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino

Table 1: Study subjects details.

Subject LoC Test LoC #TM #TC Fault Type #Faults
Flex 10296 - 670 - seeded 9
Grep 10124 - 809 - seeded 8
Gzip 4594 - 214 - seeded 7
Sed 13413 - 370 - seeded 6
Make 14330 - 875 - seeded 19
Closure Compiler 90697 84585 8124 221 real 101
Commons Lang 21787 37957 2322 113 real 39
Commons Math 84323 86511 3877 385 real 7
JfreeChart 96382 49133 2278 356 real 26
Joda-Time 27801 53158 4160 123 real 27
Total: 373747 310344 23699 1198 249

LoC: lines of code; #TM: test methods; #TC: test classes.

(namely Flex, Grep, Gzip, Sed, and Make) were collected
from the Software-artifact Infrastructure Repository (SIR) [7].
These programs are available in sequential versions, each
containing a different number of seeded faults. The number
of faults that can be revealed by the accompanying test suite
varies greatly: Considering the extremes, in some cases no
faults can be revealed, whereas in other cases multiple faults
could be revealed by the vast majority of the test cases. To
minimize the influence of these characteristics in our study,
we selected, from each program, the version that contains
the highest number of “hard-to-find” faults, i.e., faults that
could not be detected by more than 50% of the test cases.

The 5 open-source Java programs investigated in our study
(namely Closure Compiler, Commons Lang, Commons Math,
JfreeChart, and Joda-Time) are integrated in the Defects4J
framework [18]. For a given program, multiple versions are
available, each containing a single fault. For our investiga-
tions we used as input for the TCP approaches the artifacts
(i.e., coverage traces and test cases) from the first version
of the program only. The effectiveness of the prioritized
test suites are then assessed in the subsequent versions. For
JfreeChart and Joda-Time, all the faults could be triggered
by the test suite of the reference version. Thus, we could use
all the available versions for these subjects. For the other
programs, however, some faults could be revealed only by
test cases that were not available in the reference test suite.
For those programs, we considered the versions V1 to Vn−1,
with n being the first version for which the reference test
suite could not trigger the existing fault. The number of
versions we considered for each Java program is displayed in
Table 1 (column “#Faults”).

In total, we used 205 versions of 10 different programs.

5.5 Experiment Procedure
To answer RQ1 and RQ2, we applied the investigated TCP
approaches to each experimental subject and measured: (i)
the preparation time; (ii) the prioritization time; (iii) the
APFD of the prioritized test suites. This process was repeated
50 times to account for the stochastic nature of the TCP
approaches considered in our study (e.g., when more than one
test case would be equally ranked by the TCP approach, a
random choice is made to solve the tie). For the Java subjects,

the APFD of the 50 prioritized test suites is computed for each
of the subsequent versions considered for a given program.

To answer RQ3 we considered two dimensions that might
hinder TCP scalability: (i) the size of the test suite; (ii) the
size of the test case representation. Item (i) is important as it
defines how many test cases need to be evaluated. While this
might have little influence for some TCP approaches such
as, e.g., GT, it might forbid the adoption of STP approaches
that would depend on pairwise similarity computation. Item
(ii), on its turn, is important as TCP approaches may use
different test related information whose size can vary greatly:
from just a few characters for command line programs, to
thousands of words in the case of JUnit tests. For coverage
traces, the size of test representation may change depending
on both the coverage criteria and the program size.

To control these two dimensions in our experiments on
scalability we used synthetic data. With respect to the first
dimension, we considered test suite sizes that assume discrete
values in the range from 1K to 1M as follows: from 1K to 10K
in increments of 1K (i.e., 1K, 2K, 3K, ...); from 10K to 100K
in increments of 10K; and from 100K to 1M in increments
of 100K (yielding 28 different test suite sizes). With respect
to the second dimension, we considered three different sizes
for a test case representation: small for an average length
of 100; medium for 1K; large for 10K elements. In all three
cases we allowed for a variance of ±25%. We refer to generic
“elements” for the size of test cases to be agnostic with respect
to test criteria. Thus a small test case can be interpreted
as a coverage trace from a test that covers ≈ 100 functions
in the same way that it can be understood as the textual
representation of a command line test case containing ≈ 100
words. Likewise, a large test case could be either a coverage
trace for the branch coverage criterion of a big program or
a large JUnit test method (or even a JUnit test suite). All
combinations of the different test case and test suite sizes
account for 84 different dimensions of testsets.

In order to collect data to answer RQ3, for each test case
size (small, medium, large), we applied the investigated TCP
approaches to the synthetic test suites, from the smallest
(1K) to the largest (1M) one, and measured the preparation
time and prioritization time taken by each approach.

All the experiments were performed on an Intel® Core™
i7-5960X with fixed 3.50 GHz CPU, 20M cache, 32GB RAM,
running Linux openSUSE 13.2.

6 RESULTS
In this section we report and discuss the results. Note that
with the aim of supporting the independent verification and
replication, we make available the artifacts produced as part
of this work.7 The replication package includes, among others,
the implementation of the algorithms, details on the hash
function used,8 input data, raw data used for the statistical
analyses, and additional results.

7https://github.com/icse18-fast/FAST
8xxhash is the fastest non-cryptographic hash function available to the
best of our knowledge.

https://github.com/icse18-fast/FAST

FAST Approaches to Scalable Similarity-based Test Case Prioritization ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

6.1 RQ1: Effectiveness
The APFD results achieved by the considered BB and WB
TCP approaches are displayed as box plots in Figure 2 (for
the sake of space, for WB we display only the box plots for
branch coverage) and in more detail in Table 2. Note that
results for the same FAST techniques are reported among
both WB and BB approaches. As explained in Section 4,
for FAST techniques the only difference between WB or BB
versions concerns the coding of test info: after that, the same
algorithm can be identically applied.

1 2 3 4 5 6 7

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

(a) C (BB)
1 2 3 4 5 8 9 10 11 12

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

(b) C (WB branch)

1 2 3 4 5 6 7

0
2
0

4
0

6
0

8
0

1
0
0

(c) Java (BB)
1 2 3 4 5 8 9 10 11 12

0
2
0

4
0

6
0

8
0

1
0
0

(d) Java (WB branch)
The y-axis displays the average percentage of faults detected (APFD) and
the numbers in the x-axis represent the prioritization approaches:
FAST-pw(1), FAST-1(2), FAST-log(3), FAST-sqrt(4), FAST-all(5), STR(6),
I-TSD(7), ART-D(8), ART-F(9), GT(10), GA(11), GA-S(12)

Figure 2: APFD for BB and WB TCP approaches.

Since the C and Java programs contain different types of
faults (see Section 5.4), we analyze them separately to gather
the effectiveness results.

As we could not assume our data to be normally dis-
tributed, we adopted a non-parametric statistical hypothesis
test, the Kruskal-Wallis rank sum test, to assess at a signifi-
cance level of 5% the null hypothesis that the differences in
the APFD values for the different TCP approaches are not
statistically significant. For the particular case of C programs
when considering the BB approaches, the resulting p-value for
the test was 0.2849, meaning that we cannot reject the null
hypothesis, i.e., no significant difference in effectiveness was
observed. For all the other cases, the resulting p-values were
smaller than 2.2e-16 meaning that the observed differences in
effectiveness are statistically significant at least at the 95%
confidence level.

A significant Kruskal-Wallis test indicates that at least
one TCP approach stochastically dominates another one,
but does not identify the dominance relationship among
pairs of techniques. To determine which TCP approaches
are different, we performed pairwise comparisons after the
Kruskal-Wallis test. The results are displayed in Table 2
inside the parenthesis. If two approaches have different letters,

they are significantly different (α = 0.05). If, on the other
hand, they share the same letter(s), the difference between
the means is not statistically significant. An approach can
have more than one letter assigned to it. As an example,
looking at the results for BB approaches and C subjects in
Table 2, we can tell that FAST-pw (ab) is not different from
FAST-log (a) and it is also not different from I-TSD (b), even
though FAST-log (a) is different from I-TSD (b).

Among the WB approaches, the results confirm the ones
reported in [15] regarding the effectiveness of GA and GA-S,
as both appear always in the first group. Concerning FAST,
the best results are achieved for function coverage: it goes in
the first group, although with different members of the family
for the C and Java subjects. Among the BB approaches, the
FAST family consistently achieves the best group both for C
and Java with the exception of the FAST-pw technique that
for Java programs performed worse than STR. These results
hint that FAST performs better in terms of effectiveness for
coarse-grained criteria, which is the most natural target when
considering big testsets.

Answer 1: APFD results vary across techniques and sub-
ject programs. A trend can be observed that FAST provides
better effectiveness with more coarse-grained techniques (BB
and function coverage).

6.2 RQ2: Efficiency
To answer RQ2 we compared the investigated TCP ap-
proaches in terms of time required to perform the priori-
tization, both including and excluding the preparation time.
We report the results in Table 3: Note that we do not dis-
criminate between C and Java as efficiency results are only
impacted by the size of test cases and coverage traces.

We applied the Kruskal-Wallis rank sum test to verify at a
significance level of 5% the null hypothesis that the observed
differences in the total time and in the prioritization time
are not statistically significant. In both cases (total time and
prioritization time only) regardless of the coverage criteria
considered, the resulting p-values were always smaller than
2.2e-16, leading us to reject the null hypothesis.

To identify which TCP approach dominates the others in
terms of efficiency, we proceeded with a pairwise comparison
after the Kruskal-Wallis test. When considering BB TCP, the
FAST family outperformed all the competitors. For WB TCP,
the results vary between total or only prioritization time and
among the coverage criteria. Overall, when considering total
time, GT outperformed the competitor approaches for all the
criteria. This result is aligned with our expectation as GT
does not require any kind of preparation and simply performs
a sorting of the test cases based on how many entities they
cover. Nevertheless such approach was always followed by at
least one member of the FAST family, which outperformed
even the other greedy competitors (GA and GA-S). For the
particular case of statement coverage GT is followed by the
whole FAST family before the other TCP approaches.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino

Table 2: APFD results for the investigated BB and WB TCP approaches.

BB
Approach

WB
Approach

Function Statement Branch
C Java C Java C Java C Java

FAST-pw 88.4/12.8 (ab) 54.6/29.8 (c) FAST-pw 89.4/12.0 (a) 51.4/29.6 (f) 88.3/12.0 (d) 52.9/30.4 (e) 89.2/12.8 (bc) 52.5/27.4 (de)
FAST-1 90.6/12.6 (ab) 57.7/28.8 (a) FAST-1 88.5/12.2 (cd) 56.5/28.1 (abc) 87.7/11.6 (e) 55.5/29.0 (bc) 89.1/12.5 (c) 55.5/27.7 (de)
FAST-log 90.5/12.7 (a) 59.4/29.2 (a) FAST-log 89.2/12.5 (cd) 57.0/28.7 (ab) 89.2/11.0 (de) 54.1/29.2 (c) 89.7/13.7 (bc) 56.5/28.1 (cd)
FAST-sqrt 90.1/12.8 (a) 58.6/29.3 (a) FAST-sqrt 89.1/13.3 (cd) 56.5/27.9 (abc) 88.4/11.3 (de) 55.4/28.9 (b) 90.1/12.9 (c) 55.3/28.3 (de)
FAST-all 90.0/13.1 (ab) 59.8/29.4 (a) FAST-all 89.3/12.1 (bc) 54.1/28.3 (de) 88.5/12.3 (de) 52.9/28.8 (d) 90.1/13.4 (c) 55.1/29.2 (ef)
STR 91.3/13.3 (ab) 55.9/28.7 (b) ART-D 92.1/12.5 (a) 54.2/29.5 (de) 91.8/14.3 (c) 56.5/29.2 (b) 91.5/12.2 (b) 56.1/29.2 (def)
I-TSD 89.6/15.1 (b) 45.0/31.6 (d) ART-F 90.3/12.6 (ab) 55.0/29.3 (e) 90.6/12.4 (c) 54.6/28.7 (bc) 90.5/13.5 (bc) 55.6/29.2 (f)

GT 77.1/12.8 (e) 59.2/27.4 (bc) 77.3/13.3 (f) 59.2/27.4 (a) 78.1/13.3 (d) 59.7/28.3 (bc)
GA 88.4/09.8 (d) 59.2/28.0 (a) 96.6/15.6 (a) 51.4/26.3 (c) 94.8/15.2 (a) 59.9/26.8 (a)
GA-S 90.6/07.9 (a) 55.3/28.3 (cd) 94.4/11.1 (b) 58.3/27.5 (a) 94.2/09.3 (a) 58.5/27.3 (b)

Results are displayed in the format M/σ(δ), being M the median APFD, σ the standard deviation, and δ the group for the pairwise comparisons after the
Kruskal-Wallis test. Different letters (δ) indicate significant differences between the approaches (α = 0.05).

Table 3: Prioritization times (including and excluding preparation time) for the investigated TCP approaches.

BB
Approach

WB
Approach

Function Statement Branch
Tot. Time Prio. Time Tot. Time Prio. Time Tot. Time Prio. Time Tot. Time Prio. Time

FAST-pw 6.49/23.51 (e) 0.03/0.07 (e) FAST-pw 1.12/0.46 (g) 0.03/0.09 (g) 7.08/3.09 (f) 0.03/0.10 (f) 1.67/0.72 (f) 0.03/0.09 (g)
FAST-1 6.46/23.52 (d) 0.02/0.02 (d) FAST-1 0.59/0.46 (f) 0.02/0.03 (e) 6.57/3.13 (e) 0.02/0.04 (d) 1.66/0.72 (e) 0.02/0.03 (e)
FAST-log 6.45/23.52 (b) 0.01/0.01 (b) FAST-log 0.42/0.46 (e) 0.01/0.01 (d) 6.44/3.12 (d) 0.01/0.01 (c) 1.66/0.71 (d) 0.01/0.01 (c)
FAST-sqrt 6.46/23.52 (c) 0.02/0.01 (c) FAST-sqrt 0.41/0.46 (d) 0.01/0.01 (b) 6.45/3.10 (c) 0.01/0.00 (b) 1.66/0.70 (c) 0.01/0.01 (b)
FAST-all 6.45/23.52 (a) 0.01/0.00 (a) FAST-all 0.39/0.46 (b) 0.01/0.00 (a) 6.42/3.10 (b) 0.01/0.00 (a) 1.65/0.68 (b) 0.01/0.00 (a)
STR 714.24/697.10 (f) 2.59/2.06 (f) ART-D 7.99/7.09 (h) 7.99/7.09 (i) 95.03/51.20 (g) 95.03/51.20 (i) 15.84/18.37 (g) 15.84/18.37 (i)
I-TSD 7402.71/5486.03 (g) 7402.71/5486.03 (g) ART-F 30.28/17.68 (i) 30.28/17.68 (j) 224.89/139.00 (h) 224.89/139.00 (j) 38.52/56.36 (h) 38.52/56.36 (j)

GT 0.01/0.01 (a) 0.01/0.01 (c) 0.09/0.06 (a) 0.09/0.06 (e) 0.02/0.01 (a) 0.02/0.01 (d)
GA 0.51/0.56 (c) 0.51/0.56 (h) 11.19/5.20 (f) 11.19/5.20 (h) 1.26/1.28 (c) 1.26/1.28 (h)
GA-S 9.42/38.76 (j) 0.04/0.07 (f) 1906.63/4450.00 (i) 0.14/0.06 (g) 80.95/207.35 (i) 0.03/0.03 (f)

Results are displayed in the format M/σ(δ), being M the median time (total or prioritization), σ the standard deviation, and δ the group for the pairwise
comparisons after the Kruskal-Wallis test. Different letters (δ) indicate significant differences between the approaches (α = 0.05). For STR, the preparation
time considers the time required for computing the pairwise similarity matrix; for GA-S, it refers to the time required to extract the spanning entities.

By taking into account exclusively the prioritization time,
FAST-all and FAST-sqrt had the best performance for the
three criteria, surpassing even GT. For statement coverage,
the most demanding criteria in terms of time required, the
best result achieved by a competitor was GT at fifth place.

A trend emerging from Table 3 is that the more demanding
a criteria, the better the performance of the FAST approaches,
especially by considering exclusively prioritization time. The
reasons for this will be discussed in the following section
while answering RQ3.

Answer 2: The fastest members of FAST family outper-
form the BB approaches in terms of total time and all
competitors when we consider only prioritization time.

6.3 RQ3: Scalability
To answer RQ3 we assessed the TCP approaches with respect
to the time required to prioritize synthetic test suites (repre-
senting both WB and BB), with sizes from 1K to 1M, and
for three test case dimensions (small, medium, and large).

In Figure 3 we provide the line plots for the total time (Fig-
ures 3a to 3c) and for the prioritization time (Figures 3d to 3f)
required by different TCP approaches. Although we have
allowed all the approaches to proceed even further, for a
clearer visualization the plots in Figure 3 report only the
results for the testset sizes that could be prioritized within
two hours. In fact, we considered that a TCP approach that
can perform the task within two hours or less would allow de-
velopers to run the prioritization on their own machine in the

timeframe of a meeting or lunch break. Hence we considered
executions exceeding the two hours less interesting. We do
not include in the plots the results for the STP approaches as
they performed poorly and their results could not be easily
visualized due to their long execution times. We summarize
the results below in the format (small, medium, large), where
for each test case size we report the largest testset size which
could be completed within the two hours, while “Ø” indicates
that the approach was not able to complete even the smallest
testset: STR (4K, 2K, Ø), when considering total time, and
(6K, 5K, 5K) when considering prioritization time; I-TSD
(Ø, Ø, Ø); ART-D (6K, 2K, Ø); ART-F (6K, 1K, Ø).

The plots show that when considering total time GT out-
performs all the competitors and can prioritize 1M size testset
for the three sizes of test cases. The FAST family, on its
turn, clearly outperformed GA and GA-S. Two members of
the family, FAST-all and FAST-sqrt, prioritized the 1M set
for small and medium test cases within the two hours limit,
while FAST-log prioritized the 600K and 400K test suites
for small and medium test cases respectively.

As expected FAST approaches are affected by the dimen-
sion of the test cases: The signature of each test case can be
computed in linear time on the size of the test representation,
thus for bigger test cases this step will take longer. However,
once the preparation phase is completed, the only dimen-
sion that matters is the one of the test suite size (see the
strong similarity of the line plots of the FAST approaches in
Figures 3d to 3f). This answers our open question from the

FAST Approaches to Scalable Similarity-based Test Case Prioritization ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

0 0.2M 0.4M 0.6M 0.8M 1M
0

1000

2000

3000

4000

5000

6000

7000

 1 hour

(a) Total time (small test cases)

0 0.2M 0.4M 0.6M 0.8M 1M
0

1000

2000

3000

4000

5000

6000

7000

 1 hour

(b) Total time (medium test cases)

0 0.2M 0.4M 0.6M 0.8M 1M
0

1000

2000

3000

4000

5000

6000

7000

 1 hour

(c) Total time (large test cases)

0 0.2M 0.4M 0.6M 0.8M 1M
0

1000

2000

3000

4000

5000

6000

7000

 1 hour

(d) Prioritization time (small test cases)

0 0.2M 0.4M 0.6M 0.8M 1M
0

1000

2000

3000

4000

5000

6000

7000

 1 hour

(e) Prioritization time (medium test
cases)

0 0.2M 0.4M 0.6M 0.8M 1M
0

1000

2000

3000

4000

5000

6000

7000

 1 hour

(f) Prioritization time (large test cases)

Figure 3: Total/Prioritization time (y-axis: seconds) to prioritize testsets of varying dimension (x-axis: num-
ber of test cases).

previous section: The relative performance of the FAST fam-
ily improves, with respect to the competitors, as the criteria
becomes more demanding (in terms of test case information
used) because when we consider only the prioritization time
the size of the test representation does not affect the FAST
approaches in the same way that it affects the competitors.

Considering only prioritization time, GT still outperforms
most FAST approaches but FAST-all that outruns GT for
all the testsets for medium and large test cases. Besides that,
FAST-sqrt outperforms GT for all the testsets with large test
cases and also for some of the medium testsets.

Answer 3: Considering total time, all FAST techniques
were second only to GT. If only prioritization time is
counted, FAST-all surpass GT for medium and large test-
sets, and FAST-sqrt outruns it for some of the medium and
all of the large testsets. Overall, except for FAST-pw, the
bigger the testset, the better FAST’s relative performance.

6.4 On the Costs and Benefits of FAST
As it can be noticed from our results for RQ2 and RQ3, most
of the cost associated with FAST lies in the preparation
phase. BB input is first mapped into shingles in linear time.
Then the preprocessing involves going through all the test
cases, computing their signatures, and storing them for future

use. In particular, the time complexity of computing a single
signature is O(h), with h being the signature length, making
the entire preprocessing phase costing O(hn), with a test
suite of size n. The cost for computing Jaccard similarity
of two sets is O(l), where l is the size of the biggest of the
two sets, while estimating it through the minhash signatures
costs O(h). LSH, on its turn, is able to create a candidate
set in O(n).

Concerning space costs, the overall space required by FAST
is O(shn), where s is the size of a hashed value. In contrast,
the cost of storing a distance matrix for a generic STP ap-
proach with all the pairwise similarities (e.g., Ledru et al. [19])
is O(bn2), where b is the size of the float representing a dis-
tance between two test cases.

In some settings, e.g., regression testing, the cost of updat-
ing existing information (e.g., signatures, distance matrix) is
of interest. As discussed before, FAST can simply add infor-
mation regarding a new test case by computing its signature.
In contrast, the time required by a STP approach to update
an existing distance matrix is that of comparing the newly
introduced test case with all the existing ones: not only this
operation is slower in terms of time complexity, but it also
requires the entire test suite for the comparison.

It is also possible, even though we have not yet exploited
this possibility, to use parallelization to reduce the running

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino

time of FAST. In fact, the preprocessing phase, i.e., the
computations of the signatures, of the buckets, and of the
candidate set, are all parallelizable.

To decide which variant of FAST to use, one should con-
sider the time available for the prioritization task. FAST-pw
is the most precise in the ranking because it guarantees that
the candidate test case that is the most dissimilar from the
already-prioritized ones will be chosen as the next test, but it
is also the most time-consuming. When the time required by
FAST-pw cannot be afforded, other members of the family
can be chosen. If the objective of the prioritization is to
increase diversity, then the order of choice should be: pw,
one, log, sqrt, and all.

FAST can provide greater benefits if it is adopted in an
environment where the test case signatures can be reused as
new test cases are added. A regression testing environment
combined with the use of black-box representation for the
test cases seems to be a perfect fit for FAST.

6.5 Threats to Validity
The results reported must be considered in light of potential
threats to validity of the experiments. Internal validity con-
cerns factors different from the treatment that could have
affected the observed behavior [32]. One common threat is
the selection of experimental subjects. In assessing effective-
ness and efficiency we opted for benchmark programs that
have been made available and used in similar studies, to favor
replicability of results, but they could not be good representa-
tive of actual regression test scenarios. However, as the same
subjects have been used for all approaches, possible threats
apply to all. A similar argument can be done concerning the
assessment of the time taken by the various techniques. To
mitigate potential threats related to this point we have: (i)
implemented all the algorithms in the same programming
language; (ii) captured the process (CPU) time with check-
points at the same places; (iii) performed all the experiments
in the same machine. Concerning scalability assessment, our
simulated scenarios could bias the results because the ran-
domly generated test information could reproduce unusual
situations. We have created multiple testsets (84) to try to
reduce possible bias, but only many real world big testsets
can prevent this threats. Concerning possible errors in the
study implementation, all developed code has been rigorously
inspected, all experiments have been repeated more than
once, and all code and data are made available.

External validity concerns whether the results are generaliz-
able beyond the experiment subjects. About effectiveness and
efficiency our results may suffer from the limited number and
the specific characteristics of the chosen subjects, although
to mitigate this potential threat we covered two different
languages. About scalability, our chosen modeling for test-
sets dimension could not be valid in real contexts. Besides,
different parameter settings in the FAST algorithm might
produce different results. This is not really a validity threat,
though, it only implies that other FAST implementations
can be done and have to be evaluated.

7 CONCLUSIONS AND FUTURE
WORK

We have introduced the FAST family of approaches for fast
test case prioritization. The simple yet powerful idea behind
FAST is that of managing the big testsets of modern software
development processes through the use of well-established
techniques for big data. The results from our experiments
both on real test subjects and on synthetic data support our
idea. They showed that in comparison with BB techniques
we can significantly improve prioritization efficiency, with no
impact in effectiveness. The fastest members of FAST de-
feated all competitors, even greedy total, if we only count the
prioritization time after preparation. More importantly, the
results show that FAST can scale up to industrial demands:
We prioritize one million test cases in less than 20 minutes.

Overall, the FAST family offers different effectiveness and
efficiency results, allowing for a range of techniques spanning
over BB and WB criteria and for fine-tuning the selection of
the next test cases depending on size and time. The approach
worked nicely on commonly used benchmarks, yet its most
attractive target is obviously the realm of what we called big
testsets, to which sophisticated or fine-grained techniques
cannot be applied. Some recent works [8, 27] have addressed
regression testing at “Google” scale by applying heuristics
that use historical or dependency information. Indeed, a
gap exists between academic (fine-grained) and practical
(coarse) approaches. Our results hint that FAST can help
reduce such gap and allows to use more refined criteria to
test prioritization even for big testsets.

To the best of our knowledge, this is the first proposal
to apply LSH techniques to address the growth of testing
problem dimensions. We expanded here the idea for TCP,
but we prospect a great potential for application of the same
techniques to other testing tasks. There are several problems
in testing that can leverage similarity computations. For
example, an immediate follow up study will address test
case selection that we did not include here for lack of space
and time. We expect that variants of FAST can allow for
efficiently selecting the most dissimilar test cases among
thousands or millions of test cases. Another possibility is that
of handling product lines, where huge numbers of product
variations need to be tested and FAST could help in quickly
finding the most diverse configurations among a large set.

Moreover, adopting multi-objective prioritization for FAST
could be a good point for future work: The FAST algorithm
could be adapted to consider other objective functions in
addition to dissimilarity, although it is to be evaluated how
this could affect the approach efficiency.

ACKNOWLEDGMENTS
This research has been partly funded by the European Project
ElasTest in the H2020 Programme under GA No 731535.
Breno Miranda wishes to thank the postdoctoral fellow-
ship jointly sponsored by CAPES and FACEPE (APQ-0826-
1.03/16; BCT-0204-1.03/17).

FAST Approaches to Scalable Similarity-based Test Case Prioritization ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Md. J. Arafeen and Hyunsook Do. 2013. Test Case Prioritization

Using Requirements-Based Clustering. In 2013 IEEE Sixth Inter-
national Conference on Software Testing, Verification and Val-
idation. 312–321. DOI:http://dx.doi.org/10.1109/ICST.2013.12

[2] Benjamin Busjaeger and Tao Xie. 2016. Learning for Test Priori-
tization: An Industrial Case Study. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE 2016). ACM, New York, NY, USA,
975–980. DOI:http://dx.doi.org/10.1145/2950290.2983954

[3] Emanuela Gadelha Cartaxo, Patŕıcia D. L. Machado, and Fran-
cisco G. Oliveira Neto. 2011. On the use of a similarity func-
tion for test case selection in the context of model-based test-
ing. Softw. Test., Verif. Reliab. 21, 2 (2011), 75–100. DOI:
http://dx.doi.org/10.1002/stvr.413

[4] Cagatay Catal and Deepti Mishra. 2013. Test Case Prioriti-
zation: A Systematic Mapping Study. Software Quality Con-
trol 21, 3 (Sept. 2013), 445–478. DOI:http://dx.doi.org/10.1007/
s11219-012-9181-z

[5] Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T. H.
Tse. 2010. Adaptive Random Testing: The ART of Test Case
Diversity. J. Syst. Softw. 83, 1 (Jan. 2010), 60–66. DOI:http:
//dx.doi.org/10.1016/j.jss.2009.02.022

[6] Andrew R. Cohen and Paul M. B. Vitányi. 2015. Normalized
Compression Distance of Multisets with Applications. IEEE
Trans. Pattern Anal. Mach. Intell. 37, 8 (2015), 1602–1614. DOI:
http://dx.doi.org/10.1109/TPAMI.2014.2375175

[7] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. 2005.
Supporting Controlled Experimentation with Testing Techniques:
An Infrastructure and its Potential Impact. Empirical Software
Engineering: An International Journal 10, 4 (2005), 405–435.

[8] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Tech-
niques for Improving Regression Testing in Continuous Integration
Development Environments. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2014). ACM, New York, NY, USA, 235–245.
DOI:http://dx.doi.org/10.1145/2635868.2635910

[9] Sebastian G. Elbaum, Alexey G. Malishevsky, and Gregg Rother-
mel. 2002. Test Case Prioritization: A Family of Empirical
Studies. IEEE Trans. Software Eng. 28, 2 (2002), 159–182. DOI:
http://dx.doi.org/10.1109/32.988497

[10] Chunrong Fang, Zhenyu Chen, Kun Wu, and Zhihong Zhao. 2014.
Similarity-based test case prioritization using ordered sequences
of program entities. Software Quality Journal 22, 2 (2014),
335–361. DOI:http://dx.doi.org/10.1007/s11219-013-9224-0

[11] Robert Feldt, Simon Poulding, David Clark, and Shin Yoo. 2016.
Test Set Diameter: Quantifying the Diversity of Sets of Test
Cases. In 2016 IEEE International Conference on Software
Testing, Verification and Validation (ICST). 223–233. DOI:
http://dx.doi.org/10.1109/ICST.2016.33

[12] Dan Hao, Lu Zhang, and Hong Mei. 2016. Test-case Priori-
tization: Achievements and Challenges. Front. Comput. Sci.
10, 5 (Oct. 2016), 769–777. DOI:http://dx.doi.org/10.1007/
s11704-016-6112-3

[13] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. 2011. Em-
pirical Investigation of the Effects of Test Suite Properties on
Similarity-Based Test Case Selection. In 2011 Fourth IEEE Inter-
national Conference on Software Testing, Verification and Val-
idation. 327–336. DOI:http://dx.doi.org/10.1109/ICST.2011.12

[14] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. 2013. Achiev-
ing Scalable Model-based Testing Through Test Case Diversity.
ACM Trans. Softw. Eng. Methodol. 22, 1, Article 6 (March 2013),
42 pages. DOI:http://dx.doi.org/10.1145/2430536.2430540

[15] Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and
Yves Le Traon. 2016. Comparing White-box and Black-box Test
Prioritization. In Proceedings of the 38th International Confer-
ence on Software Engineering (ICSE ’16). ACM, New York, NY,
USA, 523–534. DOI:http://dx.doi.org/10.1145/2884781.2884791

[16] Kim Herzig. 2016. Let’s assume we had to pay for testing. Keynote
at AST 2016. (2016). https://www.kim-herzig.de/2016/06/28/
keynote-ast-2016/

[17] Bo Jiang, Zhenyu Zhang, Wing K. Chan, and T.H. Tse. 2009.
Adaptive random test case prioritization. In Automated Software
Engineering, 2009. ASE’09. 24th IEEE/ACM International
Conference on. IEEE, 233–244.

[18] René Just, Darioush Jalali, and Michael D. Ernst. 2014. De-
fects4J: A Database of Existing Faults to Enable Controlled

Testing Studies for Java Programs. In Proceedings of the 2014
International Symposium on Software Testing and Analysis
(ISSTA 2014). ACM, New York, NY, USA, 437–440. DOI:
http://dx.doi.org/10.1145/2610384.2628055

[19] Yves Ledru, Alexandre Petrenko, Sergiy Boroday, and Nadine
Mandran. 2012. Prioritizing Test Cases with String Distances.
Automated Software Eng. 19, 1 (March 2012), 65–95. DOI:http:
//dx.doi.org/10.1007/s10515-011-0093-0

[20] Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. 2014.
Mining of Massive Datasets. Cambridge University Press, New
York, NY, USA.

[21] Qi Luo, Kevin Moran, and Denys Poshyvanyk. 2016. A Large-
scale Empirical Comparison of Static and Dynamic Test Case
Prioritization Techniques. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2016). ACM, New York, NY, USA, 559–570.
DOI:http://dx.doi.org/10.1145/2950290.2950344

[22] Udi Manber. 1994. Finding similar files in a large file system. In
Usenix Winter, Vol. 94. 1–10.

[23] Mika V. Mäntylä, Bram Adams, Foutse Khomh, Emelie Engström,
and Kai Petersen. 2015. On rapid releases and software testing:
a case study and a semi-systematic literature review. Empirical
Software Engineering 20, 5 (01 Oct 2015), 1384–1425. DOI:
http://dx.doi.org/10.1007/s10664-014-9338-4

[24] James Manyika, Michael Chui, Brad Brown, Jacques Bughin,
Richard Dobbs, Charles Roxburgh, and Angela H. Byers. 2011.
Big data: The next frontier for innovation, competition, and
productivity. (May 2011).

[25] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. 2013. Test Case
Prioritization for Continuous Regression Testing: An Industrial
Case Study. In 2013 IEEE International Conference on Software
Maintenance. 540–543. DOI:http://dx.doi.org/10.1109/ICSM.
2013.91

[26] Martina Marré and Antonia Bertolino. 2003. Using Spanning
Sets for Coverage Testing. IEEE Trans. Softw. Eng. 29, 11
(Nov. 2003), 974–984. DOI:http://dx.doi.org/10.1109/TSE.2003.
1245299

[27] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nick-
ell, Rob Siemborski, and John Micco. 2017. Taming Google-scale
Continuous Testing. In Proceedings of the 39th International
Conference on Software Engineering: Software Engineering in
Practice Track (SEIP’17). IEEE Press, Piscataway, NJ, USA,
233–242. DOI:http://dx.doi.org/10.1109/ICSE-SEIP.2017.16

[28] Tanzeem B. Noor and Hadi Hemmati. 2015. A similarity-
based approach for test case prioritization using historical fail-
ure data. In 2015 IEEE 26th International Symposium on
Software Reliability Engineering (ISSRE). 58–68. DOI:http:
//dx.doi.org/10.1109/ISSRE.2015.7381799

[29] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and
Mary Jean Harrold. 1999. Test case prioritization: An empiri-
cal study. In Proc. IEEE Int. Conf. on Software Maintenance,
1999.(ICSM’99). IEEE, 179–188.

[30] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary J.
Harrold. 2001. Prioritizing test cases for regression testing. Soft-
ware Engineering, IEEE Transactions on 27, 10 (Oct 2001),
929–948. DOI:http://dx.doi.org/10.1109/32.962562

[31] Luay Tahat, Bogdan Korel, Mark Harman, and Hasan Ural. 2012.
Regression test suite prioritization using system models. Softw.
Test., Verif. Reliab. 22, 7 (2012), 481–506. DOI:http://dx.doi.
org/10.1002/stvr.461

[32] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson,
Bjrn Regnell, and Anders Wessln. 2012. Experimentation in Soft-
ware Engineering. Springer Publishing Company, Incorporated.

[33] Shin Yoo and Mark Harman. 2012. Regression Testing Minimiza-
tion, Selection and Prioritization: A Survey. Softw. Test. Verif.
Reliab. 22, 2 (March 2012), 67–120. DOI:http://dx.doi.org/10.
1002/stv.430

[34] Zhi Q. Zhou, Arnaldo Sinaga, and Willy Susilo. 2012. On the
Fault-Detection Capabilities of Adaptive Random Test Case Pri-
oritization: Case Studies with Large Test Suites. In 2012 45th
Hawaii International Conference on System Sciences. 5584–5593.
DOI:http://dx.doi.org/10.1109/HICSS.2012.454

http://dx.doi.org/10.1109/ICST.2013.12
http://dx.doi.org/10.1145/2950290.2983954
http://dx.doi.org/10.1002/stvr.413
http://dx.doi.org/10.1007/s11219-012-9181-z
http://dx.doi.org/10.1007/s11219-012-9181-z
http://dx.doi.org/10.1016/j.jss.2009.02.022
http://dx.doi.org/10.1016/j.jss.2009.02.022
http://dx.doi.org/10.1109/TPAMI.2014.2375175
http://dx.doi.org/10.1145/2635868.2635910
http://dx.doi.org/10.1109/32.988497
http://dx.doi.org/10.1007/s11219-013-9224-0
http://dx.doi.org/10.1109/ICST.2016.33
http://dx.doi.org/10.1007/s11704-016-6112-3
http://dx.doi.org/10.1007/s11704-016-6112-3
http://dx.doi.org/10.1109/ICST.2011.12
http://dx.doi.org/10.1145/2430536.2430540
http://dx.doi.org/10.1145/2884781.2884791
https://www.kim-herzig.de/2016/06/28/keynote-ast-2016/
https://www.kim-herzig.de/2016/06/28/keynote-ast-2016/
http://dx.doi.org/10.1145/2610384.2628055
http://dx.doi.org/10.1007/s10515-011-0093-0
http://dx.doi.org/10.1007/s10515-011-0093-0
http://dx.doi.org/10.1145/2950290.2950344
http://dx.doi.org/10.1007/s10664-014-9338-4
http://dx.doi.org/10.1109/ICSM.2013.91
http://dx.doi.org/10.1109/ICSM.2013.91
http://dx.doi.org/10.1109/TSE.2003.1245299
http://dx.doi.org/10.1109/TSE.2003.1245299
http://dx.doi.org/10.1109/ICSE-SEIP.2017.16
http://dx.doi.org/10.1109/ISSRE.2015.7381799
http://dx.doi.org/10.1109/ISSRE.2015.7381799
http://dx.doi.org/10.1109/32.962562
http://dx.doi.org/10.1002/stvr.461
http://dx.doi.org/10.1002/stvr.461
http://dx.doi.org/10.1002/stv.430
http://dx.doi.org/10.1002/stv.430
http://dx.doi.org/10.1109/HICSS.2012.454

