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Behavioral/Cognitive

Scale-Free Amplitude Modulation of Neuronal Oscillations
Tracks Comprehension of Accelerated Speech

Ana Filipa Teixeira Borges,1,2 Anne-Lise Giraud,3 Huibert D. Mansvelder,1,2 and XKlaus Linkenkaer-Hansen1,2

1Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands,
2Amsterdam Neuroscience, Amsterdam, Netherlands, and 3Department of Neuroscience, University of Geneva, Biotech Campus, Geneva 1211, Switzerland

Speech comprehension is preserved up to a threefold acceleration, but deteriorates rapidly at higher speeds. Current models posit that
perceptual resilience to accelerated speech is limited by the brain’s ability to parse speech into syllabic units using �/� oscillations. Here,
we investigated whether the involvement of neuronal oscillations in processing accelerated speech also relates to their scale-free ampli-
tude modulation as indexed by the strength of long-range temporal correlations (LRTC). We recorded MEG while 24 human subjects
(12 females) listened to radio news uttered at different comprehensible rates, at a mostly unintelligible rate and at this same speed
interleaved with silence gaps. �, �, and low-� oscillations followed the nonlinear variation of comprehension, with LRTC rising only at the
highest speed. In contrast, increasing the rate was associated with a monotonic increase in LRTC in high-� activity. When intelligibility
was restored with the insertion of silence gaps, LRTC in the �, �, and low-� oscillations resumed the low levels observed for intelligible
speech. Remarkably, the lower the individual subject scaling exponents of �/� oscillations, the greater the comprehension of the fastest
speech rate. Moreover, the strength of LRTC of the speech envelope decreased at the maximal rate, suggesting an inverse relationship with
the LRTC of brain dynamics when comprehension halts. Our findings show that scale-free amplitude modulation of cortical oscillations
and speech signals are tightly coupled to speech uptake capacity.

Key words: accelerated speech; language comprehension; long-range temporal correlations; magnetoencephalography (MEG);
principle of complexity management (PCM); scale-free dynamics

Introduction
Human perception is remarkably robust to the variations in the
way that stimuli occur in the environment. Speech is typically a

stimulus from which our brain extracts consistent meaning re-
gardless of whether it is whispered or shouted or pronounced
by a male or female or a slow or fast speaker. Natural speech rate
varies from two to six syllables/s (Hyafil et al., 2015b) and, de-
pending on the original rate, can easily be decoded when accelerated
up to approximately three times (Dupoux and Green, 1997). At
higher rates, however, comprehension drops abruptly (Poldrack et
al., 2001; Peelle et al., 2004; Ahissar and Ahissar, 2005; Ghitza and
Greenberg, 2009; Vagharchakian et al., 2012).

The neural basis of this bottleneck in digesting accelerated speech
information is currently unclear. It is unlikely to reflect low-level
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Significance Statement

One may read this statement in 20 –30 s, but reading it in less than five leaves us clueless. Our minds limit how much information
we grasp in an instant. Understanding the neural constraints on our capacity for sensory uptake is a fundamental question in
neuroscience. Here, MEG was used to investigate neuronal activity while subjects listened to radio news played faster and faster
until becoming unintelligible. We found that speech comprehension is related to the scale-free dynamics of � and � bands, whereas
this property in high-� fluctuations mirrors speech rate. We propose that successful speech processing imposes constraints on the
self-organization of synchronous cell assemblies and their scale-free dynamics adjusts to the temporal properties of spoken
language.
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auditory processes because speech fluctuations are well repre-
sented in auditory cortex even when speech is accelerated to un-
intelligibility (Nourski et al., 2009; Mukamel et al., 2011). A recent
proposal involves a hierarchy of neural oscillatory processes (Ghitza
and Greenberg, 2009; Ghitza, 2011; Hyafil et al., 2015a) in which the
parsing of speech in the auditory system is limited to a maximal
syllable rate determined by the � rhythm, nine syllables or chunks of
information per second, whereas � oscillations can track speech at
rates beyond the bottleneck in comprehension (Hyafil et al., 2015b).
Scale-free amplitude modulation is a property of ongoing neuronal
oscillations also referred to as long-range temporal correlations
(LRTC) (Linkenkaer-Hansen et al., 2001), which may reveal how
oscillations underlie the processing of natural and accelerated
speech.

Scale-free dynamics are a hallmark of resting-state neuronal
activity, when synchronous cell assemblies form in a largely self-
organized manner (Pritchard, 1992; Linkenkaer-Hansen et al., 2001;
Freeman et al., 2003; Van de Ville et al., 2010; Poil et al., 2012).
Scaling analysis provides a summary descriptor of self-similarity
in a system, increasingly found to correlate with its functional
properties. Sensory and cognitive processing have been observed
to mostly decrease (Linkenkaer-Hansen et al., 2004; He et al.,
2010; Ciuciu et al., 2012), but also increase (Ciuciu et al., 2008),
the strength of LRTC relative to rest, suggesting that scaling anal-
ysis can uncover the functional involvement of neuronal oscilla-
tions in specific tasks. This is further supported by the findings of
LRTC covarying with individual differences in perceptual (Palva
and Palva, 2011; Palva et al., 2013) and motor (Smit et al., 2013)
performance. As an extension to LRTC, multifractal analysis can
also reveal the neuronal involvement in cognitive tasks (Popiv-
anov et al., 2006; Buiatti et al., 2007; Bianco et al., 2007).

Speech dynamics are also characterized by LRTC; for exam-
ple, in loudness fluctuations across several time scales of radio
news (Voss and Clarke, 1975), repetitions of words (Kello et al.,
2008), and within-phoneme fluctuations (Luque et al., 2015).
Interestingly, analyzing acoustic onsets of two speakers during
conversations revealed that the scale-free dynamics of these
speech signals approach one another, suggesting that a form of
complexity matching underlies speech communication (Abney
et al., 2014). The principle of complexity management (PCM)
(West and Grigolini, 2011) has further formalized how informa-
tion transfer between two complex networks derives from the
cross-correlation between the output of a given complex network
and the output of another complex network perturbed by the
former also when their scaling properties do not match. We hy-
pothesize that speech comprehension relates to the interplay be-
tween the scaling behavior of the brain and speech.

Here, we investigated the impact of accelerated speech on the
scale-free amplitude modulation of neuronal oscillations and
comprehensions. Subjects listened to radio news at rates up to an
unintelligible speed during MEG acquisition. Silence gaps were
also inserted in the fastest condition, creating an additional con-
dition in which comprehension resumed. We examined how the
LRTC of neuronal amplitude modulations and the LRTC of
speech envelopes varied with speech rate and comprehension.

Materials and Methods
Participants
Twenty-four right-handed, healthy, native French speakers participated
in this study (12 females, age 19 – 45 years). All participants were subject
to a medical report and gave their written informed consent according to
the Declaration of Helsinki. The local ethics committee approved the
study.

Stimuli
Speech signals consisting of 30 – 40 s excerpts from French radio news.
The audio clips were recorded digitally at a sampling rate of 44.1 kHz in
a noise-proof studio and the young female speaker was trained to keep an
approximately constant intonation and rate of discourse. The excerpts
(n � 7) were time compressed using the PSOLA algorithm (Moulines
and Charpentier, 1990) implemented in PRAAT software (Boersma,
2001). The compression alters the duration of the formant patterns and
other spectral properties but keeps the fundamental frequency (“pitch”)
contour of the original uncompressed signals. Four different rates (25%,
50%, 75%, and 100% of natural duration) were created for the speech
stimuli. In addition, an extra condition with a 60 ms silent gap inserted at
every 40 ms chunk of the most compressed rate was created. The goal was
to restore speech comprehension by approaching natural syllabicity
(Ghitza and Greenberg, 2009). In natural speech, syllable durations have
variable durations of �50 – 400 ms with a mean of �250 ms. The statis-
tical distribution of syllable durations constrains speech to have long-
term regularities; in particular, an envelope modulation spectrum �20
Hz with most temporal modulations �6 Hz (Greenberg et al., 2003;
Hyafil et al., 2015b). Gap insertion does not mimic syllable statistics but
reinstates an artificial slower rhythm that repackages the compressed
information into longer time frames. Importantly, this rate of chunking
preserves the perception of speech as a continuous stream (Bashford et
al., 1988). All stimuli were interleaved in a pseudorandom order, exclud-
ing the possibility of presenting the same text consecutively. Each stim-
ulus had a preceding baseline period of 5 s and a period after for
comprehension rating by means of a right-hand keypad button press.
Subjects had to choose between four possible answers where 1 was noth-
ing; 2 was some words; 3 was some phrases; and 4 was whole text. The
scale is subjective, relying on the participant’s own comprehension as-
sessment as opposed to an objective rating of comprehended speech;
however, the participants did not express difficulty in using the scale and,
on the basis of a previous behavioral study using the same type of stimuli
(Pefkou et al., 2017), we are confident that this assessment closely reflects
the actual comprehension level. Before and after the baseline, subjects
had a 2 s period for blinking their eyes if needed, which helped to mini-
mize eye movements during speech listening and to mitigate their effect
with the preprocessing. The whole experiment aimed to recreate a natu-
ralistic condition of listening to the news on the radio.

MEG acquisition
Whole-scalp brain magnetic fields of the participants were collected at
the Hôpital Pitié Salpetrière (Paris, France) using the whole-head Elekta
Neuromag Vector View 306 MEG system (Elekta Neuromag TRIUX)
equipped with 102 sensor triplets (two orthogonal planar gradiometers
and one magnetometer/position). Before the recordings, four head po-
sition indicator coils attached to the scalp determined the head position
with respect to the sensor array. The location of the coils was digitized
with respect to three anatomical landmarks (nasion and preauricular
points) with a 3D digitizer (Polhemus Isotrak system). Then, the head
position with respect to the device origin was acquired before each block.
Data were sampled at 1 kHz and filtered at 0.1–330 Hz. Stimulus delivery
was performed in MATLAB version 2001a (The MathWorks) using the
Psychophysics Toolbox Psychtoolbox-3.0.8 extensions (Brainard, 1997;
Pelli, 1997). The subjects were sitting comfortably in a magnetically shielded
room during the recordings and previously instructed about the task. The
sound volume on the earphones was adjusted to a comfortable level
subjectively determined for each subject. While listening to the stimuli,
the subjects were instructed to look at a fixation cross on the screen; the
cross would flicker during the periods allocated to blink/rest the eyes. The
experiment involved playing the stimuli twice and was split into 8 blocks
of �5 min with a rest interval after 4 blocks.

MEG preprocessing
Data were preprocessed with Signal Space Separation algorithm imple-
mented in MaxFilter (Tesche et al., 1995; Taulu et al., 2005) to reduce
noise from the external environment and compensate for head move-
ments. Manually detected bad channels (noisy, saturated, or with SQUID
jumps) were marked “bad” before applying MaxFilter and the latter was
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also used to identify other potential bad channels. All of these were sub-
sequently interpolated. Head coordinates recorded at the beginning of the
first block were used to realign the head position across runs and transform
the signals to a standard position framework. Afterward, physiologi-
cal artifacts in the sensors were identified using principal component
analysis and removed with the signal space projection method (Uusitalo
and Ilmoniemi, 1997) based on the projections of the ECG and EOG also
recorded. The clean files were subsequently processed to extract only the
parts of recording corresponding to each of the conditions of stimula-
tion. All speech narratives from the same condition were merged for each
participant. The raw files were converted to MATLAB format using the
MNE MATLAB toolbox (Gramfort et al., 2013; www.martinos.org/
mne/). Finally, all converted files were inspected for transient artifacts
probably of muscular origin (e.g., jaw or neck movements) and clipped
and discarded from the analysis. At most, data amounting to 3 s were lost
by clipping.

Experimental design and statistical analysis
In this within-subject design with N � 24 subjects, we wanted to test the
effect of speech rate in the spectral power and detrended fluctuation
analysis (DFA) quantified from the MEG recordings. The independent
variable, speech rate, varied across five conditions, a multiple measure-
ments paradigm. The distributions of the dependent variables, spectral
power and DFA exponents of the combined gradiometers in all frequency
bands, were tested for normality using the Lilliefors test (Lilliefors, 1967). In
at least one of the rate conditions, �20% of sensor locations had either
power or DFA biomarkers deviating significantly ( p � 0.05) from a
normal distribution and, for some biomarkers, this was true for �50% of
the sensors. Therefore, we opted for nonparametric statistical methods.
The Friedman’s test (Friedman, 1937) was applied to all conditions
and the two biomarkers for each of the neuronal activity bands. Post hoc
analysis based on Wilcoxon signed-rank tests (Wilcoxon, 1945) was ap-
plied to the subset of biomarkers that differed significantly across condi-
tions. Spectral power and DFA was computed as the average of all sensor
pairs (global parameters) or for each sensor pair. In the first case, a
Bonferroni correction was applied ( p � 0.005, 10 comparisons). For the
sensor-level analysis, to control for type II errors due to multiple com-
parisons, we used the false discovery rate correction (FDR) as follows:

p �
0.05

N
� 5.0 � 10 �4, N � 102 combined sensors; Benjamini and

Hochberg, 1995) as implemented in Groppe et al. (2011). No statistical
method was used to determine sample size. During acquisition, condi-
tions were randomized to mitigate any carryover effects such as practice
or fatigue. The behavioral scores of the different conditions were com-
pared with a Friedman test and post hoc analysis was done using the

Wilcoxon signed-rank test with the Bonferroni method for multiple-
comparisons correction.

Behavioral analysis
To assess perceived comprehension of the speech narratives within each
condition, we computed the mean rating across all 14 stimuli for each
participant. This value is referred to as comprehension.

Data analysis
For the MEG data analysis, we used adapted functions from the Neuro-
physiological Biomarker Toolbox (NBT Alpha RC3, 2013, www.nbtwiki.
net; Hardstone et al., 2012), together with other MATLAB scripts
(R2011a; The MathWorks). The analysis of time-averaged spectral power
and LRTC in the modulation of amplitude envelopes were performed in
the following frequency bands: � (1– 4 Hz), � (4 – 8 Hz), � (8 –13 Hz), �
(13–30 Hz), � (30 – 45), and high-� (55–300 Hz). The band-pass filtering
used finite impulse response filters with a Hamming window and filter
orders equal to 2000 (�-band), 500 (�-band), 250 (�-band), 154 (�-band),
67 (�-band), and 36 (high-�-band) ms.

Estimation of spectral power
Spectral power was estimated by applying the Welch’s modified periodo-
gram method implemented in MATLAB as pwelch() function with non-
overlapping Hamming windows of 1 s and the values shown are the
square root of the power spectral density obtained. For statistical analy-
sis, we used the vector sum (root-mean-square) of amplitudes in each
pair of planar gradiometers (Nicol et al., 2012).

Estimation of LRTC
MEG. The amplitude envelope of the band-passed signals was calculated
using the magnitude of the Hilbert transform. Next, we estimated the
monofractal scaling exponents using DFA (Peng et al., 1994, 1995), a well
established technique for studying the amplitude dynamics of neuronal
oscillations (Linkenkaer-Hansen et al., 2001). Details of the method have
been described previously (Peng et al., 1994; Kantelhardt et al., 2001;
Hardstone et al., 2012). In brief, the DFA measures the power law scaling
of the root-mean-square fluctuation of the integrated and linearly de-
trended signals, F(t), as a function of time window size t (with an
overlap of 50% between windows). The DFA exponent (�) is the slope
of the fluctuation function F(t) and can be related to the power law
scaling exponent of the auto-correlation function decay (�) and the
scaling exponent of the power spectrum density (�) by the following

A B

Figure 1. Speech stimuli and their intelligibility. A, Example of speech stimuli waveforms and excerpt from one of the radio news used (in French) for each of the five conditions: natural rate,
compression to 75%, 50%, or 25% of natural duration, and a condition in which the 25% stimuli had silent gaps of 60 ms inserted every 40 ms. B, Violin plots of the distribution of speech
comprehension across participants for each of the five conditions. The scores of comprehension range from 1 (nothing) to 2 (some words) to 3 (some phrases) to 4 (whole text). White dots show the
medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles; light blue polygons represent density estimates of
ratings and extend to extreme values.
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expression: � �
1 � �

2
�

2 	 �

2
. DFA exponent values between 0.5 and

1.0 reveal the presence of LRTC, whereas an uncorrelated signal has an
exponent value of 0.5. The decay of temporal correlations was quantified
over a range of 1–9 s for each of the speech rate conditions using a signal
in which the 14 recordings from each condition had been concatenated.
The rationale for studying the dynamics within this time-range was to
confine the analysis of (auto-)correlations to a period corresponding to
the same audio excerpt. The analysis window was thus constrained by the
duration of the condition with the fastest rate (compression to 25% of
natural duration). Specifically, we calculated the fluctuation function in
windows of 1.1, 1.3, 1.7, 2.2, 2.7, 3.5, 4.4, 5.5, 7.0, and 8.9 s. Even though
rigorous usage of the term “scale-free dynamics” traditionally relies on
assessing the scaling over several orders of magnitude, analyzing the
scaling on more limited time frames is technically possible and meaning-
ful (Avnir, 1998) and has proven useful as a quantitative index that
captures brain function (Buiatti et al., 2007; Linkenkaer-Hansen et al.,
2007; Hardstone et al., 2012). In addition, analysis of task-related activity
inherently imposes a time frame restriction because prolonged stimula-
tion can induce confounds such as fatigue/inability to concentrate or
even crossovers in scaling behavior. The scaling exponents were obtained
separately for each of the gradiometers and an average of each pair
calculated.

Speech. Loudness fluctuations in speech are also known to exhibit
long-range temporal correlations (Voss and Clarke, 1975). To study the
effect of compression on the temporal correlation structure of the speech
stimuli, we concatenated the 7 different stimuli and filtered the resulting
signal in the audio range 0.1–20 kHz (FIR filter, order 20), in which we
determined the amplitude envelope using the Hilbert transform. The
strength of LRTC was estimated in this broadband envelope as well as
after low-passing the envelope (cutoff frequency 20 Hz; causal FIR filter
order 4410) according to the approach described previously (Voss and
Clarke, 1975). We estimated the DFA scaling exponents in the same time
range as the neuronal oscillations: 1–9 s.

Correlation analysis
To perform correlation analyses between the behavioral scores and
biomarkers computed, we applied the Spearman’s rank correlation coef-
ficient to quantify associations between power and power law scaling
exponents in the condition 25% of natural duration for each sensor pair
location and the averaged comprehension of the 14 segments. Interpre-
tation of effect sizes followed Cohen’s guidelines (small effect 
 � 0.1,
medium 
 � 0.3, and large 
 � 0.5; Cohen, 2013). One subject always
reported full comprehension (text comprehension) when the speech was
25% compressed and it was a posteriori excluded from analysis.

The colors used in graphical representation were based on the map
colors by Cynthia A. Brewer (https://github.com/axismaps/colorbrewer/).
The boxplots and violin plots were produced with the help of the R-based
software BoxPlotR (Spitzer et al., 2014).

Estimation of information transfer
The PCM establishes an account of the degree of information transfer
between two systems. One measure of information in a network is given
by the probability density of its events, which has the following survival
probability:

��t	 �
T ��1

�T � t	��1 (1)

Where T and � characterize the complexity of the system and � is the
power law exponent in the range 1 � � � 3. The PCM predicts that, for
systems that are in the so-called ergodic regime (2 � � � 3), one can
quantify the cross-correlation in the asymptotic limit (
�) between a
complex network P and a complex network S being perturbed by P based
on the following relationship between the power law exponents of both
networks (Aquino et al., 2007, 2010, 2011):


� �
�s 	 2

�s � �p 	 4
(2)

A

B

Figure 2. Illustration of the amplitudes and power law scaling of amplitudes of MEG re-
sponses to natural and 25% compressed speech. Representative envelopes of MEG activity
(40 s) in the � band recorded while listening to natural rate speech (top) and speech compressed
to 25% (bottom). B, The traces featured in A reveal autocorrelations that follow a power law in
the range of 1–9 s and can be characterized by the DFA exponent (�); while listening to speech
compressed to 25%, � is higher than while listening to the natural speech.

Figure 3. MEG gradiometer signals during natural rate display narrower ranges of scaling
exponents compared with unintelligibly compressed speech. Kernel smoothing estimates of
the distributions of DFA exponents for all sensor gradiometer pairs and subjects (n � 24) for
each of the studied frequency ranges (�, �, �, �, �, and high-�) in natural rate (black line) and
25% compression (green). � and � bands were the least affected by the semantics, whereas �,
�, and � oscillations had narrower DFA exponent distributions in the natural rate condition.
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Or the equivalent for the DFA scaling exponents following the hyperscaling

relation valid for both the ergodic and nonergodic regimes �� �
4 	 �

2 �
(Kalashyan et al., 2009) as follows:


� �
1 	 �s

2 	 �s 	 �p
(3)

with 0.5 � �s � 1 and 0.5 � �p � 1.
We used this expression to derive an estimate of information transfer

during natural speech and speech compressed to 25% of its initial dura-
tion. The cross-correlation cube (Aquino et al., 2007, 2010, 2011) dem-
onstrates that, except when a perturbing network P is ergodic and the
perturbed system S is nonergodic, all stimuli modify the properties of the
responding network. A special case of perfect matching (correlation � 1)
occurs when �  1. From Equation 3, it follows that the cross-correlation
can vary from �0.04 to �0.96 and that the highest cross-correlation
occurs for the highest �p and the lowest �s. Furthermore, for perturba-
tions that are nearly white noise, there is less information transfer, but its
degree depends on the scaling index of the perturbed system.

Results
Speech comprehension
To study neuronal dynamics and language comprehension while
listening to accelerated speech, we compressed a series of radio
excerpts to 100%, 75%, 50%, and 25% of their original duration
(Fig. 1A; see Materials and Methods). Participants rated compre-
hension of the news, which was close to perfect for the natural
rate, as well as for the compression to 75% or 50% of the original
duration (Fig. 1B). At compression to 25%, the news excerpts
were nearly incomprehensible (median score of 1.4). Insertion of
60 ms silence gaps every 40 ms increased comprehension mark-
edly. Comprehension differed significantly across conditions
(Friedman test; �(4)

2 � 86, p � 0.001). In particular, comprehen-
sion at the highest speed (25%) abruptly deteriorated compared
with 50% compression (�Mdn � �2.6, r � �0.61, p � 2.7 �
10�5) and was partly restored with the insertion of silence gaps
(�Mdn � 1.9, r � 0.60, p � 2.7 � 10�5). Although comprehen-
sion was expectedly high at both 50% and 100% of natural dura-
tion, it was more variable in the fastest condition (50%). Finally,
there was a larger intersubject variability and the news was harder
to understand in the gap condition than during the 50 –100% of
natural duration rates (e.g., 50% vs 25%  gaps: �Mdn � 0.7, r �
0.61 p � 4.0 � 10�5).

Spectral power and scaling of neuronal oscillations and
speech signals
To investigate the neuronal correlates of speech comprehension,
we compared MEG activity during the five speech conditions.
The temporal dynamics of MEG activity was quantified using
DFA (see Materials and Methods), which estimates the LRTC of
the amplitude fluctuations (Fig. 2). Individual DFA exponents
(�) across subjects, sensors, and oscillations spanned the range of
�0.5–1 (Fig. 3), indicating that the amplitude modulation of
oscillations exhibited power-law LRTC.

Global changes in spectral power and DFA exponents (aver-
aged across all sensors) varied significantly with speech rate. Spe-
cifically, power increased in the � and � bands and DFA increased
across all frequency bands between the natural and 25% com-
pressed speech (Table 1). At this global level, the DFA of high-�
was the only parameter to show significant changes across con-
secutive speech rates (p � 0.002).

We proceeded with considering regional differences by means
of quantifying changes in the MEG sensor pairs. Differences in
the strength of LRTC were pronounced for the � and high-�
activities, with p-values �0.05 (Friedman test) in 88% and 90%
of sensors, respectively. DFA exponents of �, �, �, and � revealed
significant differences (p � 0.05) in 44%, 22%, 24%, and 50% of
the sensor locations, respectively. For spectral power, however,
natural speech only differed from 25% compressed speech in the
� band (Friedman test, 94% of the sensor locations). Together,
these data suggest that the spectral power of neuronal oscillations
and LRTC probe different aspects of speech processing. To fur-
ther investigate the direction of the effect of speech acceleration
on the amplitude and amplitude dynamics of the neuronal oscil-
lations, we conducted post hoc analyses using Wilcoxon signed-
rank sum tests.

While listening to the fourfold-compressed speech (25% of
natural duration), the spectral power in the � band increased
across all regions of the sensor array compared with the natural
rate (Fig. 4A–C,E). The analysis of scale-free dynamics revealed a
greater dissociation between speech rates both across frequency
ranges and anatomical regions. LRTC of amplitude envelopes
exhibited negligible differences across the three fully intelligible
conditions (100%, 75%, and 50%) for �, �, �, �, and � oscillations.
In contrast, LRTC in the high-� band increased monotonically with

Table 1. Global spectral power and DFA (averaged over sensors) for each speech condition

Frequency band (Hz) Natural rate 75% 50% 25% 25%  gaps Wilcoxon Tc (n � 24) p r

Spectral powera (pT/m)
1– 4 152 (27.3) 150 (26.8) 156 (27.5) 160 (27.9) 151 (26.7) 0 �0.001* 0.62
4 – 8 116 (26.0) 117 (25.9) 118 (25.8) 117 (25.6) 116 (24.8) 69 0.021 0.33
8 –12 117 (38.2) 118 (38.4) 116 (38.6) 116 (39.1) 116 (38.8) 115 0.317 0.14
12–30 65.8 (14.8) 66.0 (14.7) 65.7 (15.0) 66.1 (15.4) 64.3 (14.7) 130 0.568 0.08
30 – 45 39.5 (5.9) 39.8 (5.9) 39.4 (6.0) 39.6 (6.1) 39.4 (5.9) 28 �0.001* 0.50
55–300 26.1 (3.5) 26.5 (3.5) 26.1 (3.5) 26.1 (3.5) 26.0 (3.4) 64 0.014 0.35

DFAb

1– 4 0.756 (0.010) 0.755 (0.010) 0.766 (0.012) 0.798 (0.017) 0.755 (0.012) 0 �0.001* 0.62
4 – 8 0.668 (0.010) 0.669 (0.008) 0.666 (0.010) 0.692 (0.011) 0.662 (0.008) 0 �0.001* 0.62
8 –12 0.716 (0.030) 0.716 (0.030) 0.716 (0.033) 0.733 (0.032) 0.715 (0.028) 0 �0.001* 0.62
12–30 0.658 (0.031) 0.654 (0.031) 0.658 (0.033) 0.678 (0.032) 0.659 (0.028) 0 �0.001* 0.62
30 – 45 0.5903 (0.015) 0.595 (0.015) 0.597 (0.017) 0.6141 (0.017) 0.597 (0.018) 0 �0.001* 0.62
55–300 0.613 (0.041) 0.657 (0.050) 0.642 (0.036) 0.702 (0.032) 0.631 (0.018) 0 �0.001* 0.62

The data represent median (SD) across n � 24 subjects. The Wilcoxon test indicates the significance and effect size of the difference between the natural rate and the 25% condition.
aFriedman test, effect of rate � frequency �(4)

2 (n � 24) � �79, 72, 24, 58, 49, 41�, p � 0.001.
bFriedman test, effect of rate � frequency �(4)

2 (n � 24) � �79, 73, 51, 45, 55, 77�, p � 0.001.
cComparison natural rate versus 25%.

*Significance p � 0.005 (Bonferroni threshold).
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Figure 4. Scale-free dynamics of delta, theta and gamma bands reflects the comprehension of accelerated speech. Topographies of time-averaged power (odd rows) and DFA exponents (even
rows) in the �, �, �, �, �, and high-� range are shown for the natural rate (A) and the 25% time compressed (B) conditions. The difference topographies of conditions 25% time compressed minus
natural rate are shown for amplitude (C) and DFA exponents (D), with significance levels indicated with black circles (Wilcoxon signed-rank sum tests, significance threshold p � 0.05, n � 24) or
white circles (significant differences after correction for multiple comparisons with FDR � 5.0 � 10 �4). Boxplots of spectral power (E) and DFA exponents (F ) for each of the five conditions (natural
rate, 75%, 50%, and 25% compression and 25% compression with periodic gaps inserted) for sensors marked with yellow stars in C and D. A significant difference between any two conditions is
shown with a horizontal gray line (uncorrected) or black line (corrected) as in C and D. Center lines show the medians; box limits indicate the 25th and 75th percentiles, whiskers extend 1.5 times
the interquartile range from the 25th and 75th percentiles. Note that DFA exponents of the �, �, and � oscillations are the only biomarkers that specifically reflect comprehension of the speech
conditions, whereas high-� also responds to the acceleration of speech per se.
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rate, mainly in the frontal, centroparietal, and cerebellar regions of
the sensor array (Fig. 4F). Importantly, responses to 25% com-
pressed speech showed elevated LRTC relative to the natural
speed for several oscillations (Fig. 4D,F). For the � and high-�
bands, the increase occurred nearly ubiquitously across the scalp
[e.g., �Mdn(�) � 0.066, T � 7, r � 0.59, pcorrected (two-tailed) �
0.0005; �Mdn(high-�) � 0.111, T � 3, r � 0.6, pcorrected (two-
tailed) � 0.0001; Fig. 4D,F]. For �, �, �, and � bands, the power
law exponents increased in sensors located over occipital, cere-
bellar, and frontal regions. The magnitude and topography of the
DFA exponents increases in the 25% compressed condition rela-
tive to the natural speech rate were very similar to those of the
contrast between the 25% compressed condition and the inter-
mediate rates (75–50%; Fig. 5). The selective increase that oc-
curred only in the 25% compressed condition and mostly in the
�/� bands suggests that LRTC of these slow oscillations possibly
reflect extraction of meaning from speech. The condition in
which speech was compressed four times thus differed both
quantitatively and qualitatively from all other conditions. Impor-
tantly, the insertion of silence gaps in the most compressed con-
dition, which nearly restored comprehension (Fig. 1B), reduced
the scaling exponents (Fig. 4F) to values close to those observed
at the natural rate.

To address whether changes in LRTC in the amplitude mod-
ulation of oscillations solely reflect a stimulus-driven dynamics
such as increasing LRTC with compression, we also analyzed the
speech stimuli using the DFA method (see Materials and Meth-
ods). The amplitude envelope of the broadband and low-pass-
filtered amplitude envelopes exhibited temporally structured
fluctuations at all compression levels (Fig. 6A), approximating a
power law function (Fig. 6B). In contrast to the scaling of neuro-
nal oscillations, however, DFA exponents decreased with speech
compression. Whereas the rates by design decreased linearly,
scaling exponents exhibited subtle decreases (�� � 0.01) at the
two moderate compression rates (75% and 50%), followed by an
abrupt reduction in the most compressed speech (�� � 0.07; Fig.
6C). Together, our results show that speech comprehension is
closely coupled to the power law scaling of multiple oscillation
envelopes in several brain regions in a fashion not trivially linked
to the physical features of the stimuli.

Spectral power and LRTC are associated with
comprehension
The behavioral scores showed that comprehension mostly col-
lapsed for the 25% compressed speech, varying from “nothing
understood” (1) to “some words understood” (2) (Fig. 1B). To
explore whether the individual variation in comprehension was
associated with individual variation in the amplitude and power
law scaling behavior, we correlated speech comprehension scores
in the 25% condition with the amplitudes or DFA exponents
across the sensor array. We found that amplitudes in frontal areas
correlated strongly and positively with comprehension, especially in
the �, �, �, and high-� bands(e.g., 
�(21) � 0.53, p(two-tailed) � 0.01;
Fig. 7A–C). In contrast, DFA exponents exhibited negative cor-
relations in most regions and frequency bands, reaching signifi-
cance in central and temporoparietal sensor regions of � and �
bands (peak at 
�(21) � �0.62 p(two-tailed) � 0.002; Fig. 7D–F).
These observations underscore that speech comprehension is as-
sociated with a reorganization of the temporal structure of � and
� oscillations and that the time-averaged spectral power and the
LRTC of the amplitude modulation of oscillations have an in-
verse relationship with speech comprehension.

As a group tendency, the scaling exponents of the speech and
brain activity (Fig. 8A) diverged with increasing speech rate. Spe-
cifically, the �brain approached 0.8 (Fig. 4) and the �speech reached
0.6 (Fig. 6) in the 25% compression condition compared with
approximately equal scaling exponents (�brain � �speech) at the
slower rates and when silent gaps were inserted to restore com-
prehension (Fig. 8B). Using the cross-correlation measure of in-
formation transfer (
�) applied to the interaction of speech and
brain (see Eq. 3 in the Materials and Methods; Fig. 8C), we found
that information transfer was �0.6 during the natural rate and
merely �0.2 in the fastest rate of speech (Fig. 8D). Therefore, it
may be that comprehension is related to information transfer.

A B

Figure 5. Neural LRTC increase in the most accelerated speech in contrast to moderate
speech rates. Topographical differences between the DFA scaling exponents obtained during
the 25% minus the 75% (A) and 50% (B) time-compressed speech conditions for the different
frequency bands. Significance levels indicated with black circles (Wilcoxon signed-rank sum
tests, significance threshold p � 0.05, n � 24) or white circles (significant differences after
correction for multiple comparisons with FDR � 5.0 � 10 �4). Scale-free properties are rela-
tively constant between moderate rates and the fastest rate of speech.

716 • J. Neurosci., January 17, 2018 • 38(3):710 –722 Borges et al. • Scale-Free Brain Dynamics and Speech Comprehension



Moreover, following the relationship of Equation 3, with a scaling
exponent (�speech) equal to 0.6 during the fastest rate (where
comprehension deteriorated), the cross-correlation can amount
maximally to �0.6 and reach zero if the �brain approaches but
does not equal one. This low level of information transfer is con-
gruent with the fact that subjects who understood nothing of the
speech showed the highest �brain (Fig. 7E).

Discussion
We investigated how speech processing and comprehension are
coupled to the spectral power and scale-free amplitude modula-
tion of neuronal oscillations recorded with MEG. We found that

LRTC prominently in the �, �, and �
bands mirrored the abrupt change in the
speech comprehension at high rates of
presentation, whereas high-frequency �
fluctuations (55–330 Hz) displayed a pro-
gressive increase in LRTC with speech
acceleration when rates were compre-
hensible. These findings suggest that the
scale-free amplitude dynamics of neuro-
nal oscillations can reflect processes
associated with speech comprehension.
Interestingly, the semantics-related in-
crease in neuronal LRTC occurred when
the time-compressed acoustic speech sig-
nal had reduced LRTC.

Roles of power and scale-free dynamics
in speech processing
We confirmed here that the temporal
structure of oscillations can be modulated
independently of its amplitude, as several
studies characterizing neuronal dynamics
in healthy subjects have observed (Niku-
lin and Brismar, 2005; Linkenkaer-
Hansen et al., 2007; Smit et al., 2011).
Both when comparing intelligible and un-
intelligible conditions and when looking
at intersubject variability in the fastest

condition, we observed that comprehension was associated with
weak LRTC. High performance has previously been associated
with lower scaling exponents, for example, in an audiovisual co-
herence detection task (Zilber et al., 2013), an auditory target-
detection task (Poupard et al., 2001), or a sustained visual
attention task (Irrmischer et al., 2017). Long-range temporal cor-
relations are also suppressed in behavioral time series during
tasks with high memory load (Clayton and Frey, 1997) and un-
predictability (Kello et al., 2007). One possible interpretation of
such findings is that the regime of reduced LRTC facilitates in-
formation processing (He, 2011). A reduction of LRTC might

A B C

Figure 6. Long-range correlations of speech envelope decrease with time compression. A, Envelopes of speech stimuli in the five rate conditions (20 s excerpt) filtered in the range 0.100 –20 kHz
(black line) and after low-pass filtering at 20 Hz (green line). B, Double logarithmic plots of characteristic fluctuation size [F(t)] versus box size (t) display power law scaling within the interval [1,9]
s for both the broadband envelopes (left) and the 20 Hz low-pass envelopes (right). The linear relationship reveals the presence of self-similarity (scaling) between the fluctuation at small and larger
boxes. The slopes are equal to the DFA exponent. The lines were vertically shifted to aid visualization. C, DFA exponent of the speech envelopes (broadband and 20 Hz low-pass) decreases with the
increase of speech rate and the insertion of gaps in the 25% compressed speech augments the exponent moderately.

A B C

D E F

Figure 7. Spectral power and scale-free dynamics of oscillations are linked to comprehension of severely compressed speech.
A, C, Topographical maps denote the Spearman’s correlation coefficient (
) between the comprehension in the 25% condition and
the amplitude (A) or DFA (C) exponent in the � band; significant changes are marked with white circles (level of significance 0.05).
B, D, Individual results for the sensor pair marked with a yellow star in A and C. � power correlates with comprehension in the
frontal region, whereas DFA decreases as comprehension increases in the medial and left temporal regions. C, F, Same as in A and
C, but, for the remaining five frequency bands labeled with the correspondent Greek letters, the biomarker values are color coded
in the same range.

Borges et al. • Scale-Free Brain Dynamics and Speech Comprehension J. Neurosci., January 17, 2018 • 38(3):710 –722 • 717



arise from demanding exogenous con-
straints that prompt rapid reorganization
of cortical assemblies and reduce their in-
trinsic propensity to participate in a large
repertoire of spatiotemporal patterns as
those observed during self-organized neu-
ronal activity (Plenz and Thiagarajan,
2007). Notwithstanding, reasoning tasks
less strictly shaped by external demands
are characterized by higher scaling re-
gimes (Buiatti et al., 2007) and behavioral
tasks of repetitive nature such as estimating
periodic intervals (Gilden et al., 1995) or re-
peating a word (Kello et al., 2008) approach
closely 1/f dynamics, suggesting that the
scaling regime depends on the nature of the
task. Our finding that neural LRTC either
increase or remain unaltered with faster
rates challenges the view that LRTC gener-
ally reduces with effort (Churchill et al.,
2016); however, we cannot exclude that the
abrupt increase in LRTC in � and � oscilla-
tions reflects less responsiveness to the stim-
uli and the emergence of brain dynamics
more reminiscent to rest.

The taxing imposed by the accelerated
pace increases memory load, which is
known to increase the power of �, �, and �
oscillations in the frontal lobes (Gevins et
al., 1997; Jensen and Tesche, 2002; How-
ard et al., 2003; Onton et al., 2005; Zarjam
et al., 2011). Under the fastest speed con-
dition, positive correlations were found
between the individual subject power in the
�, �, �, and high-� activity in frontal regions
and speech comprehension. However, at
the group level, � power increased signifi-
cantly in this condition relative to the other
three slower-paced conditions despite
hampered comprehension. Therefore,
increased power plausibly reflects a
domain-general mechanism engaged by
the difficulty in language understanding
(Fedorenko, 2014), which assists but does not guarantee
meaning retrieval. Future studies should include a control
condition of equally time-compressed random sound se-
quences devoid of meaning to dissect thoroughly the relative
contribution of comprehension success (semantics) and com-
prehension effort (commensurate to speech rate) to neural
activity.

Contributions of frequency and
anatomy
Several studies have implicated �, �, and � oscillations in speech
comprehension (Giraud et al., 2007; Luo et al., 2010; Peelle et al.,
2013; Henry et al., 2014; Lewis et al., 2015; Lam et al., 2016; Mai et
al., 2016; Keitel et al., 2017). Conceivably, sensory selection in-
volves a hierarchical coupling between lower and higher fre-
quency bands (Lakatos et al., 2008; Giraud and Poeppel, 2012;
Gross et al., 2013). Temporal modulations (1–7 Hz) of the speech
envelope are crucial (Elliott and Theunissen, 2009) and may
suffice for comprehension (Shannon et al., 1995). Their repre-
sentation by neuronal dynamics appears therefore sensible. Con-

sidering the overarching role of � oscillations in large-scale
cortical integration (Bruns and Eckhorn, 2004), our finding that
�/� dynamics change selectively when comprehension deterio-
rates suggests that it reflects top-down processes (Kayser et al.,
2015) and possibly mirrors an internal “synthesis” of the at-
tended speech. In contrast, scaling of high-� fluctuations varied,
not just as a function of comprehension, but also at accelerated
intelligible rates, suggesting an involvement of high-� in the
tracking of speech streams (Canolty et al., 2007; Nourski et al.,
2009; Honey et al., 2012; Mesgarani and Chang, 2012; Zion
Golumbic et al., 2013) and bottom-up processing (Zion Golum-
bic et al., 2013; Fontolan et al., 2014).

Our findings altogether agree with recent studies indicating
that meaning retrieval affects almost the whole brain (Boly et al.,
2015; Huth et al., 2016). Although temporal, frontal, and parietal
regions encompass language-dedicated areas (Hickok and
Poeppel, 2007; Fedorenko et al., 2011; Silbert et al., 2014), occip-
ital and cerebellar regions are selectively involved when compre-
hension is challenging (Erb et al., 2013; Guediche et al., 2014). In
regions of central and parietal cortices, we found that LRTC of

A B

C D

Figure 8. Hypothetical interplay between scale-free dynamics in speech and brain activity and comprehension. A, Speech and
brain represent two complex systems with amplitude fluctuations characterized by their scaling exponents �s and �b, respec-
tively. B, With increasing rate, �s and �b diverge, being maximally distinct at the fastest rate (25% compression), where
comprehension was compromised. C, For values of scaling exponents in the range 0.5 � �� 1, a measure of information
transfer between the perturbed system (brain) and a perturbation (speech stimuli) is given by the cross-correlation (
�),
which depends on a relationship between the scaling exponents of speech (�perturbation) and brain (�system) as follows:


� �
1 	 �s

2 	 �s 	 �p
(Aquino et al., 2007, 2010, 2011). D, The cross-correlation is �0.6 when subjects listen to the speech at

the natural rate and minimal (�0.2) when the news pieces were time compressed by 25%.
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� and � correlated with comprehension. This is unsurprising
because the inferior parietal region hosts an important hub for
multimodal semantic processing (Binder and Desai, 2011) and
phenomenal experience (Koch et al., 2016). Finally, whereas the
prefrontal cortex controls semantic retrieval with increasing in-
fluence over time (Gardner et al., 2012), more transient systems
may arise from posterior regions. Accordingly, we found notice-
able LRTC increases in occipital/cerebellar regions with effortful
comprehension. The change occurred almost linearly with the
increase of speech rate mainly in the high-�, suggesting that neu-
ral activity in these regions signals processes dependent both on
comprehension and speed of speech. Our findings align with a
cerebellar role in semantic integration and sensory tracking (Kotz
and Schwartze, 2010; Buckner, 2013; Moberget and Ivry, 2016).
Topographical inferences are duly conservative because some
level of correlation between magnetic fields on the surface of the
brain is warranted. Future studies using source reconstruction
may enrich anatomical extrapolation and shed light on how spa-
tially coordinated oscillatory activity subserves speech processing
(Gross et al., 2013).

Language recovery in aphasic patients relies on new functional
neuroanatomies involving nonlinguistic regions (Cahana-Amitay
and Albert, 2014) and no single region is essential for language com-
prehension (Price and Friston, 2002). Therefore, it may be worth-
while exploring how scale-free dynamics, which our findings showed
accounts for a substantial amount of variance in speech compre-
hension, evolves in, for example, poststroke aphasia.

Dynamical bottleneck in comprehension
We found that a fourfold increase in speech rate compromises
comprehension. However, it did not cause irreversible infor-
mation loss; otherwise, the repackaging of accelerated speech
with silence gaps would not permit a nearly full recovery of com-
prehension. The bottleneck most likely resides in the trade-off
between the quality of the speech fragment and the time elapsed
to comprehend it (Ghitza, 2014; Ma et al., 2014).

A decrease in the speech LRTC may reflect decreasing infor-
mation transfer rates (Aquino et al., 2010), which in turn might
compromise comprehension. In addition, in the fastest speech
condition, neural and acoustic scaling exponents increased and
decreased, respectively, which is opposite of what would be ex-
pected for optimal information transfer according to the princi-
ple of complexity management (Aquino et al., 2007, 2010, 2011).
Importantly, the individual relationship between LRTC and
comprehension—subjects with lower neural LRTC had a better
comprehension than subjects with higher LRTC—further sup-
ports this principle of how complex properties of stimuli and the
brain interweave with information transfer.

To understand why this divergence of scaling behavior of
speech and neuronal oscillations occurred, we consider the dy-
namical properties of the two systems. Regarding speech, recent
evidence indicates that discrimination of sounds relies on the
short- to long-range statistics of their envelopes (McDermott et
al., 2013). Although it is uncertain why the LRTC decreased
disproportionally at the fastest rate, an attenuation of LRTC
with time compression appears intuitive because the downsam-
pling mostly preserves the speech envelope while also miniatur-
izing it (the Matryoshka doll effect). Speech is a redundant signal
(Attias and Schreiner, 1997) and the decrease in degeneracy by
time compression may compromise its robustness by altering
cues for word boundaries needed for speech parsing (Winter,
2014). Like the speech signal itself, functional cortical assemblies
are also organized in a temporal hierarchy; fMRI and ECoG stud-

ies of narrative comprehension have shown that the auditory
cortices preferentially process briefer stretches of information
than higher-order areas (Lerner et al., 2011; Honey et al., 2012).
The regions across this hierarchy act as low-pass filters causing
the last regions to have slower dynamics because their inputs
underwent more filtering stages (Baria et al., 2013; Stephens et al.,
2013). We may thus conjecture that the observed bottleneck
arises from a fuzzy acoustic-to-abstract reconstruction. When a
less degenerate input propagates along the cortical hierarchy, the
serial low-pass-filtering process will gradually obliterate its fast-
varying temporal structure while retaining mostly slower-varying
properties. Cortical dynamics are therefore characterized by larger
scaling exponents, as observed here, signaling that slow fluctuations
dominate (Peng et al., 1995), are less dependent on the recent past
(Keshner, 1982), and yield perception of jibber-jabber sounds but
lack the fine details necessary for meaning retrieval.

Overall, we show that speech comprehension relates to the
multiscale structure of neuronal oscillations and speech signals,
indicating that scale-free dynamics indexes time-based con-
straints underlying the bottleneck in processing accelerated
speech. The results foster studies using multifractal or other
complexity-related metrics (Stanley et al., 1999) that may refine
the role of the acoustic rate on neural dynamics.
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